Efficient modular arithmetic in Adapted Modular Number System using Lagrange representation

Christophe Negre¹ Thomas Plantard²

¹ Team DALI, University of Perpignan
² Centre for Information Security Research University of Wollongong

christophe.negre@univ-perp.fr thomaspl@uow.edu.au

Outcome

- Modular Arithmetic
 - Modular Arithmetic needs for PKC
 - Modular Multiplication
- Modular Number System
 - Number system
 - Adapted Modular Number System
 - Arithmetic on AMNS
- A General Modular Multiplication for AMNS
 - AMNS Multiplication
 - Lattice Theory
 - Advantage
- Conclusion

Modular Arithmetic

- Modular Arithmetic
 - Modular Arithmetic needs for PKC
 - Modular Multiplication
- 2 Modular Number System
 - Number system
 - Adapted Modular Number System
 - Arithmetic on AMNS
- A General Modular Multiplication for AMNS
 - AMNS Multiplication
 - Lattice Theory
 - Advantage
- 4 Conclusion

Modular Arithmetic needs for PKC

Diffie-Hellman

- An exponentiation over the prime field F_p
- Needs: Multiplication modulo p (prime)
- Length: 1024, 2048, ... bits

RSA

- An exponentiation on the ring $\mathbb{Z}/n\mathbb{Z}$
- Needs: Multiplication modulo n (composite, n = p.q)
- Length: 1024, 2048, ... bits

ECC

- Elliptic curve point multiplication
- Needs: Arithmetic operations (+,-,*,/) over the finite field F_q , where q is a power of a prime p
- Length: 160, 192, ... bits

Modular Multiplication

Modular Multiplication

- Input: a, b and a moduli p with $0 < a, b < p < 2^n$
- Output: $r = ab \mod p$
 - $r \ 0 \le r < p$ (the rest)
 - $q = \lfloor \frac{ab}{p} \rfloor$ (the quotient)

Strategies

- General Algorithms: for any type of moduli.
 Taylor , Blakley , Montgomery , Barrett , Takagi . . .
- Specific Algorithms: for a class of moduli. Mersenne Number, Pseudo Mersenne, Generalized Mersenne, More generalized Mersenne...

Modular Number System

- Modular Arithmetic
 - Modular Arithmetic needs for PKC
 - Modular Multiplication
- Modular Number System
 - Number system
 - Adapted Modular Number System
 - Arithmetic on AMNS
- A General Modular Multiplication for AMNS
 - AMNS Multiplication
 - Lattice Theory
 - Advantage
- Conclusion

Positional number system with radix β

$$X = \sum_{i=0}^{n-1} x_i \beta^i$$
 with $x_i \in \{0, ...\beta - 1\}$

Example:
$$X = 1315 = (3, 4, 4, 2)_8 = 3 + 4 \times 8 + 4 \times 8^2 + 2 \times 8^3$$

Modular number system **MNS** (p, n, γ, ρ)

$$X = \sum_{i=0}^{n-1} x_i \gamma^i \mod P \qquad \text{with } x_i \in \{0, \dots, \rho - 1\}$$

•
$$MNS(p = 17, n = 3, \gamma = 7, \rho = 3)$$

•
$$a = \sum_{i=0}^{2} x_i 7^i \mod 17$$
 with $a_i \in \{0, 1, 2\}$

0	1	2	3	4
5	6	7	8	9
10	11	12	13	14
15	16			

•
$$MNS(p = 17, n = 3, \gamma = 7, \rho = 3)$$

•
$$a = \sum_{i=0}^{2} x_i 7^i \mod 17$$
 with $a_i \in \{0, 1, 2\}$

	•			
0	1	2	3	4
0	1	2		
5	6	7	8	9
10	11	12	13	14
15	16			

•
$$MNS(p = 17, n = 3, \gamma = 7, \rho = 3)$$

•
$$a = \sum_{i=0}^{2} x_i 7^i \mod 17$$
 with $a_i \in \{0, 1, 2\}$

0	1	2	3	4
0	1	2		
5	6	7	8	9
		X	X+1	X + 2
10	11	12	13	14
15	16			

•
$$MNS(p = 17, n = 3, \gamma = 7, \rho = 3)$$

•
$$a = \sum_{i=0}^{2} x_i 7^i \mod 17$$
 with $a_i \in \{0, 1, 2\}$

0	1	2	3	4
0	1	2		
5	6	7	8	9
		X	X+1	X+2
10	11	12	13	14
				2 <i>X</i>
15	16			
2X + 1	2X + 2			

•
$$MNS(p = 17, n = 3, \gamma = 7, \rho = 3)$$

•
$$a = \sum_{i=0}^{2} x_i 7^i \mod 17$$
 with $a_i \in \{0, 1, 2\}$

0	1	2	3	4
0	1	2		
5	6	7	8	9
$X^2 + X$	$X^2 + X + 1$	X	X+1	X + 2
10	11	12	13	14
		$X^{2} + 2X$	$X^2 + 2X + 1$	2 <i>X</i>
15	16			
2X + 1	2X + 2			

•
$$MNS(p = 17, n = 3, \gamma = 7, \rho = 3)$$

•
$$a = \sum_{i=0}^{2} x_i 7^i \mod 17$$
 with $a_i \in \{0, 1, 2\}$

0	1	2	3	4
0	1	2	$2X^{2} + X$	$2X^2 + X + 1$
5	6	7	8	9
$X^2 + X$	$X^2 + X + 1$	X	X+1	X + 2
10	11	12	13	14
$2X^2 + 2X$	$2X^2 + 2X + 1$	$X^{2} + 2X$	$X^2 + 2X + 1$	2 <i>X</i>
15	16			
2X + 1	2X + 2			

How find a "good" Modular Number System?

What do we need?

- **1** A MNS where ρ is small (about $\rho \sim p^{1/n}$)
- A "fast" arithmetic on the MNS

AMNS

A modular number system $\mathcal{B} = MNS(p,n,\gamma,\rho)$ is called Adapted Modular Number System (AMNS) if

$$\gamma^n \mod P = c$$
,

with c is a small integer.

Arithmetic on AMNS

Modular Multiplication in AMNS

- Polynomial multiplication in $\mathbb{Z}[X]$: $C(X) \leftarrow A(X)B(X)$
- 2 Polynomial reduction: $U(X) \leftarrow C(X) \mod X^n c$
- **3** Coefficient reduction: $R \leftarrow CR(U)$, gives $R(\gamma) \equiv C'(\gamma) \pmod{p}$

Generalization

Operation on AMNS \rightarrow polynomial operation + coefficient reduction

AMNS

- p = 247649
- n = 4, $\rho = 16$
- \bullet $\gamma = 106581$ such $c = -1 = \gamma^4 \mod p$

Input

- $A = 3 + 4X + 12X^2 + 14X^3 \Rightarrow A(\gamma) \mod p = 41702$
- $B = 11 + 5X + X^2 + 15X^3 \Rightarrow B(\gamma) \mod p = 219732$

AMNS

- p = 247649
- n = 4, $\rho = 16$
- $\gamma = 106581$ such $c = -1 = \gamma^4 \mod p$

Input

- $A = 3 + 4X + 12X^2 + 14X^3 \Rightarrow A(\gamma) \mod p = 41702$
- $B = 11 + 5X + X^2 + 15X^3 \Rightarrow B(\gamma) \mod p = 219732$

AMNS Modular Multiplication

- $C(X) = A(X) \times B(X)$ $C(X) = 33 + 59X + 155X^2 + 263X^3 + 142X^4 + 194X^5 + 210X^6$
- ② $U(X) = C(X) \mod (X^4 + 1) \leftarrow -109 135X 55X^2 + 263X^3$
- **3** R(X) = ?

AMNS

- p = 247649
- n = 4, $\rho = 16$
- $\gamma = 106581$ such $c = -1 = \gamma^4 \mod p$

Input

- $A = 3 + 4X + 12X^2 + 14X^3 \Rightarrow A(\gamma) \mod p = 41702$
- $B = 11 + 5X + X^2 + 15X^3 \Rightarrow B(\gamma) \mod p = 219732$

AMNS Modular Multiplication

- **1** $C(X) = A(X) \times B(X)$ $C(X) = 33 + 59X + 155X^2 + 263X^3 + 142X^4 + 194X^5 + 210X^6$
- ② $U(X) = C(X) \mod (X^4 + 1) \leftarrow -109 135X 55X^2 + 263X^3$
- **3** R(X) = ?

A General Modular Multiplication for AMNS

- Modular Arithmetic
 - Modular Arithmetic needs for PKC
 - Modular Multiplication
- Modular Number System
 - Number system
 - Adapted Modular Number System
 - Arithmetic on AMNS
- A General Modular Multiplication for AMNS
 - AMNS Multiplication
 - Lattice Theory
 - Advantage
- 4 Conclusion

AMNS Multiplication

Rewrite of classic method

- Change modulo p by modulo M[X].
- $M(\gamma) = 0 \bmod p$
- $||M||_{\infty}$ small

Modular Multiplication in AMNS

- $Q \leftarrow C \times (-M^{-1}) \bmod (X^n c, 2^r)$

Definition of a Lattice

• All the integral combinations of $d \leq n$ linearly independent vectors over $\mathbb R$

$$\mathcal{L} = \mathbb{Z} \, \mathbf{b}_1 + \dots + \mathbb{Z} \, \mathbf{b}_d = \{ \lambda_1 \mathbf{b}_1 + \dots + \lambda_d \mathbf{b}_d : \lambda_i \in \mathbb{Z} \}$$

- d dimension.
- $\mathbf{B} = (\mathbf{b}_1, \dots, \mathbf{b}_d)$ is a basis.

"SVP": Shortest Vector Problem

• Find a vector $m \in \mathcal{L}$ such that ||m|| minimal.

Example

A lattice $\mathcal L$

Example

A lattice \mathcal{L}

$$\mathcal{B} = \begin{pmatrix} 29 & 31\\ 21 & 26 \end{pmatrix} \tag{1}$$

Example

A lattice \mathcal{L}

$$\mathcal{B} = \begin{pmatrix} 8 & 5\\ 21 & 26 \end{pmatrix} \tag{2}$$

Example

A lattice \mathcal{L}

$$\mathcal{B} = \begin{pmatrix} 8 & 5 \\ 13 & 21 \end{pmatrix} \tag{3}$$

Example

A lattice $\mathcal L$

$$\mathcal{B} = \begin{pmatrix} 8 & 5 \\ 5 & 16 \end{pmatrix} \tag{4}$$

Example

A lattice \mathcal{L}

$$\mathcal{B} = \begin{pmatrix} 8 & 5 \\ -3 & 11 \end{pmatrix} \tag{5}$$

Shortest Vector: (8,5).

Lattice

Minkowski Theorem, 1896

• There exist a shortest vector $m \in \mathcal{L}$ such that

$$||m||_{\infty} \leq \det \mathcal{L}^{1/n}$$

LLL (Lenstra Lenstra Lovasz) 1982

- Find a short vector.
- Practically, if n < 50 find the shortest vector.

Lattice for AMNS

A Lattice \mathcal{L}

$$\mathbf{B} = \begin{pmatrix} p & 0 & 0 & 0 & \dots & 0 \\ -\gamma & 1 & 0 & 0 & \dots & 0 \\ -\gamma^2 & 0 & 1 & 0 & \dots & 0 \\ \vdots & & \ddots & & \vdots \\ -\gamma^{n-2} & 0 & 0 & \dots & 1 & 0 \\ -\gamma^{n-1} & 0 & 0 & \dots & 0 & 1 \end{pmatrix} \stackrel{\leftarrow}{\leftarrow} \begin{matrix} p \\ \leftarrow X - \gamma \\ \leftarrow X^2 - \gamma^2 \\ \vdots \\ \leftarrow X^{n-2} - \gamma^{n-2} \\ \leftarrow X^{n-1} - \gamma^{n-1} \\ \end{pmatrix}$$

Lattice for AMNS

A Lattice \mathcal{L}

$$\mathbf{B} = \begin{pmatrix} p & 0 & 0 & 0 & \dots & 0 \\ -\gamma & 1 & 0 & 0 & \dots & 0 \\ -\gamma^2 & 0 & 1 & 0 & \dots & 0 \\ \vdots & & \ddots & & \vdots \\ -\gamma^{n-2} & 0 & 0 & \dots & 1 & 0 \\ -\gamma^{n-1} & 0 & 0 & \dots & 0 & 1 \end{pmatrix} \stackrel{\leftarrow}{\leftarrow} \begin{matrix} p \\ \leftarrow X - \gamma \\ \leftarrow X^2 - \gamma^2 \\ \vdots \\ \leftarrow X^{n-2} - \gamma^{n-2} \\ \leftarrow X^{n-1} - \gamma^{n-1} \\ \end{matrix}.$$

Analysis of \mathcal{L}

- Determinant $Det(\mathcal{L}) = p$ and Dimension d = n
- ullet Minkowski Theorem $\Rightarrow \exists \mathbf{m} \in \mathcal{L}$ such that $\|\mathbf{m}\|_{\infty} \leq p^{1/n}$
- A polynomial $M(X) = m_0 + m_1 X + \cdots + m_{n-1} X^{n-1}$ such that $M(\gamma) = 0 \mod p$

AMNS

•
$$p = 247649$$

•
$$n = 4$$
, $\rho = 16$

•
$$\gamma = 106581 \text{ such } c = -1 = \gamma^4 \text{ mod } p$$

AMNS Lattice

$$\mathbf{B} = \begin{pmatrix} p & 0 & 0 & 0 \\ -\gamma & 1 & 0 & 0 \\ -\gamma^2 & 0 & 1 & 0 \\ -\gamma^3 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 247649 & 0 & 0 & 0 \\ -106581 & 1 & 0 & 0 \\ -11359509561 & 0 & 1 & 0 \\ -1210707888520941 & 0 & 0 & 1 \end{pmatrix}$$

SVP

•
$$m = (-8, -5, -17, 11)$$

•
$$M = -8 - 5X - 17X^2 + 11X^3$$
 with $M(\gamma) = 0 \mod p$

•
$$||M||_{\infty} = 17 \cong p^{1/n} \simeq 22.3$$

Modular Multiplication in AMNS

- $Q \leftarrow C \times (-M^{-1}) \bmod (X^n c, 2^r)$

- $C = -109 135X 55X^2 + 263X^3$
- $Q = 15 + 15X + X^2 + 5X^3$
- $R = -11 8X 14X^2 + 4X^3$

Advantage

Multiplication (Karatsuba, Tom-Cook, Schonhage-Strassen)

- $\textbf{0} \ \, \mathsf{Integer} \to \mathsf{Polynomial} \to \mathsf{Points}$
- Points multiplication
- \odot Points \rightarrow Polynomial \rightarrow Integer

Modular Multiplication

- Modular Multiplication : between 2 and 3 Multiplication
- AMNS Multiplication: between 2 and 3 Polynomial Multiplication

Lagrange Modular Multiplication

- Montgomery FFT Multiplication: 15*n* log *n*
- Mersenne FFT Multiplication: 6n log n
- AMNS FFT Multiplication: 6n log n

Conclusion

- Modular Arithmetic
 - Modular Arithmetic needs for PKC
 - Modular Multiplication
- Modular Number System
 - Number system
 - Adapted Modular Number System
 - Arithmetic on AMNS
- A General Modular Multiplication for AMNS
 - AMNS Multiplication
 - Lattice Theory
 - Advantage
- 4 Conclusion

Conclusion

What we proposed

- A Polynomial Version of Modular Multiplication method
- A General Modular Multiplication as efficient as Specific Method

Future works

A complete library.