RNS bases and conversions

Jean-Claude Bajard Thomas Plantard

SPIE 2004

LIRMM - Montpellier - France

æ

Contents

- Context
- Residue Number System

2 Conversion

- From the Chinese Remainder Theorem
- Via Mixed Radix System
- Criteria
- 3 Basis Selection Criteria
 - MRS to new RNS
 - Modular Division
 - Internal Reduction

4 Conclusion

- Complexity
- Perspective

Introduction

Conversion Basis Selection Criteria Conclusion Context Residue Number System

æ

3

Context

Why RNS?

• Distribute operations from huge number to small residues

RNS conversions

- Modular multiplication
- Division

Introduction

Conversion Basis Selection Criteria Conclusion Context Residue Number System

・ロト ・日下・・日下・・

Context

Why RNS?

• Distribute operations from huge number to small residues

RNS conversions

- Modular multiplication
- Division

The different conversions

- Radix $\beta \leftrightarrows$ RNS (punctual uses)
- RNS \rightarrow RNS (modular multiplication, division..)

Context Residue Number System

Chinese Remainder Theorem

Chinese Remainder Theorem

- A RNS basis is (m_1, m_2, \ldots, m_n) with $M = \prod_{i=1}^n m_i$
- If we consider (x_1, x_2, \ldots, x_n) with $0 \le x_i < m_i$
- We have $\exists X < M$ with $x_i = |X|_{m_i} = X \mod m_i$

Context Residue Number System

< 日 > (四 > (三 > (三 >)))

Chinese Remainder Theorem

Chinese Remainder Theorem

- A RNS basis is (m_1, m_2, \ldots, m_n) with $M = \prod_{i=1}^n m_i$
- If we consider (x_1, x_2, \ldots, x_n) with $0 \le x_i < m_i$
- We have $\exists X < M$ with $x_i = |X|_{m_i} = X \mod m_i$

Properties

- Advantage: Addition and multiplication can be parallelized.
- Drawback: Comparison and division are difficult.

Context Residue Number System

Chinese Remainder Theorem

Chinese Remainder Theorem

- A RNS basis is (m_1, m_2, \ldots, m_n) with $M = \prod_{i=1}^n m_i$
- If we consider (x_1, x_2, \ldots, x_n) with $0 \le x_i < m_i$
- We have $\exists X < M$ with $x_i = |X|_{m_i} = X \mod m_i$

Properties

- Advantage: Addition and multiplication can be parallelized.
- Drawback: Comparison and division are difficult.

Example

- A RNS base: (255, 256, 257) with *M* = 16776960
- a = 10000
 ightarrow (55, 16, 234) and b = 300
 ightarrow (45, 44, 43)
- $a \times b = 3000000 \rightarrow (180, 192, 39)$

From the Chinese Remainder Theorem Via Mixed Radix System Criteria

Conversion: From CRT

From the Chinese Remainder Theorem

$$X = \left| x_1 \left| M_1 \right|_{m_1}^{-1} M_1 + x_2 \left| M_2 \right|_{m_2}^{-1} M_2 + \ldots + x_n \left| M_n \right|_{m_n}^{-1} M_n \right|_{M}$$
(1)

Where, $M_i = \frac{M}{m_i}$ and $|M_i|_{m_i}^{-1}$ represents the inverse of M_i modulo m_i .

From the Chinese Remainder Theorem Via Mixed Radix System Criteria

Conversion: From CRT

From the Chinese Remainder Theorem

$$X = \left| x_1 \left| M_1 \right|_{m_1}^{-1} M_1 + x_2 \left| M_2 \right|_{m_2}^{-1} M_2 + \ldots + x_n \left| M_n \right|_{m_n}^{-1} M_n \right|_{M}$$
(1)

Where, $M_i = \frac{M}{m_i}$ and $|M_i|_{m_i}^{-1}$ represents the inverse of M_i modulo m_i .

Find α

$$X + \alpha M = \left(\sum_{i=1}^{n} \alpha_i M_i\right) \tag{2}$$

- Shenoy Kumaresan, in 1989, proposed to use an extra modulo
- Posch and Posch, in 1995, proposed a floating point approach

From the Chinese Remainder Theorem Via Mixed Radix System Criteria

イロト イヨト イヨト イヨト

-2

Conversion: Via MRS

A Mixed Radix System

• We can represent X < M with $(x'_1, x'_2, \dots, x'_n)$ with $0 \le x'_i < m_i$

$$X = x'_{1} + x'_{2}m_{1} + x'_{3}m_{1}m_{2} + \dots + x'_{n}m_{1}\dots m_{n-1}$$
 (3)

From the Chinese Remainder Theorem Via Mixed Radix System Criteria

Conversion: Via MRS

A Mixed Radix System

• We can represent X < M with $(x'_1, x'_2, \dots, x'_n)$ with $0 \le x'_i < m_i$

$$X = x'_1 + x'_2 m_1 + x'_3 m_1 m_2 + \dots + x'_n m_1 \dots m_{n-1}$$
 (3)

Parallel algorithm

$$\begin{cases} x_1' = x_1 \mod m_1 \\ x_2' = (x_2 - x_1')m_{1,2}^{-1} \mod m_2 \\ x_3' = ((x_3 - x_1')m_{1,3}^{-1} - x_2')m_{2,3}^{-1} \mod m_3 \\ \vdots \\ x_n' = (\cdots (x_n - x_1')m_{1,n}^{-1} - x_2')m_{2,n}^{-1}) - \cdots - x_{n-1}')m_{n-1,n}^{-1} \mod m_n \end{cases}$$

Jean-Claude Bajard Thomas Plantard - SPIE 2004

From the Chinese Remainder Theorem Via Mixed Radix System Criteria

Conversion: Via MRS

A Mixed Radix System

• We can represent X < M with $(x'_1, x'_2, \dots, x'_n)$ with $0 \le x'_i < m_i$

$$X = x'_1 + x'_2 m_1 + x'_3 m_1 m_2 + \dots + x'_n m_1 \dots m_{n-1}$$
 (3)

Sequential algorithm

$$\begin{cases} x_1' = x_1 \mod m_1 \\ x_2' = (x_2 - x_1') |m_2|_{m_2}^{-1} \mod m_2 \\ x_3' = ((x_3 - x_1') - x_2'm_1) |m_1m_2|_{m_3}^{-1} \mod m_3 \\ \vdots \\ x_n' = ((x_n - x_1') - m_1(x_2' - m_2(x_3' - \dots - m_{n-3}(x_{n-2}' - m_{n-2}x_{n-1}')...) \end{cases}$$

Jean-Claude Bajard Thomas Plantard - SPIE 2004 RNS bases and conversions

From the Chinese Remainder Theorem Via Mixed Radix System Criteria

<ロ> (四) (四) (三) (三) (三)

3

Criteria for conversion

CRT

• Find α

• Use M_i and $|M_i|_{m_i}^{-1}$ which are difficult to characterize.

From the Chinese Remainder Theorem Via Mixed Radix System Criteria

(日) (部) (注) (注)

Criteria for conversion

CRT

- Find α
- Use M_i and $|M_i|_{m_i}^{-1}$ which are difficult to characterize.

MRS

- A parallelize method: $n^2/2$ modular divisions by specific numbers.
- Sequential method: $n^2/2$ products by characterized numbers and *n* modular divisions by non particular numbers.

MRS to new RNS Modular Division Internal Reduction

(日) (部) (注) (注)

æ

Remark about MRS to new RNS

From MRS to new RNS: using Horner

$$X \mod \widetilde{m_j} = [x'_1 + (m_1 - \widetilde{m_j})(x'_2 + (m_2 - \widetilde{m_j})(x'_3 + \dots + (m_{n-1} - \widetilde{m_j})x'_n)\dots)]$$
(6)

MRS to new RNS Modular Division Internal Reduction

Remark about MRS to new RNS

From MRS to new RNS: using Horner

$$X \mod \widetilde{m_j} = [x'_1 + (m_1 - \widetilde{m_j})(x'_2 + (m_2 - \widetilde{m_j})(x'_3 + \dots + (m_{n-1} - \widetilde{m_j})x'_n)\dots]$$
(6)

Proposition for a basis: Minimization of those differences

d	2 ⁸	2 ¹⁰	2 ⁸	2 ¹⁰	2 ⁸	210
т	2 ³²	2 ³²	2 ⁶⁴	2 ⁶⁴	2 ¹²⁸	2 ¹²⁸
$\frac{\widehat{d}}{\log(\widehat{d})}$	46	147	46	147	46	147
# coprimes found	39	117	44	124	41	121

Table: coprimes found between m and m + d with a trivial algorithm

MRS to new RNS Modular Division Internal Reduction

(日) (部) (注) (注)

Criteria for conversion

MRS sequential

- $n^2/2$ products by small numbers
- n classic modular divisions

MRS parallelize

• $n^2/2$ modular divisions by small numbers

MRS to new RNS Modular Division Internal Reduction

(日) (日) (日) (日) (日)

Modular Division

Idea

- We want to compute $y = x \times |d|_m^{-1} \mod m$
- Montgomery return a residue of the product by an inverse

MRS to new RNS Modular Division Internal Reduction

Modular Division

Idea

- We want to compute $y = x \times |d|_m^{-1} \mod m$
- Montgomery return a residue of the product by an inverse

Modular Division

() Input: An modulo m, a divisor d and a variable x

Precompute:

$$m = r_m + q_m d$$
 with $r_m < d$
 $I_m = (-m)^{-1} \mod d$

O Algorithm:

$$x = r_x + q_x \times d \text{ with } 0 \leq r_x < d$$

$$k \leftarrow r_x \times I_x \bmod d$$

$$(\sim y = \frac{x - km}{d})$$

Output: $v = x \times d^{-1} \mod m$ Jean-Claude Bajard Thomas Plantard - SPIE 2004

MRS to new RNS Modular Division Internal Reduction

Example

Classic Modular Division

- Input: *m* = 10007, *d* = 15, *x* = 7856
- 2 Precompute: $(d^{-1} \mod M) = 4670$
- 3 Algorithm: $s = x \times (d^{-1}) \mod M$
 - *s* = 7856 × 4670 = 36687520
 - $s = 36687520 \mod 10007 = 1858$

MRS to new RNS Modular Division Internal Reduction

Example

Classic Modular Division

- Input: *m* = 10007, *d* = 15, *x* = 7856
- 2 Precompute: $(d^{-1} \mod M) = 4670$
- 3 Algorithm: $s = x \times (d^{-1}) \mod M$
 - *s* = 7856 × 4670 = 36687520
 - $s = 36687520 \mod 10007 = 1858$

Modular Division

- Input: m = 10007, d = 15, x = 7856
- 2 Precompute: $r_m = 2$, $q_m = 667$, $I_m = 7$
- Igorithm:

$$x = r_x + q_x \times d \longrightarrow r_x = 11, q_x = 523$$

$$k \leftarrow 11 \times 7 \mod 15 = 2$$

③ *y* ← $(11 + 2 \times 2)/15 + 523 + 2 \times 667 = 1858$

MRS to new RNS Modular Division Internal Reduction

Example

Classic Modular Division

- Input: *m* = 10007, *d* = 15, *x* = 7856
- 2 Precompute: $(d^{-1} \mod M) = 4670$
- 3 Algorithm: $s = x \times (d^{-1}) \mod M$
 - *s* = 7856 × 4670 = 36687520
 - $s = 36687520 \mod 10007 = 1858$

Modular Division

- Input: m = 10007, d = 15, x = 7856
- 2 Precompute: $r_m = 2$, $q_m = 667$, $I_m = 7$
- Igorithm:

$$x = r_x + q_x \times d \longrightarrow r_x = 11, q_x = 523$$

$$k \leftarrow 11 \times 7 \mod 15 = 2$$

③ *y* ← $(11 + 2 \times 2)/15 + 523 + 2 \times 667 = 1858$

MRS to new RNS Modular Division Internal Reduction

・ロト ・ (日)・ ・ (日)・ ・ (日)・ ・

Internal Reduction

Modular Reduction

- ${\small \bigcirc} \ \ {\rm Input:} \ \ {\rm An \ integer} \ 2^{\delta-1} \leq d < 2^{\delta} \ \ {\rm A \ variable} \ x < 2^t$
- 2 Algorithm:

•
$$R \leftarrow x, \ Q \leftarrow 0, T \leftarrow t$$

• WHILE $T > \delta + 2$ DO

- **2** Call: $(r_{R_1}, q_{R_1}) \leftarrow Barrett_k(R_1, d)$
- \bigcirc Updating: R, Q, T
- WHILE $R \geq d$ DO $R \leftarrow R d, Q \leftarrow Q + 1$

 $\textbf{3} \quad \text{Output:} \ r_x \leftarrow R, \ q_x \leftarrow Q$

MRS to new RNS Modular Division Internal Reduction

Barrett_k

Generalized Barrett Property

$$x - d \left\lfloor \frac{\left(\left\lfloor \frac{2^{k+\delta}}{d} \right\rfloor \left\lfloor \frac{x}{2^{\delta-1}} \right\rfloor \right)}{2^{k+1}} \right\rfloor < 3d \tag{7}$$

イロト イヨト イヨト イヨト

4

Jean-Claude Bajard Thomas Plantard - SPIE 2004 RNS bases and conversions

MRS to new RNS Modular Division Internal Reduction

Barrett_k

Generalized Barrett Property

$$x - d \left\lfloor \frac{\left(\left\lfloor \frac{2^{k+\delta}}{d} \right\rfloor \left\lfloor \frac{x}{2^{\delta-1}} \right\rfloor \right)}{2^{k+1}} \right\rfloor < 3d \tag{7}$$

Barrett_k

- $\ \, {\rm Input:} \ x<2^{\delta+k} \ {\rm and} \ 2^{\delta-1}\leq d<2^{\delta}$
- **2** Precompute: $\left|\frac{2^{k+\delta}}{d}\right|$
- Igorithm:

$$q \leftarrow \left(\left\lfloor \frac{2^{k+\delta}}{d} \right\rfloor \left\lfloor \frac{x}{2^{\delta-1}} \right\rfloor \right)$$

- $q \leftarrow \lfloor \frac{q}{2^{k+1}} \rfloor$ • $r \leftarrow x - qd \mod 2^{\delta+1}$ (as , r < 3d)
- Output: (q, r) such that r = x dq < 3d

Jean-Claude Bajard Thomas Plantard - SPIE 2004

RNS bases and conversions

Complexity Perspective

Analysis

Complexity of a modular division

() Modular multiplication by the inverse: $2t^2 + 4t$

Our approach:

$$\left\lceil \frac{(t-\delta-2)}{(\delta-2)} \right\rceil (2\delta^2 + 3\delta + 4 + \log(t)) + 3\delta^2 + \delta t + 12\delta + 2t$$

Example of comparison

d	2 ⁸	2 ¹⁰	2 ⁸	2 ¹⁰	2 ⁸	2 ¹⁰
m	2 ³²	2 ³²	2 ⁶⁴	2 ⁶⁴	2 ¹²⁸	2 ¹²⁸
Our approach	1252	1521	2386	2868	4219	4234
Barrett algo	2176	2176	8448	8448	33280	33280

Table: Number of binary operations for a modular division

Complexity Perspective

Conclusion

Conclusion

- Moduli in small intervals are interesting.
- This kind of RNS basis are easy to build.
- MRS is a good choice with this type of moduli and with dedicate algorithms.
- In future, we want to build complete operators for RNS crypto implementation.

I ≥ ►