Broadcast Attacks against Lattice-based Cryptosystems

Thomas Plantard Willy Susilo
Centre for Computer and Information Security Research
Universiy of Wollongong

http://www.uow.edu.au/-thomaspl
thomaspl@uow.edu.au

Broadcast Attack on RSA [Håstad88]

Broadcast Problem

One message m send to k recipients.

$$
\forall 1 \leq i \leq k, \quad c_{i} \equiv m^{e} \quad\left(\bmod N_{i}\right)
$$

Attack Using CRT

If $k \geq e$ then

$$
\begin{aligned}
c & \equiv m^{e} \quad\left(\bmod \prod_{i=1}^{k} N_{i}\right) \\
c & =m^{e} \\
c^{1 / e} & =m
\end{aligned}
$$

Securing against Broadcast Attack

General Solution [BBM00,BPS00]

- Paddings,

$$
m^{\prime}=(m \mid h(N)) .
$$

- Cost in Space and Time

Do we need Paddings for ...

- ... Knapsack based cryptography?
- ... Lattice based cryptography?

Outline

(1) Introduction
(2) Lattice Theory

- Lattice
- Lattice Gap
(3) Cryptosystem Concerned
- Lattice Based Cryptography
- Knapsack Based Cryptography

4 Intersecting Lattices

- Theorem
- Broadcast Attack
- Practical Tests
(5) Conclusion

Lattice Theory

(1) Introduction

(2) Lattice Theory

- Lattice
- Lattice Gap
(3) Cryptosystem Concerned
- Lattice Based Cryptography
- Knapsack Based Cryptography

4) Intersecting Lattices

- Theorem
- Broadcast Attack
- Practical Tests
(5) Conclusion

Lattice

Definition of a Lattice

- All the integral conbinations of $d \leq n$ linearly independant vectors over \mathbb{R}

$$
\mathcal{L}=\mathbb{Z} \mathbf{b}_{1}+\cdots+\mathbb{Z} \mathbf{b}_{d}=\left\{\lambda_{1} \mathbf{b}_{1}+\cdots+\lambda_{d} \mathbf{b}_{d}: \lambda_{i} \in \mathbb{Z}\right\}
$$

- d dimension.
- $\mathbf{B}=\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{d}\right)$ is a basis.

An Example

$$
\mathbf{B}=\left(\begin{array}{ccc}
5 & \frac{1}{2} & \sqrt{3} \tag{1}\\
\frac{3}{5} & \sqrt{2} & 1
\end{array}\right)
$$

$d=2 \leq n=3$

Example

A lattice \mathcal{L}

$$
\mathbf{B}=\left(\begin{array}{cc}
8 & 5 \tag{2}\\
5 & 16
\end{array}\right)
$$

An infinity of basis

Example

A lattice \mathcal{L}

$$
\mathbf{U B}=\left(\begin{array}{cc}
1 & 0 \tag{3}\\
-1 & 1
\end{array}\right)\left(\begin{array}{cc}
8 & 5 \\
5 & 16
\end{array}\right)=\left(\begin{array}{cc}
8 & 5 \\
-3 & 11
\end{array}\right)
$$

An infinity of basis

Example

A lattice \mathcal{L}

$$
\mathbf{U B}=\left(\begin{array}{ll}
1 & 0 \tag{4}\\
1 & 1
\end{array}\right)\left(\begin{array}{cc}
8 & 5 \\
5 & 16
\end{array}\right)=\left(\begin{array}{cc}
8 & 5 \\
13 & 21
\end{array}\right)
$$

An infinity of basis

Example

A lattice \mathcal{L}

$$
\mathbf{U B}=\left(\begin{array}{ll}
3 & 1 \tag{5}\\
2 & 1
\end{array}\right)\left(\begin{array}{cc}
8 & 5 \\
5 & 16
\end{array}\right)=\left(\begin{array}{ll}
29 & 31 \\
21 & 26
\end{array}\right)
$$

An infinity of basis

Example

The Shortest Vector and The First Minima

$$
\mathbf{v}=\left(\begin{array}{ll}
8 & 5 \tag{6}
\end{array}\right), \text { with } \lambda_{1}=\sqrt{8^{2}+5^{2}}=9.434
$$

An infinity of basis

Lattice Gap

Lattice Gap

$$
\alpha(\mathcal{L})=\frac{\lambda_{2}(\mathcal{L})}{\lambda_{1}(\mathcal{L})}=\frac{\text { Second Minima }}{\text { First Minima }}
$$

Example

$$
\alpha=\frac{\left\|\left(\begin{array}{ll}
-3 & 11
\end{array}\right)\right\|}{\left\|\left(\begin{array}{ll}
8 & 5
\end{array}\right)\right\|}=\frac{\sqrt{3^{2}+11^{2}}}{\sqrt{8^{2}+5^{2}}}=1.208
$$

Shortest Vector Problem

- SVP on Random Lattice ($\alpha \sim 1$) NP-Hard [Ajtai98].
- SVP solvable by BKZ-20 if $\alpha>1.07^{d}$.
- SVP solvable by LLL if $\alpha>1.16^{d}$.
- SVP on Lattice based Cryptography $\alpha>2, \alpha=O(p o l y(d))$.

Cryptosystem Concerned

(1) Introduction

(2) Lattice Theory

- Lattice
- Lattice Gap
(3) Cryptosystem Concerned
- Lattice Based Cryptography
- Knapsack Based Cryptography
(4) Intersecting Lattices
- Theorem
- Broadcast Attack
- Practical Tests
(5) Conclusion

Lattice Based Cryptography

Cryptography based on SVP

- 1996: Ajtai-Dwork (AD) first theorethical cryptosystem based on Lattice.
- 1998: Nguyen and Stern found a heuristical attack on AD.
- 1999: Improvement of Cai and Cusick.
- 2003: Improvement by Regev.

Cryptography based on CVP

- 1997: Goldreich, Goldwasser and Halevi (GGH), first efficient cryptosystem.
- 1999: Nguyen cryptanalyzed GGH.
- 2001: Improvement by Micciancio.

GGH

GGH Cryptosystem

- Setup: Compute a secret "good" basis G and a public "bad " basis B with

$$
\mathcal{L}(G)=\mathcal{L}(B)
$$

- Encrypt: To encrypt $m \in \mathbb{Z}^{n}$, compute $r \in \mathbb{Z}^{n}$,

$$
c=m+r B .
$$

- Decrypt: Use the good basis G to solve the CVP on c.

Lattice Attack, [Kannan87]

(1) Compute $B^{\prime}=\left(\begin{array}{ll}B & 0 \\ c & 1\end{array}\right)$.
(2) Find $\left(\begin{array}{ll}m & 1\end{array}\right)$ shortest vector of \mathcal{L}.

Knapsack Based Cryptography

Knapsack based Cryptosystem [MerHel78]

- Setup: Create a_{1}, \ldots, a_{n} with a trapdoor f for Knapsack Problem.
- Encrypt: To encrypt $m \in[0,1]^{n}$, compute

$$
s=\sum_{i=1}^{n} m_{i} a_{i}
$$

- Decrypt: Use the trapdoor f to solve the knapsack problem.

Example

- Setup: Create $a=[8,11,15,23]$ with f
- Encrypt: For $m=[0,1,1,0]$ compute

$$
s=11+15=26
$$

- Decrypt: $f([8,11,15,23], 26)=[0,1,1,0]$

Security Question

Density

$$
\text { density }=\frac{n}{\max _{i=1}^{n} \log _{2} a_{i}}=\frac{4}{\log _{2} 23}=0.8842
$$

- High Density density > 1, NP-Complete. [Karp72]
- Low Density $d \sim 0.9408$, solvable using LLL.

Lattice Attack [LagOdI85]

(1) Compute $B=\left(\begin{array}{cc}I d & a^{T} \\ 0 & s\end{array}\right)=\left(\begin{array}{ccccc}1 & 0 & 0 & 0 & 8 \\ 0 & 1 & 0 & 0 & 11 \\ 0 & 0 & 1 & 0 & 15 \\ 0 & 0 & 0 & 1 & 23 \\ 0 & 0 & 0 & 0 & 26\end{array}\right)$
(2) Find $\left(\begin{array}{ll}m & 0\end{array}\right)$ shortest vector of $\mathcal{L} ., v=\left(\begin{array}{lllll}0 & 1 & 1 & 0 & 0\end{array}\right)$

Intersecting Lattices

(1) Introduction
(2) Lattice Theory

- Lattice
- Lattice Gap
(3) Cryptosystem Concerned
- Lattice Based Cryptography
- Knapsack Based Cryptography

4) Intersecting Lattices

- Theorem
- Broadcast Attack
- Practical Tests
(5) Conclusion

Theorem

If ...

i) v Shortest Vector of \mathcal{L}_{1}.
ii) v Shortest Vector of \mathcal{L}_{2}.

Then ...
i) v Shortest Vector of $\mathcal{L}_{1} \cap \mathcal{L}_{2}$.
ii) Gap Bigger on $\mathcal{L}_{1} \cap \mathcal{L}_{2}$.

Example

Basis

$$
\mathbf{B}_{1}=\left(\begin{array}{cc}
8 & 5 \tag{7}\\
5 & 16
\end{array}\right)
$$

Lattice

Example

Basis

$$
\mathbf{B}_{\mathbf{2}}=\left(\begin{array}{cc}
8 & 5 \tag{8}\\
-12.5 & 11.5
\end{array}\right)
$$

Lattice

Example

Basis

$$
\mathbf{B}\left(\mathcal{L}_{1} \cap \mathcal{L}_{2}\right)=\left(\begin{array}{cc}
8 & 5 \tag{9}\\
17 & -28
\end{array}\right)
$$

Lattice

Broadcast Attack ...

...for CVP based Cryptosystem

(1) Compute $B_{i}^{\prime}=\left(\begin{array}{ll}B_{i} & 0 \\ c_{i} & 1\end{array}\right)$.
(2) Compute $\mathcal{L}=\bigcap_{i=1}^{k} \mathcal{L}\left(B_{i}^{\prime}\right)$.
(3) Find $\left(\begin{array}{ll}m & 1\end{array}\right)$ shortest vector of \mathcal{L}.

... for Knapsack Cryptosystem

(1) Compute $B_{i}=\left(\begin{array}{ccc}I d & a_{i}^{T} & 0 \\ 0 & s & 1\end{array}\right)$.
(2) Compute $\mathcal{L}=\bigcap_{i=1}^{k} \mathcal{L}\left(B_{i}\right)$.
(3) Find $\left(\begin{array}{lll}m & 0 & 1\end{array}\right)$ shortest vector of \mathcal{L}.

Conclusion

(1) Introduction
(2) Lattice Theory

- Lattice
- Lattice Gap
(3) Cryptosystem Concerned
- Lattice Based Cryptography
- Knapsack Based Cryptography
(4) Intersecting Lattices
- Theorem
- Broadcast Attack
- Practical Tests
(5) Conclusion

Conclusion

Do we need paddings for

- ... Knapsack based cryptography? YES.
- ... Lattice based cryptography? YES.

Intersecting Lattices

- Nice way to modelized problems...
- ... Without loosing any information.

