A Digital Signature Scheme based on \textit{CVP}_∞

Thomas PLANTARD Willy SUSILO Khin Than WIN

Centre for Computer and Information Security Research University Of Wollongong

http://www.uow.edu.au/-thomaspl thomaspl@uow.edu.au

2

イロト イヨト イヨト イヨト

Tools

- Lattice Theory
- Closest Vector Problem
- I_{∞} -norm

Objectives

- Digital Signature
- Efficiency and Security

æ

イロト イヨト イヨト イヨト

Outline

Lattice Theory

- Lattice
- Inclusion
- Closest Vector Problem

2 New Vector Reduction

- Rectangular Matrix
- Algorithm

GGH Digital Signature

- Lattice Based Cryptography
- GGHSign Scheme

Analysis and Comparison

- Time Complexity
- Space Complexity
- Security

Conclusion

2

<ロ> (日) (日) (日) (日) (日)

Lattice Theory

Lattice Theory

- Lattice
- Inclusion
- Closest Vector Problem

2 New Vector Reduction

- Rectangular Matrix
- Algorithm

GGH Digital Signature

- Lattice Based Cryptography
- GGHSign Scheme

Analysis and Comparison

- Time Complexity
- Space Complexity
- Security

5 Conclusion

2

<ロ> (日) (日) (日) (日) (日)

Lattice

Definition of a Lattice

• All the integral conbinations of $d \leq n$ linearly independant vectors over ${\mathbb R}$

$$\mathcal{L} = \mathbb{Z} \mathbf{b}_1 + \dots + \mathbb{Z} \mathbf{b}_d = \{\lambda_1 \mathbf{b}_1 + \dots + \lambda_d \mathbf{b}_d : \lambda_i \in \mathbb{Z}\}$$

- d dimension.
- $\mathbf{B} = (\mathbf{b}_1, \dots, \mathbf{b}_d)$ is a *basis*.

An Example

$$\mathbf{B} = \begin{pmatrix} 5 & \frac{1}{2} & \sqrt{3} \\ \frac{3}{5} & \sqrt{2} & 1 \end{pmatrix} \tag{1}$$

・ロト ・個ト ・ヨト ・ヨト

 $d=2\leq n=3$

In this work

- Full-rank lattice : d = n
- Integer Basis: $B \in \mathbb{Z}^{n,n}$

æ

$$\mathbf{B} = \begin{pmatrix} 8 & 5\\ 5 & 16 \end{pmatrix} \tag{2}$$

イロン イロン イヨン イヨン

æ

$$\mathbf{UB} = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 8 & 5 \\ 5 & 16 \end{pmatrix} = \begin{pmatrix} 8 & 5 \\ -3 & 11 \end{pmatrix}$$
(3)

æ

イロン イロン イヨン イヨン

$$\mathbf{UB} = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 8 & 5 \\ 5 & 16 \end{pmatrix} = \begin{pmatrix} 8 & 5 \\ 13 & 21 \end{pmatrix}$$
(4)

イロン イロン イヨン イヨン

æ

$$\mathbf{UB} = \begin{pmatrix} 3 & 1 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 8 & 5 \\ 5 & 16 \end{pmatrix} = \begin{pmatrix} 29 & 31 \\ 21 & 26 \end{pmatrix}$$
(5)

æ

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Problem: $v \stackrel{?}{\in} \mathcal{L}$

- Input: A vector $v \in \mathbb{Z}^n$
- Input: A basis $B \in \mathbb{Z}^{n,n}$ of a lattice $\mathcal{L}(B)$
- Output: YES if there exists a vector

$$\exists k \in \mathbb{Z}^n, kB = v$$

Solution

•
$$k = vB^{-1}$$
, $k \stackrel{?}{\in} \mathbb{Z}^n$

•
$$k = vB^{-1} \mod 1, \ k \stackrel{?}{=} 0$$

• Polynomial with any basis

æ

イロト イヨト イヨト イヨト

Example

• Input: A vector v = (20, 20)

• Input: A basis
$$\mathbf{B} = \begin{pmatrix} 8 & 5 \\ 5 & 16 \end{pmatrix}$$

Solution

•
$$k = vB^{-1} = (20, 20) \begin{pmatrix} \frac{16}{103} & -\frac{5}{103} \\ -\frac{5}{103} & \frac{8}{16} \end{pmatrix} = (\frac{220}{103}, \frac{60}{103})$$

• $k = vB^{-1} \mod 1 = (\frac{14}{103}, \frac{60}{103}) \neq 0$

•
$$(20, 20) \notin \mathcal{L}(\mathcal{B})$$

2

◆□> ◆圖> ◆ヨ> ◆ヨ>

Problem

- Input: A vector $v \in \mathbb{Z}^n$
- Input: A basis $B \in \mathbb{Z}^{n,n}$ of a lattice $\mathcal{L}(B)$
- Output: A vector $w \equiv v \pmod{\mathcal{L}}$ with ||w|| minimal.

w = v + kB $k \in \mathbb{Z}^n$ with ||w|| minimal

Complexity

- NP-Hard under any norm (EmdeBoas'81) with Precomputation (Regev and Rosen '06)
- $O(n^{\frac{n}{2}})$ deterministic (Kannan'83, Hanrot and Stehle'07)
- $O(2 + \frac{1}{c})^n$ probabilistic (Blomer and Naewe'07)

イロト イヨト イヨト イヨト

*I_p-*Norm

• I_p -norm $||v||_p$ of a vector v

$$\|v\|_{p} = \left(\sum_{i=0}^{n-1} |v_{i}|^{p}\right)^{1/p}$$

Used Norm

• Euclidian Norm $||v||_2$ of a vector v

$$\|v\|_2 = \sqrt{\sum_{i=0}^{n-1} (v_i)^2}$$

• Infinity Norm $\|v\|_{\infty}$ of a vector v

$$\|v\|_{\infty} = \max_{i=0}^{n-1} |v_i|$$

2

イロン イ団と イヨン イヨン

An Example

$$\mathbf{B} = \begin{pmatrix} 8 & 5\\ 5 & 16 \end{pmatrix}$$

A Vector: (20, 20)

Closest Vector Problem

(6)

An Example

$$\mathbf{B} = \begin{pmatrix} 8 & 5\\ 5 & 16 \end{pmatrix} \tag{6}$$

A Vector: $(20, 20) \equiv (20, 20) - (5, 16) = (15, 4)$

Closest Vector Problem

An Example

$$\mathbf{B} = \begin{pmatrix} 8 & 5\\ 5 & 16 \end{pmatrix} \tag{6}$$

A Vector: $(20,20)\equiv(15,4)-(8,5)=(7,-1)$

Closest Vector Problem

An Example

$$\mathbf{B} = \begin{pmatrix} 8 & 5\\ 5 & 16 \end{pmatrix} \tag{6}$$

A Vector: $(20, 20) \equiv (7, -1) - (8, 5) = (-1, -6)$

Closest Vector Problem

An Example

$$\mathbf{B} = \begin{pmatrix} 8 & 5\\ 5 & 16 \end{pmatrix}$$

A Vector: (20, 20) $\equiv (-1, -6) \pmod{\mathcal{L}}$

Closest Vector Problem

(6)

A Solution: Babai's Round-Off

- **1** $k = vB^{-1}$
- $w = v \lceil k \rfloor B$

A good Approximation of CVP

- Polynomial Time
- Quality depends on B
- Babai's use a LLL-reduction of B (Lenstra, Lenstra and Lovasz'82)

3

イロト イヨト イヨト イヨト

Example

- Input: A vector v = (20, 20)
- Input: A basis $\mathbf{B} = \begin{pmatrix} 8 & 5 \\ 5 & 16 \end{pmatrix}$

A Solution

•
$$k = vB^{-1} = (20, 20) \begin{pmatrix} \frac{16}{103} & -\frac{5}{103} \\ -\frac{5}{103} & \frac{8}{16} \end{pmatrix} = (\frac{220}{103}, \frac{60}{103})$$

• $w = \lceil k \rfloor B = (20, 20) - (2, 1) \begin{pmatrix} 8 & 5 \\ 5 & 16 \end{pmatrix} = (20, 20) - (21, 26)$
• $(20, 20) \equiv (-1, -6)$

æ

イロン イヨン イヨン イヨン

Lattice Theory

- Lattice
- Inclusion
- Closest Vector Problem

2 New Vector Reduction

- Rectangular Matrix
- Algorithm

GGH Digital Signature

- Lattice Based Cryptography
- GGHSign Scheme

Analysis and Comparison

- Time Complexity
- Space Complexity
- Security

5 Conclusion

<ロ> (日) (日) (日) (日) (日)

Rectangular Basis

- A Basis B = D M
- D dominant diagonal matrix
- *M* noise matrix *M_{i,j}* small

Concequence

- $k = vB^{-1}$
- $k = v(D M)^{-1}$

•
$$k = vD^{-1}(1 - MD^{-1})^{-2}$$

•
$$k = vD^{-1}$$
 $(1 + MD^{-1} + (MD^{-1})^2 + (MD^{-1})^3 + ...)$

Spectral Radius of a matrix A, $\rho(A)$

- Theorem: $1 + A + A^2 + A^3 + \ldots$ converge if $\rho(A) < 1$.
- $|\lambda_0| \leq |\lambda_1| \leq \cdots \leq |\lambda_{n-1}| \leq \rho(A)$
- $\rho(A) \leq \|A\| \quad \forall \|.\|$

æ

イロト イヨト イヨト イヨト

Input

- Input: A vector $v \in \mathbb{Z}^n$
- Input: A basis $B = (D M) \in \mathbb{Z}^{n,n}$ of a lattice $\mathcal{L}(B)$
- Output: A vector $w \equiv v \mod \mathcal{L}$ with $||wD^{-1}||_{\infty} < 1$

Algorithm

Conjecture

• Ending if $\rho(MD^{-1}) < \frac{1}{2}$

æ

イロン イ団 とくほと くほとう

An example

Input

• A vector
$$v = (22, 14)$$
 and a basis $B = D - M$

$$D = \begin{pmatrix} 5 & 0 \\ 0 & 5 \end{pmatrix}, \quad M = \begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 6 & -1 \\ -1 & 4 \end{pmatrix}$$
(7)

Algorithm

• $w \leftarrow (22, 14)$ • $k \leftarrow wD^{-1} = [\frac{22}{5}, \frac{14}{5}]$ • $w \leftarrow w - \lceil k \rfloor B$ $w = [22, 14] - [4, 3] \begin{pmatrix} 6 & -1 \\ -1 & 4 \end{pmatrix} = (22, 14) - (21, 8) = (1, 6)$ • $k \leftarrow wD^{-1} = [\frac{1}{5}, \frac{6}{5}]$ • $w \leftarrow w - \lceil k \rfloor B$ $w = [1, 6] - [0, 1] \begin{pmatrix} 6 & -1 \\ -1 & 4 \end{pmatrix} = (1, 6) - (-1, 4) = (2, 2)$

Output

$$w=(2,2)\equiv(22,14) \ (\text{mod }\mathcal{L})$$

GGH Digital Signature

Lattice Theory

- Lattice
- Inclusion
- Closest Vector Problem

2 New Vector Reduction

- Rectangular Matrix
- Algorithm

GGH Digital Signature

- Lattice Based Cryptography
- GGHSign Scheme

Analysis and Comparison

- Time Complexity
- Space Complexity
- Security

5 Conclusion

<ロ> (日) (日) (日) (日) (日)

Cryptography based on CVP

- Goldreich, Goldwasser and Halevi: first efficient cryptosystem (GGH and GGHSign) in 1997.
- GGH cryptanalyzed by Nguyen in 1999.
- GGH Improved By Micciancio in 2001.

GGHSign Cryptanalyzis

- Gentry and Szydlo: first leaked in in 2002.
- Szydlo: theorithical attack in 2003.
- Nguyen and Regev: Cryptanalysis of GGHSign in 2006.

<ロト <回ト < 回ト < 回ト

Setup:

- i) Compute a secret "good" basis G.
- ii) Compute a public "bad " basis B with

$$\mathcal{L}(G)=\mathcal{L}(B).$$

Sign:

i) Hash:
$$m \in \{0,1\}^* \rightarrow v \in \mathbb{Z}^r$$

ii) Signature: $w = v \mod \mathcal{L}(G)$.

Verify:

i) Hash:
$$m \in \{0,1\}^* \rightarrow v \in \mathbb{Z}^r$$

ii) Check:
$$w - v \in \mathcal{L}(B)$$

æ

イロン イ団 とくほと くほとう

Security

- "bad basis" Difficult "good basis" "good basis" → "bad basis"
- A good vector reduction with a "good basis": Easy. A good vector reduction with a "bad basis": Difficult.
- Inclusion with any basis: Easy.

Question

- How to choose a "good" basis?
- How to use it to have a good vector reduction?
- How to choose a "bad" basis?
- How to use it to solve inclusion?

イロト イ団ト イヨト イヨト

Setup

- a) Choose an integer n.
- b) Compute a randomly integer matrix $M \in \{-1, 0, 1\}^{n, n}$.
- c) Compute $b = \lfloor 2\rho(M) + 1 \rfloor$.
- d) Compute the Hermite Normal Form H of the basis bld M.
- e) Public Key is (b, H) and the secret key is M.

э

イロン イ団 と イヨン イヨン

Sign

To sign a message $m \in \{0, 1\}^*$

a) $v = h(m) \in \mathbb{Z}^n$ with

$$\begin{array}{rrl} h: & m & \to & v \\ : & \{0,1\}^* & \to & \left\{x \in \mathbb{Z}^n, & \|x\|_{\infty} < b^2\right\} \end{array}$$

b) $v \leftarrow w \mod D - M$

- c) Using new Algorithm, compute w, which is a reduced vector of v.
- d) The signature on *m* is *w*.

æ

イロン イ団と イヨン イヨン

Verify

To verify a message-signature pair, (m, w), one does the following.

- a) Check if $||w||_{\infty} < b$.
- b) Compute the vector $h(m) \in \mathbb{Z}^n$.
- c) Check if the vector h(m) w is in the lattice of basis H.

æ

・ロン ・四 と ・ ヨ と ・ ヨ と …

Analysis and Comparison

Lattice Theory

- Lattice
- Inclusion
- Closest Vector Problem

2 New Vector Reduction

- Rectangular Matrix
- Algorithm

GGH Digital Signature

- Lattice Based Cryptography
- GGHSign Scheme

Analysis and Comparison

- Time Complexity
- Space Complexity
- Security

5 Conclusion

э

<ロ> (日) (日) (日) (日) (日)

Figure: Average number of loops used to reduce a message vector to a signature vector.

<ロ> (日) (日) (日) (日) (日)

Figure: Average I_{∞} -norm of signature-vector using different reduction method.

2

イロン イヨン イヨン イヨン

Figure: Signature-message on \mathbb{R}^2 for Babai's reduction and our reduction.

2

イロト イヨト イヨト イヨト

Improvement of GGHSign

- Practicaly Faster
- \bigcirc Shorter Signature: \pm half.
- Ont broken

Open Questions

- $\rho(MD^{-1}) < \frac{1}{2}$
- Is Formula for the average number of loops
- Security Proof

э

イロン イヨン イヨン イヨン