Introduction New Number System Number system Adapted Modular Number Syster Fundamental Theorem Arithmetic on PMNS Modular Multiplication Coefficient Reduction The RED Algorithm Conclusions

Arithmetic Operations in the Polynomial Modular Number System

Jean-Claude Bajard Laurent Imbert Thomas Plantard

LIRMM, Universite Montpellier II, France ATIPS, CISaC, University of Calgary, Canada

28 june 2005

▲ □ ▶ ▲ Ξ ▶

Plan

Modular Arithmetic

Introduction New Number System Adapted Modular Number Systen Fundamental Theorem Arithmetic on PMNS Modular Multiplication Coefficient Reduction The RED Algorithm Conclusions

2 New Number System

- Number system
- Adapted Modular Number System

Fundamental Theorem

- Modular Multiplication
- Coefficient Reduction
- The RED Algorithm

6 Conclusions

I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 <lp>I
 I
 I
 <lp

Introduction

Modular Arithmetic

Introduction

New Number System Number system Adapted Modular Number System Fundamental Theorem Arithmetic on PMNS Modular Multiplication Coefficient Reduction The RED Algorithm Conclusions

- New Number System
 - Number system
 - Adapted Modular Number System

Fundamental Theorem

4 Arithmetic on PMNS

- Modular Multiplication
- Coefficient Reduction
- The RED Algorithm

5 Conclusions

▲ □ ▶ ◀ Ξ ▶

Arithmetic needs for public key cryptography

Modular Arithmetic

Introduction

New Number System Number system Adapted Modular Number System Fundamental Theorem Arithmetic on PMNS Modular Multiplication Coefficient Reduction The RED Algorithm Conclusions

Diffie-Hellman

- An exponentiation over the prime field F_p
- Needs : Multiplication modulo p (prime)
- Length: 1024, 2048, ... bits

RSA

- An exponentiation on the ring $\mathbb{Z}/n\mathbb{Z}$
- Needs : Multiplication modulo n (composite, n = p.q)
- Length : 1024, 2048, ... bits

ECC

- Elliptic curve point multiplication
- Needs : Arithmetic operations (+,-,*,/) over the finite field Fq, where q is a power of a prime p
- Length : 160, 192, ... bits

New Number System

Modular Arithmetic

Introduction New Number System

Number system Adapted Modular Number System Fundamental Theorem Arithmetic on PMNS Modular Multiplication Coefficient Reduction The RED Algorithm Conclusions

2 New Number System

- Number system
- Adapted Modular Number System

Fundamental Theorem

4 Arithmetic on PMNS

- Modular Multiplication
- Coefficient Reduction
- The RED Algorithm

5 Conclusions

< □ > < Ξ >

Number system

Modular Arithmetic

Introduction New Number S

Number system Adapted Modular Number System Fundamental Theorem Arithmetic on PMNS Modular Multiplication Coefficient Reduction The RED Algorithm Conclusions

Positional number system with radix β

$$X = \sum_{i=0}^{n-1} x_i \beta^i \quad \text{with } x_i \in \{0, \dots \beta - 1\}$$

Example : $X = 1315 = (3, 4, 4, 2)_8 = 3 + 4 \times 8 + 4 \times 8^2 + 2 \times 8^3$

Modular number system **MNS**(p, n, γ, ρ)

$$X = \sum_{i=0}^{n-1} x_i \gamma^i \mod P \qquad \text{with } x_i \in \{0, \dots, \rho-1\}$$

Introduction

New Number System Number system Adapted Modular Number System Fundamental Theorem Arithmetic on PMNS Modular Multiplication Coefficient Reduction The RED Algorithm Conclusions

Example

•
$$a = \sum_{i=0}^{2} x_i 7^i \mod 17$$
 with $a_i \in \{0, 1, 2\}$

0	1	2	3	4	5
6	7	8	9	10	11
12	13	14	15	16	

Introduction

New Number System Number system Adapted Modular Number System Fundamental Theorem Arithmetic on PMNS Modular Multiplication Coefficient Reduction The RED Algorithm Conclusions

Example

•
$$a = \sum_{i=0}^{2} x_i 7^i \mod 17$$
 with $a_i \in \{0, 1, 2\}$

0	1	2	3	4	5
(0,0,0)	(0,0,1)	(0,0,2)			
6	7	8	9	10	11
12	13	14	15	16	

Introduction

New Number System Number system Adapted Modular Number System Fundamental Theorem Arithmetic on PMNS Modular Multiplication Coefficient Reduction The RED Algorithm Conclusions

Example

•
$$a = \sum_{i=0}^{2} x_i 7^i \mod 17$$
 with $a_i \in \{0, 1, 2\}$

0	1	2	3	4	5
(0,0,0)	(0,0,1)	(0,0,2)			
6	7	8	9	10	11
	(0, 1, 0)	(0, 1, 1)	(0, 1, 2)		
12	13	14	15	16	

Introduction

New Number System Number system Adapted Modular Number System Fundamental Theorem Arithmetic on PMNS Modular Multiplication Coefficient Reduction The RED Algorithm Conclusions

Example

•
$$a = \sum_{i=0}^{2} x_i 7^i \mod 17$$
 with $a_i \in \{0, 1, 2\}$

0	1	2	3	4	5
(0,0,0)	(0,0,1)	(0,0,2)			
6	7	8	9	10	11
	(0, 1, 0)	(0, 1, 1)	(0, 1, 2)		
12	13	14	15	16	
		(0, 2, 0)	(0, 2, 1)	(0,2,2)	

Introduction

New Number System Number system Adapted Modular Number System Fundamental Theorem Arithmetic on PMNS Modular Multiplication Coefficient Reduction The RED Algorithm Conclusions

Example

- $MNS(p = 17, n = 3, \gamma = 7, \rho = 3)$
- $a = \sum_{i=0}^{2} x_i 7^i \mod 17$ with $a_i \in \{0, 1, 2\}$

0	1	2	3	4	5
(0,0,0)	(0,0,1)	(0,0,2)			(1,1,0)
6	7	8	9	10	11
(1, 1, 1)	(0, 1, 0)	(0, 1, 1)	(0, 1, 2)		
12	13	14	15	16	
(1,2,0)	(1,2,1)	(0,2,0)	(0, 2, 1)	(0,2,2)	

Introduction

New Number System Number system Adapted Modular Number System Fundamental Theorem Arithmetic on PMNS Modular Multiplication Coefficient Reduction The RED Algorithm Conclusions

Example

•
$$a = \sum_{i=0}^{2} x_i 7^i \mod 17$$
 with $a_i \in \{0, 1, 2\}$

0	1	2	3	4	5
(0,0,0)	(0,0,1)	(0,0,2)	(2, 1, 1)	(2, 1, 2)	(1,1,0)
6	7	8	9	10	11
(1, 1, 1)	(0, 1, 0)	(0, 1, 1)	(0, 1, 2)	(2,2,0)	(2,2,1)
12	13	14	15	16	
(1,2,0)	(1,2,1)	(0,2,0)	(0, 2, 1)	(0, 2, 2)	

How find a "good" Modular Number System?

Modular Arithmetic

Introduction New Number System Adapted Modular Number System Fundamental Theorem Arithmetic on PMNS Modular Multiplication Coefficient Reduction The RED Algorithm Conclusions

What do we need?

- **(1)** A MNS where ρ is small (about $\rho \sim p^{1/n}$)
- 2 A "fast" arithmetic on the MNS

Definition : AMNS

A modular number system $\mathcal{B} = MNS(p, n, \gamma, \rho)$ is called Adapted Modular Number System (AMNS) if

$$\gamma^n \mod P = c$$
,

with c is a small integer.

↓ □ ▶ < ∃ ▶</p>

Fundamental Theorem

Modular Arithmetic

Introduction New Number System Number system Adapted Modular Number Syst Fundamental Theorem Arithmetic on PMNS Modular Multiplication Coefficient Reduction The RED Algorithm

New Number System

- Number system
- Adapted Modular Number System

Fundamental Theorem

4) Arithmetic on PMNS

- Modular Multiplication
- Coefficient Reduction
- The RED Algorithm

5 Conclusions

< □ > < Ξ >

Fundamental Theorem

Modular Arithmetic

Introduction New Number System Number system Adapted Modular Number Sys Fundamental Theorem Arithmetic on PMNS Modular Multiplication

Coefficient Reduction The RED Algorithm Conclusions

Definition

A $MNS(p, n, \gamma, \rho)$ is called Polynomial Modular Number System (PMNS) if $\exists E(X) = X^n + aX + b$ such that

```
(1) E is irreducible in \mathbb{Z}[X]
```

```
  E(\gamma) \equiv 0 \pmod{p}
```

```
3 \rho \ge (|a| + |b|)p^{1/n}
```

Theorem

A *PMNS* can represent all the integer of [0, p - 1]. $\forall a \in [0, p - 1], \exists A \in \mathbb{Z}[X]$ such that

```
4 deg A < n</p>
```

$$\|A\|_{\infty} = \max_{0 \le i < n} \{|a_i|\} < \rho$$

Remark

- (1) Proof use Lattice Theory ($\sim CVP_{\infty}$)
 - Algorithmic solution is long : Babai...

Example

Modular Arithmetic

Introduction New Number System

Adapted Modular Number System

Fundamental Theorem

Arithmetic on PMNS Modular Multiplication Coefficient Reduction The RED Algorithm Conclusions

Example

- We choose p = 250043
- 2 We choose n = 3
- 3 We have $X^3 2$ is irreducible in $\mathbb{Z}[X]$.
- 4 We have $\gamma = 127006$ is a root of $X^3 2$ modulo p

ρ

- **(1)** $(|0| + |-2|)p^{1/3} = 2.250043^{1/3} < 128 = \rho$
- 2 $PMNS(p = 250043, n = 3, \gamma = 127006, \rho = 128)$

Arithmetic on PMNS

Modular Arithmetic

Introduction New Number System Number system Adapted Modular Number Sys Fundamental Theorem Arithmetic on PMNS Modular Multiplication Coefficient Reduction The RED Algorithm

Introduction

New Number System

- Number system
- Adapted Modular Number System

Fundamental Theorem

4 Arithmetic on PMNS

- Modular Multiplication
- Coefficient Reduction
- The RED Algorithm

5 Conclusions

I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 <lp>I
 I
 I
 <lp

Arithmetic on PMNS

Modular Arithmetic

Introduction New Number System Adapted Modular Number Syster Fundamental Theorem Arithmetic on PMNS Modular Multiplication Coefficient Reduction The RED Algorithm

Modular Multiplication in PMNS

- **1** Polynomial multiplication in $\mathbb{Z}[X]$: $C(X) \leftarrow A(X) B(X)$
- 2 Polynomial reduction : $C'(X) \leftarrow C(X) \mod E(X)$
- 3 Coefficient reduction : $R \leftarrow CR(V)$, gives $R(\gamma) \equiv C'(\gamma) \pmod{p}$

Generalization

operation on PMNS \rightarrow polynomial operation + coefficient reduction

Example

Modular Arithmetic

Introduction New Number System Number system Adapted Modular Number Syste Fundamental Theorem Arithmetic on PMNS Modular Multiplication Coefficient Reduction The RED Algorithm

PMNS

$$PMNS(p = 250043, n = 3, \gamma = 127006, \rho = 128)$$

Input

•
$$A = 7 + 30X + 100X^2 \Rightarrow A = 65842$$

$$B = 59 + 2X + 76X^2 \Rightarrow B = 8816$$

Algorithm

1)
$$C(X) = A(X) \times B(X)$$

 $U(X) = 413 + 1784X + 6492X^2 + 2480X^3 + 7600X^4$
2) $C'(X) = C(X) \mod (X^3 - 2) \leftarrow 5373 + 16984X + 6492X^2$
3) $R(X) = ?$

< □ > < Ξ >

Modular Arithmetic

Introduction New Number System Adapted Modular Number Syste Fundamental Theorem Arithmetic on PMNS Modular Multiplication

Coefficient Reduction The RED Algorithm Conclusions

Input

• A vector V with $||V||_{\infty} < 2^{t}$

Algorithm

 $\begin{array}{ccc} \textbf{0} & R \leftarrow V \\ \textbf{2} & \text{WHILE } t > k_{\text{S}} \text{ DO} \\ \textbf{0} & R = \overline{R}2^{t-k_{\text{B}}} + R \\ \textbf{2} & \overline{R} \leftarrow RED(\overline{R}) \\ \textbf{3} & R \leftarrow \overline{R}2^{t-k_{\text{B}}} + R \\ \textbf{4} & t \leftarrow t - (k_{\text{e}} - k_{\text{S}}) \end{array}$

Output

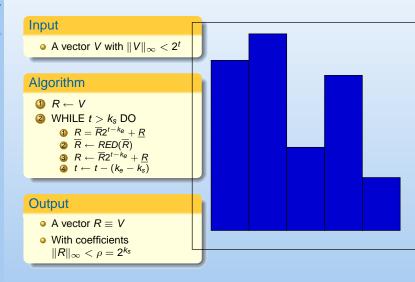
- A vector $R \equiv V$
- With coefficients $||R|| < a 2^{k_s}$

$$\|R\|_{\infty} < \rho = 2^{\ell}$$

Jean-Claude Bajard, Laurent Imbert, Thomas Plantard,

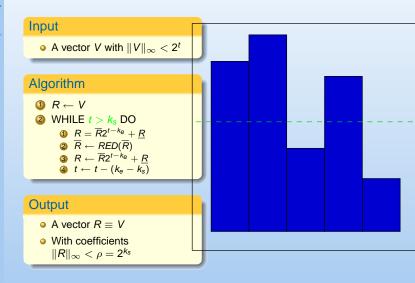
Modular Arithmetic

Introduction New Number System Number system Adapted Modular Number Syster Fundamental Theorem Arithmetic on PMNS Modular Multiplication



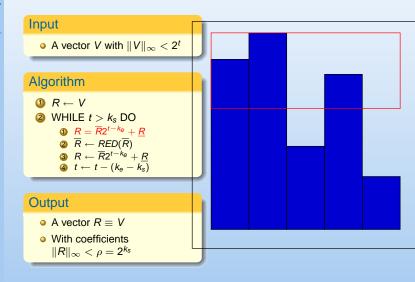
Modular Arithmetic

Introduction New Number System Number system Adapted Modular Number Syster Fundamental Theorem Arithmetic on PMNS Modular Multiplication



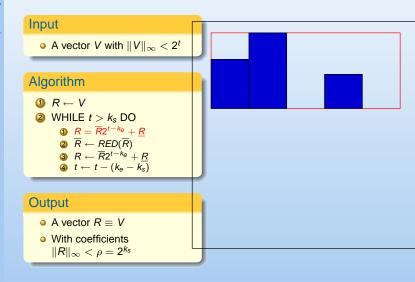
Modular Arithmetic

Introduction New Number System Number system Adapted Modular Number Syster Fundamental Theorem Arithmetic on PMNS Modular Multiplication



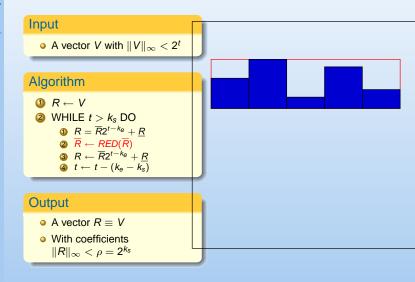
Modular Arithmetic

Introduction New Number System Number system Adapted Modular Number Syster Fundamental Theorem Arithmetic on PMNS Modular Multiplication



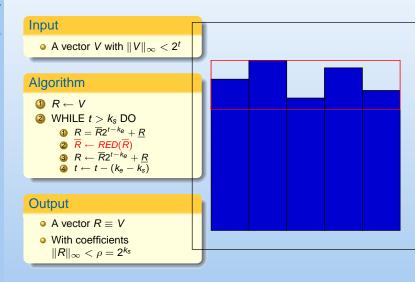
Modular Arithmetic

Introduction New Number System Number system Adapted Modular Number Syster Fundamental Theorem Arithmetic on PMNS Modular Multiplication



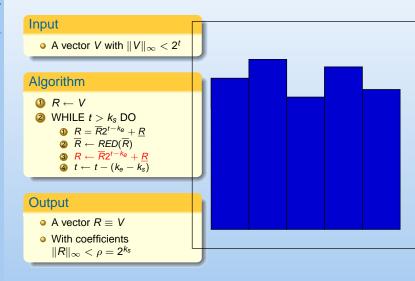
Modular Arithmetic

Introduction New Number System Number system Adapted Modular Number Syster Fundamental Theorem Arithmetic on PMNS Modular Multiplication



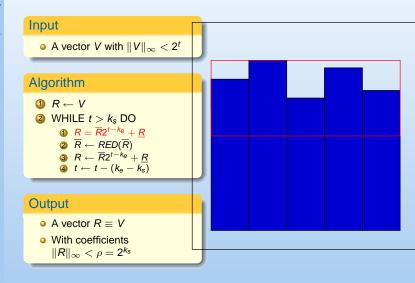
Modular Arithmetic

Introduction New Number System Number system Adapted Modular Number Syster Fundamental Theorem Arithmetic on PMNS Modular Multiplication



Modular Arithmetic

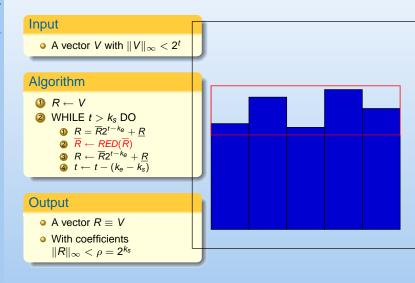
Introduction New Number System Number system Adapted Modular Number Syster Fundamental Theorem Arithmetic on PMNS Modular Multiplication



Modular Arithmetic

Introduction New Number System Number system Adapted Modular Number Syster Fundamental Theorem Arithmetic on PMNS Modular Multiplication

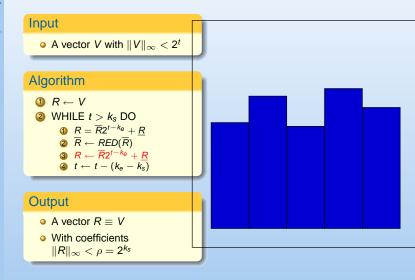
Coefficient Reduction The RED Algorithm Conclusions



< □ > < Ξ >

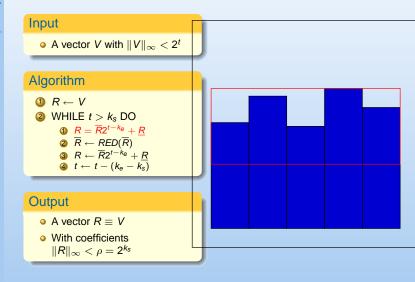
Modular Arithmetic

Introduction New Number System Number system Adapted Modular Number Syster Fundamental Theorem Arithmetic on PMNS Modular Multiplication



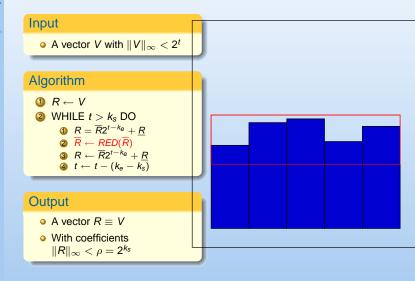
Modular Arithmetic

Introduction New Number System Number system Adapted Modular Number Syster Fundamental Theorem Arithmetic on PMNS Modular Multiplication



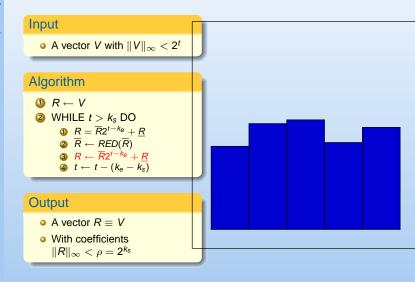
Modular Arithmetic

Introduction New Number System Number system Adapted Modular Number Syster Fundamental Theorem Arithmetic on PMNS Modular Multiplication



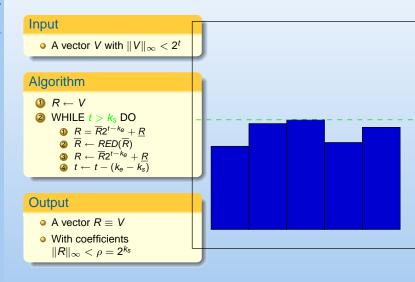
Modular Arithmetic

Introduction New Number System Number system Adapted Modular Number Syster Fundamental Theorem Arithmetic on PMNS Modular Multiplication



Modular Arithmetic

Introduction New Number System Number system Adapted Modular Number Syster Fundamental Theorem Arithmetic on PMNS Modular Multiplication



Modular Arithmetic

Introduction New Number System Adapted Modular Number System Fundamental Theorem Arithmetic on PMNS Modular Multiplication Coefficient Reduction The RED Algorithm

Input

• A vector V with $\|V\|_{\infty} < 2^{k_{\theta}}$

Algorithm

 $V = U2^{k_s - 1} + L$

$$@ U \leftarrow \text{Table}(U)$$

 $3 R \leftarrow U + L$

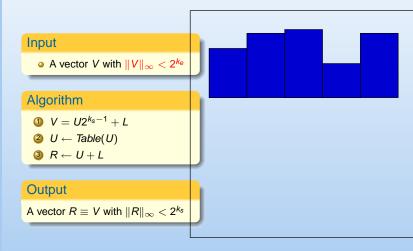
Output

A vector $R \equiv V$ with $||R||_{\infty} < 2^{k_s}$

< □ > < Ξ >

Modular Arithmetic

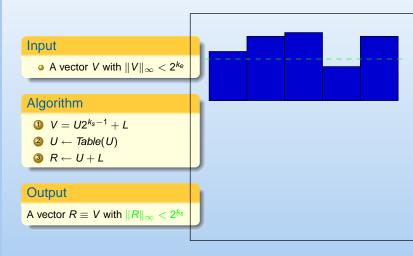
Introduction New Number System Number system Adspted Modular Number System Fundamental Theorem Arithmetic on PMNS Modular Multiplication Coefficient Reduction The RED Algorithm



▲ □ ▶ ◀ ☱ ▶

Modular Arithmetic

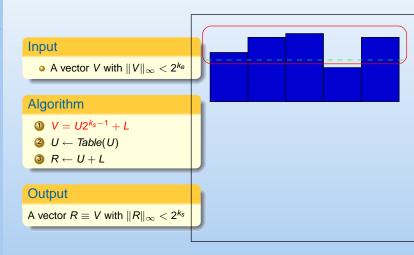
Introduction New Number System Number system Adspted Modular Number System Fundamental Theorem Arithmetic on PMNS Modular Multiplication Coefficient Reduction The RED Algorithm



< □ ▶ < 글 ▶

Modular Arithmetic

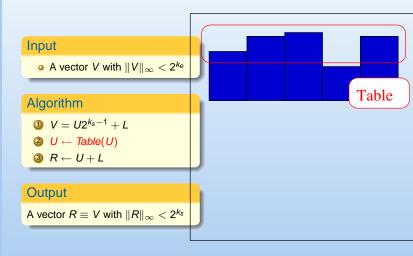
Introduction New Number System Number system Adapted Modular Number System Fundamental Theorem Arithmetic on PMNS Modular Multiplication Coefficient Reduction The RED Algorithm



□ ▶ < Ξ ▶

Modular Arithmetic

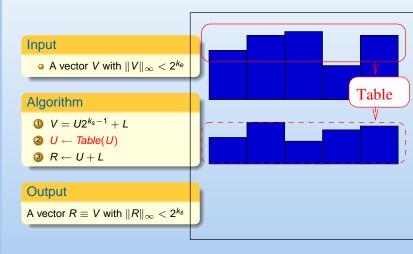
Introduction New Number System Number system Adspted Modular Number System Fundamental Theorem Arithmetic on PMNS Modular Multiplication Coefficient Reduction The RED Algorithm



↓ □ ▶ < Ξ ▶</p>

Modular Arithmetic

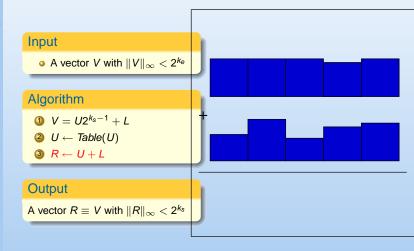
Introduction New Number System Number system Adspted Modular Number System Fundamental Theorem Arithmetic on PMNS Modular Multiplication Coefficient Reduction The RED Algorithm



< □ > < Ξ >

Modular Arithmetic

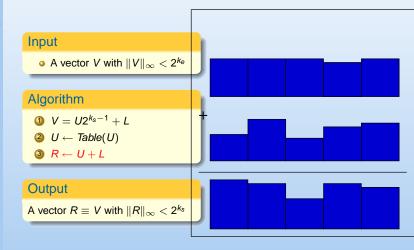
Introduction New Number System Number system Adapted Modular Number System Fundamental Theorem Arithmotic on PMNS Modular Multiplication Coefficient Reduction The RED Algorithm



A I I A E A E A

Modular Arithmetic

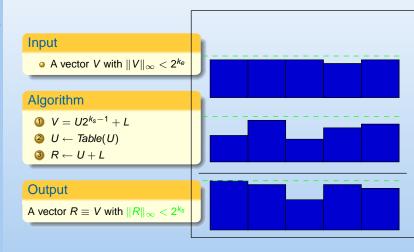
Introduction New Number System Adapted Modular Number System Fundamental Theorem Arithmetic on PMNS Modular Multiplication Coefficient Reduction The RED Algorithm



▲ □ ▶ ◀ 差 ▶

Modular Arithmetic

Introduction New Number System Number system Adapted Modular Number System Fundamental Theorem Arithmotic on PMNS Modular Multiplication Coefficient Reduction The RED Algorithm



< □ ▶ < 글 ▶

Conclusions

Modular Arithmetic

Introduction New Number System Adapted Modular Number System Fundamental Theorem Arithmetic on PMNS Modular Multiplication Coefficient Reduction The BFD Atorithm

Conclusions

Introduction

2 New Number System

- Number system
- Adapted Modular Number System

3 Fundamental Theorem

4 Arithmetic on PMNS

- Modular Multiplication
- Coefficient Reduction
- The RED Algorithm

6 Conclusions

↓ □ ▶ < ∃ ▶</p>

Conclusions and future directions

Modular Arithmetic

Introduction New Number System Number system Adapted Modular Number System Fundamental Theorem Arithmetic on PMNS Modular Multiplication Coefficient Reduction The RED Alcorithm

Conclusions

What we proposed

- A new number system well adapted to modular arithmetic, called Modular Number System (MNS)
- A theorem which allows us to define MNS having "nice" properties (small ρ)
- Table-based algorithms for the arithmetic operations (+,-,*,conversions) in the MNS

Future works

 Adapt algorithms like Montgomery and Barrett to the MNS in order to avoid table-based methods