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Lattice Theory

@ Lattice Theory
o Lattice
@ Inclusion
o Closest Vector Problem
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Definition of a Lattice

o All the integral conbinations of d < n linearly independant vectors over R
L=Zbi+ ---+Zby={\b1+ -+ Xsby : \; € Z}

o d dimension.
o B =(by,...,by) is a basis.

An Example

d=2<n=3

In this work

o Full-rank lattice : d = n
o Integer Basis: B € Z":"
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B= (g 156) @)

An infinity of basis
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Inclusion

Problem: v é L

o Input: A vector v € Z"
Input: A basis B € Z™" of a lattice L(B)
Output: YES if there exists a vector

?
JkE€Z" kB=v

?
o k=vB~l kezn
k=vBlmod1l, k=0

Polynomial with any basis
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Inclusion

o Input: A vector v = (20,20)

o Input: A basis B = (8 5)

5 16
v
5
— T 103 | — (220 60
e k=vB~ = (20, 20)( 10{3 E3) = (Fm> s
103 16

o k=vB~! mod 1:(103, 103)5150
o (20,20) & £(B)
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Vector Reduction

o Input: A vector v € Z"
o Input: A basis B € Z™" of a lattice £L(B)

o Output: A vector w = v (mod £) with ||w|| minimal.

w=v+ kB k¢&Z" with |[[w|| minimal

v

Complexity

@ NP-Hard under any norm (EmdeBoas’81) with Precomputation (Regev and Rosen '06)

e O(n?) deterministic (Kannan'83, Hanrot and Stehle'07)
e O(2+ %)” probabilistic (Blomer and Naewe'07)
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Norms

@ Ip-norm ||v||, of a vector v
n—1 1/p
b = (i)

i=0

v

o Euclidian Norm ||v||2 of a vector v

n—1

> (i)

i=0

lIvil2 =

o Infinity Norm ||v||c of a vector v

-1
Ivlloo = max vl
i=0
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Vector Reduction

An Example

B= (g 156) (6)

v

Closest Vector Problem

A Vector: (20, 20)
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Vector Reduction

An Example

B= (g 156) (6)

A Vector: (20,20) = (20,20) — (5,16) = (15, 4)

v

Closest Vector Problem
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Vector Reduction

An Example

B= (g 156) (6)

A Vector: (20,20) = (15,4) — (8,5) = (7, —1)

v

Closest Vector Problem
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Vector Reduction

An Example

8 5
B= (5 16) (6)
A Vector: (20,20) = (7,—1) — (8,5) = (—1,—6)

v

Closest Vector Problem
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Vector Reduction

An Example

8 5
B— (5 16) (6)
A Vector: (20,20) = (—1,—6) (mod L)

Closest Vector Problem
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Closest Vector Problem

A Solution: Babai's Round-Off

Q@ k=vB!
Q@ w=v—[k]B

v

A good Approximation of CVP

o Polynomial Time

@ Quality depends on B

o Babai's use a LLL-reduction of B (Lenstra,Lenstra and Lovasz'82)
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Closest Vector Problem

Input: A vector v = (20, 20)

. 8 5
Input: A basis B = (5 16)

5
- 1_ - (220
k = vB~1 = (20,20) ( 108 403 ) 103 13

103 16
o w = [k|] B=(20,20)—(2,1) ( 56) = (20,20) — (21, 26)
e (20,20) = (—1,-6)
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New Vector Reduction

© New Vector Reduction
@ Rectangular Matrix
@ Algorithm
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Rectangular Matrix

Rectangular Basis
@ ABasis B=D - M

o D dominant diagonal matrix

@ M noise matrix M; ; small

Concequence

e k=vB!

o k=v(D— M)l

e k=vD (1 -MD 1)1

o k=vDl (1+MD 1+ (MD1)2+(MD1)3+...)

\

Spectral Radius of a matrix A, p(A)
o Theorem: 14+ A+ A2 + A3 + ... converge if p(A) < 1.
o [Ao] <[] <o < [Ap—1] < p(A)
o p(A) < [IAIl VI

A,
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Vector Reduction

@ Input: A vector v € Z"
@ Input: A basis B = (D — M) € Z™" of a lattice L(B)
e Output: A vector w = v mod £ with |[wD™}|e < 1

Algorithm

QO w—v
Q until [WwD o < 1
@ k—wDh!

@ w—w-—[k]B

e Ending if p(MD~1) <

1
2
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An example

o A vector v =(22,14) and a basis B=D — M

=5 5)> =(3 7). 5=(& ) g

| \

Algorithm
O w— (22,14)
o kHWD’lz[%,%

Q@ w—w-—[k|B
w = [22,14] — [4,3] (_61 ;1) = (22,14) — (21,8) = (1,6)

Q ke—wD1=[}¢

w=[1,6] — [0,1] (fl _41) = (1,6)— (~1,4) = (2,2)

w = (2,2) = (22,14) (mod L)
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GGH Digital Signature

© GGH Digital Signature
o Lattice Based Cryptography
o GGHSign Scheme
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Lattice Based Cryptography

Cryptography based on CVP

o Goldreich, Goldwasser and Halevi: first efficient cryptosystem (GGH and GGHSign) in 1997.
o GGH cryptanalyzed by Nguyen in 1999.
@ GGH Improved By Micciancio in 2001.

v

GGHSign Cryptanalyzis

o Gentry and Szydlo: first leaked in in 2002.
@ Szydlo: theorithical attack in 2003.
o Nguyen and Regev: Cryptanalysis of GGHSign in 2006.
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GGHSign

i) Compute a secret “good” basis G.

ii) Compute a public “bad " basis B with
L(G) = L(B).

Sign:

i) Hash: me {0,1}* - v eZ"
ii) Signature: w = v mod L(G).

| \

Verify:

i) Hash: me {0,1}* — v eZ"
ii) Check: w — v € L(B)
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GGHSign Security

© “bad basis” Diffieyit “good basis”

am 2 q
“good basis” =2 “bad basis”

@ A good vector reduction with a “good basis”: Easy.
A good vector reduction with a “bad basis”: Difficult.

© Inclusion with any basis: Easy.

@ How to choose a “good” basis?

@ How to use it to have a good vector reduction?
@ How to choose a “bad” basis?

@ How to use it to solve inclusion?
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Digital Signature

a) Choose an integer n.

b) Compute a randomly integer matrix M € {—1,0,1}"".

c) Compute b= [2p(M) +1].

d) Compute the Hermite Normal Form H of the basis bld — M.
e) Public Key is (b, H) and the secret key is M.

Plantard, Susilo and Win (UOW) A Digital Signature Scheme based on CVPoo



Digital Signature

Sign

To sign a message m € {0,1}*
a) v = h(m) € Z" with

h: m — v

0,1} — {x€2", (x|l < b?}

b) ve—wmod D—- M

c) Using new Algorithm, compute w, which is a reduced vector of v.

d) The signature on m is w.
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Digital Signature

To verify a message-signature pair, (m, w), one does the following.
a) Check if [[w]|eo < b.
b) Compute the vector h(m) € Z".

c) Check if the vector h(m) — w is in the lattice of basis H.
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Analysis and Comparison

@ Analysis and Comparison
@ Time Complexity
@ Space Complexity
@ Security
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Time Complexity
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Figure: Average number of loops used to reduce a message vector to a signature vector.
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Space Complexity
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10 | Spectral radius

0 | I I I I I
50 100 150 200 250 300 350

Figure: Average /o-norm of signature-vector using different reduction method.
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Conclusion

Improvement of GGHSign

© Practicaly Faster
@ Shorter Signature: =+ half.
© Not broken

v

Open Questions

@ p(MD™Y) < 3
@ Formula for the average number of loops
© Security Proof
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