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Context
Modular reduction
State of the art

Context

Many cryptographic protocols use modular arithmetic

ECC: uses a prime number P, 160 < |P| < 500
RSA: uses composite number N, 1024 < |N|

We need:

fast modular algorithm ...
... for a large class of moduli.

Remark: Any modular operation can be decomposed in the
equivalent classical operation, followed by a modular
reduction.
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State of the art

Modular Reduction

Input

Constant: P with n = |P| ,the length of P

Variable: X , the result of a multiplication: 0 ≤ X < P2

Output

Variable: R with R = X mod P

Example

P = 31 and n = 5

X = 21× 13 = 273

R = 25
X = 25 + 8× 31 = 273
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Some interesting classes of moduli

Mersenne’s number

P = 2n − 1

Algorithm

2n ≡ 1 (mod P)

X = X12
n + X0

X ≡ X1 + X0 (mod P)

Example: P = 31, X = 273

25 ≡ 1 (mod 31)

X = 8× 25 + 17

R = 8 + 17 = 25

Advantage: cost = one addition

Drawback: Prime Mersenne’s number class is too small
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State of the art

Pseudo Mersenne

Introduced by Crandall in 1992.

P = 2n − c with c small integer

Example: n = 10, c = 3→ P = 1021

Generalized Mersenne

Introduced by Solinas in 1999.

P = f (2t) where f is a polynomial with coefficients in {0, 1}
Example: t = 3, f (x) = x3 − x − 1→ P = 83 − 8− 1 = 503

More generalized Mersenne

Introduced by Chung and Hassan in SAC 2003.

P = f (2t − c) with fi = {0, 1}
Example: f (x) = x4 − x3 − 1→ P = f (24 − 2) = 35671
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Number system

Classical number system with radix β

X =
n−1∑
i=0

xiβ
i with xi ∈ {0, ...β − 1}

Example: X = 1315 = [3, 4, 4, 2]8 X = 3 + 4× 8 + 4× 82 + 2× 83

Modular number system (γ, ρ, n,P)

X =
n−1∑
i=0

xiγ
i mod P with xi ∈ {0, . . . , ρ− 1}
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Adapted Modular Number System

Example

MNS

(γ = 7, ρ = 3, n = 3,P = 17)

X =
∑2

i=0 xi7
i mod 17 with xi ∈ {0, 1, 2}

Table with 70 = 1, 71 = 7, 72 mod 17 = 15

0 1 2 3 4 5

[0, 0, 0] [1, 0, 0] [2, 0, 0] [1, 1, 2] [2, 1, 2] [0, 1, 1]

6 7 8 9 10 11

[1, 1, 1] [0, 1, 0] [1, 1, 0] [2, 1, 0] [0, 2, 2] [1, 2, 2]

12 13 14 15 16

[0, 2, 1] [1, 2, 1] [0, 2, 0] [1, 2, 0] [2, 2, 0]
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Adapted Modular Number System

How find a “good” Modular Number System?

Definition: AMNS

A modular number system B = MNS(γ, ρ, n,P) is called Adapted
Modular Number System (AMNS) if γn mod P = c with c small
integer.

Modular Multiplication in AMNS

1 Polynomial multiplication in Z[X ]: U(X )← A(X ) B(X )

2 Polynomial reduction: V (X )← U(X ) mod (X n − c)

3 Coefficient reduction: S ← CR(V ), gives S ≡ V (γ) (mod P)
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Number system
Adapted Modular Number System

AMNS

P = 250043⇒ |P| = 18

n = 3, ρ = 27

γ = 127006 such that c = 2 = γ3 mod P

Input

A = 7 + 30X + 100X 2 ⇒ A = 65842

B = 59 + 2X + 76X 2 ⇒ B = 8816

Algorithm

1 U(X ) = A(X )× B(X )
U(X ) = 413 + 1784X + 6492X 2 + 2480X 3 + 7600X 4

2 V (X ) = U(X ) mod (X 3 − 2)← 5373 + 16984X + 6492X 2

3 S(X ) =?
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Coefficient Reduction Algorithm
The Algorithm RED
An example

Input

A vector V

Algorithm

1 S ← V ,t ← |S |2
2 WHILE t > k + 1 DO

1 S = S2t−3k/2 + S
2 S ← RED(S)
3 S ← S2t−3k/2 + S
4 t ← t − (k/2− 1)

Output

A vector S ≡ V

With coefficients
Si < ρ = 2k+1
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Coefficient Reduction Algorithm
The Algorithm RED
An example

The Algorithm RED

Input

A vector V with its coefficients Vi < 23k/2

Algorithm RED

1 V = V 2k + V

2 S ← VM + V , where M ≡ 2k Id

Output

A vector S ≡ V

With its coefficients Si < 2k+1
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Coefficient Reduction Algorithm
The Algorithm RED
An example

How find M with M ≡ 2k I

Condition

A vector ξ which represent 2k : 2k ≡ ξ[γ] (mod P)

With small coefficients:
∑n−1

i=0 ξi < 2bk/2c/c

How to build M


2k 0 · · · 0 0
0 2k · · · 0 0
...

...
0 0 · · · 2k 0
0 0 · · · 0 2k

 ≡


ξ0 ξ1 · · · ξn−2 ξn−1

cξn−1 ξ0 · · · ξn−3 ξn−2
...

...
cξ2 cξ3 · · · ξ0 ξ1

cξ1 cξ2 · · · cξn−1 ξ0


(1)
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Coefficient Reduction Algorithm
The Algorithm RED
An example

Input

AMNS(γ = 127006, ρ = 128, n = 3,P = 250043) with γn ≡ 2

γ3 = 2 mod P and 26 = 1 + γ2 mod P26 0 0
0 26 0
0 0 26

 ≡
1 0 1

2 1 0
0 2 1

 (2)

A vector V = [120, 444, 22] with Vi < 23k/2 = 29

RED

1 V = [1, 6, 0]26 + [56, 60, 22]

2 S ← [1, 6, 0]M + [56, 60, 22] = [1, 8, 12] + [56, 60, 22]

Output

S = [57, 68, 34] with Si < 2k+1 = 27 = 128
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Coefficient Reduction Algorithm
The Algorithm RED
An example

An Example of Coefficient Reduction

Input

AMNS(γ = 127006, ρ = 128, n = 3,P = 250043) with γn ≡ 2

V = [5373, 16984, 6492]

Step

1 S = [1853, 984, 2524]

2 S = [357, 544, 532]

3 S = [121, 56, 32]

Output

S = [121, 56, 32] with Si < 128
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How to find convenient P?

How to make a AMNS?

1 Choose ρ = 2k+1 with k = 15, 31, 63.

2 Define n such that |P| ∼ kn

3 Select an integer c and a vector ξ with ξi ∈ {0, 1, 2}
4 Find P: P divides det(2k I −M)

Example

1 ρ = 216 → k = 15

2 |P| ∼ 160 → n = 11

3 c = 3 and 2k = [1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1]B
4 P = 792412797713126686196656160294175215426473063853
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Conclusions and future directions

What we proposed

A new modular number system which is adapted to modular
arithmetic

A way to find interesting AMNS

Fast algorithm for make operations on this AMNS

Perspective

Find a method to determine γ, ρ for a given P

Try to generalize this algorithm for all moduli
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