Broadcast Attacks against Lattice-based Cryptosystems

Thomas Plantard Willy Susilo

Centre for Computer and Information Security Research University of Wollongong

http://www.uow.edu.au/~thomaspl thomaspl@uow.edu.au

Broadcast Problem

One message m send to k recipients.

$$\forall 1 \leq i \leq k, \quad c_i \equiv m^e \pmod{N_i}$$

Attack Using CRT

If $k \geq e$ then

$$c \equiv m^{e} \pmod{\prod_{i=1}^{k} N_i}$$
$$c = m^{e}$$
$$c^{1/e} = m$$

General Solution [BBM00, BPS00]

Paddings,

$$m'=(m|h(N)).$$

• Cost in Space and Time

Do we need Paddings for ...

- ... Knapsack based cryptography?
- ... Lattice based cryptography?

Outline

Lattice Theory

- Lattice
- Lattice Gap

3 Cryptosystem Concerned

- Lattice Based Cryptography
- Knapsack Based Cryptography

Intersecting Lattices

- Theorem
- Broadcast Attack
- Practical Tests

Conclusion

Lattice Theory

Introduction

Lattice Theory

- Lattice
- Lattice Gap

Cryptosystem Concerned

- Lattice Based Cryptography
- Knapsack Based Cryptography

Intersecting Lattices

- Theorem
- Broadcast Attack
- Practical Tests

Conclusion

Lattice

Definition of a Lattice

• All the integral conbinations of $d \leq n$ linearly independant vectors over $\mathbb R$

$$\mathcal{L} = \mathbb{Z} \, \mathbf{b}_1 + \dots + \mathbb{Z} \, \mathbf{b}_d = \{\lambda_1 \mathbf{b}_1 + \dots + \lambda_d \mathbf{b}_d : \lambda_i \in \mathbb{Z}\}$$

- d dimension.
- $\mathbf{B} = (\mathbf{b}_1, \dots, \mathbf{b}_d)$ is a *basis*.

An Example

$$\mathbf{B}=egin{pmatrix} 5&rac{1}{2}&\sqrt{3}\ rac{3}{5}&\sqrt{2}&1 \end{pmatrix}$$

 $d = 2 \le n = 3$

3

<ロト < 団ト < 団ト < 団ト

(1)

A lattice \mathcal{L}

$$\mathbf{B} = \begin{pmatrix} 8 & 5\\ 5 & 16 \end{pmatrix} \tag{2}$$

An infinity of basis

A lattice \mathcal{L}

$$\mathbf{UB} = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 8 & 5 \\ 5 & 16 \end{pmatrix} = \begin{pmatrix} 8 & 5 \\ -3 & 11 \end{pmatrix}$$
(3)

An infinity of basis

A lattice \mathcal{L}

$$\mathbf{UB} = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 8 & 5 \\ 5 & 16 \end{pmatrix} = \begin{pmatrix} 8 & 5 \\ 13 & 21 \end{pmatrix}$$
(4)

An infinity of basis

Plantard and Susilo (UoW)

Broadcast Attacks

A lattice \mathcal{L}

$$\mathbf{UB} = \begin{pmatrix} 3 & 1 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 8 & 5 \\ 5 & 16 \end{pmatrix} = \begin{pmatrix} 29 & 31 \\ 21 & 26 \end{pmatrix}$$
(5)

An infinity of basis

The Shortest Vector and The First Minima

.

$$m{v} = ig(8 \ 5ig) \,, \,\, {
m with} \,\, \lambda_1 = \sqrt{8^2 + 5^2} = 9.434$$

.

An infinity of basis

(6)

Lattice Gap

Lattice Gap

$$\alpha(\mathcal{L}) = \frac{\lambda_2(\mathcal{L})}{\lambda_1(\mathcal{L})} = \frac{\text{Second Minima}}{\text{First Minima}}$$

Example

$$\alpha = \frac{\|\begin{pmatrix} -3 & 11 \end{pmatrix}\|}{\|\begin{pmatrix} 8 & 5 \end{pmatrix}\|} = \frac{\sqrt{3^2 + 11^2}}{\sqrt{8^2 + 5^2}} = 1.208$$

Shortest Vector Problem

- SVP on Random Lattice ($lpha \sim 1$) NP-Hard [Ajtai98].
- SVP solvable by BKZ-20 if $\alpha > 1.07^d$.
- SVP solvable by LLL if $\alpha > 1.16^d$.
- SVP on Lattice based Cryptography $\alpha > 2$, $\alpha = O(poly(d))$.

Cryptosystem Concerned

Introduction

2) Lattice Theory

- Lattice
- Lattice Gap

3 Cryptosystem Concerned

- Lattice Based Cryptography
- Knapsack Based Cryptography

Intersecting Lattices

- Theorem
- Broadcast Attack
- Practical Tests

Conclusion

Cryptography based on SVP

- 1996: Ajtai-Dwork (AD) first theorethical cryptosystem based on Lattice.
- 1998: Nguyen and Stern found a heuristical attack on AD.
- 1999: Improvement of Cai and Cusick.
- 2003: Improvement by Regev.

Cryptography based on CVP

- 1997: Goldreich, Goldwasser and Halevi (GGH), first efficient cryptosystem.
- 1999: Nguyen cryptanalyzed GGH.
- 2001: Improvement by Micciancio.

GGH

GGH Cryptosystem

• **Setup:** Compute a secret "good" basis *G* and a public "bad " basis *B* with

$$\mathcal{L}(G) = \mathcal{L}(B).$$

• **Encrypt:** To encrypt $m \in \mathbb{Z}^n$, compute $r \in \mathbb{Z}^n$,

$$c = m + rB.$$

• **Decrypt:** Use the good basis G to solve the CVP on c.

Lattice Attack, [Kannan87]

Compute
$$B' = \begin{pmatrix} B & 0 \\ c & 1 \end{pmatrix}$$

2 Find $(m \ 1)$ shortest vector of \mathcal{L} .

Image: A matrix

Knapsack Based Cryptography

Knapsack based Cryptosystem [MerHel78]

- **Setup:** Create a_1, \ldots, a_n with a trapdoor f for Knapsack Problem.
- Encrypt: To encrypt $m \in [0,1]^n$, compute

$$s=\sum_{i=1}^n m_i a_i.$$

• **Decrypt:** Use the trapdoor *f* to solve the knapsack problem.

Example

- Setup: Create *a* = [8, 11, 15, 23] with *f*
- **Encrypt:** For m = [0, 1, 1, 0] compute

$$s = 11 + 15 = 26.$$

• **Decrypt:** f([8, 11, 15, 23], 26) = [0, 1, 1, 0]

Security Question

Density

density =
$$\frac{n}{\max_{i=1}^{n} \log_2 a_i} = \frac{4}{\log_2 23} = 0.8842$$

- High Density density > 1, NP-Complete. [Karp72]
- Low Density $d \sim 0.9408$, solvable using LLL.

Lattice Attack [LagOdl85]

1 Compute
$$B = \begin{pmatrix} Id & a^T \\ 0 & s \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 & 8 \\ 0 & 1 & 0 & 0 & 11 \\ 0 & 0 & 1 & 0 & 15 \\ 0 & 0 & 0 & 1 & 23 \\ 0 & 0 & 0 & 0 & 26 \end{pmatrix}$$
2 Find $(m \ 0)$ shortest vector of \mathcal{L} . , $v = (0 \ 1 \ 1 \ 0$

0)

Intersecting Lattices

Introduction

2 Lattice Theory

- Lattice
- Lattice Gap

Cryptosystem Concerned

- Lattice Based Cryptography
- Knapsack Based Cryptography

Intersecting Lattices

- Theorem
- Broadcast Attack
- Practical Tests

Conclusion

lf ...

- i) v Shortest Vector of \mathcal{L}_1 .
- ii) v Shortest Vector of \mathcal{L}_2 .

... Then ...

- i) v Shortest Vector of $\mathcal{L}_1 \cap \mathcal{L}_2$.
- ii) Gap Bigger on $\mathcal{L}_1 \cap \mathcal{L}_2$.

표 문 문

Basis

$$\mathbf{B_1} = \begin{pmatrix} 8 & 5\\ 5 & 16 \end{pmatrix} \tag{7}$$

Lattice

Plantard and Susilo (UoW)

Broadcast Attacks

Basis

$$\mathbf{B_2} = \begin{pmatrix} 8 & 5\\ -12.5 & 11.5 \end{pmatrix} \tag{8}$$

Lattice

Plantard and Susilo (UoW)

Broadcast Attacks

Basis

$$\mathbf{B}(\mathcal{L}_1 \cap \mathcal{L}_2) = \begin{pmatrix} 8 & 5\\ 17 & -28 \end{pmatrix}$$
(9)

Lattice

Broadcast Attack ...

...for CVP based Cryptosystem

• Compute
$$B'_i = \begin{pmatrix} B_i & 0 \\ c_i & 1 \end{pmatrix}$$

... for Knapsack Cryptosystem

• Compute
$$B_i = \begin{pmatrix} Id & a_i^T & 0\\ 0 & s & 1 \end{pmatrix}$$
.
• Compute $\mathcal{L} = \bigcap_{i=1}^k \mathcal{L}(B_i)$.

Solution Find
$$\begin{pmatrix} m & 0 & 1 \end{pmatrix}$$
 shortest vector of \mathcal{L} .

Number of Broadcast Challenges

Conclusion

Introduction

2 Lattice Theory

- Lattice
- Lattice Gap

Cryptosystem Concerned

- Lattice Based Cryptography
- Knapsack Based Cryptography

Intersecting Lattices

- Theorem
- Broadcast Attack
- Practical Tests

Conclusion

Do we need paddings for ...

- ... Knapsack based cryptography? YES.
- ... Lattice based cryptography? YES.

Intersecting Lattices

- Nice way to modelized problems...
- ... Without loosing any information.