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Abstract

Lattice-based cryptography plays an important role in modern cryptography. Apart

from being a perfect alternative of classic public key cryptosystems, should the quan-

tum computers become available, the lattice-based cryptography also enables many

applications that conventional cryptosystems, such as RSA encryption scheme, can

not deliver. One of the most significant aspects from this point of view is the fully

homomorphic encryption schemes.

A fully homomorphic encryption scheme allows one to arbitrarily operate on the

encrypted messages, without decrypting it. This notion was raised in 1978, and it

becomes a “holy grail” for the cryptographers for 30 years until 2009, Craig Gentry

presented a framework to construct a fully homomorphic encryption using ideal lattice.

The fully homomorphic encryption schemes, although they may be lacking of efficiency

at its current stage, enable many important applications, such as secured cloud search-

ing verifiable outsourced computing. Nevertheless, just like other cryptosystems, and

perhaps all other inventions at the initial stage, the fully homomorphic encryption is

young, prospective, and hence requires more research.

In this thesis, we focus on the security of fully homomorphic encryption schemes.

The security of all known fully homomorphic encryption schemes can be reduced to

some lattice problems. Therefore, our main tool, not surprisingly, is lattice. Previ-

ous work has shown that some of the fully homomorphic encryption schemes can be

broken using lattice reduction algorithms. Indeed, there exist several lattice reduc-

tion algorithms, such as LLL and L2, that run in polynomial time, that can break a

homomorphic encryption scheme. However, the running time, even though it is a poly-

nomial algorithm, is still beyond tolerance. Hence, our first step is to optimize those

algorithms. In this thesis, we show three different improvements. To sum up, combin-

ing those techniques, we are able to accelerate the reduction form O(d4+εβ2 + d5+εβ)

to O(d2+εβ2 + d4+εβ) when the algorithm is dedicated for those cryptosystems, where

d is the dimension of the lattice, and β is the maximum bit-length of the norm of input
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vectors. In practice, those techniques accelerate the reduction for approximately 10

times for moderate lattices, and when it is applied over the fully homomorphic encryp-

tion challenge, we can solve the challenge within 15.7 years, while the previous best

result was 45 years.

We also analyzed the security of the fully homomorphic encryption scheme using

integers under the chosen ciphertext attack model. The chosen ciphertext attack model

is one of the classic security models as far as an encryption scheme is concerned. Indeed,

we present a chosen ciphertext attack that breaks the security of the scheme. Further,

in theory, the chosen ciphertext attack relies on the existence of a decryption oracle

that might not always exist in practice. In this thesis, we also show that a decryption

oracle can be constructed via a reaction attack for all fully homomorphic encryption

schemes that are used in an outsourcing computing environment.

The last component of this thesis is a new fully homomorphic encryption scheme.

To construct this scheme, we propose the notion of hidden lattices. We show that

several hidden lattice problems, which are to be used in a fully homomorphic encryption

scheme, are more difficult than the corresponding problems over a normal lattices.

Hence, we base our scheme on a problem that is harder than all problems that existing

fully homomorphic encryption schemes are based on. Since our problem is substantially

harder to solve, our scheme can operate with smaller parameters, and hence be more

efficient, compared to state-of-art ideal lattice based fully homomorphic encryption

schemes.
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Chapter 1

Introduction

1.1 Fully Homomorphic Encryption

Cloud computing has been one of the biggest evolutions in the computer world in

the past decade. Cloud computing allows access to highly scalable, inexpensive, on-

demand computing resources that can execute the code and store the data that are

provided to them. This feature is very attractive, as it alleviates most of the burden

on Information Technology (IT) services from the consumer (or data owner). The data

owner can outsource data to the cloud without having to maintain costly infrastructure.

Nevertheless, the adoption of cloud computing by business does have a major obsta-

cle in that data owners are hesitant to allow untrusted cloud providers to have access to

the data being outsourced. Merely encrypting the data prior to storing it on the cloud

is not a viable solution, since encrypted data cannot be further manipulated. This

means that if the data owner needs to, for example, search for particular information,

then the data would need to be completely retrieved and decrypted - hence, a very

costly operation.

Fully Homomorphic Encryption (FHE) is believed to be the solution for securing

cloud computing. The problem of developing a fully homomorphic public key encryp-

tion scheme has been a long-standing open problem in the cryptography research com-

munity. Shortly after Shamir, Rivest, and Adleman invented RSA [RSA78], Rivest,

Adleman and Dertouzos [RAD78] questioned whether a fully homomorphic encryp-

tion scheme, which they called privacy homomorphism, could be constructed. If such

a scheme can be constructed, then essentially one can arbitrarily compute using en-

crypted data. Essentially, fully homomorphic encryption schemes enable one to apply

homomorphic operations over an arbitrary number of given ciphertexts without the

need to know the corresponding plaintexts.

Example 1.1 Consider a situation where a user stores his/her colour images in the

2



1.2. Lattice Theory and Cryptography 3

cloud in an encrypted form. The user wants to retrieve a greyscale version of one

particular image from the cloud without leaking the information about the image itself.

• Without fully homomorphic encryption, the user needs to retrieve the colour im-

age from the cloud and then conduct the greyscaling process on their local machine.

• Using a fully homomorphic encryption, the cloud service can conduct the greyscal-

ing algorithm in the cloud homomorphically (i.e. using the cloud’s computing

power), and then the user retrieves the image from the cloud and decrypts it to

obtain a greyscale version of that image.

Nevertheless, to construct such a scheme is challenging. The notion of fully ho-

momorphic encryption was raised in 1978, and it became a “holy grail” for the cryp-

tographers for 30 years until 2009, when Craig Gentry [Gen09b] successfully provided

a framework for constructing fully homomorphic encryption schemes and furthermore

provided a concrete construction in 2009 [Gen09a]. In addition, subsequent works

based on his framework [SV10, vDGHV10, Gen10b, GHV10, SS10, GH11, BGV12,

CMNT11, BV11b, LNV11, GHPS12, GHS12b, BV11a] have been proposed.

Fully homomorphic encryption schemes, although they may be lacking in efficiency

at its current stage, enable many important applications, such as secured cloud search-

ing and verifiable outsourced computing. Nevertheless, just like other cryptosystems,

and perhaps all other inventions at the initial stage, the fully homomorphic encryption

is young, prospective, and needs further research.

1.2 Lattice Theory and Cryptography

Lattice-based cryptography plays an important role in modern cryptography. It enables

not only public key encryption schemes [GGH97, HPS98] but also digital signature

schemes [LM08]. The security of those cryptosystems is based on hard lattice problems,

in comparison with the factorization problem or the discrete logarithm problem that

conventional encryption schemes are based on [RSA78, Kob87]. It is conjectured that

lattice problems will remain difficult when quantum computers become available, while

efficient algorithms have already been developed to solve the factorization problem

and the discrete logarithm problem using quantum computers. Hence, it is believed

that the lattice-based cryptosystem is one of the main candidates for post-quantum

cryptography.

• Classic Cryptography: RSA, ECC, ElGamal,etc.
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• Post-quantum Cryptography: Lattice-based, Multivariate equation-based 1,

etc.

Nevertheless, lattice-based cryptography has drawn more and more attention in

the past decade. As the research goes deeper and wider, amazing properties can be

achieved with lattice-based cryptography, which we have never seen in classic encryp-

tion schemes.

Apart from being an alternative to classic public key cryptosystems, when the

quantum computers become available, lattice-based cryptosystems also enable many

applications that conventional cryptosystems, such as RSA encryption scheme, can

not deliver. One of the most significant aspects from this point of view, is the fully

homomorphic encryption scheme as we mentioned in the previous section.

Interestingly, when lattice first met cryptography, it was used to conduct cryptanal-

ysis. To date, lattice, as a cryptanalysis tool, can be used against not only lattice-based

cryptosystems, but also some classic cryptosystems. For instance, lattice reduction al-

gorithms can be used to attack an RSA cryptosystem [Cop96a, Cop96b] when some

of the most significant bits of the keys are known. To this end, many improvements

towards lattice reduction algorithms [LLL82, Sch88, NS05a, NSV11, CN11] have been

proposed. Some of them focus on reducing the running time of the algorithms, while

others aim to improve the quality of the results. Nevertheless, achievements from both

aspects affect cryptanalysis greatly.

1.3 Summary of Results

In this thesis, we focus on the security of fully homomorphic encryption schemes. The

security of all known fully homomorphic encryption schemes can be reduced to some

lattice problems. Therefore, our main tool, not surprisingly, is the lattice theory.

Previous work has shown that some of the fully homomorphic encryption schemes

are broken using lattice reduction algorithms [Ngu11, CN11]. Indeed, there exists

several lattice reduction algorithms, such as LLL [LLL82] and L2 [NS05a, Ste10], that

run in polynomial time, that break a homomorphic encryption scheme. However, the

running time of the algorithms, even though it is polynomial, is still beyond tolerance.

Therefore, our first step is to optimize those algorithms.

In the first part, we show three different improvements towards improving the

running time of those algorithms. The main results are summarized in Table 1.1. In

1A public-key encryption scheme based on multivariate polynomials over finite fields.
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Figure 1.1: Summary of work in relation with cryptography and lattice theory

Table 1.1, ε is a real number between 0 and 1, ω is a valid exponent from matrix

multiplications. For comparison, in this table, we also show the complexity of the LLL

algorithm (the very first polynomial time lattice reduction algorithm), the L2 algorithm

(the best algorithm in practice) and the L̃1 algorithm (the best algorithm in theory).

Specifically, our results start with an adaptive-precision floating-point LLL algo-

rithm (Figure 1.1, D) in Chapter 3. The proposed algorithm can be used for every

purpose of lattice reduction. Although the proposed algorithm accelerates the pro-

cedure by 20% on average, the asymptotic complexity remains the same. Then, in

Chapter 4, we present a recursive-reduction algorithm (Figure 1.1, C), that is more fo-

cused on knapsack-type bases, and we successfully improve the asymptotic complexity

as shown in Table 1.1. The knapsack-type basis is somewhat a standard basis that is

used in cryptanalysis. We shall discuss in more details in the corresponding chapter.

To complete this part, in Chapter 5 we end with a dedicated algorithm, the LLL al-

gorithm for ideal lattice (Figure 1.1, B), that can only be applied over an ideal lattice

basis and bases with similar structures. These bases are mainly used in fully homo-

morphic encryption schemes and NTRU encryption schemes, etc. The improvement of

our approach is both theoretical and practical.

To sum up, combining those techniques, in theory, we are able to accelerate the

reduction from O(d4+εβ2+d5+εβ) to O(d2+εβ2+d4+εβ) when the algorithm is dedicated

for those cryptosystems, where d is the dimension of the lattice, and β is the maximum

bit-length of the norm of input vectors. In practice, those techniques accelerate the
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Algorithms Arbitrary Basis Specific Basis Comments

LLL O(d5+εβ2+ε) O(d4+εβ1+ε) Classic Result
L2 O(d4+εβ2 + d5+εβ) O(d3+εβ2 + d4+εβ) Best Practical Result

L̃1 O(d2+ε+ωβ1+ε + d5+εβ) O(d1+ε+ωβ1+ε + d4+εβ) Best Theoretical Result
Ap-fplll O(d4+εβ2 + d5+εβ) O(d3+εβ2 + d4+εβ) Better Practical Results

Rec-Red N/A O(d2+εβ2 + d4+εβ) Better Theoretical Bound
iLLL N/A O(d2+εβ2 + d4+εβ) Theory and Practice

Table 1.1: Comparison of time complexity

Rec-Red algorithm is dedicated to knapsack-type basis and the iLLL algorithm is dedicated

to ideal lattice basis. The complexity of previous algorithms for those two specific bases are

shown correspondingly. For more details of the complexy, see next chapter.

The Gentry-Halevi’s Challenge dim 512 dim 2048
The Previous Best Results/Prediction[CN11] 30 days 45 years

LLL implementation @2.66GHz 32 days 25.8 years
iLLL implementation @2.66GHz 24 days 23.6 years

iLLL prediction @4.0GHz 16 days 15.7 years

Table 1.2: Practical Result on Gentry-Halevi’s Challenge

reduction for approximately 10 times for moderate lattice. Hence, those results are

of independent interest for many other purposes beyond cryptanalysis of the fully

homomorphic encryption challenges.

In the second part of the thesis, we show our cryptanalysis over the existing fully

homomorphic encryptions. In chapter 6, we firstly show our results of the fully homo-

morphic encryption challenge using the improved lattice reduction algorithms proposed

in the previous chapter. When applying those algorithms over the fully homomorphic

encryption challenge [GH], where the dimension of the lattice is huge, we can solve the

challenge within 15.7 years, while the previous best result required 45 years [Ngu11].

Another approach in terms of cryptanalysis is to analyze the security of the scheme

under a certain security model. The two classic security models as far as an encryption

scheme is concerned, are the chosen plaintext attack (CPA) model [GM84] and the

chosen ciphertext attack (CCA) model [BDPR98]. While the security towards the cho-

sen plaintext is always guaranteed by some computationally hard problem, the security

towards the chosen ciphertext attack is still a concern. Indeed, it has been shown that
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the level 2 of chosen ciphertext attack (CCA-2) security is impossible for fully homo-

morphic encryption schemes, and the level 1 security of the chosen ciphertext attack

(CCA-1), which is a substantially weaker level, of a variant of fully homomorphic en-

cryption scheme based on principal ideal lattice is actually compromised [LMSV11].

In Chapter 7, we also break the CCA-1 security of another variant of fully homomor-

phic encryption schemes using integers (Figure 1.1, F). Further, in theory, the chosen

ciphertext attack relies on the existence of a decryption oracle that might not exist in

practice. For this reason, we also show that a decryption oracle can indeed be con-

structed via a reaction attack (Figure 1.1, E), when a fully homomorphic encryption

scheme is used in outsourced computing.

Finally, we present a new fully homomorphic encryption scheme (Figure 1.1, A) in

the last part. To construct this scheme, we propose the notion of hidden lattices in

Chapter 8. We show that several hidden lattice problems, that are to be used in a fully

homomorphic encryption scheme, are harder than the corresponding problems over a

normal lattice. We present a somewhat homomorphic encryption scheme in Chapter

9 and show how to convert it into a fully homomorphic encryption scheme in Chapter

10. We base our scheme on a problem that is harder than all problems that existing

fully homomorphic encryption schemes are based on. Since our problem is substantially

harder to solve, our scheme can operate with smaller parameters, compared with state-

of-art ideal lattice based fully homomorphic encryption schemes.
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1.4 Notations

The following notation is used throughout the rest of this thesis.

a, b, c integers

x, y, z variables

Z, R set of integers, reals

Zp integers modulo p

x← Z, x← R sample x uniformly randomly from Z, R
~v = 〈v1, v2, . . . , vn〉 vector consist of elements 〈v1, v2, . . . , vn〉
B = (~b1,~b2, . . . ,~bn) matrix consist of vectors (~b1,~b2, . . . ,~bn)

L, L(B) lattice, lattice spanned by a basis B

det(L) determinant of a lattice L
Dist(~v,L) the distance between a vector and a lattice

λi the i-th minima of a lattice

‖ · ‖, ‖ · ‖2 the Euclidean norm

‖ · ‖∞ the infinity norm

| · | the absolute value

[b]a b mod a

bae closest integer of a

f(x), g(x) polynomials

Rot(~v, f(x)), Rot(~v) matrix from cyclic rotation of ~v modulo f(x)

f(x) = O(g(x)) there exists a positive real ε such that

|f(x)| ≤ ε|g(x)| for all x

M(d) cost of multiplication of two d-bits integers

O oracle

λ security parameter(
n
k

)
choose k out of n



Chapter 2

Background

2.1 Modern Cryptography

2.1.1 Public Key Cryptography

The public key cryptography was proposed by Shamir, Rivest, and Adleman [RSA78]

over 30 years ago. In comparison to the previous encryption schemes, where the same

key is used to encrypt and decrypt, the public key cryptography uses two keys, a public

one and a secret one. For this reason, these kinds of encryption schemes are also known

as asymmetric encryption schemes.

Suppose Alice is the owner of a pair of keys pk and sk, where pk is known to

everybody. Then, Bob can use Alice’s public key to encrypt a message, which can

only be decrypted by Alice herself. To construct a public key encryption scheme, one

usually starts with building a certain one-way trapdoor function as follows:

Definition 2.1 (One-way Trapdoor Function) A one-way trapdoor function, re-

fer to as y ← f(x), is a function that is easy to compute in one direction, for instance,

given x and f it is relatively easy to compute y, while it is computationally hard to com-

pute in the opposite direction (finding its inverse f−1(x)) without a trapdoor. Further,

the function can be easily inverted once the trapdoor is given.

If one views x as the message and y ← f(x,pk) as the encryption function with pk,

then this one-way function defines an encryption algorithm. If one knows the trapdoor,

then one can efficiently compute x ← f−1(y, sk). However, without a trapdoor (for

example, sk), to compute x ← f−1(y) is not feasible. For instance, given y and f it

would be hard to compute x.

Example 2.1 Considering the following problem. Let p and q be two prime numbers.

Let N = pq. Let e be an integer such that e and (p − 1)(q − 1) are co-prime. The

9
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function y ← xe mod N is a one-way trapdoor function. Given e and N one can

efficiently compute y from x. But to compute x from y one seems to need p and q.

To date, many complex problems are used to build the one-way trapdoor func-

tion for different cryptosystems. The classic RSA cryptosystem [RSA78] is based on

the factorization problem of large integers. The Elliptic Curve Cryptography (ECC)

[Kob87] is based on the discrete logarithm problem over a group. The NTRU cryp-

tosystem [HPS98] is based on a problem of finding the closest vector of certain vector

to a lattice. All those problems are relatively hard unless a certain piece of information

is given.

However, with the rise of quantum computers, the factorization problem and the

discrete logarithm problem will be easy to solve [Sho94]. As a result, the corresponding

cryptosystems become insecure. Fortunately, lattice problems are conjectured to be

hard even with quantum computers. For this reason, lattice-based cryptosystem is

drawing more and more attention.

2.1.2 Security Modeling

In this thesis, we focus on the security of the some cryptosystems. The security of

a cryptosystem is usually defined under certain security models. In the following, we

describe briefly both Chosen-Plaintext Attack (CPA) [GM84] and Chosen-Ciphertext

Attack (CCA) [BDPR98] for completeness.

The IND-CPA security game is defined as follows:

1. The challenger runs KeyGen algorithm and outputs a secret

key sk and a public key pk;

2. The attacker is given the public key so that he/she can com-

pute Encrypt(m, pk) locally;

3. The attacker then generates two ciphertexts m0 and m1;

4. The challenger generates c = Encrypt(mb, sk), where b is

chosen uniformly randomly from {0, 1};

5. The attacker outputs b′.

We say that an encryption scheme is CPA secure if the advantage of the attacker to

win the game (Pr[b = b′]− 1/2) is negligible.

The IND-CCA-1/2 security game is defined as follows:
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1. The challenger runs KeyGen algorithm and outputs a secret

key sk and a public key pk;

2. The attacker is given two oracles, an encryption oracle and a

decryption oracle;

3. The attacker then generates two ciphertexts m0 and m1;

4. The challenger generates c = Encrypt(mb, sk), where b is

chosen uniformly randomly from {0, 1};

5. (Only for CCA-2) The attacker is given the two oracles again,

but it cannot query on c;

6. The attacker outputs b′.

We say that an encryption scheme is CCA-1/2 secure if the advantage of the attacker

to win the game (Pr[b = b′]− 1/2) is negligible.

2.2 Lattice Theory

2.2.1 Lattice Basics

In this section, we review some concepts of lattice theory that will be used throughout

this thesis. The lattice theory, also known as the geometry of numbers, was introduced

by Minkowski in 1896 [Min96]. We refer readers to [Lov86, MG02] for a more detailed

account.

Definition 2.2 (Lattice) A lattice L is a discrete sub-group of Rn, or equivalently

the set of all the integral combinations of d ≤ n linearly independent vectors over R.

L = Z~b1 + Z~b2 + · · ·+ Z~bd,~bi ∈ Rn

B = (~b1, . . . ,~bd) is called a basis of L and d is the dimension of L, denoted as dim(L).

L is a full rank lattice if d equals n.

Definition 2.3 (Determinant) Let L be a lattice. Its determinant, denoted as det(L),

is a real value, such that for any basis B of L, det(L) =
√

det(B ·BT ), where BT is

the transpose of B.
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Figure 2.1: A 2-dimensional lattice and its basis

Definition 2.4 (Hermite Normal Form) Let L be an integer lattice of dimension

d and H be a basis of L. Then the basis H is the Hermite Normal Form (HNF) basis

of L if and only if

∀1 ≤ i, j ≤ d Hi,j


= 0 if i < j;

≥ 0 if i ≥ j;

< Hj,j if i > j.

For a given lattice L, there exists an infinite number of bases. However, its determinant

and its HNF basis is unique. Looking ahead, in terms of cryptanalysis, generally

speaking, the HNF basis is believed to leak the least information of the corresponding

lattice, since it can be obtained by any of its basis in polynomial time O(d3β) [MW00].

For a vector ~b = 〈b1, b2, . . . , bd〉, its Euclidean norm, denoted by ‖~b‖, is
√∑d

i=1 b
2
i .

The distance of two vectors~b1 and~b2, referred to as Dist(~b1,~b2), is defined by ‖~b1−~b2‖,
while the distance between a vector ~b and a lattice L, denoted by Dist(~b,L), is the

minimum value of Dist(~b,~v) for any ~v ∈ L.

Definition 2.5 (Successive Minima) Let L be an integer lattice of dimension d.

The i-th successive minima with respect to L, denoted by λi, is the smallest real number,

such that there exist i non-zero linearly independent vectors ~b1,~b2, . . . ,~bi ∈ L with

∀i, ‖~b1‖, ‖~b2‖, . . . , ‖~bi‖ ≤ λi,

where ‖ · ‖ denotes the Euclidean norm of the corresponding vector.
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Figure 2.2: The volume of a lattice

In addition, if the lattice is random (see Theorem 2.1), then the value of i-th minima

is estimated by the Gaussian heuristic as follows:

∀i, λi(L) ∼
√

d

2πe
det(L)

1
d . (2.1)

Figure 2.3: A shortest non-zero vector of a lattice

Definition 2.6 (Hermite factor) Let B = (~b1, . . . ,~bd) a basis of L. The Hermite

factor with respect to B is defined as ‖~b1‖
det(L)

1
d

.

Note that the Hermite factor is a good indicator of the quality of a reduced basis (see

next subsection for definitions of lattice reductions).
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Example 2.2 Figure 2.1, 2.2 and 2.3 give the same example of a 2-dimensional lattice.

The basis, as shown in Figure 2.1, is

B =

(
8 5

−3 11

)
.

The determinant of the lattice is 103 (Figure 2.2). The Hermite Normal Form basis of

this lattice is

H =

(
103 0

65 1

)
.

A shortest non-zero vector is given in Figure 2.3, hence, the first minima λ1 = ‖ 〈8, 5〉 ‖ =
√

82 + 52 =
√

89. The Hermite factor of B is
√

89
103

, while the Hermite factor of H is
√

103.

For any vector ~v = 〈v1, . . . , vd〉, denote v(x) =
∑d

i=1 vix
i−1 the polynomial form

of ~v. Let Rot(~v, f) be the matrix consisting of vectors from {xiv(x) mod f(x)} for

1 ≤ i ≤ d. Then Rot(~v, f) forms a rotation basis. For instance, if f(x) = xn + 1 and

~v = 〈v1, v2, . . . , vd〉, then the rotation basis B is of the following form:

B =



v1 v2 v3 . . . vd

−vd v1 v2 . . . vd−1

−vd−1 −vn v1 . . . vd−2
...

...
...

. . .
...

−v2 −v3 −v4 . . . v1


Then, we have the definition of principal ideal lattices.

Definition 2.7 (Ideal Lattice [Mic07]) Let R be a polynomial ring Z[X]/f(x), where

f(x) ∈ Z[X] is a monic irreducible polynomial of degree n. The ideal lattice over R,

is a lattice L such that for any ~v ∈ L, the vector corresponding to the polynomial

x× v mod f(x) also belongs to L.

Definition 2.8 (Principal Ideal Lattice) Let R be a polynomial ring Z[X]/f(x),

where f(x) ∈ Z[X] is a monic irreducible polynomial of degree n. Let ~v ∈ Zn. The

ideal lattice over R with respect to ~v, denoted by L(Rot(~v, f)) is the set of all integral

linear combinations of ~v and its rotation vectors.

Note that for ideal lattices, we have n = d for all bases. The principal ideal lattice is

used to construct efficient encryption schemes [GH11, SV10], since it can be represented
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by three integers {α, δ, d} rather than a full basis, where δ is the determinant of the

lattice, and α is an integer such that f(α) = 0 (mod δ), i.e., αd + 1 = 0 (mod δ) if

f(x) = xn + 1. As shown in [GH11] with those three integers, one is able to construct

a basis H, that is the Hermite Normal Form basis of the lattice. Then L(H) defines

an principal ideal lattice.

H =



δ 0 0 . . . 0 0

(−α) mod δ 1 0 . . . 0 0

(−α2) mod δ 0 1 . . . 0 0
...

...
...

. . .
...

...

(−αd−1) mod δ 0 0 . . . 0 1


Looking ahead, from the point of view of cryptography, one sometimes also uses H′

which shares a similar property with H in terms of lattice reduction, since they have

same dimension and the coefficients are of approximately same length.

H′ =



δ 0 0 . . . 0 0

−α 1 0 . . . 0 0

0 −α 1 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . −α 1


.

We proof that H and H′ span a same lattice as follows: firstly, all vectors in H′ can

be obtained by cyclic rotation of vectors in H. That is, any vector that is in L(H′) is

also in L(H). Then, since L(H) and L(H′) have same determinant and rank, they are

the same lattice.

Theorem 2.1 (Random Lattice [GM06]) Let B be a basis as follows:

B =


X1 0 0 . . . 0

X2 1 0 . . . 0
...

...
... · · · ...

Xd 0 0 . . . 1


B spans a randomly lattice, if X1 is a large prime and Xi-s (i 6= 1) are chosen uniformly

between 0 and X1.

Indeed, B is a modular knapsack-type basis (see next subsection). It gains its great

importance in lattice theory because it spans a random lattice, as defined in [GM06].
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Further, these bases are somewhat standard to analyze lattice reductions. They

are believed to leak the least information for the corresponding lattice, since it can be

obtained by any lattice basis within polynomial time by performing an HNF transfor-

mation over the basis. They are also adopted in [GN08, NS06] where the behavior of

lattice reduction algorithms is thoroughly analyzed. In addition, when setting β ∼ 10d,

these bases are also used for the shortest vector problem (SVP) challenges in [svp].

2.2.2 Lattice Problems

In this subsection we review some basic problems of lattice theory. For many years,

lattice was used for cryptanalysis. It is one of the most powerful tools to break certain

cryptography. It was not until recently that researchers successfully build a cryptosys-

tem with it, where the security of the cryptosystem relies on the hardness of certain

lattice problems. Among all lattice problems, the Shortest Vector Problem (SVP) and

the Closest Vector Problem (CVP) are the core problems.

Definition 2.9 (Shortest Vector Problem) Given an arbitrary basis B of a lattice

L, find a shortest non-zero vector ~v ∈ L.

Definition 2.10 (Closest Vector Problem) Given an arbitrary basis B of a lattice

L and a vector ~v0 ∈ Rn, find a vector ~v1 ∈ L such that ‖~v0 − ~v1‖ ≤ Dist(L, ~v0).

Generally speaking, the SVP problem is to find a shortest non-zero vector within a

lattice, while the CVP problem is to find a closest point in the lattice for a certain

vector. Both problems are hard to solve, except for some trivial dimensions, i.e. 1

dimensional lattice, while solving a SVP is no easier than solving a CVP. For a recent

survey of SVP and CVP problem, we refer the reader to [HPS11a].

Moreover, quantum algorithms solving CVP or SVP have not yet been found.

Hence, lattice-based cryptography is one of the best candidates for post-quantum use.

Indeed, even the approximated version (see below) of those problems are believed to

be NP-hard and quantum resistant, with small approximation factors.

Definition 2.11 (Approximated Shortest Vector Problem (γ-SVP)) Given a lat-

tice L, let λ1 be the first minima of L, the Approximated Shortest Vector Problem,

denoted by γ-SVP, is to find a non-zero vector ~v ∈ L such that ‖~v‖ ≤ γλ1.

Definition 2.12 (Approximated Closest Vector Problem (γ-CVP)) Given a lat-

tice L and a vector ~v1, the Approximated Closest Vector Problem, denoted by γ-CVP,

is to find a non-zero vector ~v2 ∈ L such that Dist(~v1, ~v2) ≤ γDist(~v1,L).
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Those two problems derives problems that cryptosystems are based on, for instance,

the bounded distance decoding (BDD) problem. The BDD problem is another very

important lattice problem. In the reminder of the thesis, we shall refer to this prob-

lem repetitively, since it enables the fully homomorphic encryption schemes over ideal

lattices.

Definition 2.13 (Bounded Distance Decoding problem (γ-BDD)) Let γ ∈ R+

be a positive real. Let L be an n dimensional (ideal) lattice, and ~v ∈ Zn, such that there

exists a unique vector ~u ∈ L satisfying Dist(~v, ~u) ≤ γ. The γ-Bounded Distance De-

coding problem over (ideal) lattice, denoted by γ-BDD (γ-BDDi, resp.), is to find ~u,

given a basis of L and ~v.

Usually, to break a cryptosystem, one only need to solve a decisional version of the

above problem. The decisional version of the BDD is defined as follows.

Definition 2.14 (Decisional BDD Problem) Let γ ∈ R+ be a positive real. Let L
be an n dimensional (ideal) lattice, and ~v ∈ Zn. The Decisional γ-Bounded Distance

Decoding problem over (ideal) lattice, denoted by Dec γ-BDDn (Dec γ-BDDin, resp.),

is to decide if there exists a unique vector ~u ∈ L satisfying Dist(~v, ~u) ≤ γ or not, given

a basis of L and ~v.

There have been several definitions of BDD (see [LM09, GH11] for comparison), due to

the simplification of their proof reductions. In our case, we subsequently define BDD

with slight modification to achieve the same goal. Nevertheless, it is clear that all these

definitions capture the same notion.

2.2.3 Lattice-related Problems

Now we shall describe some other problems related to lattice. We remark that lattice

theory can be used to analysis all problems discussed in this subsection.

As mentioned earlier, there are mainly three types of fully homomorphic encryption

schemes. The schemes are based on three different problems. In the last subsection,

we have described the bounded distance decoding (BDD) problem that enables lattice-

based schemes. Now, we introduce the other two problems, namely, the approximate

greatest common divisor problem and the learning with error problem.

Definition 2.15 (AGCD Problem) Let ci ∈ Z, τ integers such that there exist some

unique integers ri ∈ Z and a unique integer p ∈ N such that ∀i, p|(ci− ri) and ∀i, |ri| ≤
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γ < p/2. Then, the Approximate Greatest Common Divisor problem, denoted by γ-

AGCD, is to find p, given ci.

The above definition describes the general version of AGCD problem. By setting

r1 = 0 one obtains the partial version (P-AGCD). For the rest of this thesis, we are only

concerned with the general version of this problem. As in the case of BDD, the problem

of AGCD has been defined slightly differently in the literature (see [vDGHV10, HG01]

for comparison). Again, we apply the same principle to achieve our goal. Nevertheless,

all of these definitions still capture the same notion.

The classic way to attack this problem makes use of lattices [vDGHV10]. Never-

theless, there are also attacks like [CN12] which do not use lattices.

The Learning With Error (LWE) problem, and its ring version, the Learning With

Error over the Ring (R-LWE) problem, were introduced by Regev [Reg05, Reg10]

Definition 2.16 (Learning With Error problem) Given an integer q and an er-

ror distribution Ξ over Zq, Let ~s be a random vector in Znq . Let (~a1, . . . ,~an) and

(~e1, . . . , ~en) be two sets of vectors, where ~ai is randomly chosen from Zqn, and ~ei is cho-

sen according to Ξ. The Learning With Error problem, denoted by LWE, is given as

many independent pairs of ~ai · ~s+ ~ei and ~ai, find ~s.

In addition, the ideal lattice-based fully homomorphic encryption schemes and the

integer-based fully homomorphic encryption schemes all uses the squashing technique,

which, as we shall discuss in the next section, relies on a Sparse Subset Sum Problem

(SSSP). It is derived from the (modular) knapsack problem as follows:

Definition 2.17 (Knapsack Problem) Let {X1, X2, . . . , Xd} be a set of positive in-

tegers. Let c =
∑d

1 siXi, where si ∈ {0, 1}. A knapsack problem is given {Xi} and c,

find each si.

The density of a knapsack, denoted by ρ, is d/β, where β is the maximum bit length

of Xi-s.

Definition 2.18 (Modular Knapsack Problem) Let {X0, X1, . . . , Xd} be a set of

positive integers. Let c =
∑d

1 siXi mod X0, where si ∈ {0, 1}. A modular knapsack

problem is given {Xi} and c, find each si.

The knapsack problem is also known as the Subset Sum Problem (SSP) [LO85]. The

Sparse Subset Sum Problem (SSSP) that the squashing technique relies on, is a special

case of knapsack problem with
∑
si � d.
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The decisional version of the knapsack problem is NP-complete [Kar72]. However,

if its density is too low, there is an efficient reduction to the problem of finding a

shortest non-zero vector from a lattice (refer to [Lai01, NS05b, CJL+92]).

In practice, to solve those problems, one runs lattice reduction algorithms (We will

provide more details on lattice reductions in the next subsection.) over the following

basis:

BK =



X1 1 0 . . . 0

X2 0 1 . . . 0

X3 0 0 . . . 0
...

...
...

. . .
...

Xd 0 0 . . . 1


We refer to BK as the knapsack-type basis, and BM as the modular knapsack-type basis.

BM =



X0 0 0 . . . 0

X1 1 0 . . . 0

X2 0 1 . . . 0
...

...
...

. . .
...

Xd 0 0 . . . 1


In the rest of the thesis, for simplicity, we focus on knapsack-type basis, although the

adoption over a modular knapsack-type basis is straightforward. We also note that a

principal ideal lattice basis is a modular knapsack-type basis.

For now, we use lattice reduction algorithms as a black box and illustrate an example

of how to recover {si} via lattice reduction.

Example 2.3 Considering the following knapsack problem, where X =
∑9

i=1 siXi.

X = 1911310173 X1 = 437491759 X2 = 128552629 X3 = 972127522 X4 = 711069765

X5 = 125617110 X6 = 812891076 X7 = 44057509 X8 = 376073782 X9 = 340284326
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To solve this problem, one firstly needs to build a lattice with the following basis:

B =



1911310173 0 0 0 0 0 0 0 0 0

437491759 1 0 0 0 0 0 0 0 0

128552629 0 1 0 0 0 0 0 0 0

972127522 0 0 1 0 0 0 0 0 0

711069765 0 0 0 1 0 0 0 0 0

125617110 0 0 0 0 1 0 0 0 0

812891076 0 0 0 0 0 1 0 0 0

44057509 0 0 0 0 0 0 1 0 0

376073782 0 0 0 0 0 0 0 1 0

340284326 0 0 0 0 0 0 0 0 1


Then, by performing a lattice reduction, one obtains a reduced basis. In this example,

we use the classic LLL algorithm.

LLL(B) =



0 1 0 1 0 1 0 0 1 0

5 −3 −1 1 0 0 3 1 3 2

−1 −5 4 5 −1 4 1 0 −5 0

3 −4 3 2 −4 3 −6 4 −1 −2

1 2 −1 1 7 4 4 3 −6 −2

−1 −4 −4 −5 3 3 −5 1 5 3

−3 1 −4 7 5 −6 1 3 −3 −5

8 −1 5 −1 4 1 −3 −4 2 −1

4 2 4 4 4 −6 −4 5 1 3

3 2 −6 1 −2 4 1 −4 −9 2


Note that the first vector contains only binary coefficients. Indeed, it indicates that

X = X1 +X3 +X5 +X8, and the problem is solved.

2.2.4 Lattice Reductions

A lattice is usually given in the form of a basis. However, for a given lattice, there exist

an infinite number of bases. Among those bases, some are “good”, where the vectors

within the basis are almost orthogonal (see Figure 2.4), while some are “bad”, where

the vectors within the basis are almost parallel (see Figure 2.5). Given a bad basis, to

obtain a good basis, is known as lattice reduction [LLL82]. The quality of a basis can

be indicated from the Gram-Schmidt orthogonalization (GSO).
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Figure 2.4: A good basis of a 2-dimensional lattice

Definition 2.19 (Gram-Schmidt orthogonalization) Let B = (~b1, . . . ,~bd) be a

basis of L. The Gram-Schmidt orthogonalization (GSO) of B is B∗ = (~b∗1, . . . ,
~b∗d):

~b∗1 = ~b1,

~b∗i = ~bi −
i−1∑
j=1

µi,j~b
∗
j , (2 ≤ i ≤ d),

µi,j =
~bi ·~b∗j
~b∗j ·~b∗j

.

Example 2.4 For the good basis

BA =

(
8 5

−3 11

)
.

Its GSO are

B∗A =

(
8 5
−515
89

824
89

)
, µA =

(
1 0
31
89

1

)
.

For the bad basis

BB =

(
29 31

21 26

)
.

Its GSO are

B∗B =

(
29 31
−3193
1802

2987
1802

)
, µB =

(
1 0

1415
1802

1

)
.

BA is a better reduced basis because the maximum is smaller in B∗A are smaller.
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Figure 2.5: A bad basis of a 2-dimensional lattice

Lattice reduction is a very powerful tool, and has many variants. There are poly-

nomial time algorithms, that find vectors that are an exponential approximation of a

shortest non-zero vector, and there are also exponential time algorithms, that find the

exact shortest vector, or a polynomial approximation of it.

Hence, depending on the quality of the reduced basis, one is able to solve some of

the lattice problems listed in the last subsection. And therefore, the cryptosystems that

are based on those problems are under concern. The fully homomorphic encryption

scheme over ideal lattice is based on a bounded distance decoding problem, while the

knapsack problem is based on an approximate shortest vector problem. Both problems

adopt very large approximation factors. As a result, one is able to solve the problems

using polynomial time algorithms, such as the LLL algorithm.

The LLL Algorithm

In this subsection, we give a general overview of the LLL algorithm. We refer the

reader to the book by Nguyen and Vallée [NV09] for a more detailed account.

The LLL algorithm is described in Algorithms 1 and 2. Algorithm 1 is for size

reduction, and it is sometimes referred to as the Gram-Schmidt reduction. Algorithm

2 outputs a (δ, η)-reduced basis. The basis is also referred to as the LLL-reduced basis.

Definition 2.20 (η-size reduced) Let B = (~b1, . . . ,~bd) be a basis of L. B is η-size

reduced, if |µi,j| ≤ η for 1 ≤ j < i ≤ d. η ≥ 0.5 is the reduction parameter.

Definition 2.21 ((δ, η)-reduced basis) Let B = (~b1, . . . ,~bd) be a basis of L. B is
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(δ, η)-reduced, if the basis is η-size reduced and it satisfies Lovász condition as follows:

δ‖~b∗i−1‖2 ≤ ‖~b∗i + µ2
i,i−1

~b∗i−1‖2 for 2 ≤ i ≤ d. 1
4
< δ ≤ 1 and 1

2
≤ η <

√
δ are two

reduction parameters.

Algorithm 1 Size Reduction

Input: B = (~b1,~b2, . . . ,~bd), its GSO, an index κ and a reduction parameter η.

Output: A new basis B, where ~bκ is size reduced, and the updated GSO.
1: for i = (κ− 1)→ 1 do
2: if µ ≤ η then
3: ~bκ ← ~bκ − dµκ,ic ·~bi;
4: Update GSO;
5: end if
6: end for
7: return B.

It is quite straightforward to see that if Algorithm 2 terminates, then its output

basis satisfies the Lovász condition. Hence, the basis is (δ, η)-reduced. Note that in the

classic LLL, η = 0.5, while in L2 (see next subsection), it is essential that η is slightly

greater than 0.5.

Algorithm 2 LLL

Input: B = (~b1,~b2, . . . ,~bd) and reduction parameters (δ, η).
Output: A (δ, η)-reduced basis B.

1: Compute GSO;
2: κ← 2;
3: while κ ≤ d do
4: size reduce (~b1, . . . ,~bκ) with parameter η;

5: if δ‖~b∗κ−1‖2 ≤ ‖~bκ‖2 + µ2
κ,κ−1‖~b∗κ−1‖2 (Lovász condition) then

6: κ← κ+ 1;
7: else
8: Exchange ~bκ and ~bκ−1;
9: κ← max(κ− 1, 2);

10: Update GSO;
11: end if
12: end while
13: return B.

With respect to the running time of the algorithm, we firstly recall the following

two definitions.

Definition 2.22 (Gram determinants) Let B = (~b1, . . . ,~bd) be a basis of L. Let

B∗ = (~b∗1, . . . ,
~b∗d) be the corresponding GSO. The Gram determinants of B, noted
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{∆∗1, . . . ,∆∗d} is defined as:

∆∗i = det(~b∗1, . . . ,
~b∗i ) =

d∏
i=1

‖~bi‖.

Definition 2.23 (Loop Invariant) The loop invariant is defined as the product of

all Gram determinants as: D =
∏d−1

i=1 ∆∗i .

For any basis, the upper bound of D is 2βd(d−1), while for principal ideal lattice HNF

bases, D is further bounded by 2β(d−1).

It has been shown [NS06] that the loop invariant D is unchanged except during the

exchange procedure, while during the exchange, D is decreased by a factor of δ. Hence,

the total number of exchanges cannot exceed
∣∣∣βd(d−1)log2 δ

∣∣∣, which implies there are maxi-

mum O(d2β) loop iterations. In addition, since the size reduction algorithm requires

O(d2) operations, the total number of operations is O(d4β). Finally, each operation

involves integer multiplications with a cost of M(dβ) due to rational arithmetics.1

Hence, the original LLL algorithm terminates in polynomial time O(d6β3).

With respect to the quality of a reduced basis for an arbitrary lattice, the following

theorem provides an upper bound.

Theorem 2.2 [NS05a, Ste10] For a lattice L, if B = (~b1, . . . ,~bn) form an LLL-reduced

basis of L, then,

∀i, ‖~bi‖ ≤ 2
d−1
2 λi(L). (2.2)

Hence, if B = (~b1, . . . ,~bd) forms an (δ, η)-reduced basis, then ‖~bi‖ < 2d det(L)
1
d for

1 ≤ i ≤ d.

The L2 algorithm

The most costly part in an LLL procedure is the size reduction. When one performs

a size reduction, the GSO needs to be regularly updated. During the update, the

classic LLL needs to operate on integers with the length of O(dβ). As a result, the

multiplication of those integers incurs a cost of M(dβ).

In [Sch88] and [SE94], Schnorr showed that using floating points instead of integers

for LLL can reduce the cost of multiplications from M(dβ) to M(d + β). To the

best of our knowledge, this is the first time where floating points make a significant

1Here, we follow the LLL algorithm by usingM(d) to be O(d2) assuming a naive integer multipli-
cation, although one can replace it with O(d1+ε) to obtain the exact bit complexity using fast integer
arithmetics.
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difference in the LLL algorithm. However, it is obseved that the hidden constant in

the bit complexity remains huge.

To further improve the efficiency, the L2 algorithm was proposed by Nguyen and

Stehlé [NS05a] in 2005. It is the first variant whose worst-case time complexity is

quadratic with respect to β. L2 uses floating point arithmetics where the multiplication

can be carried out with precision O(d). Hence, it reduces the cost of integer multipli-

cation from M(dβ) to M(d). It uses a worst-case time complexity of O(d5β2 + d6β)

to produce a (δ, η)-reduced basis for 1
4
< δ < 1 and 1

2
< η <

√
δ.

The L2 algorithm incorporates the lazy reduction as follows:

• one is required to perform O(1 + β
d
) fp-reductions to ensure that the vectors is

size reduced, since each fp-reduction may be incomplete.

• the size reduction consists of O(1 + β
d
) floating point reductions (fp-reduction).

• within each fp-reduction, one works on floating point whose precision is O(d). As

a consequence, the multiplication cost is reduced to M(d).

• The factor within O(·) is influenced by the reduction parameters. A default

setting in the fplll is approximately 1.6d.

As for a principal ideal lattice HNF basis or a knapsack-type basis, it is proved that

L2 terminates in O(d4β2 + d5β), since there are O(dβ) loop iterations for these bases

instead of O(d2β) for bases of random lattices (see Remark 3, [NS05a]).

In practice, the fplll library [PSC] and MAGMA [BCP97] are two well known im-

plementations. Within MAGMA. there exist two main versions, “L2” and “FP” (it is

known as “LM WRAPPER” in the fplll). In the fplll library, two more variants, known

as LM HEURISTIC” and LM FAST”, are available. However, those two variants do not

deliver proved results. For this reason, in this thesis we focus on the first two methods.

The L2 is described as above. It is the proved version of L2. Meanwhile, in practice,

one can further improve the average performance with some heuristics. To the best of

our knowledge, the most efficient implementation of L2 is FP. As far as the floating

point is concerned, FP is L2 plus some early reductions.

In FP, the basis is early reduced as follows: the algorithm will choose several fixed

precisions subject to the following conditions:

• The arithmetics are fast with those precisions, for instance, 53 for C double

precision.
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• Reductions with those precisions are likely to produce a correct basis, for instance,

d rather than 1.6d (see Remark 4, [NS06]).

Reductions with above precisions are cheaper, while they produce somewhat re-

duced bases. So the algorithm will try all early reductions with different fixed preci-

sions, and finally perform an L2 to ensure the quality of reduction. We note that those

early reductions do not change the overall complexity, since in theory the last L2 is still

the most costly one. Nevertheless, in practice, the early reductions are very effective

to accelerate the whole procedure.

Other LLL Variants

To complete this subsection, we list some of the LLL-type algorithms that improve

complexity with respect to β. For other improvements with respect to d, we refer

readers to [MSV09, Sch06, KS01].

In [vHN10], van Hoeij and Novocin proposed a gradual sub-lattice reduction al-

gorithm based on LLL that deals with knapsack-type bases. Unlike other LLL-type

reduction algorithms, it only produces a basis of a sub-lattice. This algorithm uses a

worst-case O(d7 + d3β2) time complexity.

In 2011, Novocin, Stehlé and Villard [NSV11] proposed a new improved LLL-type

algorithm that is quasi-linear in β. This led to the name L̃1. It is guaranteed to

terminate in time O(d6β + dω+2β2) for any basis, where ω is a valid exponent from

matrix multiplications. To bound ω, we have 2 < ω ≤ 3. A typical setting in [NSV11]

is ω = 2.3.

Other Reduction Algorithms

As mentioned earlier, there exist two main types of lattice reduction algorithms. The

LLL-type algorithms we have described in the previous subsection use polynomial time

and find vectors that are an exponential approximation of a shortest non-zero vector.

There are also some stronger lattice reduction algorithms, for instance, HKZ and BKZ,

that runs in (sub-)exponential time and find shorter vectors. The cryptanalysis we shall

describe in this thesis concerns mainly polynomial time lattice reduction algorithms.

Hence, we will only briefly recall those stronger lattice reductions.

The HKZ reduction algorithm, which was proposed by Hermite in 1850, and refined

by Korkine and Zolotareff in 1873, is one of the strongest reduction algorithm in terms

of the reduced basis its providing. Given an input basis, it starts with finding the exact
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shortest within the lattice spanned by the input basis. Then it projects the lattice over

a shortest non-zero vector, to obtain a sub-lattice of the original lattice. Note that

after the projection, the dimension of the lattice will be reduced by 1. Therefore, after

d− 1 loop iterations, one obtain a strongly reduced basis. However, since it uses many

SVP solvers, the running time is exponential in d.

In 1988, Schnorr proposed a Block Korkine-Zolotareff (BKZ) reduction algorithm.

Instead of reducing the whole basis as in HKZ, the BKZ algorithm deals with blocks of

k vectors. As a result, BKZ allows some exponential computations in terms of k. We

remark that LLL can been seen as BKZ with block length of k = 2. We refer readers to

[HPS11b] for a recent complexity analysis of BKZ and [CN11] for recent development

of BKZ.

2.2.5 Lattice-based Cryptography

Now we briefly review some of the most important lattice-based cryptosystems. We

refer the readers to [BBD08, NS01] for a more detailed account.

GGH Cryptosystem

GGH [GGH97] cryptosystem is one of the first lattice-based public key cryptosystem. A

GGH scheme uses a good basis and a bad basis of a lattice as its secret/public keys. As

shown in the figures, basis in Figure 2.4 and 2.5 represents same 2-dimensional lattice.

Given a good basis, one is able to generate a bad basis, but not vice versa. This gives

us a one-way trapdoor function. Hence, generally speaking, the GGH cryptosystem

relies on the following assumption: given a bad basis, there is no efficient algorithm

that produces a good basis.
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The KeyGen algorithm takes as follows:

• Given security parameters λ, it generates a n-dimensional lat-

tice L in the form of a good basis Bsk.

• Set Bpk = U×Bsk that forms a bad basis of L, where U is

a n× n uni-modular matrix.

• Generate B−1sk .

• Output sk = {B−1sk } and pk = {Bpk, ε}, where ε is the per-

mitted error bound.

The Encrypt Algorithm takes as follows:

• For input message ~m = 〈m1,m2,m3, ...,mn〉, compute ~v =∑n
i mi ×~bi, where Bpk = (~b1,~b2,~b3, . . . ,~bn).

• Randomly generate a noise vector ~e, where ‖~e‖ ≤ ε.

• Output the ciphertext ~c = ~v + ~e.

The Decrypt Algorithm takes as follows:

• Compute ~m′ = ~c×B−1sk = ~m×U + ~e×B−1sk .

• Round off the permitted error ~e×B−1sk .

• Output ~m = b~m′e ×U−1.

Ideally, retrieve a message from a ciphertext without the secret key in GGH is

equivalent to solving a CVP problem. However, in 1999, Nguyen [Ngu99] showed that

the GGH encryption scheme has a flaw in the design of the schemes. He showed

that every ciphertext reveals information about the plaintext and that the problem of

decryption could be turned into a special CVP much easier to solve than the general

CVP.

Although GGH is broken, it shows us a method to build a one-way trapdoor function

using lattice. For instance, in NTRU [HPS98], a good basis is used as a secret, while

a bad basis is the public key. To encrypt a message, it maps the message to a point

not in the lattice, but within a very short distance less than a permitted error rate. To

retrieve the message without a good basis is equivalent to solving a CVP. Hence it is

infeasible in polynomial time. However, if one possess such a good basis, then one can
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simply decrypt it using a rounding off procedure.

2.3 Fully Homomorphic Encryption

The idea of fully homomorphic encryption was raised by Rivest, Adleman and Der-

touzos [RAD78], shortly after the invention of RSA [RSA78]. A homomorphic en-

cryption scheme ξ consists of four algorithms: KeyGen, Encrypt, Decrypt and

Eval.

• KeyGen(λ): Input a security parameter λ, it outputs public

key pk, secret key sk.

• Encrypt(m, pk): Input a message m and the public key pk,

it outputs a corresponding ciphertext c.

• Decrypt(c, sk): Input a ciphertext c and the secret key sk,

it outputs a corresponding message m.

• Eval(pk, c1, c2, . . . , cn, Cn): Input a public key pk, n ci-

phertext c1, c2, . . . , cn and a permitted circuit Cn, it outputs

Cn(c1, c2, . . . , cn).

The first three algorithms follow the definition of a public key encryption scheme, while

the last one is defined as follows: input a public key pk, a set of ciphertexts {ci} whose

corresponding messages are {mi}, and a circuit C, output another ciphertext c. This

evaluation is correct if the following holds:

Decrypt(Eval(C, {ci},pk), sk) = C(m1, . . . ,mt). (2.3)

Definition 2.24 (Homomorphic Encryption) The scheme ξ = (KeyGen, En-

crypt, Decrypt, Eval) is homomorphic for a class C of circuits if it is correct

according to Equation 2.3 for all circuits C ∈ C. ξ is fully homomorphic if it is correct

for all boolean circuits. Further, ξ is compact, if for any circuit C ∈ C with a number

of inputs polynomial in λ, the size of ciphertexts output by Eval is bounded by a fixed

value which is polynomial in λ.

Following this notion, schemes that support partial homomorphism have been pro-

posed. Recently, Gentry [Gen09b, Gen09a] successfully provided a framework for con-

structing homomorphic encryption schemes (referred to as the Gentry scheme) and,
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further, he provided a concrete construction. In addition, subsequent works based on

his framework have been proposed recently (such as [SV10, SS10, vDGHV10]). For

instance, in [GH11] (referred to as Gentry-Halevi scheme), the authors optimized

the performance of the Gentry scheme, while in [vDGHV10] (referred to as vDGHV

scheme), the author proposed an integer variant of the Gentry scheme. In the fol-

lowing, for clarity, we will review Gentry’s framework.

2.3.1 Gentry’s Framework

Gentry’s framework for constructing fully homomorphic encryption schemes is based

on creating a function to perform two atomic operations which will allow the user to

build any kind of circuit. Effectively, any circuit can be built with two atomic functions,

namely addition + and multiplication × over F2. Therefore, to evaluate any circuit,

we are only required to be able to add and multiply over F2 two encrypted bits.

We note that, to ensure security, such an encryption function is required to be

indistinguishable, namely Enc(m0) 6= Enc(m1) 6⇒ m0 6= m1. To build such a function,

⊕ and ⊗, Gentry used a simple model. Gentry defined the two functions f+ and f×

which are equivalent to decrypting both encrypted bits, adding or multiplying such

decrypted bits and then encrypting the resulting bits (See Figure 2.6).

However, if f+ and f× return the desired result for ⊕ and ⊗, the bits are clearly



2.3. Fully Homomorphic Encryption 31

readable and therefore they do not maintain the intended security requirement.

To achieve this required property, Gentry used an encryption scheme which allows

evaluation of short circuits. Therefore, it encrypts the ciphertext with a second cryp-

tosystem. Hence, it can remove the first encryption securely to perform the addition

or the multiplication (See Figure 2.7). This technique is named bootstrapping.

Definition 2.25 (Bootstrappable Encryption) Let scheme ξ = (KeyGen, En-

crypt, Decrypt, Eval) be a compact homomorphic encryption scheme, and let Cξ
be the class of circuits regarding to which the scheme is correct. Denote Dξ its decryp-

tion circuit. ξ is bootstrappable if Dξ ∈ Cξ.

Remark 2.1 Gentry has shown that if a bootstrappable scheme can correctly evaluate

bitwise additions and multiplications over two ciphertexts, then this scheme is fully

homomorphic [Gen09a].

Using such a technique, Gentry simplified the quest of constructing a fully homo-

morphic encryption that can evaluate any circuit on encrypted data by finding an

encryption system that can evaluate only some short circuits, namely f+ and f×. This

encryption system is referred to as a somewhat homomorphic encryption system. In

formally speaking, to achieve fully homomorphic, we need

FHE = SHE + Squash(optional) + boostrapping,

where the second step is optional for some SHE schemes whose decryption circuit depth

is low.

2.3.2 Gentry’s Initial Construction

Here we highlight the important techniques used in the Gentry scheme, and we refer

the readers to [Gen09a, Gen09b, Gen10a] for a more detailed account.

The Somewhat Homomorphic Encryption Scheme

We will first recall the somewhat homomorphic encryption scheme as follows. The

somewhat homomorphic encryption scheme is a GGH-type cryptosystem [GGH97], i.e.

the secret key/public key are “good”/“bad” basis of the lattice, and the underlying

lattice problem is a Bounded Distance Decoding problem over ideal lattice (BDDi, see

Definition 2.13).
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The encryption is to map a message to a vector close to the lattice using the bad

basis. To be more specifically, to encrypt a message one uses the following one-way

trapdoor function:

~c← ~m+ ~r × I + ~g × J

where ~r and ~g are randomly chosen. I and J are two ideal lattices that are co-prime.

Then, with the good basis, one can perform the vector reduction to recover the

message with the following equation:

~m← ~c mod I mod J . (2.4)

Generally speaking, the encryption maps a message ~m to a residue group of J ,

with a certain level of noise from I. Given a good basis of J (as a trapdoor), it is

easy to retrieve ~m from ~c, if the noise is properly bounded. Meanwhile, the addition or

multiplication of elements of the residue group will still fall into the same group, i.e.

~c1 +~c2 = ~m1 + ~m2 + (~r1 +~r2)I+ (~g1 +~g2)J . Therefore, the requirement for “somewhat

homomorphic encryption” is fulfilled.

To be more specifically, let BI be a basis of lattice I, Bpk
J and Bsk

J be a bad and a

good basis of lattice J , respectively. The secret key ~vskJ is constructed from (Bsk
J )−1.

A message can be encrypted as follows:

~c = ~m+ ~r ·BI + ~g ·Bpk
J (2.5)

where r and g are randomly selected by the encrypter. A decrypter can therefore

retrieve the message using Eq. 2.6:

~m = ~c− b(~vskJ ) · ~ce (mod BI). (2.6)

Theoretically, the matrix-vector multiplications have the same computational depth

as integer multiplications. Hence, the decryption maintains the same circuit depth as

Eq. 2.4. However, as the tweaked scheme uses a vector instead of a matrix as the secret

key, the size of the secret key is reduced and therefore, it reduces the computational

complexity of the decryption.

Bootstapping

The proposed encryption scheme is not fully homomorphic yet, since the decryption

uses at least one multiplication2 during the evaluations, the noise (i.e. the distance

2Note that (mod BI) will incur no computational cost if I is selected to be all even integers.
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between a ciphertext vector and the lattice) grows, and when it exceeds a threshold,

the ciphertext cannot be decrypted correctly. As a result, the evaluation circuit depth

of the decryption algorithm exceeds the capability of the somewhat homomorphic en-

cryption scheme. To solve this problem, one can to squash the decryption circuit from

1 multiplication to many additions.

The squashing procedure consists of a set of vectors, i.e. S = {~t0,~t1, . . . ,~tn}. There

exists a subgroup of S, namely S ′, whose sum equals to ~vskJ , i.e. ~vskJ =
∑

~vi∈S′ ~vi. Then,

one obtains a new ciphertext {c′i}ni=0, where c′i = c × ~ti, while the decrypter keeps a

new secret key, t, a bit stream which records the sequence of S ′ from S. The hardness

of retrieving the secret key from the set S is based on a Sparse Subset Sum Problem

(SSSP). Now the decryption consists only additions as follows:

~m← ~c− b
∑

t
c′ie (mod BI).

Hence, the decryption circuit is simplified.

Since the algorithm now is bootstrappable, one is able to refresh a ciphertext by

evaluating its own decryption circuit. Then, the original noise is eliminated and a new

noise (much smaller) is induced. By doing this repetitively, one is able to evaluate

circuit with any depth, therefore, a fully homomorphic encryption scheme is achieved.

2.3.3 Overview of Other Schemes

In previous sections, we have recalled Gentry’s framework and the Gentry scheme

based on ideal lattice. Following Gentry’s framework, a few FHE schemes are proposed,

which can mainly be divided into three categories:

Ideal Lattice-based schemes: One of the first variants proposed shortly after the

initial construction was made by Smart and Vercauteren [SV10]. They used the “prin-

cipal ideal lattice” instead of general ideal lattice. Therefore, they maintained a smaller

key size and a simpler encryption/decryption algorithm. However, one major obstacle

of this scheme is its inefficient key generation algorithm. Indeed, one is required to

find a lattice with a prime determinant, and this criteria is impractical with a large

dimension, for instance, 2048, which will lead to a larger determinant, and hence mak-

ing the probability of the determinant being prime to be smaller. Later, Gentry and

Halevi presented an alternative solution to avoid this issue in the Gentry-Halevi

implementation [GH11], together with some other optimizations, which is by far the

most efficient fully homomorphic encryption scheme using ideal lattice.
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Other optimizations on fully homomorphic encryption schemes based on ideal lattice

have been proposed by Stehlé and Steinfeld in [SS10]. They improved the efficiency

of Gentry’s original scheme. Part of their techniques are adopted in [GH11] as well.

There is also an improvement proposed by Loftus et al. in [LMSV11], which deals

with the CCA-1 security of Gentry-Halevi scheme. Nevertheless, this variant does

not improve the efficiency of the system and therefore, the Gentry-Halevi scheme

is still regarded as the most efficient fully homomorphic encryption scheme based on

ideal lattice.

Integer-based schemes: In [vDGHV10], van Dijk et al. proposed another fully

homomorphic encryption scheme (refer to as DGHV scheme) where the somewhat

homomorphic scheme is based on the general version of Approximate Greatest Common

Divisor of integers (AGCD, see Definition 2.15). In [CMNT11], Coron et al. showed

an optimization of this scheme, where the security is based on a partial version of

the AGCD problem. The hardness of the partial version was soon re-evaluated in

[Ngu11, CN12]. In this thesis, we mainly focus on the first variant of AGCD problem,

since it is in general harder to solve.

So far, the best implementation of integer based FHE scheme was presented in

[CNT12]. We note that homomorphic encryption schemes based on AGCD problems

provide an interesting alternative to the use of ideal lattice, but none of them is as

efficient as Gentry and Halevi’s scheme.

LWE-based schemes: The state-of-the-art of fully homomorphic encryption schemes

are based on the Learning With Error problem (LWE) [BV11a] and Ring-LWE problem

[BV11b]. The work in [GHS12a, GHS12b] delivers the best efficiency among all fully

homomorphic encryption schemes to date.

The major advantage of using LWE is that one can freely select the moduli [BGV12]

and the ring [GHPS12]. By using some moduli with a special form (i.e. 2n+1, where n

is an integer), one can use some noise control techniques [BGV12], or omit the second

step in the framework [GHS12a]. Unfortunately, to apply this technique over lattice-

based schemes is not quite straightforward, since the moduli is the determinant of the

lattice, hence, it does not possess such freedom. We also note that there is no known

reductions between the Bounded Distance Decoding (BDD) problem over ideal lattice

and the learning with error problem yet.
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2.3.4 Example I: the Integer-based FHE Scheme

Now we describe the fully homomorphic encryption scheme in more details using the

interger-based scheme (referred to as the vDGHV scheme), as an example, since this

scheme uses integers rather than ideal lattice, and therefore, it is easier to demonstrate

and explain, and later incorporate our idea into.

Following Gentry’s frameworks, the vDGHV scheme consists of a somewhat homo-

morphic encryption scheme (SHE) that supports limited additions and multiplications,

and the bootstrapping technique to break such limitation.

The Somewhat Homomorphic Encryption Scheme

We firstly recall the somewhat homomorphic encryption scheme. The somewhat ho-

momorphic encryption scheme consists of four algorithms: KeyGen, Encrypt, De-

crypt and Eval.

• KeyGen(λ): Input a security parameter λ, it firstly gen-

erates parameters {α, β, γ, t, n} in function of λ. It then

generates a secret odd integer p ∈ (2β, 2β+1), n different

integers {ri ∈ [−2α, 2α)} and another n different integers

{gi ∈ [0, 2γ−β)}, respectively. It finally outputs the public

key pk = {xi = gip+ 2ri} and secret key sk = {p}.

• Encrypt(m, pk): Input the public key pk and a message

m ∈ {0, 1}, it chooses a random subset s ⊆ pk and output

c = m + 2r +
∑

xi∈s xi mod x0, where x0 is the greatest in

{xi}, r ∈ [−2α, 2α) is a random noise.

• Decrypt(c, sk): Input the secret key sk = {p} and a ci-

phertext c, it outputs m = (c mod 2)⊕ (bc/pe mod 2), where

bc/pe returns the closest integer of c/p.

• Eval(c1, c2, ..., ck, C, pk). It outputs C(c1, c2, ..., ck), where

C is a k-inputs evaluation polynomial whose circuit depth is

lower than the maximum circuit depth allowed by this SHE.

Example 2.5 This SHE scheme naturally supports homomorphic additions and mul-

tiplications, when α� β. We use multiplication as an example.

• c1 = Encrypt(m1) = m1 + g1p+ 2r1 for centain g1, r1;
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• c2 = Encrypt(m2) = m2 + g2p+ 2r2for centain g2, r2;

• c1c2 = m1m2 + 2(r1m2 + r2m1 + 2r1r2) + p(g1m2 + 2g1r2 + g2m1 + 2g2r1 + g1g2p);

• Decrypt(c1c2) = c1c2 mod p mod 2 = m1m2, as long as 2(r1m2+r2m1+2r1r2) ∈
(−p/2, p/2].

Therefore, the above SHE scheme is homomorphic.

However, the homomorphic circuit depth is limited, i.e., the noise grows after each

operation 2(r1m2 + r2m1 + 2r1r2) compared with r1 or r2, and eventually it is possible

that the absolute value of the noise will be greater than p/2 and a decryption error is

then generated. The bootstrapping technique is used to break this limitation.

Bootstrapping

Suppose we want to evaluate a circuit whose depth is greater than this SHE permits,

we break the circuit into several sub-circuits. For each sub-circuit, the absolute value of

resultant noise is less than the threshold (p/2). Then we refresh the resultant ciphertext

using the bootstrapping technique. We describe the bootstrapping technique in general.

We refer the readers to their original scheme [vDGHV10] for more details.

To bootstrap, firstly, they modify the decryption circuit. As we mentioned earlier,

the noise grows significantly faster in a multiplication than in an addition. Therefore,

a squashing method is adopted to break the decryption circuit from one multiplication

into several additions. The squashing technique is as follows:

• Generate x = b2κ/pe, where κ is a parameter in λ that is

greater than β + 1.

• Build a bit sequence ~s = 〈s1, s2, . . . , sη〉, si ∈ {0, 1}, with∑
si = θ. ~s becomes the new secret key.

• Choose n random integers ui between 0 and 2κ+1, such that∑n
i siui = x mod 2κ+1.

• Set yi = ui/2
κ. Then

∑
siyi = 1/p + ε, where ε is negligible

compared with 1/p.

• New ciphertext is a vector ~z = 〈z1, z2, . . . , zη〉, generated by

zi = [c× yi]2.

• New decryption circuit becomes m = [c− b
∑
si × zie]2
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As a result, the decryption circuit now consists only of additions, hence, the growth

of noise in additions becomes extremely slow. Then, because the modified decryption

circuit depth is relatively low, now it is possible to carry out the decryption circuit

homomorphically, through the proposed somewhat homomorphic encryption scheme.

To do so, one encrypts ciphertexts, denoted by {Encrypt(zi)} and the secret keys,

denoted by {Encrypt(si)}. Let CD be the decryption circuit, then

Decrypt(CD, {Encrypt(zi)}, {Encrypt(si)}) = Encrypt(m).

This is because firstly CD({zi}, {si}) = m and secondly, CD can be carried out homo-

morphically. Therefore, we obtain a new ciphertext Encrypt(m).

The new ciphertext, Encrypt(m) has a refreshed noise level (less than 2α), which

means Encrypt(m) can be evaluated again. By doing this repeatedly, we can evaluate

circuit with any depth homomorphically. Therefore, a fully homomorphic encryption

scheme is achieved.

2.3.5 Example II: The ideal lattice-based SHE and the CCA-1

attack

In this example we aim to recall the CCA-1 attack [LMSV11] against Gentry and

Halevi’s SHE. For completeness, we recall SHE schemes first. We note that the actual

procedure to generate the ideal lattice is much more complicated than this example.

We omit the details for simplicity.



2.3. Fully Homomorphic Encryption 38

KeyGen(λ)

• Let {α, δ, d} be a principal ideal lattice generated by cyclic

rotation of ~v over Z/f(x), f(x) = xd + 1 and d is a power of

2.

• Find the polynomial w(x), such that w(x) × v(x) = δ mod

f(x);

• sk← w, where w is one of odd coefficients of w(x);

• pk ← {α, δ, ρ}, where ρ is the maximum length allowed for

noise during encryption.

Encrypt(m, pk)

• Generate a degree d− 1 polynomial r(x), with coefficients ri

randomly chosen from 0 and ρ);

• c(x)← m+ 2× r(x), where m ∈ {0, 1};

• c← [m+ c(α)]δ.

Decrypt(c, sk)

• m← [c× w]δ mod 2.

Now we describe the CCA-1 attack. The Decrypt algorithm for Gentry-Halevi

SHE is to evaluate m← [c× w]δ mod 2. This decryption will be valid as long as [c×
w/δ] ≤ 1/2. Therefore, for a certain key set (w, δ), the maximum value c′ allowed is a

fixed integer. The adversary picks several different “ciphertexts”, and pass them to the

decryption oracle to check if they can be decrypted correctly. Eventually, the attacker

will recover the threshold c′ which is the maximum integer that can be decrypted

correctly. This c′ in return gives the attacker w, the secret key.

To stop this attack, Loftus et al. [LMSV11] proposed a ciphertext check procedure.

The ciphertext that is to be decrypted, will be “disassembled” into the generating

polynomial c(x). Recall that c(x) = 2× r(x)+m, hence, for valid ciphertexts, ‖c(x)‖∞
is bounded by a certain threshold smaller than T , while for invalid “ciphertexts” (i.e.,

integers picked by attacker), the corresponding c(x) can have arbitrary coefficients.

Therefore, in the latter case, an error ⊥ is generated, and the decryption stops.
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GH Challenge Lattice Dimension (d) Hermite Factor Previous Results[CN11]
Toy 512 1.67d 30 days

Small 2048 1.14d 45 years
Medium 8192 1.03d 68582 years

Large 32768 1.0081d None-polynomial

Table 2.1: The Previous Best Results/Prediction on Gentry Halevi’s Challenge

2.3.6 The Fully Homomorphic Encryption Challenges

We recall that the fully homomorphic encryption schemes using ideal lattices are based

on a well known lattice problem, the Bounded Distance Decoding problem over ideal

lattice (BDDi). As stated earlier, this problem can be reduced to some hard lattice

problems such as the shortest vector problem or the closest vector problem. Further,

the BDDi problem used in lattice-based FHE schemes also relies on a special case of

lattice, the ideal lattice, while it is unclear that if a problem over an ideal lattice is as

difficult as the corresponding problem over normal lattices. To this end, Gentry and

Halevi propose the fully homomorphic challenges [GH].

In the fully homomorphic encryption challenges [GH], the authors published four

sets of public keys with respect to different parameters (toy, small, medium and large).

To solve the challenge, one needs to recover the secret keys from the public keys. In toy,

small and medium challenges, this can be achieved by performing an LLL reduction

over the principal ideal lattice bases [CN11]. Since in those lattices, the corresponding

Hermite factor is much greater than the upper bound of the LLL algorithm. Therefore,

performing an LLL reduction will solve the challenge. As a result, the remaining

problem is the running time of the LLL algorithm. The previous best results/prediction

for the running time of LLL can be found in table 2.1. In next chapter, we will show

three different techniques to improve the performance of the LLL algorithm.



Part I

Improving Lattice Algorithms for

Cryptanalysis
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Chapter 3

Adaptive Precision Floating Point LLL

To date, the LLL algorithm is one of the most studied lattice basis reduction algorithms

in the literature. Among all of its variants, the floating point version, also known as

L2, is the most popular one, due to its efficiency and its practicality. In its classic

setting, the floating point precision is a fixed value, determined by the dimension of

the input basis at the initiation of the algorithm. We observe that a fixed precision

overkills the problem, since one does not require a huge precision to handle the process

at the beginning of the reduction.

To this end, we present an adaptive precision floating point LLL algorithm, the

ap-fplll. We consider both the proven version, L2, and the most efficient version, FP of

the L2 algorithm.

We test our ap-fplll with random lattices. In practice, it always faster than the

standard version of L2. When the dimension and/or determinant are sufficiently large,

it is also faster than the fastest implementation of L2. In general, we accelerate the

reduction by 20%.

3.1 The algorithm

The LLL algorithm uses a stepping method. For a basis B = (~b1, . . . ,~bd), it starts with

the first 2 vectors, and then adds 1 vector into the procedure during each step. We

notice that, one does not require a floating point precision of O(d) to reduce in the

first d − 1 steps. In fact, for any k vectors, one only requires O(k) precisions. Hence,

a possible improvement is to adaptively select the precision according to the number

of vectors that are involved. This leads to the adaptive precision floating point LLL

algorithm (ap-fplll) as shown in Algorithm 3.

Algorithm 3 describes the L2 version of our ap-fplll algorithm. k indicates the

current vector the algorithm is working on, while kmax indicates the maximum number

of the vectors that are involved. When kmax changes, one is required to reset the

41
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Algorithm 3 Adaptive precision floating point LLL algorithm

Input: B = (~b1,~b2, . . . ,~bd), reduction parameters (δ, η) and a starting index γ.
Output: An (δ, η)-reduced basis B.

1: k ← 2, kmax ← γ.
2: SetPrecision(γ) and Compute GSO accordingly.
3: while k ≤ d do
4: Size reduce (B, k);

5: if δ‖~b∗k−1‖2 ≤ ‖~bk + µk,k−1‖~b∗k−1‖2 (Lovász condition) then
6: k ← k + 1;
7: if k > kmax then
8: kmax ← k;
9: if kmax > γ then

10: SetPrecision(kmax) and Compute GSO accordingly.
11: end if
12: end if
13: else
14: Swap ~bk and ~bk−1;
15: k ← max(k − 1, 2);
16: Update GSO;
17: end if
18: end while
19: return B.

precision. To obtain the FP version of the algorithm, one conducts early reductions as

in fplll when kmax increases.

We also introduce an index parameter γ due to an implementation issue. For some

of the library, there exists a minimum precision for floating point. If the required

precision is smaller than this bound, the algorithm will automatically use the bound.

In this case, the precision is not O(d), rather it is a fixed value subject to the system.

Hence, using an adaptive precision will not reduce the cost of multiplication, rather it

will repetitively recompute the GSO. We set γ such that when more than γ vectors are

involved, the algorithm will need to use a precision subject to the dimension.

Remark 3.1 In our algorithm, we follow the L2 by setting the precision to be the

exact value that is required, i.e., 1.6d, to deliver a fair comparison. Nevertheless, it is

worth pointing out that the mpfr library [mpf] (a library fplll depends on) operates a

floating number as a linked list of blocks of 32 bits (or 64 bits), therefore, it is possible

that increasing precisions with respect to the size of the block (the actual size may be

smaller than 32 or 64 due to the overhead of storing a floating number) may derive a

better performance, since in this case, the GSO will be updated less often.
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3.2 Analysis

3.2.1 Worst-case complexity

Now, we prove that our algorithm uses the same worst-case complexity with L2.

The reduction part of L2 algorithm can be seen as our algorithm with a fixed

precision of O(d). Therefore, during the reduction part It can never be more costly

than L2. However, our algorithm needs to recompute the GSO for each step, where

the GSO is updated partially in L2. On the worst-case, it can be more costly than L2

by the cost of computing the GSO.

For each step, the cost of computing GSO is O(d2k2β). This brings an overall cost

of O(d5β), hence it will not affect the worst-case complexity of O(d6β + d5β2). As a

result, the ap-fplll uses the same worst-case complexity with L2.

3.2.2 Average behaviors

We construct the random lattices as in [GM06]. There exist bases of those lattices that

are of the following form:

B =



X1 0 0 . . . 0

X2 1 0 . . . 0

X3 0 1 . . . 0
...

...
... · · · ...

Xd 0 0 . . . 1


,

where X1 is a large prime with β bits. Xi-s (i 6= 1) are chosen uniformly between 0

and p.

We analyze the average case complexity of our algorithm with the above bases.

Since the lattice is a random one, then its minimas λi follow Equation 1.

Bk =



x1,1 x1,2 . . . x1,k 0 . . . 0

x2,1 x2,2 . . . x2,k 0 . . . 0
...

... · · · ...
... · · · ...

xk,1 xk,2 . . . xk,k 0 . . . 0

Xk+1 0 . . . 0 1 . . . 0
...

... · · · ...
... · · · ...

Xd 0 . . . 0 0 . . . 1
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For the k-th step (k > 2), the basis is shown as above, where ‖~bi‖ . 2
k−1
2 2

β
k−1 for

i < k and ‖~bk‖ . 2
k−2
2 2

β
k−2 . Hence, the loop invariant for the current step Dk is then

bounded by
k∏
i=1

‖~bi‖2(k−i+1) = 2k(k−1)
2−122βk+ β

(k−1)(k−2) .

When the k-th step terminates, ~bi will be reduced to 2
k
2 2

β
k for i ≤ k. Hence, one

obtains O(β) loop iterations on average cases. We note that this observation is quite

natural, since there are O(dβ) loop iterations in total, hence, on average there are O(β)

loop iterations for each k.

Let l be the precision to be used in the algorithms. Then for each loop iteration,

one needs to perform O(1 + β
l
) floating point reductions, each at a cost of O(d2M(l)).

Since l = O(k), so it will cost O(d2β
∑d

i=γ(1 + β
i
)M(i))) that is 1

6
c1d

5β + 1
2
c2d

4β2 for

some constants c1 and c2, if we assume M(d) = O(d2).

For comparison, we also show the complexity of L2: O(d2β
∑d

i=1(1+ β
d
)M(d)) which

is c1d
5β + c2d

4β2 for the same constants.

It is straightforward to see that our algorithm uses the same bit complexity with

L2. Further, our algorithm wins on both terms. However, the factor 1
6

on the first

term does not make a difference, which is due to the following: firstly, in this case,

β < d which indicates that for each lazy reduction, it only requires O(1) fp-reductions,

while our advantage is in fact a faster fp-reduction. Hence, our advantage diminishes.

Secondly, the cost of recomputing the GSO is also O(d5β) on worst cases as well.

Nevertheless, when β > d, we anticipate a lot of reductions. In this case, we should

be able to accelerate the reduction by a factor between 0 and 50% for L2 (due to the

fact that in practice M(d) ≤ O(d1+ε)).

As for FP, in practice, it is possible that the early reduction already produces a

good basis. It happens a lot when the dimension is small and β
d

is small. In this

case, the adaptive precision will not boost the reduction, since our advantage works on

the final procedure, while in the final procedure, the basis is already in a good shape.

Nevertheless, when one increases the dimension and/or the β
d
, the adaptive precision

will still accelerate the reduction.

3.2.3 Discussion

Our method can be considered as a more aggressive early reduction as in the FP

algorithm. Recall that in the implementation of FP, in the early reduction stage, the

bases are reduced with some pre-configured precisions for a few rounds, while in our



3.3. Implementation 45

scheme, the basis are reduced with different precisions for many rounds. It appears that

for some input basis this modification will accelerate the reduction. Assuming that for

a given basis, there exists a set of best precisions to perform lattice reduction. Then it

is safe to assume that both methods somehow overkill the problem. It is quite natural

that using our method the computation power is less wasted, since the precisions are

closer to the best ones.

However, the downside of our algorithm is that we need to repeatively update the

GSO, which could be very costly in practical, while for the early reductions, for certain

basis, it is safe to carry our the computation without the GSO. This is the reason that

we believe the proposed method might not be the best way to handle the precisions.

We believe that the best method, if it ever exist, needs to balance the tradeoff between

the computational gain via smaller floating point and the computational loss during

the GSO update.

3.3 Implementation

Now we show the implementation results of ap-fplll. The tests were conducted with

fplll library version 4.0 on Xeon E5640 CPUs @ 2.66GHz. The memory was always

sufficient since the algorithm only requires a polynomial space. We used the random

lattice basis as shown in the last chapter. We set the dimension to 64 and increase it

by 32 each time. For each dimension, we set β = 10d, 20d, · · · , and generate the bases

accordingly. For each dimension/determinant, we tested 10 different bases where the

random numbers are generated from different seeds 0 ∼ 9 using the pseudo-random

generator of the NTL library [Sho].

We set the index γ = 40 so that the required precision is strictly greater than 53.

Indeed, one can change γ to improve ap-fplll. However, to show a fairer comparison, we

use the same value for all the tests. The reduction parameter pair is set to (0.99, 0.51)

as the default value of fplll. This results in a very strongly reduced basis which is in

general most useful for cryptanalysis.

We show the implementation results as follows. As one can see from Table 3.1, one

can merely observe any difference between two algorithms at the beginning of the tests,

although ap-fplll-L2 is slightly faster than fplll-L2. We believe the reason is that the

cost to recompute the GSO is more or less the same as the advantage of using smaller

precisions. However, when the dimension grows, the reductions influence the total

complexity more importantly compared with the GSO computation, and as a result,



3.3. Implementation 46

β
10
d

20
d

30
d

40
d

ap
-f

pl
ll

-L
2

fp
ll

l-
L
2

ap
-f

pl
ll

-L
2

fp
ll

l-
L
2

ap
-f

pl
ll

-L
2

fp
ll

l-
L
2

ap
-f

pl
ll

-L
2

fp
ll

l-
L
2

d

64
5.

29
8

5.
74

2
11
.0

15
12
.3

19
17
.7

19
20
.0

69
23
.9

41
27
.2

12
96

29
.4

88
30
.6

07
64
.6

43
69
.3

36
10

4.
55

3
11

3.
51

3
14

4.
9

15
8.

22
2

12
8

95
.4

45
99
.3

26
22

1.
72

2
23

7.
13

6
36

8.
63

3
40

9.
15

51
6.

01
2

57
7.

82
2

16
0

23
4.

24
1

25
3.

71
1

57
5.

6
63

6.
70

3
97

1.
45

9
11

49
.2

2
14

17
.3

4
17

18
.8

4
19

2
47

0.
98

6
52

2.
53

7
12

41
.9

14
16
.4

1
22

78
.7

9
28

76
.8

2
32

48
.4

41
84
.2

22
4

83
8.

05
9

10
03
.0

8
23

85
.8

1
29

44
.0

7
43

86
.8

6
60

62
.0

6
66

04
.1

8
92

38
.3

1
25

6
13

49
17

02
.9

5
42

21
.7

4
54

52
.4

8
82

35
.8

11
68

4.
3

11
94

2.
6

17
10

2.
9

28
8

20
33
.2

9
25

61
.1

6
69

79
.1

1
90

80
.9

7
13

48
1.

2
19

23
1.

7
32

0
27

72
.1

5
37

02
.2

2
11

00
7.

3
15

04
8.

3
35

2
36

86
.8

51
81
.0

6
38

4
47

72
.0

2
71

75
.7

8
41

6
60

87
.3

1
94

76
.5

2
44

8
76

41
.2

5
12

56
3.

9

T
ab

le
3.

1:
T

es
t

R
es

u
lt

s:
ap

-f
pl

ll
-L
2

v
s

fp
ll

l-
L
2



3.3. Implementation 47

β
10
d

20
d

30
d

40
d

50
d

ap
-f

pl
ll

-F
P

fp
ll

l-
F
P

ap
-f

pl
ll

-F
P

fp
ll

l-
F
P

ap
-f

pl
ll

-F
P

fp
ll

l-
F
P

ap
-f

pl
ll

-F
P

fp
ll

l-
F
P

ap
-f

pl
ll

-F
P

fp
ll

l-
F
P

d

64
1.

25
1

0.
96

8
2.

19
1.

94
1

3.
30

2
3.

1
4.

48
4

4.
27

5
5.

70
7

5.
53

6
96

6.
19

5
4.

83
3

12
.2

06
11
.4

88
19
.2

83
18
.9

19
26
.7

69
27
.4

24
34
.0

75
35
.0

28
12

8
19
.4

26
16
.9

34
40
.4

71
40
.6

72
66
.8

98
70
.5

12
93
.9

9
10

2.
08

3
12

3.
82

3
13

4.
32

4
16

0
48
.4

22
42
.1

33
10

9.
61

3
11

3.
16

7
18

5.
29

3
20

1.
16

9
26

8.
09

5
29

8.
62

9
35

7.
41

2
41

8.
39

5
19

2
10

8.
43

2
95
.2

22
26

4.
03

7
26

6.
86

4
47

6.
42

6
53

3.
02

4
69

9.
07

3
77

7.
99

5
98

2.
34

5
10

76
.9

7
22

4
22

0.
04

5
20

1.
6

54
3.

71
2

62
6.

53
8

11
60
.4

9
17

19
.1

19
22
.3

5
25

89
.3

1
25

37
.6

5
37

05
.7

8
25

6
56

4.
46

2
60

5.
92

5
18

62
.0

8
28

29
.1

39
79
.1

6
52

43
.4

1
60

13
.4

2
80

36
.8

9
81

05
.5

4
10

18
5.

1
28

8
11

27
.6

11
75
.7

6
45

57
.4

9
55

76
.7

7
84

51
.6

4
10

78
4.

1
12

72
2.

3
16

22
6

16
78

7.
2

21
07

3.
3

32
0

18
79
.0

3
18

68
.1

9
78

26
.5

2
93

41
.1

8
15

17
5.

8
18

89
6

35
2

28
00
.8

7
28

96
.2

1
12

44
5.

3
14

66
4.

5
38

4
41

36
.4

1
41

23
.8

8
41

6
62

23
.4

8
61

50
.3

5
44

8
88

21
.4

9
86

41
.2

7

T
ab

le
3.

2:
T

es
t

R
es

u
lt

s:
ap

-f
pl

ll
-F
P

v
s

fp
ll

l-
F
P



3.3. Implementation 48

 0

 5

 10

 15

 20

 25

 30

 35

 40

 64  96  128  160  192  224  256  288  320  352  384  416  448
 0

 5

 10

 15

 20

 25

 30

 35

 40

ra
ti
o

 (
in

 p
e

rc
e

n
ta

g
e

)

dimension

β = 10d
β = 20d
β = 30d
β = 40d

Figure 3.1: Test Results: winning percentage of ap-fplll vs fplll using L2

the ap-fplll starts to be a lot faster. Figure 3.1 illustrated the winning percentage of

ap-fplll-L2 versus fplll-L2. When d = 64, we accelerate the reduction by 10%, since it

is closer to the starting index γ = 40. When d ≥ 96, the influence of γ diminishes, and

we start to see the phenomenon where the dimension and/or determinant grow, the

advantage increases as well. When the dimension and the determinant are sufficiently

large, we can expect an advantage of up to 40%. Overall, our algorithm is always faster

in all cases, and we anticipate a boost of over 20% in general.

The results for the FP version are shown in Table 3.2. The results are not as stable as

L2 due to the early reductions. As we anticipated, with a small determinant/dimension,

i.e., β = 10d, our algorithm does not accelerate the reduction. The early reduction

technique works extremely efficiently in those cases. Nevertheless, the disadvantage is

still acceptable considering that even in dimension 448, the disadvantage is less than

several minutes.

Meanwhile, for the other cases, when the dimension grows, we start to observe ad-

vantages. Further, the advantage rises with the increase of dimension and determinant,

just like L2. However, we notice the advantage is not stable. This is because the early

reduction affects differently for different dimensions. Overall, as shown in Figure 3.2,
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Figure 3.2: Test Results: winning percentage of ap-fplll vs fplll using FP

as dimension grows, we accelerate the reduction by approximately 20% for β ≥ 20d. In

cryptanalysis, one usually needs to deal with lattice with massive dimension and/or de-

terminants, for instance, the Coppersmith-Shamir’s technique [CS97] against an NTRU

cryptosystem [HPS98], so it is still helpful to use adaptive precisions when d ≥ 128

and β ≥ 20d.



Chapter 4

Recursive Reduction

In this chapter, we describe a new methodology to adapt any kind of lattice reduction

algorithms to deal with the modular knapsack-type basis. As mentioned earlier, the

complexity of lattice reduction algorithms to solve those problems is upper-bounded in

the function of the lattice dimension d and the maximum number of bits β of the norm

of the input basis. In the case of a low density modular knapsack-type basis, the weight

of β is mainly from its first column. Therefore, by distributing the weight into multiple

columns, it is able to reduce the maximum norm of the input basis. Consequently, the

upper bound of the time complexity is reduced.

To show the advantage of our methodology, we incorporate our idea with the

floating-point LLL (L2) algorithm. We bring the complexity from O(d3+εβ2+d4+εβ) to

O(d2+εβ2 +d4+εβ) for ε < 1 for the low density knapsack problem, assuming a uniform

distribution.

Further, since a principal ideal lattice basis can be seen as a special case of a low

density modular knapsack-type basis, we also provide some techniques to deal with a

principal ideal lattice basis.

4.1 The Methodology

In this section, we do not propose an algorithm for lattice reduction but rather a

methodology applicable to all lattice reduction algorithms for the knapsack-type basis

with uniform distribution. We assume the following:

Assumption 4.1 Let A be an LLL-type reduction algorithm that returns an LLL-

reduced basis Bred of a lattice L of dimension d, where Bred = (~b1, . . . ,~bd), 0 < ‖bi‖ <
cd0 det(L)

1
d for certain constant c0. The running time will be c1d

a1βb1 + c2d
a2βb2, where

a1, b1, a2 and b2 are all parameters, c1 and c2 are two constants. Without losing gener-

ality, assuming a1 ≥ a2, b1 ≤ b2 (if not, then one term will overwhelm the other, and

50
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hence, making the other term negligible).

We note that this is a formalization of all LLL-type reduction algorithms.

For a knapsack-type basis B of L, where most of the weight of β is from the first

column of the basis matrix B = (~b1,~b2, . . . ,~bd), it holds that 2β ∼ det(L). Moreover,

for any sub-lattice Ls of L that is spanned by a subset of row vectors {~b1,~b2, . . . ,~bd}, it

is easy to prove that det(Ls) ∼ 2β. In addition, since we assume a uniform distribution,

the sub-lattice spanned by the subset of vectors can be seen as a random lattice. Note

that the bases of those sub-lattices are knapsack-type bases, so if one needs to ensure

the randomness, one is required to add a new vector 〈X0, 0, . . . , 0〉 to the basis and

convert it to a modular one. One can verify that this modification will not change the

asymptotic complexity. Nevertheless, in practice, it is natural to omit this procedure.

We firstly pre-process the basis, so that the weight is as equally distributed into all

columns as possible, and therefore, the maximum norm of the new basis is reduced.

Suppose we cut the basis into d/k blocks and each block contains k vectors. Then one

applies A on each block. Since we know that the determinant of each block is ∼ 2β, this

pre-processing gives us a basis with smaller maximum norm ∼ ck02β/k. Further, since

the pre-processed basis and the initial basis span the same lattice, the pre-processing

will not affect the quality of reduced basis that a reduction algorithm returns.

Example 4.1 We show an example of how this methodology works with 4 dimensional

knapsack-type basis. Let BA be the basis to process.

BA =


X1 1 0 0 0

X2 0 1 0 0

X3 0 0 1 0

X4 0 0 0 1


Then, we cut L into two sub-lattices and pre-process them independently. As a result,

we obtain BB.

BB =


x1,1 x1,2 x1,3 0 0

x2,1 x2,2 x2,3 0 0

x3,1 0 0 x3,4 x3,5

x4,1 0 0 x4,4 x4,5


Therefore, Xi ∼ 2β, while xi,j . c202

β
2 for a classic LLL-type reduction algorithm.

Consequently, to reduce BB is less expensive than BA.
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Now we examine the complexity. The total time complexity of this pre-processing

is c1dk
a1−1βb1 + c2dk

a2−1βb2 . The complexity of the final reduction now becomes

c1d
a1(k log2(c0) + β/k)b1 + c2d

a2(k log2(c0) + β/k)b2 . Therefore, as long as

c1d
a1(k log2(c0) + β/k)b1 + c2d

a2(k log2(c0) + β/k)b2 (4.1)

+c1dk
a1−1βb1 + c2dk

a2−1βb2 < c1d
a1βb1 + c2d

a2βb2 ,

conducting the pre-processing will reduce the complexity of whole reduction.

In the case where k log2(c0) is negligible compared with β/k, we obtain:

c1d
a1(β/k)b1 + c2d

a2(β/k)b2 + c1dk
a1−1βb1 + c2dk

a2−1βb2

< c1d
a1βb1 + c2d

a2βb2 .

Therefore,

c1

(
da1 − da1

kb1
− dka1−1

)
βb1+c2

(
da2 − da2

kb2
− dka2−1

)
βb2 > 0.

Taking L2 as an example, where a1 = 4, b1 = 2, a2 = 5 and b2 = 1, let k = d/2, we

obtain c1(
7
8
d4 − 4d2)β2 + c2(

15
16
d5 − 2d4)β from the left hand side, which is positive for

dimension d > 2. This indicates that, in theory, when dealing with a knapsack-type

basis, one can always achieve a better complexity by cutting the basis into two halves

and pre-process them independently. This leads to the recursive reduction in the next

chapter.

4.2 The Algorithm

The main idea is to apply our methodology to an input basis recursively, until one

arrives at the sub-lattice basis with dimension 2. In doing so, we achieve an upper

bounded complexity of O(da1−b1βb1 + da2−b2βb2). For simplicity, we deal with lattice

whose dimension equals to a power of 2, although the same principle is applicable to

lattices with arbitrary dimensions.

4.2.1 Algorithm

We now describe our recursive reduction algorithm with LLL-type reduction algo-

rithms. Let LLL(·) be an LLL reduction algorithm that for any lattice basis B,

it returns a reduced basis Br. Algorithm 4 describes our algorithm, where B is a

knapsack-type basis of a d-dimensional lattice, and d is a power of 2.
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Since we have proven that, for any dimension of a knapsack-type basis, it is always

better to reduce its sub-lattice in advance as long as Equation 4.1 holds, it is straightfor-

ward to draw the following conclusion: the best complexity to reduce a knapsack-type

basis with LLL-type reduction algorithms occurs when one cuts the basis recursively

until one arrives with dimension 2 sub-lattices.

Algorithm 4 Recursive Reduction with LLL algorithm

Input: B = (~b1, . . . ,~bd)
Output: Br

1: t← log2 d { t is the number of rounds}
2: Bb ← B
3: for i = 1→ t do
4: n← 2i { n is dimension of the sub-lattice}
5: k ← d/n { k is the number of blocks/sub-lattices}
6: Br ← EmptyMatrix()
7: for j = 1→ k do
8: Bt ← (~b(j−1)∗n+1, . . . ,~bj∗n)
9: Bt ← LLL(Bt)

10: Br ← VerticalJoin(Br,Bt)
11: end for
12: Bb ← Br

13: end for

In Algorithm 4, the EmptyMatrix() function is to generate an 0 by 0 matrix. The

VerticalJoin(B1,B2) is to adjoin two matrices with the same number of columns

vertically.

4.2.2 Complexity

In the following, we prove that the complexity of our algorithm is O(da1−b1βb1 +

da2−b2βb2), assuming that the density ρ of the knapsack is smaller than 1.

For the i-th round, to reduce a single block takes c12
ia1( β

2i−1 )b1 +c22
ia2( β

2i−1 )b2 , while
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there exist d
2i

such blocks. Hence, the total complexity is as follows:

log2 d∑
i=1

(
d

2i

)
(c12

ia1(β/2i−1)b1 + c22
ia2(β/2i−1)b2)

= d ·
log2 d∑
i=1

(c12
i(a1−b1−1)+b1βb1 + c22

i(a2−b2−1)+b2βb2)

= c12
b1dβb1

(
log2 d∑
i=1

2(a1−b1−1)i

)
+ c22

b2dβb2

(
log2 d∑
i=1

2(a2−b2−1)i

)
< c12

b1dβb1
(
2(log2 d+1)(a1−b1−1)

)
+ c22

b2dβb2
(
2(log2 d+1)(a2−b2−1)

)
< c12

b1dβb1(2d)a1−b1−1 + c22
b2dβb2(2d)a2−b2−1

< c12
a1−1da1−b1βb1 + c22

a2−1da2−b2βb2 .

As a result, we obtain a new time complexity O(da1−b1βb1 + da2−b2βb2).

4.2.3 An example

We describe the application of our method over the classic L2 algorithm as an example.

The L2 algorithm uses a worst-case complexity of c1d
4β2 + c2d

5β for arbitrary basis.

Therefore, applying our recursive methodology, one obtains

log2 d∑
i=1

(
d

2i

)(
c12

4i

(
β

2i−1

)2

+ c22
5i

(
β

2i−1

))

=

log2 d∑
i=1

(4c1d2iβ2 + 2c2d23iβ)

= 4c1dβ
2

(
log2 d∑
i=1

2i

)
+ 2c2dβ

(
log2 d∑
i=1

23i

)
< 4c1dβ

2(2d) + 2c2dβ1.15d3

< 8c1d
2β2 + 2.3c2d

4β.

4.2.4 Discussion

Now we compare our complexity with the original L2 algorithm. As mentioned earlier,

when applying to a knapsack-type basis, the provable worst-case complexity of L2

becomes c1d
3β2 + c2d

4β rather than c1d
4β2 + c2d

5β as for a random basis. However,

it is worth pointing out that in practice, one can achieve a much better result than

a worst case, since the weight of most Xi is equally distributed into all the columns.
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Heuristically, for the L2 algorithm, one can expect Θ(c1d
2β2) when d, β go to infinity

and β � d. Nevertheless, this result requires several heuristics. In comparison, our

results only requires that the input knapsack-type basis spans a random lattice.

Input a knapsack-type basis, the L2 algorithm (and almost all other LLL-type

reduction algorithms) tries to reduce the first k rows, then the k + 1 row, k + 2 row,

etc. For a given k + 1 step, the current basis has the following shape:

Bknap−L2 =



x1,1 x1,2 . . . x1,k+1 0 0 . . . 0

x2,1 x2,2 . . . x2,k+1 0 0 . . . 0
...

... · · · ...
...

... · · · ...

xk,1 xk,2 . . . xk,k+1 0 0 . . . 0

Xk+1 0 . . . 0 1 0 . . . 0

Xk+2 0 . . . 0 0 1 . . . 0
...

... · · · ...
...

... · · · ...

Xd 0 . . . 0 0 0 . . . 1


L2 will reduce the first k+1 rows during this step. Despite that most of the entries are

with small elements (‖xi,j‖ ∼ O(2
β
k )), the worse-case complexity of current step still

depends on the last row of current step, i.e., 〈Xk+1, 0, . . . , 0, 1, 0, . . . , 0〉.
For the recursive reduction, on the final step, the input basis is in the form of:

Brec−L2 =



x1,1 x1,2 . . . x1, d
2
+1 0 0 . . . 0

x2,1 x2,2 . . . x2, d
2
+1 0 0 . . . 0

...
... · · · ...

...
... · · · ...

x d
2
,1 xk,2 . . . x d

2
, d
2
+1 0 0 . . . 0

x d
2
+1,1 0 . . . 0 x d

2
+1, d

2
+2 x d

2
+1, d

2
+3 . . . x d

2
+1,d+1

x d
2
+2,1 0 . . . 0 x d

2
+2, d

2
+2 x d

2
+2, d

2
+3 . . . x d

2
+2,d+1

...
... · · · ...

...
... · · · ...

xd,1 0 . . . 0 xd, d
2
+2 xd, d

2
+3 . . . xd,d+1


Note that the weight of Xi is equally distributed into d

2
+1 columns. Hence, the bit

length of maximum norm of basis is reduced from β to approximately d log2 c0 + 2β/d.

Therefore, we achieve a better time complexity. In fact, the provable new complexity

is of the same level of the heuristic results observed in practice, when β � d.

The cost of previous steps are all negligible, compared with the last step. Thus, if we

see those steps as pre-processes, they provide similar functionality with early reductions

in L2. However, our pre-process is in general more cost than early reduction, since in
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the early reduction, the algorithm runs with small floating-point precisions (53, for

instance), while for us, the precision can be as much as 0.8d since half of the basis need

to be reduced using proved method. This is the reason that the performance of our

algorithm, as we shall see later, lies between the proved method (L2) and the fastest

method (L2 with early reduction).

4.3 Extensions

Now we describe a technique when dealing with a principal ideal lattice basis.

Due to the special form of a principal ideal lattice, It is able to reduce the number

of reductions in each round to 1, with a cost of O(d) additional vectors for the next

round. This technique does not effect the asymptotic complexity, however, in practice,

it will accelerate the reduction.

BI =



δ 0 0 . . . 0

−α mod δ 1 0 . . . 0

−α2 mod δ 0 1 . . . 0
...

...
...

. . .
...

−αd−1 mod δ 0 0 . . . 1


A principal ideal lattice is given in the form of {α, δ, d}. Let X0 = δ, then one obtains

BI in the above form. From BI , one constructs a new basis B′I as follows.

B′I =



δ 0 0 . . . 0 0

−α 1 0 . . . 0 0

0 −α 1 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . −α 1


Then, one can obtain a generator matrix of L(BI) by inserting some vectors in L to

B′I .

Example 4.2 This example shows how to construct G with d = 5. The generator
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matrix G is given as follows:

G =



δ 0 0 0 0

−α 1 0 0 0

0 −α 1 0 0

0 0 δ 0 0

0 0 −α 1 0

0 0 0 −α 1


Since vector 〈0, 0, δ, 0, 0〉 is a valid vector in L(B), B and G span the same lattice.

Applying a lattice reduction algorithm over G will return a matrix with the top row

that is a zero vector, while the rest forms a reduced basis of L.

To reduce G, we adopt our recursive reduction methodology. We firstly reduce the

top half of G. Since the second half is identical to the top half, except the position of

the elements, we do not need to reduce the second half. Indeed, we use the result of the

top half block and then shift all the elements. Finally, we obtain G′.

G′ =



x1,1 x1,2 x1,3 0 0

x2,1 x2,2 x2,3 0 0

x3,1 x3,2 x3,3 0 0

0 0 x1,1 x1,2 x1,3

0 0 x2,1 x2,2 x2,3

0 0 x3,1 x3,2 x3,3


During our recursive reduction, for round i, instead of doing d/2i reductions, one

needs to perform only one reduction. Finally, one reduces the final matrix G, removes

all the zero vectors and starts a new round.

With our technique, the number of vectors grows, and this may increase the com-

plexity of the next round. For the i-th round, the number of vectors grows by d/2i−1−1.

It will be negligible when d/2i � d. For instance, if we adopt this approach between

the second last round and the last round, this approach will only increase the number

of vectors by 1, while if one uses it prior to the first round, the number of rows will

be almost doubled. In practice, one can choose to adopt this technique for each round

only when it accelerates the reduction.

We note that the asymptotic complexity remains the same, since generally speaking,

the number of vectors remainsO(d) as before, while the asymptotic complexity concerns

only d and β.
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Dimension 4 8 16 32 64 128

L2
Best-case 177s 660s 52.6m 340.8m 36.5h 255.6h
Avg-case 223.5s 854s 74.3m 445.7m 44.4h 278.7h

FP
Best-case 17s 90s 10.6m 106.3m 22.7h 255.1h
Avg-case 17.8s 97s 13.8m 153.4m 28.1h 307.9h

Our method
Best-case 26s 258s 23.5m 218.6m 33.8h 194.9h
Avg-case 37s 213s 33.7m 302.5m 43.7h 271.4h

Table 4.1: Comparison between different algorithms

4.4 Implementation

We implemented our method with L2. We use L2 algorithm from fplll library [PSC].

The implementation was conducted on DELL Poweredge 1435 Servers powered by

AMD Opteron CPU running at 2.3 GHz. For all the test, for each d, β pair, we

randomly generated 16 knapsack bases (Xi-s are generated through a pseudo-random

generator feed by time seeds using NTL library [Sho]).

The whole implementation can be separated into two parts. In the first part,

we compared our technique with the classic L2 (referred to as L2) and its heuristic

variant FP, (classic L2 with early reduction option and several other optimizations, see

[PSC, NS05a]). Generally speaking, as mentioned in the previous chapter, FP tries

heuristics first, and if they fail, it will start the L2.

We fixed β ∼ 219.5 and increased d gradually2. Table 4.1 illustrates the result of

the first part.

In general, our algorithm runs faster than L2. It is also observed that the FP is the

fastest among the three till dimension 64. However, in dimension 128, we believe that

heuristics failed and hence became a burden for the FP. Therefore, the FP is a bit slower

than L2. Since our method is always faster than L2, it is safe to draw the following

conclusion: our algorithm will be the fastest one among the three after dimension 128.

In the second part, we aim to prove the average case complexity by showing that

our complexity is O(d2+εβ2) when β ≥ d2. We increased β and d. We fed the program

with β equals to 210, 214, 217 and 219.5, respectively, and record the reduction time for

dimension from 22 to 27.

In Figure 4.1, the x-axis is log2(d), while the y-axis is the logarithm of time in

seconds. Therefore, in theory the curve of timing versus dimension is a straight line.

Since for our tests other than 210, β ≥ d2, the overwhelming complexity should be

O(d2+εβ2). As a consequence, all the lines should be in parallel, and the distance

2In Gentry-Halevi’s FHE scheme, β = 219.5 for small dimension.
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Figure 4.1: Testing results: Time vs Dimension

between each two should be in respect to approximately twice the difference of β. Our

test result is consistent with this theory. Moreover, the gradient of the line is the

exponential factor on d, hence it should be a real number in 2 and 3. This is also

observed in our implementation result.

To sum up, our implementation result shows: the average-case time complexity of

our recursive reduction is correct.



Chapter 5

LLL for Ideal Lattice

In the previous two sections, we have shown improvements of LLL algorithms over

some general bases. In this chapter, we will describe the first variant of LLL algorithm

that is dedicated to ideal lattices. The results can be summarized as follows:

• In theory, our algorithm shares the same worst-case bit complexity with the

LLL algorithm. But our algorithm is at least as fast as the corresponding LLL

algorithm.

• Heuristically, we reduce the complexity from O((d3β + d2β2)M(d)) (as in L2) to

O((d3β + dβ2)M(d)), where M(d) is the cost of integer multiplication with two

d bit integers.

• In practice, our algorithm out-performs all known lattice reduction algorithms in

terms of running time.

• In terms of the quality of the output basis, our algorithm produces an LLL

reduced basis. Furthermore, in a vast majority of cases, our modification will

not affect the output of the corresponding algorithm. With the same input, our

iLLL algorithm will output the same result as the LLL algorithm in most tests.

• This leads us to a new result to the Gentry and Halevi fully homomorphic encryp-

tion challenge. We solved the toy challenge within 24 days, while we estimate to

solve the small challenge in 15.7 years. This result will be presented in the next

chapter.

5.1 The Algorithm

We start with an HNF basis of the ideal lattice. We remark that such a basis can be

obtained from any basis of the same lattice within polynomial time. The HNF basis

60
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can be obtained straightforwardly if the ideal lattice is a principal one. Nevertheless,

the running time of the HNF procedure is negligible compare with the LLL reduction

for a given basis.

Ideal lattice maintains this special property: if a vector ~v ∈ L, then all its rotation

vectors over R exist in this lattice as well, where R is the ring. This useful property

can accelerate the reduction.

As stated earlier, the LLL algorithm uses a stepping method. At the κ-th step, the

first κ vectors in the basis are involved. For a certain step κ, the top κ − 1 vectors

are (δ, η)-reduced. So it will first size-reduce ~bκ with (~b′1, . . . ,
~b′κ−1), where (~b′1, . . . ,

~b′κ−1)

denotes the reduced basis of (~b1, . . . ,~bκ−1), and then perform the LLL reduction on the

whole κ vectors.

However, instead of size-reducing the input vector ~bκ whose bit-length is in β, one

can use a rotation of a previous vector, providing that this new vector, denoted as ~v,

together with {~bi}, 1 ≤ i ≤ d, i 6= κ also form a basis of L. We name this technique

“re-use”.

Recall that in the κ − 1 step, one has already performed a size reduction on ~bκ−1

with (~b′1, . . . ,
~b′κ−2). Denote ~v′ the reduced vector. Then one can simply shift ~v′ to the

right to obtain ~v. (~b′1, . . . ,
~b′κ−1, ~v) also form a basis of L(~b1, . . . ,~bκ). Moreover, since

~v is already size-reduced to some extent, it will always be shorter than ~bκ, and as a

result, re-use will always accelerate the reduction.

To use the re-use technique recursively, we obtain iLLL algorithm. In the following,

we first show our iLLL algorithm.
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Algorithm 5 The iLLL Algorithm

Input: The HNF basis B = (~b1,~b2, . . . ,~bd) of an ideal lattice and reduction parameters
(δ, η)

Output: An (δ, η)-reduced basis B.
1: Compute GSO.
2: κ← 2, κ1 ← 2.
3: while κ ≤ d do
4: Size reduce (B, κ, η);
5: if κ = κ1 and κ < d then
6: ~v ← Right shift (~bκ);

7: if ‖~v‖ < ‖~bκ+1‖ then

8: ~bκ+1 ← ~v
9: end if

10: κ1 ← κ1 + 1;
11: end if
12: if δ‖~b∗κ−1‖2 ≤ ‖~b∗κ‖2 + µ2

κ,κ−1‖~b∗κ−1‖2 then
13: κ← κ+ 1;
14: else
15: Exchange ~bκ and ~bκ−1;
16: κ← max(κ− 1, 2);
17: Update GSO;
18: end if
19: end while
20: return B.

The iLLL algorithm is described in Alg. 5. We note that the only difference between

Alg. 5 and the LLL algorithm is the re-use technique. In Alg. 5, κ indicates the current

vector that iLLL is working on. κ1 indicates if the current size-reduced vector should

be re-used later.

5.2 Analysis

5.2.1 Correctness

We firstly prove that the algorithm is correct. To start with, for the i-th step, we have

the following Lemma:

Lemma 5.1 Let B = (~b1, . . . ,~bd). Let Bi−1 = (~b′1, . . . ,
~b′i−1) where (~b′1, . . . ,

~b′i−1) forms

a (δ, η)-reduced basis of L(~b1, . . . ,~bi−1). Let ~v ∈ L where the i-th coefficient of ~v is 1.

Then B′ = (~b′1, . . . ,
~b′i−1, ~v,

~bi+1, . . . ,~bd) form a basis of L(B).

Proof: Firstly, all row vectors of B′ can be obtained by linear operations of row vectors

of B. Meanwhile, all row vectors of B′ are linearly independent. ~b′1, . . . ,
~b′i−1,

~bi+1, . . . ,~bd



5.2. Analysis 63

are linear independent since the top i − 1 vectors are LLL reduced form ~b1, . . . ,~bi−1.

Also, ~v is independent with ~b′1, . . . ,
~b′i−1,

~bi+1, . . . ,~bd since the i-th element of all row

vectors of B′ is 0 except for ~v. Thus, lattice L(B′) is contained in lattice L(B).

Further, since L(B′) and L(B) have the same rank and determinant, they are a same

lattice. Hence, B′ is a basis of L(B). �

Then we prove the correctness in Theorem 5.2.

Theorem 5.2 For an input basis B, our iLLL algorithm outputs an LLL-reduced basis

of L(B).

Proof: For the quality of the basis, it is quite straightforward that our algorithm

produces an LLL-reduced basis, since it checks Lovász condition at the last iteration.

Furthermore, we have shown that our algorithm produces a basis that spans the same

lattice as the input basis in Lemma 5.1, since the shifted vector is the only one whose

(κ+ 1)-th coefficient is non-zero. Hence, our iLLL algorithm outputs an LLL-reduced

basis of L(B). �

5.2.2 Worst-case Complexity

Our algorithm shares the same worst-case complexity with the LLL algorithm, however,

we show that our algorithm is in theory always faster than LLL algorithm. Further,

heuristically, we obtain a complexity of O(d5β + d3β2).

Recall that the LLL algorithm uses a stepping method. For the κ-th step (κ > 2),

the basis is of the following form:

Bκ,LLL =



x1,1 x1,2 . . . x1,κ 0 0 . . . 0

x2,1 x2,2 . . . x2,κ 0 0 . . . 0
...

... · · · ...
... 0 · · · ...

xκ−1,1 xκ−1,2 . . . xκ−1,κ 0 0 . . . 0

xκ,1 xκ,2 . . . xκ,κ 0 0 . . . 0

Xκ+1 0 . . . 0 1 0 . . . 0

Xκ+2 0 . . . 0 0 1 . . . 0
...

... · · · ...
...

... · · · ...

Xd 0 . . . 0 0 0 . . . 1


where the top κ vectors are LLL-reduced. Then, for the next step, since the top κ

vectors are already reduced, there will be no exchange initially. The LLL will directly

size-reduce ~bκ+1, and then operate on (~b1, . . . ,~bκ+1).
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Bκ,iLLL =



x1,1 x1,2 . . . x1,κ 0 0 . . . 0

x2,1 x2,2 . . . x2,κ 0 0 . . . 0
...

... · · · ...
...

... · · · ...

xκ−1,1 xκ−1,2 . . . xκ−1,κ 0 0 . . . 0

xκ,1 xκ,2 . . . xκ,κ 0 0 . . . 0

0 v1 . . . vκ−1 1 0 . . . 0

Xκ+2 0 . . . 0 0 1 . . . 0
...

... · · · ...
...

... · · · ...

Xd 0 . . . 0 0 0 . . . 1


For comparison, the only change we have made is to replace ~bκ+1 with ~v as shown

in Bκ,iLLL. This modification indeed accelerates the size-reduction, since ~v is in general

significantly shorter than ~bκ+1. Moreover, since our algorithm does not work on large

coefficients (i.e. Xκ+1), it requires less precision of floating-point to size-reduce.

To sum up, in theory, we proved that the iLLL will always be faster than the LLL

algorithm due to the fact that ~v is not longer than ~bκ+1. However, in worst cases, it is

possible that ‖~v‖ ∼ ‖~bκ+1‖ if all κ vectors are not well reduced. In this case, we share

the same worst-case complexity as LLL algorithm. It is also worth pointing out that it

can never be more costly than LLL, since if ‖~v‖ > ‖~bκ+1‖, one simply does not adopt

the re-use, and we obtain an exact LLL algorithm.

5.2.3 Heuristic Complexity

Now we analyze the heuristic complexity of our algorithm. Heuristically, correlated

matrix coefficients are different, the HNF bases of ideal lattices have the same shape as

the bases of random lattices [GM06], for instance, the coefficients are of similar length.

Thus, from cryptanalysis point of view, they delivers similar results. If a lattice is

random, then its minima λi follow Equation 2.1. We assume the same property for our

input basis.

For the κ-th step (κ > 2), the basis our algorithm is shown as in the last section,

where ‖~bi‖ ∼ 2
κ−1
2 2

β
κ−1 for i < κ and ‖~bκ‖ ∼ 2

κ−2
2 2

β
κ−2 . The loop invariant for current

step Dκ is then bounded by
∏κ

i=1 ‖~bi‖2(κ−i+1) = 2κ(κ−1)
2−122βκ+ β

(κ−1)(κ−2) . When the

κ-th step terminates, ~bi will be reduced to 2
κ
2 2

β
κ for i ≤ κ. Hence, one obtains O(β)

loop iterations for each step. We note that this observation is quite natural, since there

are O(dβ) loop iterations in total, hence, there are O(β) loop iterations for each κ.
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Algorithms Time Complexity

LLL[LLL82] O(d5+εβ2+ε)
LLL for ideal lattice O(d4+εβ2+ε)

L2[NS05a] O(d4+εβ2 + d5+εβ)
L2 for ideal lattice[NS05a] O(d3+εβ2 + d4+εβ)

L̃1[NSV11] O(dω+1+εβ1+ε + d5+εβ)

iLLL (Heuristic) O(d2+εβ2 + d4+εβ)

Table 5.1: Comparison of time complexity

1. For the κ-th step, the κ-th step terminated in O(β(κ2 + β)M(κ)) operations:

(a) There are maximum O(β) loop iterations.

(b) For each loop iteration, there is maximum O(1 + β
κ(κ−1)) iterations within

the size reduction.

(c) In each size reduction, there are O(κ2) arithmetic operations.

(d) The cost of arithmetic operations is determined by integer multiplications

with bit length O(κ).

2. Assuming a naive integer multiplication, one obtains O(
∑d

κ=2(βκ
4 + β2κ2)) =

O(d5β + d3β2).

Table 5.1 shows a comparison of time complexity between iLLL and some of LLL-type

algorithms using fast multiplications.

5.3 Extensions

The main improvement in our provable algorithm is to replace ~bκ+1 with a vector from

previous reductions through the size reduction algorithm. In fact, any vector in the

lattice can be used as the replacement, as long as the last non-zero element of this

vector is 1. The remaining issue is to find ~v more efficiently than size-reduce ~bκ+1 with

(~b1, . . .~bκ). Algorithm 6 describes a probabilistic yet very efficient method to find ~v.

This algorithm first checks to see if it can directly use the first vector from the

previous step with simple shifting. It requires the last non-zero element of ~b1 to be 1.

The successful rate is high when β is small and κ is big.

If it fails, then it checks if one can construct a vector by linear combination of two

vectors. This can be done using the extended GCD algorithm. In the re-use technique,
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Algorithm 6 Heuristic Re-use

Input: (~b1,~b2, . . . ,~bκ) a (δ, η)-reduced basis
Output: ~v that can be used for the κ+ 1 step of iLLL.

1: if The last non-zero coefficient of ~b1 = 1 then
2: Shift ~b1 such that the last coefficient is 1.
3: ~v ← ~b1
4: else
5: for i = 1→ κ do
6: Shift ~bi such that the last coefficient is non-zero.
7: end for
8: ~v ← zero vector
9: for i = 1→ κ do

10: for j = i+ 1→ κ do
11: Find x, y and z such that x = y~bi,κ + z~bj,κ
12: if x = 1 then
13: ~v′ ← y~bi + z~bj.
14: if ~v 6= 0 and ‖~v‖ ≥ ‖~v′‖ then
15: ~v ← ~v′

16: end if
17: end if
18: end for
19: end for
20: end if
21: return ~v.
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it finds all possible vectors where the last non-zero coefficient is 1, and return the

shortest one.

This procedure takes O(κ2M(β)) on worst-cases reductions and O(κ2M(β/κ))

heuristically. We note it is negligible in terms of time complexity, compared with

the cost of each iteration. In practice, it can be done in less than 1 second for dimen-

sions as large as 500. Hence, it finds a vector much faster than using size-reduction

algorithm. However, we note that if one uses this optimization, when the first vector

does not qualify, it is possible that the returned vector will be slightly longer than the

one form size-reduction. Hence, it will make the next step a bit more costly. We also

note that this technique is heuristic, since sometimes it is possible that one cannot find

a suitable vector. Nonetheless, our practical tests show that this method is in general

faster than iLLL.

In fact, our algorithm can also deal with bases other than principal ideal bases. For

instance, general ideal lattices or Coppersmith-Shamir bases, which are used to attack

the NTRU encryption scheme.

It is true that for some ideal lattice HNF bases, the diagonal coefficients do not

follow the same form as a principal ideal lattice. The first several coefficients on the

diagonal are not 1. One can use our technique when 1 starts to appear. It should

appear very soon, since the diagonal coefficients are decreasing rapidly to 1 with the

increase in dimension.

BCS =



q 0 . . . 0 0 0 . . . 0

0 q . . . 0 0 0 . . . 0
...

... · · · ...
...

... · · · ...

0 0 . . . q 0 0 . . . 0

h0 h1 . . . hN−1 1 0 . . . 0

hN−1 h0 . . . hN−2 0 1 . . . 0
...

... · · · ...
...

... · · · ...

h1 h2 . . . h0 0 0 . . . 1


The Coppersmith-Shamir basis are of the above form. It is not a principal ideal

lattice basis, however, its bottom part does allow one to apply our re-use technique,

since the right non-zero coefficient is 1 and the left part of the basis is a rotated basis.

To this end, we formally define a reusable basis as a basis where our re-use technique

can be applied.

Definition 5.1 (i-Reusable Basis) B = (~b1, . . . ,~bd) be a basis of L. Let i < d an
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Figure 5.1: Testing results: β = 10d

integer. B is a reusable basis if ∀κ > i, there exist vectors ~v,~v′ ∈ Zn and a permutation

matrix ~P ∈ Zn×n with regard to the following:

• ~v = ~v′ ~P ;

• ~v′ is a linear combination of (~b1, . . . ,~bκ−1)

• L(~b1, . . . ,~bκ−1, ~v) = L(~b1, . . . ,~bκ).

It is quite straightforward to see that all ideal lattice HNF bases are reusable by

simple shifting, while the Coppersmith-Shamir basis is an n-reusable basis with certain

permutation. Hence, our iLLL is also applicable to these bases.

5.4 Implementation

In this section, we show some implementation results. The implementation was con-

ducted with MAGMA [BCP97] on Xeon E5640 CPUs @ 2.66GHz. The memory was

always sufficient since the algorithm only requires a polynomial space. We first show

the average behavior of our algorithm by comparing us with L2 and FP on bases of ran-

dom ideal lattice. Subsequently, we apply iLLL to Gentry-Halevi’s fully homomorphic
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encryption challenge, and present the results. Finally we summarize our advantage in

practice.

5.4.1 Test Results

We tested our algorithm with bases of random ideal lattice over three scenarios: β ∼
10d, β ∼ 20d and β ∼ 380d. The first scenario for β ∼ 10d is the classical setting for the

SVP challenges [svp], and the last one β ∼ 380d is the requirement for Gentry-Halevi’s

fully homomorphic encryption scheme. For comparison, we also tested β ∼ 20d to

observe the difference. To ensure the randomness of the ideal lattice, we require α to

be a uniform distribution between 1 and γ.

For each dimension of each test, we generated 10 bases with 10 different seeds.

Then we present the average time to reduce the bases using both L2 and FP methods.

Figure 5.1, 5.2 and 5.3 show the advantage for each scenario. The ratio is computed

from the running time of LLL divide by the running time of iLLL. As observed, the

curves are always above one, which implies that iLLL is always faster than the coun-

terpart. We observe a small advantage for L2 as we expected, and the advantage is

stable for all three scenarios, while it grows with the increase of β/d. With β ∼ 380d,

iLLL is 20% faster. The time difference in these cases is due to the re-use technique.
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In another words, our improvement is due to the unnecessary size reduction in LLL.

As the increase of β/d, the length of the reusable vector increases, which results in an

increasing advantage.

As for the FP method, apart from the starting point and dimension between 100 to

150, iLLL can be approximately twice faster than LLL. When 100 < d < 150, we enjoy

a massive advantage. We do not present the result for β ∼ 380d in those dimensions,

instead we refer the reader to Figure 6.4, which is essentially using the same setting.

In some cases, when d ∼ 150 and β ∼ 10d, iLLL can be as much as 8 times faster than

LLL. This is due to the floating-point setting in FP. We shall discuss this in Subsection

6.2.
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Chapter 6

On Gentry and Halevi’s Challenge

6.1 Results

The algorithms we have presented in the previous chapter are motivated by the Gentry

and Halevi’s fully homomorphic challenge. Now we present the results of applying

those algorithms over the challenge. To solve the challenge, we use techniques in

both ap-fplll and iLLL. We tested iLLL on the Gentry-Halevi’s fully homomorphic

encryption challenge for dimension 512 and dimension 2048. For the dimension 512,

the lattice basis was obtained from the challenge website [GH]. For the dimension

2048, we generated the basis as per Gentry and Halevi’s paper [GH11], since the basis

was not available from the website. Figure 6.1 and 6.2 show the results for dimension

512 and dimension 2048, respectively. We also include the test results for our heuristic

method, which accelerates the reduction even further.

As observed from Figure 6.1, iLLL is faster than LLL in practice for the small

challenges. The classic FP finishes in 32 days. In comparison, with iLLL we are able

to finish within 28 days. In addition, our heuristics accelerate a bit further to 24 days.

Overall, we are around 33% faster than the classic FP algorithm.

As for the 2048 challenge, within 6 months, we are able to reach dimension 559 and

560 for iLLL and its heuristics, respectively, while LLL reaches dimension 512. Fur-

thermore, as the dimension grows, the gap between the running time of iLLL and LLL

grows as well, which indicates the time that iLLL gains is increasing as the dimension

grows. Nevertheless, we anticipate to accelerate the reduction by 30%, which is the

same case as the toy challenge. However, due to the fact that the size reduction of a

single vector becomes less important as the dimension grows, compared with the whole

cost of a single step, the actual ratio of advantage is diminishing.

Figure 6.4 shows a comparison of the running time of iLLL and LLL algorithms.

The green curve shows the ratio between the total running time of LLL and iLLL up
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to a certain dimension, while the blue curve shows LLL vs iLLL for each dimension.

Since the curves is always higher than 1, it is straightforward to see that iLLL is always

faster than LLL. It is also worth pointing out that at dimension around 100, iLLL can

be 10 times faster than LLL.

6.2 Analysis

In the previous section, we have seen that the iLLL algorithm is faster than the LLL

algorithm in practice. If we look at each step (Figure 6.5 shows one example of this),

one can see that in each step, iLLL is faster. This is due to the fact that instead of

reducing a vector of the length β at the κ-th step, we can use a vector of length β/κ

by simply re-using the previous results. The result follows our theoretical analysis.

As stated before, although the time we are able to gain continues to increase, the

advantage is actually diminishing as the dimension grows. This is because the cost of

size-reducing the large vector is less and less important compare to the cost of reducing

the whole basis as the dimension grows.

Interestingly, we enjoy a massive advantage when the dimension is less than 150.

A similar phenomenon is also observed in the tests with random lattices. This is
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mainly due to the implementation of L2. As mentioned in ap−fplll, L2 uses a floating

point precision ` which is in function of d. However, in practice, FP uses several

levels of precisions. It starts with the smallest precision, 53, which is with respect

to C programming language of type double/int in the program. It then increases the

precision to the minimum value of ` and the precision for the next stage. This procedure

will be continued until it reaches `.

Since the cost relies heavily on the length of floating-points, this optimization guar-

antees that the reduction is generally performed with the lowest cost.

It must be noted, however, that since the coefficients of the basis for each new

step is large, FP will need to use a large precision to provide provable reductions. As a

comparison, since we are dealing with small coefficients, when the dimension is smaller,

we only require a default precision of 53. This is the reason our algorithm is faster in

the beginning.

6.3 New Estimation

In this section, we show our new estimation for the small challenge of Gentry-Halevi’s

fully homomorphic encryption. We start with predicting L2 as in Figure 6.6. We

predict that the curve follows d2.95

65
+ 5d2.8

13
, which indicates that L2 will finish in 229.6

seconds which equals to 25.8 years. We note that this estimation is quite natural, since

the previous research [GN08, NS06] has shown that LLL runs in cubic with regard to

d when d is big and β ∼ O(d2).

Then we look at the time difference between iLLL and LLL as shown by the third

curve in Figure 6.5. The result implies that the time we are able to gain with re-use is

linear in dimension, when the curve becomes stable after dimension 130. This indicates

that the accumulated time contains a quadratic term. Now we predict the running time

of iLLL. We use the heuristic method, since in general it is faster. We predict that

the curve follows d2.95

65
+ 5d2.8

13
− 77d2

5
. This gives us 229.47 seconds, which equals to 23.6

years. To conclude, we summarize our results in Table 6.1.

Remark 6.1 The previous best prediction [CN11] was using L2. We note that it is

not specified in [CN11] what kind of a platform (CPU, library, etc.) their test was

conducted on. Therefore, we performed the same LLL reduction as in [CN11]. We

believe the difference between [CN11] and our approach is due to the implementation.

This is the reason why we have compared our own LLL/iLLL implementation against

the Gentry-Halevi’s challenge.



6.3. New Estimation 78

 0

 5

 10

 15

 20

 25

 0  100  200  300  400  500  600

lo
g

2
(t

im
e
)

dimension

FP
iLLL + FP + heuristics

LLL prediction
iLLL + FP + heuristics prediction

Figure 6.6: Estimated time for dimension 2048

Gentry-Halevi’s Challenge dim 512 dim 2048
The Previous Best Results/Prediction[CN11] 30 days 45 years

LLL implementation @2.66GHz 32 days 25.8 years
iLLL implementation @2.66GHz 24 days 23.6 years

iLLL prediction @4.0GHz 16 days 15.7 years

Table 6.1: Practical Result on Gentry Halevi’s Challenge



Chapter 7

CCA-1 Attack against Integer-based SHE
schemes

In this chapter we present our CCA-1 attack. We use vDGHV SHE scheme to demon-

strate our attack. However, the following attack can be applied to CNMT with a trivial

modification. Recall the definition of the IND-CCA security game as follows:

1. The challenger runs KeyGen algorithm and outputs a secret

key sk and a public key pk;

2. The attacker is given two oracles, an encryption oracle and a

decryption oracle;

3. The attacker then generates two ciphertexts m0 and m1;

4. The challenger generates c = Encrypt(mb, sk), where b is

uniformly randomly chosen from {, 1};

5. (Only for CCA-2) The attacker is given the two oracles again,

but it can not query on c;

6. The attacker outputs b′.

The security strength of vDGHV SHE comes from the noise that is added to

ciphertexts. If we can somehow reduce the noise in ciphertext, then the scheme will

no longer be secure. With the help of a decryption oracle, we can eliminate the noise.

Hence, we achieve a CCA-1 attack.

We propose two variants that follow the same idea. The first variant requires several

ciphertexts. The main idea is to eliminate the noise and then, to find the GCD of the

remaining parts. The second variant requires only one ciphertext, and we are able to

recover the secret key directly.

We note that our attack recovers the secret key that allows us to decrypt any valid

ciphertexts, and does not require any access to OD at Stage 5 in the CCA attack model.
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Thus, our attack falls in the category of CCA-1. However, we also note that essentially,

our attack is stronger than CCA-1, because instead of solving only one challenge, we

recover the secret key.

7.1 Motivation

As mentioned in the introduction part, the major application of fully homomorphic

encryption schemes is to provide a secure outsourced computing for cloud service.

Nevertheless, the adoption of data outsourced computation by business has a major

obstacle, since the data owner does not want to allow the untrusted cloud provider to

have access to the data being outsourced. We highlight some important factors. In

fact, one can categorize an outsourced computation into the following models:

1. The user possesses the data and the computation circuit, and the service provider

provides the computation power;

Example 7.1 a stock share holder buys/sells his/her stocks via the cloud, and

then retrieve the receipt from the cloud to obtain his/her updated financial status.

2. The user possesses the data, and the service provider provides its computational

power, while the computation circuit can be made available publicly to both of

the entities;

Example 7.2 a hospital outsources its patients’ information to a research insti-

tute for acquiring further analysis from the institute (such as the result of the

prostate cancer), as the institute has more computational power compared to the

hospital.

3. The user possesses the data, and the service provider provides its computational

power, only the cloud has access to the computation circuit;

Example 7.3 a company outsources its financial status to an auditing company,

however, the auditing algorithm is auditing the company’s private property.

In all of the above models, the users’ data privacy has to be ensured. The difference

among them lies on the privacy of the computational circuit.
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Figure 7.1: Using Fully Homomorphic Encryption in a Cloud Search Scenario

Indeed, a fully homomorphic encryption is a solution for enabling operations on the

encrypted data. This feature is useful in the outsourced computation scenario, where

one can upload encrypted data to the cloud and enable the cloud to process the data

without the need for decryption.

We present a practical reaction attack that can be applied to all of the above models,

in which every time a user interacts with the cloud, he/she is under the risk of leaking

some information. Using this attack, one can construct a probabilistic decryption

oracle. Consequently, we argue that for any fully homomorphic encryption schemes,

the CCA-1 security is essential.

7.1.1 The Reaction Attack

For any given ciphertext, our attack recovers the message with provability ε.

To use fully homomorphic encryption schemes in outsourced computation scenar-

ios, the users firstly upload their encrypted data to the cloud. Then, they submit their

demanded circuits to the cloud, in an on-demand fashion. The demanded circuit con-

sists either of some data and an evaluation function, or merely an evaluation function

only. The cloud processes users’ data through the requested circuits, and returns the

result.

Ideally, all the data, including the results, are encrypted, and hence, a malicious

cloud provider cannot gain information from the users, i.e., let ε1 be the possibility of

m = 1, then for any ciphertext, | ε1−1/2 | is negligible from the cloud provider’s point

of view.

Nevertheless, we notice that the attacker can modify the encrypted circuits/results
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by adding some random ciphertext c that encrypts a message m. Because homomor-

phism is enabled, modifying the demanded circuits/results will affect the plaintext

eventually. To be more precise, if the added random ciphertext encrypts an 0, the

returned result remains the same; while if the added random ciphertext encrypts a 1,

the returned result is modified. By observing the users’ reactions, the service provider

can increase or decrease ε1 accordingly, and eventually recover m.

Generally speaking, the cloud provider can compare users’ reaction with their for-

mer reaction, if the users are acting “unexpectedly”, then the cloud can expect m = 1.

For completeness, we list some (but not all) possible reactions that can be defined as

“unexpected” behaviors.

• The users set up a new task much sooner than usual, after they acquire the result

sent by the cloud;

• The circuit of a new task is identical from a former one;

• The number of tasks is significantly higher than average - this occurs when the

cloud provider feeds same faulty information for a certain period.

We note that these users’ reactions are very natural and practical. To anticipate the

reactions is even easier, when the users use a certain software, instead of expecting the

results themselves, to communicate with the cloud. We argue that this is very common

in practice as nobody will conduct this process manually.

However, the success of our attack relies highly on the actions performed by the

users after receiving valid or error results. Hence, if the users act completely randomly,

then our attack will be unsuccessful. Nevertheless, we argue that the latter usually

will not happen in practice, as it is the users’ interest to acquire the results that they

would like to obtain.

We use several examples to demonstrate our attack.

Example 7.4 (Classic Search) Suppose we have a cloud search engine (see Fig-

ure 7.1), which looks up keywords from database A, and outputs the corresponding

results in database B. Database A consists of names of stocks, while database B shows

corresponding price for each stock.

Table 7.1 shows the databases in plaintext for our example.

Let K, A and B denote the binary form of the keyword, database A and database

B, respectively. Let ki, ai and bi be the i-th digit of K, A and B. Also, let
⊗n

1 ci be

c1 ⊗ c2 ⊗ · · · ⊗ cn. Then, a basic search algorithm is defined in Algorithm 7.
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Entry A B
1 AAPL 335
2 GOOG 494
3 MSFT 027
4 SPRD 013
5 NDAQ 024
. . . . . . . . .

Table 7.1: Databases in plaintext

Then we show how to incorporate fully homomorphic encryption in this example. With-

out losing generality, we use vDGHV scheme to demonstrate our example.

Example 7.5 (Homomorphic Search) To distinguish from a traditional search en-

gine, the databases of the cloud search engine are all encrypted, and the search circuit

is a homomorphic circuit. Note that Table 7.1 is no longer exactly the databases stored

in the cloud. The cloud maintains multiple copies of the databases for different users,

each copy is encrypted under different users’ FHE secret key. Then, the database in

the cloud consists of Enc(ai) and Enc(bi). Following the previous example, we achieve

a fully homomorphic searching algorithm in Algorithm 8 using the fully homomorphic

encryption scheme over integers.

Algorithm 7 Basic Search (K,A,B)

1: la ← LEN OF WORD A {la = 32}
2: lb ← LEN OF WORD B {lb = 24}
3: for j = 0→END OF ENTRY−1 do
4: for i = 1→ lb do
5: ri ← bi+jlb ⊗ (

⊗la
t=1(at+jla ⊕ kt+jla))⊕ ri

6: end for
7: end for

As shown in Table 7.2, suppose we want to look for the price of GOOG, with the

basic search algorithm, we obtain 52, 57, 52 in ASCII code, which is 494. While with

the homomorphic search algorithm, we obtain the third column of Table 7.2. The cloud

cannot decrypt Enc(52)/Enc(57)/Enc(52), hence, the users’ privacy is guaranteed.

The user holds the secret key, therefore, he/she is the only one who knows the searching

results, while the cloud cannot even distinguish the difference between the two Enc(52).

Now we show how our reaction attack works in this example.
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Algorithm 8 Homomorphically Search (Enc(ki),Enc(ai),Enc(bi))

1: la ← LEN OF WORD A {la = 24}
2: lb ← LEN OF WORD B {lb = 32}
3: for j = 0→END OF ENTRY−1 do
4: for i = 1→ la do
5: ri ← Enc(bi+jlb)×

∏la
t=1(Enc(at+jla) + Enc(kt+jla)) + ri

6: end for
7: end for

Database A Basic Search Homomorphic Search Homo Search + Faulty Info
AAPL 0,0,0 Enc(0),Enc(0),Enc(0) Enc(0),Enc(0),Enc(0)
GOOG 52,57,52 Enc(52),Enc(57),Enc(52) Enc(0),Enc(0),Enc(0)
MSFT 52,57,52 Enc(52),Enc(57),Enc(52) Enc(0),Enc(0),Enc(0)
SPRD 52,57,52 Enc(52),Enc(57),Enc(52) Enc(0),Enc(0),Enc(0)
NDAQ 52,57,52 Enc(52),Enc(57),Enc(52) Enc(0),Enc(0),Enc(0)
. . . . . . . . . . . .

result 494 Enc(“494”) error

Table 7.2: Searching Results in ASC II

Example 7.6 (Reaction Attack) Let c be a ciphertext that the cloud would like to

decrypt. The cloud adds c to the keyword, and there are two possible consequences.

• if Dec(c) = 0, the algorithm will search for Enc(GOOG) as before, and therefore,

no error will occur, and the user will most likely do nothing.

• if Dec(c) = 1, instead of searching for Enc(GOOG), the input of the algorithm

is actually Enc(GOOH). Therefore, no match will be found. It is reasonable to

believe that the user will start to execute another search, in which case the cloud

increases ε1.

As we have stated, a malicious cloud can also modify the circuit/result accordingly.

However, we notice that in the above example, modifying the result merely helps our

attack, as if the cloud induces an Enc(1), the user will receive 495, which will be

recognized as a valid result.

7.1.2 Impact on CCA Security

It is well known that for any public key encryption schemes, the CPA security is essen-

tial. Meanwhile, constructing a CCA-2 secure fully homomorphic encryption scheme
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is impossible, since homomorphic operations on ciphertexts are enabled (and also it

is due to the “malleability” of the ciphertext). Moreover, unfortunately, fully homo-

morphic encryption schemes that follow Gentry’s framework cannot be CCA-1 secure

due to the bootstrapping technique. In fact, if a somewhat homomorphic encryption

scheme is CCA-1 secure is questionable. Indeed, we have seen two CCA-1 attacks in

the previous chapter.

We note that the consequence of such an attack might be severe. A CCA-1 attack

is an attack model that assumes there exists a decryption oracle. People may argue

that this is just merely an attack model, since in practice, having such an oracle (or

an honest user who is helping the attacker during the learning phase) is impractical.

Furthermore, constructing such an oracle in general is not really feasible. Nevertheless,

with our message attack, it is possible to construct a probabilistic decryption oracle

in practice. Consequently, if for a certain fully homomorphic encryption scheme, a

CCA-1 attack is successful with a non-negligible advantage of φ using a hypothetical

deterministic oracle, then one can achieve this attack with an advantage of φεn using

our message attack, where n is the number of ciphertext required for the CCA-1 attack.

Hence, the CCA-1 attack becomes really practical.

To sum up, we argue that in practice, if a fully homomorphic encryption scheme is

not CCA-1 secure, then it alone cannot deliver secured outsourced computation.

7.2 The CCA-1 Attack

Essentially, in vDGHV SHE scheme, the public keys (xi-s) can be treated as cipher-

texts encrypting 0-s with smaller noise. Therefore, the following algorithms can be

applied on public keys with less cost. However, in order to strictly follow the definition

of CCA-1 attack, we apply our algorithms on real ciphertexts.

We note that for any correct ciphertext ci, the following holds that

ci = mi + 2r′i + g′ip

for certain r′i ∈ (−p/4, p/4] and integer g′i, since if |2r′| > p/2 decryption error will

be induced. For convenience, denote α′ = β − 1. Using the recommended parameter

configuration, we have α′ = λ2 − 1, where λ is the security parameter.

Now we show our attack against vDGHV SHE scheme. Suppose we have k

ciphertexts c1, c2, ..., ck of encrypted 0-s, i.e.: ci = g′ip + 2r′i. It holds that De-

crypt(ci, sk) = 0. The length of r′i-s is no greater than α′.
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Let OD(c) be the decryption oracle that returns Decrypt(c, sk). The following

pieces of pseudo-code describe two variants of our attack.

Algorithm 9 NoiseEli(c)

1: lp ← 2β − 2α
′+1

2: rp ← 2β+1 + 2α
′+1

3: while rp − lp > 2 do
4: s← b(lp + rp)/4e × 2
5: if OD(c+ s) = 0 then
6: lp ← s
7: end if
8: if OD(c+ s) = 1 then
9: rp ← s

10: end if
11: end while
12: if OD(c+ s+ 1) = 1 then
13: s← s+ 1
14: end if
15: return c′ ← c+ s

Algorithm 9: NoiseEli is to help to eliminate the noise in ciphertext. Instead

of generating a ciphertext with no noise, this algorithm generates a ciphertext with a

fixed noise.

Algorithm 10: CCA-GCD describes the first variant of our attack, while Algo-

rithm 11 CCA-p describes the second variant of our attack.

Algorithm 10 CCA-GCD(c0, c1, ..., ck)

1: c′0 ← NoiseEli(c0)
2: c′1 ← NoiseEli(c1)
3: c′2 ← NoiseEli(c2)
4: p′ ← gcd(c′2 − c′1, c′1 − c′0)
5: t← 3
6: while p′ ≥ 2β+1 and t ≤ k do
7: c′t ← NoiseEli(ct)
8: p′ ← gcd(c′t − c′t−1, p′)
9: t← t+ 1

10: end while
11: return p′

The first algorithm inputs a ciphertext c = 2r′ + g′p with any noise r′, it outputs

a new ciphertexts c′ = g′p + bp/2c. The new ciphertext contains a constant noise of

bp/2c.
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For any ciphertext c = 2r + gp, the Decrypt algorithm will always output 0, as

long as |2r| ≤ bp/2c, and output 1 if 2r > bp/2c. Denote l = bp/2c − 2r. l represents

the threshold, such that OD(c + l) = 0 and OD(c + l + 2) = 1. Also, we know that

l ∈ (2β − 2α
′+1, 2β+1 + 2α

′+1). Therefore, we set lp and rp to be the lower and upper

bound of l. Then we start a while loop to narrow the bound as in Algorithm 9.

Algorithm 11 CCA-p(c)

1: a← NoiseEli(c)
2: b← NoiseEli(−c)
3: return a+ b+ 1

7.3 Analysis

7.3.1 Correctness

In this section we prove the correctness of our attack.

For any even integer s ∈ (2β−2α
′+1, 2β+1 +2α

′+1), decrypting c+s has two possible

consequences:

• If OD(c+ s) = 1, we know that the threshold l for this ciphertext is smaller than

s, then we move the upper bound rp to s;

• One the other hand, if OD(c + s) = 0, we know that the threshold l for this

ciphertext is greater than s, then we move the lower bound lp to s;

By the end of the loop, we have s = lp = rp− 2. Also, it holds that OD(c+ s) = 0 and

OD(c+ s+ 2) = 1. If bp/2c is an even integer, then s = bp/2c, and OD(c+ s+ 1) = 1.

By contrast, if bp/2c is odd, then s = bp/2c − 1, and OD(c+ s+ 1) = 0. In this case,

we increase s by 1.

Hence, s is the threshold l we were looking for, and c+ s = gp+ bp/2c. Therefore,

we successfully generate a fixed noise ciphertext in log(2β + 2α
′+2) + 1 queries.

The second algorithm is more straightforward. Given k + 1 outputs of Algorithm

1, we obtain k linear independent noise free ciphertexts. By running a classic GCD

algorithm we obtain p′. It holds that either p = p′ or p|p′.
To have p = p′ it requires gcd(g2 − g1, g3 − g2, ..., gk − gk−1) = 1. The probability

of k random integers from Z to be coprime is 1/ζ(k), where ζ(x) is the Riemann Zeta
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function
∑∞

i=1
1
ix

(see [Nym75] for more details), while the probability of having k

numbers randomly chosen form (0, 2λ
5
)1 to be coprime is greater than 1/ζ(k).

In practice, 4 random integers have 1/ζ(4) > 92% probability of being coprime,

while 7 random integers have 1/ζ(7) > 99% probability of being coprime. Our test

(see section 3.5) confirmed this result, where on average cases, 3 random integers are

coprime.

For the last algorithm, we generate a = NoiseEli(c) and b = NoiseEli(−c). It

holds that:

a = gp+ bp/2c, b = −gp+ bp/2c.

Therefore, we obtain 2×bp/2c from a+ b. Because p is an odd integer, we recover the

secret key by p = a+ b+ 1.

7.3.2 Complexity

We examine the efficiency of our last two algorithms. For original ciphertexts (no

homomorphic operations have been evaluated on them), it requires log(2β+2α
′+2)+1 <

β + 3 queries to find the fixed noise ciphertext. CCA-GCD algorithm requires a

minimum 3 fixed noise ciphertexts. Therefore, in best cases we recover the secret

key in 3(β + 3) queries. As β = λ2, Algorithm 10 recovers the secret key in O(λ2)

operations.

Algorithm 11 also works on O(λ2) but with better performance. To be more precise,

it uses one ciphertext only, therefore to eliminate the noise requires at most 2(β + 3)

queries.

It is true that Algorithm 11 is more efficient that Algorithm 10. The reason that

we propose Algorithm 10 is that we observe Algorithm 11 will fail if we modify the

decryption circuit. For instance, if c mod p returns an integer within [0, p) instead of

(−p/2, p/2], then Algorithm 11 will be unsuccessful. However, in this case Algorithm 10

is still valid.

7.3.3 An Example

In this section, we give an example of our CCA-1 attack. In our example, the security

parameter λ is 2. Therefore, the noise r′i and the multiplier g′i are bounded by 22 and

1The integer-based FHE requires each elements to be λ5 bits in order to stop a lattice
attack[vDGHV10]
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r′i p g′i c′i
c1 -3 19 343759059 6531422115
c2 1 19 230194545 4373696357
c3 2 19 276209466 5247979858

Table 7.3: Three sample ciphertexts.

228, respectively. The secret key p is an odd integer between 24 and 25. The ciphertext

is in form of c′i = 2r′i + g′ip. Table 7.3 lists three ciphtertexts.

The results below indicate that we retrieve the secret key successfully. Table 7.4

shows that the noise is successfully eliminated within maximum 5 queries for each

ciphertext. We recover si for each ciphertext such that ci + si = gip+ (p− 1)/2.

Table 7.5 and 7.6 show how to extract p from c′i in two ways. Both of the two

examples uses NoiseEli to find constant noise ciphertext. As displayed in the tables,

in GCD-CCA we recover 3p instead of p, and we did not further proceed the algorithm,

since it is merely an example. This example requires access to the oracle for 14 times

for the GCD-CCA variant and 10 times for CCA-p.
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NoiseEli(c1)
lp rp s1 OD(c1 + s1) action
0 24 12 0 lp ← 12
12 24 18 1 rp ← 18
12 18 14 0 lp ← 14
14 18 16 1 rp ← 16
14 16 14 end of loop
OD(c1 + s1 + 1) = 1 =⇒ s1 = 15

NoiseEli(c2)
lp rp s2 OD(c2 + s2) action
0 24 12 1 rp ← 12
0 12 6 0 lp ← 6
6 12 8 1 rp ← 8
6 8 6 end of loop
OD(c2 + s2 + 1) = 1 =⇒ s2 = 7

NoiseEli(c3)
lp rp s3 OD(c3 + s3) action
0 24 12 1 rp ← 12
0 12 6 1 rp ← 6
0 6 2 0 lp ← 2
2 6 4 0 lp ← 4
4 6 4 end of loop
OD(c3 + s3 + 1) = 1 =⇒ s3 = 5

Table 7.4: Eliminate the noise of three ciphertexts.

CCA-GCD(c1,c2)
c′1 = c1 + 15− c2 − 7 c′2 = c2 + 7− c3 − 5
p′ = gcd(c′1, c

′
2) = 57

Table 7.5: Find p with CCA-GCD.
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7.4 Extensions

7.4.1 Comparisons

We note that the LMSV attack is different from the attack described in this chapter.

The LMSV attack uses the decryption oracle to find the integer s such that [w×s/d] =

1/2, and eventually recover the secret key, while our attack aims to manipulate the

noise in the ciphertexts. By recovering the noise, our attack will recover the secret key

of vDGHV variant.

A proof of such a difference is that our attack can be adapted to recover the noise for

LMSV SHE scheme as well. However, this does not help us to recover the secret key or

break the CCA-1 security. Another evidence is that using LMSV SHE’s solution (i.e.

generating ⊥ for invalid ciphertext) will not stop our attack either (see section 7.4.2).

We also note that our method cannot be adapted to attack SHE schemes that use

ideal lattices. Recall the SHE scheme in the Gentry scheme. Essentially, one needs

~c← ~m+ ~r × I + ~g × J

where ~r and ~g are randomly chosen. I and J are two ideal lattices that are co-prime.

More specifically, the encryption algorithm is

~c = ~m+ ~r ·BI + ~g ·Bpk
J

Therefore, even we can somehow eliminate ~r through our attack, we still need to

solve such a problem: given as many ~g ·Bpk
J , find Bsk

J . This is a GGH type cryptosys-

tem [GGH97]. As a result, we cannot recover Bpk
J directly using our technique.

Example 7.7 Take the LMSV scheme for instance. for a ciphertext c = 2r(a) + m

(mod d), our attack recovers r(x). To recover the i-th coefficient of r(x), one passes

c + 2 × r′ × ai to the decryption oracle, where r′ is a random integer picked by the

attacker. By observing if the oracle returns m or ⊥, one increases or decrease r′

accordingly. Eventually, the attacker obtains r′ + ri = T . As a result, the attacker

recovers one coefficient of r(x). By doing this repetitively, one recovers the entire r(x).

However, this attack is not successful. To recover the secret key one still needs to

solve the following problem: given an ideal lattice in the form of a, d, find a good basis

of this lattice.
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7.4.2 Possible Solutions

In this section we consider the existing proposed solution to make vDGHV SHE scheme

CCA-1 secure. We note that our attack is successful, since we are able to eliminate

the noise. Therefore, if there exist some techniques to disturb the noise elimination,

our attack will fail.

Loftus et al. [LMSV11] showed a solution to combat their own CCA-1 attack

against Gentry-Halevi SHE scheme/Smart-Vercauteren SHE scheme (which

we refer to as the LMSV SHE scheme). However, the solution in LMSV SHE scheme

is not applicable in our case. Their possible solution is to generate some error ⊥ (or

even some random 0-s or 1-s), when the decryption oracle detects that the noise r is

very close to ±(p − 1)/2. The decryption algorithm sets a bound T , such that when

(p − 1)/2 − |r| < T , it will not proceed decryption. However, essentially it will still

leak some information. We can modify our attack to find T and consequently find a

fixed noise ciphertext.

We modify our attack as follows: for each round, we query to the oracle multiple

times. If the feedbacks are consistent (meaning that the attacker is not confused by

random 0-s and 1-s) and not ⊥, we proceed to the next round. Otherwise, we recover a

fixed noise ciphertext with a noise level of T . Hence, our attack will still be successful

even after the “patch” suggested by Loftus et al. [LMSV11].

7.5 Implementation

In this section, we show the result of our implementation of our attack with different

λ. This implementation is based on the NTL library [Sho].

The implementation was conducted in a 2.66 GHz CPU. The memory was always

sufficient, as it merely required more than 600 Mbs. We started from λ = 2, and

increased λ continuously until it reached 32. For each λ, we fed the program with

100 different seeds, and recorded the average time to find the secret key p, as well as

average number of ciphertexts required for Algorithm 2.

The average number of ciphertexts required for Algorithm 2 for different choice of λ

is quite stable. Approximately 3.8 ciphertexts are required to recover the secret key p.

This implies that on average case the number of integers required to have them being

coprime is 2.8.

Figure 7.2 shows the timing results of our implementation. The x axis shows the

choice of λ, while the y axis indicates the average time (in seconds) for each attack.
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NoiseEli(c1)
lp rp s1 OD(c1 + s1) action
0 24 12 0 lp ← 12
12 24 18 1 rp ← 18
12 18 14 0 lp ← 14
14 18 16 1 rp ← 16
14 16 14 end of loop
OD(c1 + s1 + 1) = 1 =⇒ s1 = 15

NoiseEli(−c1)
lp rp s−1 OD(c1 + s−1) action
0 24 12 1 rp ← 12
0 12 6 1 rp ← 6
0 6 2 0 lp ← 2
2 6 4 1 rp ← 4
2 4 2 end of loop
OD(−c1 + s−1 + 1) = 1 =⇒ s−1 = 3

CCA-p(c1)
a← c1 + 15 b← −c1 + 3
p← (a+ b) + 1 = 19

Table 7.6: Find p with CCA-p.
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Figure 7.2: Average time for recovering p.

Statistically, attack CCA-p uses approximately 1.9 times more time in comparison

to attack CCA-GCD (this is due to the number of ciphertexts required to be noise-

eliminated), and this is consistent with our result.
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A New Fully Homomorphic

Encryption Scheme
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Chapter 8

The Hidden Lattice

In this chapter, we introduce the notion of hidden lattice. Based on a hidden lattice,

we present new problem, namely the bounded distance decoding over hidden ideal lattice

We show that the bounded distance decoding problem over hidden ideal lattice (BDDH

problem) is harder than both the BDD over ideal lattice and AGCD problems, which,

as mentioned earlier, are the two out of three main problems that have been used to

design fully homomorphic encryption schemes do date.

More specifically, we show that the BDDH problem over dimension n is equivalent to

the BDD problem over dimension O(nξ), where ξ ∈ [1, 2]. Furthermore, we conjectured

that the proposed scheme is still secure even when ξ = 2.

8.1 The Hidden Lattice Theory

We formally define the new problems related to the hidden lattice.

Definition 8.1 (Hidden (Ideal) Lattice) Let α ∈ R+ be a positive real, ~vi ∈ Zn

be τ integer vectors such that there exists a unique (ideal) lattice L and some unique

vectors ~wi ∈ L respecting ∀1 ≤ i ≤ τ , dist(~vi, ~wi) ≤ α. Then L is called an α-Hidden

(Ideal) Lattice hidden under {~vi}.

For a hidden lattice, it is quite straightforward to see that one of the core problems

is to recover the lattice, given that there exist such a lattice, which we shall define as

follows:

Definition 8.2 (Hidden (Ideal) Lattice Problem) Let α ∈ R+ be a positive real,

~vi ∈ Zn be τ integer vectors such that there exists an α-Hidden (Ideal) Lattice L hidden

under {~vi}. The α-Hidden (Ideal) Lattice Problem, denoted by α-HLPn,τ (α-HILPn,τ ,

resp.), is to find L, given {~vi}.
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Informally, in the HLP/HILP the existence and the uniqueness of the lattice is

guaranteed by several vectors close to the lattice, and one is asked to find the such a

lattice given those vectors.

Definition 8.3 (BDDP over Hidden (Ideal) Lattice) Let α, β ∈ R+ be some pos-

itive reals. Let ~vi ∈ Zn be τ integer vectors such that there exists an α-Hidden (Ideal)

Lattice, L, hidden under {~vi}. Let ~u ∈ Zn be an integer vector such that there exists a

unique ~w ∈ L respecting dist(~u, ~w) ≤ β. Then the Bounded Distance Decoding problem

over Hidden(ideal) lattice, denoted by α, β-BDDHn,τ (α, β-BDDHin,τ , resp.), is to find

~w, given {~vi} and ~u.

Definition 8.4 (Dec BDDP over Hidden (Ideal) Lattice) Let α, β ∈ R+ be some

positive reals. Let ~vi ∈ Zn be τ integer vectors such that there exists an α-Hidden (Ideal)

Lattice, L, hidden under {~vi}. Let ~u ∈ Zn be an integer vector. Then the Decisional

Bounded Distance Decoding problem over Hidden (ideal) lattice, denoted by Dec α, β-

BDDHn,τ (Dec α, β-BDDHin,τ , resp.), is to decide if there exists a unique ~w ∈ L such

that dist(~u, ~w) ≤ β or not, given {~vi} and ~u.

8.2 Reductions from Existing Problems

In this section, we provide reductions of our new problems from some existing problems.

The relations among the problems is described in Figure 8.1, where an arrow from

problem A to problem B means that A is no easy to solve than B. We omit the proof

of the reductions from problems over general lattice to problems over ideal lattice (i.e.

HILP to HLP), since if an algorithm can solve the problem in any lattice, it can solve

the problem in an ideal lattice.

Here, we do not provide an average case/worst case equivalence. We note that this

is not surprising, considering that both of the previous works that we generalized (due

to Gentry and Halevi’s scheme [GH11] and van Dijk et.al’s scheme [vDGHV10]) also

do not provide such a proof. Nevertheless, Gentry also provided an average/worst case

equivalent for BDD over ideal lattice [Gen10b], but this work was not adopted in the

subsequent work in Gentry and Halevi’s scheme due to its impracticality. Further,

both of the schemes [GH11, vDGHV10] also rely on another problem (SSSP), in which

the proof for the average case/worst case equivalent has never been investigated yet,

to the best of our knowledge.
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Figure 8.1: Relations among problems.

Theorem 8.1 If an algorithm A solves α, β-BDDHn,τ (α, β-BDDHin,τ resp.) with an

advantage of ε, then there exists an algorithm B that solves the γ-BDDn (γ-BDDin

resp.) with an advantage of at least ε. The running time of B is polynomial in the

running time of A.

Proof: Let {~vi}, ~u be the input of a γ-BDDn (γ-BDDin resp.) problem, where {~vi} is a

basis of L. Set τ ← #~vi, α← 0 and β ← γ. Call A with {~vi}, ~u. Since dist(~vi,L) ≤ α,

and dist(~u,L) ≤ γ, {~v1} and ~u is in the correct form of the input of A. Therefore, A
returns the unique ~w ∈ L such that dist(~u, ~w) ≤ β = γ. Return ~w. The above theorem

is also correct for the decisional version of the problems. We omit the proof, which can

be adapted in a similar fashion as above.

Theorem 8.2 If an algorithm A solves α, β-BDDHn,τ (α, β-BDDHin,τ , resp.) with an

advantage of ε, then there exists an algorithm B that solves the α-HLPn,τ (α-HILPn,τ ,

resp.) with an advantage of at least ε. The running time of B is polynomial in the

running time of A.

Proof: Let {~vi} be the input of an α-HLPn,τ (α-HILPn,τ , resp.). Set β ← α, τ ← #~vi.

For 1 ≤ i ≤ τ , set ~u ← ~vi and call A with {~vi}, ~u to get the unique ~wi ∈ L where

L is the α-Hidden (Ideal) Lattice hidden under {~vi}, such that dist(~u, ~wi) ≤ β = α.

Reconstruct the lattice L from the generating vectors {~wi}. Return L.
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Theorem 8.3 If an algorithm A solves α-HILPn,τ with an advantage of ε, then there

exists an algorithm B that solves the γ-AGCDτ with an advantage of at least ε. The

running time of B is polynomial in the running time of A.

Proof: Let ci be the input of a γ-AGCDτ problem. Set n← 1, α← γ and ~vi ← 〈ci〉.
Call A with {~vi} to get the unique L such that dist(vi,L) ≤ α. The basis of L is equal

to the vector 〈p〉 such that ci = qip+ ri with |ri| ≤ α. Return p.



Chapter 9

A Homomorphic Encryption from Hidden
Lattice

Now we describe our homomorphic encryption scheme from hidden lattice. As one

shall see, we aim to build our scheme on a harder problem than the existing problems.

As we shall see in the next chapter, a harder problem enables us to construct an FHE

scheme with smaller parameters, which will leads to better performance.

9.1 The Somewhat Homomorphic Encryption Scheme

The general idea of our work is to give some vectors close to the lattice, instead of

giving the lattice directly, for enabling encryption. Only the secret key holder knows

the lattice, and hence, can perform the correct decryption. The ciphertexts are vectors

close to the lattice with a bounded distance, therefore we do not lose the property of

homomorphism of the ciphertext. Indeed, Figure 9.1 illustrates a comparison between

classic lattice-based cryptography and hidden lattice-based cryptography. One shall

see that less information with regard to the lattice is released, which, in return, makes

the scheme more secure.

The construction below uses the following parameters. chapter 10.4 provides the

concrete values for the parameters.

• ρ: the norm of the random noise vector;

• η: the bit length of the norm of generating polynomial;

• γ: the bit length of the norm of the random multiplier vector;

• τ : the number of vectors in the public key;

• ζ: the norm of noise used in encryption;

• n: the dimension of the hidden lattice.
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Our somewhat homomorphic encryption scheme uses following four algorithms:

KeyGen(λ)

• Set parameters ρ, η, γ, τ, ζ, n as in chapter 10.4 with respect

to λ, n is a power of 2;

• Pick an irreducible polynomial of degree n, f(x) = xn+1 (see

Remark 2);

• Pick a vector ~v randomly in {~u ∈ Zn, 2η−1 < ‖~u‖ <

2η,
∑n−1

i=0 ui mod 2 = 1};

• Generate the rotation matrix V ← Rot(~v, f), i.e., when

f(x) = xn + 1,

Rot(~v, f) =

∣∣∣∣∣∣∣∣∣∣∣

v0 v1 v2 . . . vn−1

−vn−1 v0 v1 . . . vn−2
...

...
...

. . .
...

−v1 −v2 −v3 . . . v0

∣∣∣∣∣∣∣∣∣∣∣
.

• d← | det(V)| is the determinant of V (see Remark 3);

• Pick τ − 1 vectors ~gi randomly in {~u ∈ Zn, 2γ−1 < ‖~u‖ <
2γ} and another vector ~gτ randomly in {~u ∈ Zn, ‖~u‖ <

2γ,
∑n−1

j=0 uj mod 2 = 1};

• Pick τ − 1 vectors ~ri randomly in {~u ∈ {−1, 0, 1}n, ‖~u‖ ≤ ρ}
and another vector ~rτ randomly in {~u ∈ {−1, 0, 1}n, ‖~u‖ ≤
ρ,
∑n−1

j=0 uj mod 2 = 1};

• Compute τ vectors ~πi ← ~gi × ~v + ~ri for 1 ≤ i ≤ τ ;

• Find the integer polynomial w(x), such that w(x) × v(x) =

d mod f(x) (see Remark 3), denote W← Rot(~w, f);

• Output sk ← {d, ~w} and pk ← {~πi}.

Remark 9.1 In [SV10], Smart and Vercauteren showed that one can use any irre-

ducible polynomial for the ideal lattice to build FHE cryptosystems, however, Gentry
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and Halevi [GH11] restricted it to xn + 1, where n is a power of 2, for enabling a faster

operation. Recent result in [SS11] show that n being a power of 2 is not essential, even

if that leads to xn + 1 being not irreducible. In our case, we adopt the setting from

Gentry and Halevi’s scheme in [GH11] to have fast operations.

Remark 9.2 The complexity of finding w(x) depends on d. If d is prime, one can

execute XGCD(v, f) to find w, where XGCD is the extended GCD algorithm [SV10].

However, this is only feasible on a small dimension. In a large dimension, having d to

be prime is costly. One needs to use Gentry and Halevi’s technique, where d needs to

be odd.

Encrypt(m, pk)

• Pick τ + 1 integer vectors {~s1, . . . , ~sτ , ~sτ+1} satisfying:

–
∑n

j=1 si,j mod 2 = 0, 1 ≤ i ≤ τ − 1

–
∑n

j=1 sτ,j mod 2 = m,
∑n

j=1 sτ+1,j mod 2 = 0;

– Denote ~s← 〈~s1, . . . , ~sτ , ~sτ+1〉, ‖~s‖ ≤ ζ.

• Output ~ψ ←
∑τ

i=1 ~si × ~πi + ~sτ+1

Decrypt(~ψ, sk)

• ~ψ′ ← b~ψ × ~w/de;

• Return m← ψ′(1) mod 2.
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Evaluate (ψ1, . . . , ψt, C, pk)

• For each addition or multiplication gate in C, call Add or

Mult algorithm;

• Return the output of C.

Add(~ψ1, ~ψ2)

• Return ψ ← ~ψ1 + ~ψ2.

Mult(~ψ1, ~ψ2)

• Return ~ψ ← ~ψ1 × ~ψ2.

9.2 Analysis

Below we review two definitions provided by Gentry’s that will be used in our proof.

Definition 9.1 (rEnc) rEnc represents the maximum possible distance between a ci-

phertext ~ψ generated by Encrypt algorithm and the hidden lattice L.

Definition 9.2 (rDec) rDec represents the decryption radius: the minimum distance

such that any ~ψ (generated by Encrypt or Evaluate) can be decrypted correctly, if

dist(~ψ,L) ≤ rDec.

These definitions are also applicable to rpk, i.e., the maximum distance between a

public key ~πi and the hidden lattice. As per definition, we have rpk = ρ. Our noise

of a ciphertext comes from the production of ~s and ~ri. Hence, we have rEnc ≤ θρζ.1

Meanwhile, the result of [GH11] shows that rDec ∼ 2η. So we prove the following under

the assumption that θρζ � 2η.

We firstly show the correctness of the Decrypt algorithm. Essentially, any cipher-

text ~ψ is a vector close to L(V), and can be decrypted correctly as long as rEnc < rDec.

Without losing generality, we assume ~ψ = ~a+~b, for certain ~a ∈ Zn, ~b ∈ L, ‖~a‖ ≤ θρζ,

where ~a =
∑τ

i=1 ~ri × ~si + ~sτ+1. We firstly prove ~ψ′ = ~a (mod 2) as follows: Because

~b ∈ L, hence, ~a = ~ψ mod V = ~ψ − b~ψ · V−1e · V. Since V−1 = W/d, and L(V)

1This value is indeed an upper bound. The actual rEnc is expected to be much smaller. We provide
more details in chapter 10.4.
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Figure 9.1: Why BDDH is better?

and L(〈2〉) are coprime, we obtain ~a mod 2 = b~ψ ·W/de mod 2 = b~ψ × ~w/de mod 2.

Therefore, ~ψ′ mod 2 =
∑τ

i=1 ~ri × ~si + ~sτ+1 mod 2. Then we show ψ′(1) mod 2 = m

as follows: ψ′(1) mod 2 =
∑τ

i=1 ri(1)si(1) + sτ+1(1) mod 2 = rτ (1)sτ (1) = m (mod 2).

Therefore, the Decrypt algorithm is correct.

Then we prove the correctness of Mult. We omit the proof of Add. Assume

ψ1 = ~a1 + ~b1 and ψ1 = ~a2 + ~b2 for certain ~a1, ~a2 ∈ Zn, ~b1, ~b2 ∈ L, ‖~a1‖, ‖~a2‖ ≤
θρζ, where aj(x) =

∑τ
i=1 rj,i(x)sj,i(x) + sj,τ+1(x) mod f(x). Hence, ψ(x) ← ψ1(x) ×

ψ2(x) mod f(x) = a1(x)a2(x) + a1(x)b2(x) + a2(x)b1(x) + b1(x)b2(x) mod f(x). Since

the vector form of ψ(x)−a1(x)a2(x) is in L, as long as ‖a1(x)a2(x)‖ < rDec, decrypting

~ψ will return a1(1)a2(1) = m1 ×m2. Hence, Mult is correct.

9.2.1 Comparisons

We start with a comparison between BDDH based encryptions and BDD based en-

cryptions. As one shall see from Figure 9.1, good basis, bad basis, etc. are all notions

associated with a lattice. Further, from a left notion, one is able to compute all the

notions to the right, but not vise versa. The more it is to the right side, the less

information it contains about the lattice.

For the classic BDD based encryption schemes, one usually uses a good basis as

the secret key, a bad basis as the public key and BDD vectors as the ciphertexts. In

comparison, in our construction, we use the determinant of the lattice as the secret

key, the BDD vectors as the public key and the BDDH vectors as the ciphertext. And

it can be considered that less information is given away from the lattice in our scheme,

which in theory makes our problem no easier to solve than the counter part.

Now we compare the SHE schemes. We note that our SHE scheme is a generaliza-

tion of the integer based scheme [vDGHV10] as well as the ideal lattice based scheme

[Gen09a].



9.2. Analysis 106

By setting τ = 1 and let ~ri = 0, we obtain the ideal lattice based scheme. In this

case, the lattice is not hidden anymore because the noise is zero. The public key of our

scheme is a vector of the lattice, and the rotation of the vector forms a bad basis of the

lattice, which will be used in the lattice based scheme. The rest of the construction

follows the ideal lattice based scheme.

To obtain the integer based scheme, we set n = 1. Then the hidden lattice is a

lattice with dimension 1. Its determinant is the secret key p used in the integer based

scheme, while the public keys are τ number of integers gip+ ri.

We note that the LWE based schemes are still by far the most efficient ones. As

mentioned earlier, it allows one to change the determinant of the lattice (modulus

switching), and therefore, the growth of the noise is much slower than the lattice based

scheme. Hence, essentially this technique boosts the system exponentially. Unfortu-

nately, this technique cannot be directly applied to the lattice-based scheme. Therefore

we omit the comparison with the LWE-based FHE schemes.

9.2.2 Semantic Security

The following theorem proves the semantic security2 of our algorithm.

Theorem 9.1 If an algorithm A breaks the semantic security with advantage ε, then

there exists an algorithm B that solves the Dec α, β-BDDHin,τ with advantage of ε
8
.

The running time of B is polynomial in the running time of A.

Proof: Fix parameters ρ, η, γ, τ, ζ, n as in KeyGen. Set α ← ρ, β ← θζρ. Let {~vi}
and ~u a decisional α, β-BDDHin,τ problem. Assume ~vi = ~giB+~ri, where B is a basis of

L, ‖~ri‖ ≤ α, ~gi, ~ri ∈ Zn. Call algorithm A with mb, b ∈ {0, 1} and {~vi}. For ~vτ , it has

one chance in four that
∑n

j=0 ri,j mod 2 = 1 and
∑n

j=0 gi,j mod 2 = 1. We do not have

parity requirement for
∑n

j=0 ri,j mod 2 and
∑n

j=0 gi,j mod 2 when i 6= τ . Therefore,

the input vectors have at least 1
4

probability of being in the correct form of the public

key if det({~vi}) is odd. As a result, the overall probability is 1
8
.

Algorithm A then returns m∗b . Algorithm B outputs m∗b +mb+ 1. If the vectors are

in the correct form of the public keys (meaning that for ~vτ , we require
∑n

j=0 rτ,j = 1

and
∑n

j=0 gτ,j = 1), m∗b = mb with a probability of 1
2

+ ε. Meanwhile, if {~vi} is not

in the correct form, A will return a random bits. Which implies the probability of

m∗b = mb is 1/2. Overall, B has an probability of 1
8
(1
2

+ ε) + 7
8
· 1
2

= 1
2

+ ε
8

to obtain

correct result. Hence, the overall advantage is ε
8
.

2As in Gentry’s work [Gen09a], the definition is without the reference to the Evaluate algorithm.
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9.2.3 Attacks

Practical Public Key Attack

In this section, we present the best known attack, which is an adaptation of the attack

proposed in [vDGHV10] to solve the AGCD of k integers. We simply generalize the

attack from a lattice dimension equal to 1 to any n. We note that the attack in

[vDGHV10] was already a generalization of the AGCDk attack in [HG01] from 2 integers

to any number of integers.

B =

∣∣∣∣∣∣∣∣∣∣∣∣∣

Id(θρ) Rot(~π2) Rot(~π3) . . . Rot(~πk)

0 Rot(~π1) 0 . . . 0

0 0 Rot(~π1) . . . 0
...

...
...

. . .
...

0 0 0 . . . Rot(~π1)

∣∣∣∣∣∣∣∣∣∣∣∣∣
Let L(B) be a lattice with a basis matrix with k ≤ τ public keys as above. Id(a) =

a · In where In is an n× n identity matrix. For ~π1 = ~r1 +~g1V and any of ~πi = ~ri +~giV

where 2 ≤ i ≤ k, we have ~π1~gi−~πi~g1 = ~r1~gi−~ri~g1. Therefore, the lattice L(B) contains

a vector ~u such that ~u = 〈θρ~g1, ~r2~g1 − ~r1~g2, ~r3~g1 − ~r1~g3, . . . , ~rk~g1 − ~r1~gk〉. Finding such

a vector breaks the public key security, since one can recover ~r1 form ~g1 and ~π1.

In our analysis, the capability of lattice reduction algorithms is expressed as a

function of two minimas, i.e. λ2
λ1

. For this attack to work, we need λ1 = ‖~u‖. it has

been shown that the best lattice reduction algorithm cannot find ~u if λ2
λ1
< cnk for some

constant c. That is

λ2(L) < cnk‖~u‖. (9.1)

A recent work in [CN11] shows that the smallest c that a reduction algorithm is reach-

able is 1.009.3

Additionally, accordingly to Equation 2.1, we have

λ2(L) ≤
√
nk

nk
nk−1 (

det(L)

‖~u‖
)

1
nk−1 . (9.2)

Combining Inequations 9.1 and 9.2 , we obtain that ~u should not be found using a

lattice reduction if

3In [CN11], the authors also provided an enumeration technique, that allows one to obtain c = 1.009
with 235 operations, however, the enumeration technique only works for small dimensions, while in
our case the dimension is approximately τn. Hence, enumeration technique is not applicable in our
scenario.
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√
nk

nk
nk−1 det(B)

1
nk−1 < cnk‖~u‖

nk
nk−1 .

Therefore, we need to guarantee that

det(B) < cnk(nk−1)‖~u‖nk. (9.3)

We know that det(B) = ρn det(Rot(~π1))
k−1. Using the Hadamard upper bound

[GvL96], we obtain det(Rot(~π1)) ≤ ‖~π1‖n, therefore, we have det(B) ≤ ρn‖~π1‖n(k−1),
which is

det(B) ≤ ρn(θ‖~g1‖‖~v‖)n(k−1). (9.4)

Meanwhile, we have ‖~u‖ > θρ‖~g1‖, and therefore we can expect the attack to be

successful if

ρn(θ‖~g1‖‖~v‖)n(k−1) ≥ cnk(nk−1)(θρ‖~g1‖)nk.

To relax the condition a bit further, the attack will be successful if ρn(θ‖~g1‖‖~v‖)n(k−1) ≥
cn

2k2(θρ‖~g1‖)nk. As a result, we have the following equation:

η(k − 1) ≥ log2 θ + nk2 log2 c+ γ + (k − 1) log2 ρ, (9.5)

which is

log2 c ≤ −
γ + log2 θ + (k − 1)(log2 ρ− η)

nk2
.

To allow the best advantage of the attacker (where the attacker can use c as great as

possible), we need to maximize the right hand side of the inequation. Denote A the

right hand side of the inequation, and let κ = 1
k
, then

A = −γ + log2 θ + log2 ρ− η
n

κ2 − log2 ρ− η
n

κ

Since the coefficient of κ2 term is negative (because γ > η), the maximum value of A

is achieved when

κ =
η − log2 ρ

2(γ + log2 θ + log2 ρ− η)
,

which is

k =
2(γ + log2 θ + log2 ρ− η)

η − log2 ρ
.

Considering that log2 ρ is neglible compared with η, hence we know that the best attack

occurs when k ∼ O(γ
η
).

Remark 9.3 The best attack occurs when O(γ
η
) public keys are used. This is also the

case with the AGCD attack against the integer based fully homomorphic encryption

scheme.
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To sum up, we need Equation 3 to be false for all k between 2 and τ . Moreover, in

our parameter settings, we have γ
η
> τ . Hence, to allow the greatest advantage to the

attacker, he/she should use all public keys in this attack. Therefore, taking γ ∼ O(nη)

and τ ∼ O(n), we conjecture that the best attack requires a lattice dimension that is

quadratic with n.

Best Known Message Attack

The best known message attack come from the idea of attacking a GGH type cryp-

tosystem in [Ngu99], i.e., converting a BDD problem into finding a shortest non-zero

vector in a certain lattice.

Let ~u ← 〈1, ~s1, . . . , ~sτ , ~sτ+1〉.We know that ~u is a shortest non-zero vector in the

lattice whose basis is shown as follows:

B =

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 0 . . . 0 ~ψ

0 In 0 0 . . . 0 Rot(~π1)

0 0 In 0 . . . 0 Rot(~π2)
...

...
...

...
. . .

...
...

0 0 0 0 . . . In Rot(~πτ )

∣∣∣∣∣∣∣∣∣∣∣∣∣
Therefore, using an equivalent estimation as in the best known public key attack, we

estimate that no lattice reduction will be able to find ~u from the lattice if the following

equation holds:

log2 θ + γ + η < τ(nτ − 1) log2 c+ τ log2 ζ. (9.6)

It is worth pointing out that for the message attack, the attacker is obliged to put

all the public key in the lattice, which implies that the dimension of the attacking

lattice is strictly nτ + 1, which is slightly different from the public key attack.

Birthday Paradox on Public Keys

For two public keys ~πi and ~πj, one can guess the corresponding noise ~ri and ~rj, and

construct two lattices L1 ← L(Rot(~πi − ~ri)) and L2 ← L(Rot(~πj − ~rj)). A collision

will be found when L1 = L2, which implies L1= L2 is the hidden lattice. To stop the

birthday paradox attack, it requires that the number of possible ~ri in a single public

key is greater than 2λ/2.
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Brute Force on Ciphertext

The ciphertext is protected by the noise ~s. To attack the ciphertext, one guesses ~s.

Therefore, our scheme requires that the number of possible ~s to be greater than 2λ.

AGCD Attack There is also another AGCD attack in [CNT12], which is a general-

ization of the partial AGCD attack presented in [CN12]. For two integers c1 = g1p+ r1

and c2 = g2p + r2, the attack is to find the greatest common divisor of
∏2γ−1

i=0 (c1 − i)
and

∏2γ−1
i=0 (c2 − i), where γ is the maximum bit-length of ri. Then, one can recover

p from this divisor. This attack runs in O(2γ) time. We note that this attack is not

directly applicable to our scheme, since we are dealing with vectors instead of integers.

The best adaption of this attack is to replace ci with det(Rot(πi)), and guess ri with

all possible noise. Nevertheless, this attack will be no better than a birthday paradox

attack, due to the extra cost of computing the product of the determinant.

9.2.4 Security Conjecture

In section 8.2, we have shown that a BDDHn,τ is harder than a BDDn problem. In

the previous part of this chapter we also show that if there exists a BDDO(nτ) solver,

then one is able to solve BDDHn,τ . Generally speaking, we have the following relations

between these problem, assuming τ ≥ n,

BDDn ≥ BDDHn ≥ BDDO(n2),

where A ≥ B means B is harder than A.

Thus, we know that BDDHn is equivalent to a BDDnξ where 1 ≤ ξ ≤ 2, and our

construction is based on BDDnξ .

Conjecture 9.1 If a BDDO(n2) problem is secure, then BDDHn,τ is also secure, if

τ ≥ n.

In chapter 10.4 we will present two parameter settings. We note that the first

parameter setting does not rely on this security conjecture. However, using this con-

jecture will further improve the performance of the scheme as in our second parameter

setting.



Chapter 10

A Bootstrappable Scheme

In this section, we show how to bootstrap our scheme. We firstly squash the decryption

algorithm to obtain a low degree decryption polynomial. Then we show that our

cryptosystem is able to evaluate this polynomial homomorphically.

10.1 the Squashed scheme

In order to bootstrap our scheme, we adopt the squashing technique used in Gentry’s

scheme.

Essentially, we need to evaluate ~ψ × Rot(~w). The multiplication circuit in the

decryption algorithm is squashed into several additions. The squashed scheme takes

as follows:

KeyGen∗(pk, sk)

• Generate a vector ~w∗ = 〈w∗1, . . . , w∗n〉, where w∗i ← d2η
∗ ×

wi/dc, and η∗ = η + γ + 1 is an integer.

• For each coefficient w∗i of vector ~w∗ = 〈w∗1, . . . , w∗n〉, generate

an l dimentional integer vector ~yi = 〈yi,1, . . . , yi,l〉 and a binary

vector ~zi = 〈zi,1, . . . , zi,l〉, such that w∗i =
∑l

k=1 yk,izk,i, and

the hamming weight of ~zi is t.

• Repeat the last step for all coefficients of ~w∗;

• Output pk∗ ← {~yk}n−1k=0 and sk∗ ← {~zk}n−1k=0 .

Remark 10.1 In our parameter setting, we use t = 1, which indicates that one of

coefficients of ~yi = 〈yi,1, . . . , yi,l〉 is w∗i . To do so, one can randomly assign w∗i to one

of the coefficient of ~yi and fill in the rest of the coefficients with approximately same

length.

111
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Squash(~ψ, pk∗)

• Given a ciphertext ~ψ = 〈ψ0, . . . , ψn−1〉, for each coefficient,

generate ~xi = ψi~yi/2
η∗ for 0 ≤ i ≤ n−1, and keep ω precisions

behind the decimal point;

• Output {~xi}ni=1.

Decrypt∗({~xi}, sk∗)

• ψ∗i ← [~xi~zi];

• ~ψ∗ ← 〈ψ∗1, . . . , ψ∗n〉;

• ~ψ′ ← row sum of the matrix Rot(~ψ∗)

• Output m← ψ′(1) mod 2.

10.2 Analysis

10.2.1 Correctness

Our proof takes two stages. We firstly prove that the decryption is correct under the

assumption that the roundoff will not introduce errors. Under this assumption, we

have ψ∗i = ~xi~zi = ψi~yi~zi/2
η∗ = ψiw

∗
i /2

η∗ = ψiwi/d. Hence, the decryption is correct.

Now we show the requirement of our assumption. For the i-th coefficient, let ∆←
w∗i −2η

∗×wi/d, then w∗i = ∆ + 2η
∗
wi/d. Therefore ψ∗i = [ψi×w∗i /2η

∗
] = [ψi×∆/2η

∗
+

ψi × wi/d]. The first term needs to be smaller than 1/2. Since ∆ < 1/2 by definition,

setting 2η
∗
> ψi for all i < n will guarantee there is no error in the decryption. As a

result, our decryption algorithm is correct when η∗ ≥ η + γ + 1.

10.2.2 Security

On a high level, for each coefficient of the secret key w∗i , 0 ≤ i ≤ n − 1, we squash

it into a subset with l elements. To recover the secret key, an attacker is required to

recover all w′i-s. This is mainly due to the hidden ideal lattice we used. Since the

attacker does not know the lattice, it is incapable of verifying if the w∗i it recovered

is correct. The only method that can be conducted is to recover all w∗i -s and then to

use them to decrypt a certain ciphertext and check the decryption correctness. As a
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Number of Precisions of Degree of Decryption Number of
Additions (t× n) Floating Point (ω) Polynomial (q) Monomials (m)

2 ∼ 3 2 3 9
4 ∼ 7 3 7 5145
8 ∼ 15 4 15 ∼ 234

16 ∼ 31 5 31 ∼ 275

32 ∼ 63 6 63 ∼ 2176

. . . . . . . . . . . .
512 ∼ 1023 10 1023 ∼ 23180

Table 10.1: Relations between the # Additions and the Decryption Polynomial

result, the security of our squashed scheme is f(t, l)n, where f(t, l) is the number of

operations that required to solve a t, l-SSP, which equals to
(
l
t

)
for a small set.

Conjecture 10.1 The best attack to solve n joint t, l-SSP instance is via a brute force

attack. The complexity is
(
l
t

)n
.

In fact, as stated earlier, this is another main advantage of hiding the lattice other

than using smaller dimensions. In contrast, in Gentry and Halevi’s implementation,

one is required to provide security for each SSP. If one have recovered one coefficient,

it is able to recover the whole secret key. This resulted into a big set of at least 1024

element for each w∗i that has been adopted.

As we shall see in the next section, since we have increased the security by an

exponential factor of n, we are able to use exponentially smaller sets (in terms of

number of elements). For instance, we squash w∗i into a set of only 6 elements, with

only one of them being w∗i . The attacker will have to decide which one out of the six

is picked. As a result we obtain a security of 6n.

However, for each coefficient of ~ψ′, we will need to perform t×n additions, compared

with only t additions in Gentry and Halevi’s scheme. In this case, since the decryption

is additions of t × n floating points, we need log2(t × n) + 1 digits precision after the

decimal point, as shown in Table 10.1. As a result, the degree of decryption polynomial,

denoted by q, is increased.

10.3 Bootstrapability

The bootstrapability of the squashed scheme depends on the degree of the binary form

of the decryption polynomial. The result of [GH11] shows that to evaluatemmonomials

with a degree q polynomial homomorphically, the noise of the resulting ciphertext is
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around
√
m(rEnc)

q. Since we have previously shown that rEnc ≤ θρζ, now we evaluate

the number of monomials.

Since our decryption algorithm has essentially the same structure with Gentry and

Halevi’s scheme, the following result of the squashed the decryption follows their ob-

servation. The number of degree-` monomials in the squashed decryption algorithm

is

m =

blog2 `c∏
i=0

(
`

2i

)
.

For instance, if ` = 31, then m =
(
31
1

)(
31
2

)(
31
4

)(
31
8

)(
31
16

)
∼ 275.

Then the squashed decryption requires a multiplication between xi and zi. How-

ever, it is not necessary to encrypt xi. Therefore, this multiplication does not in-

crease the number of monomials. Finally, since we need to support a product of two

homomorphically-decrypted bits, our scheme must support polynomials with m degree-

` monomials. As a result, our scheme is expected to be able to handle a homomorphic

decryption plus one more multiplication/addition if Equation 10.1 holds.

2η ≥
√
m(θρζ)`. (10.1)

10.4 Parameters

Now, we provide two sets of parameters. In the first set we have ξ = 1. We do not rely

on the security conjecture. In this case, we work on hidden lattices which dimension are

quite large, and as a result, we only need a constant number of public keys. Essentially

it is quite close to Gentry-Halevi’s scheme. The major difference is that our lattice is

hidden, so we do not rely on the SSP. As a result, we have a smaller circuit depth,

which results in smaller parameters.

For the second set, we rely on our conjecture. We work on hidden lattices with

small dimensions, and the number of public keys is approximately the same as the

dimension. In the configuration, we use c = 1.007, which implies that no efficient

reduction algorithm should be able to find vectors smaller than cn det
1
n with sufficiently

large n. Nevertheless, one should adapt c with the development of new reduction

algorithms.
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10.4.1 Parameter Setting 1

From subsection 8.2 it is straightforward to see that the BDDH problem is harder than

the corresponding BDD problem over the lattices with the same dimension for the same

parameters. Therefore, we propose a set of parameters of our FHE scheme where even

to solve the BDD problem is hard.

Similar to [GH11], we do not provide an asymptotic complexity. Table 10.2 high-

lights the parameters for security levels 280. Since our parameters are bounded by

several requirements, and most parameters are interconnected, we tested all the possi-

ble secure combinations to achieve the smallest public key size.

We use λ = 80 as an example. It requires a lattice with dimension 1024, with 2

public keys. To stop the birthday paradox attack, we allow 5 coefficients of each noise

for each πi to be −1, or 1, while the rest are 0. Hence, the maximum norm of the noise

is
√

5. This allows
(
1024
5

)
> 2λ/2 possibilities. As for the security of the encryption noise

~s, ~s maintains τ + 1 blocks. Each block has n coefficients. Further, the parity of each

block (i.e., the sum of all bits) follows the requirement of the Encrypt algorithm. We

set maximum 5 coefficients to be 1 or −1 (4 coefficients if the encrypted message is

0), with the rest 0-s. As a result, there are maximum 5 blocks with non-zero entries

besides the τ -th block. The total possibility is at least
(
τ+1
5

)
(
(
n
2

)
22)5 > 280. Hence,

we are secure against the brute force attack. We also use a 1, 2-SSP setting to achieve

a 21024 security level of the squashed secret keys. This setting gives us a decryption

polynomial of degree 3 as we stated eailer.

Now we look into more details of rEnc. Recall that ψ(x) =
∑τ

i=1 si(x)πi(x) +

sτ+1(x) mod f(x). Therefore, the maximum noise of each ψi is 5, since ~s contains only

5 non-zero coefficients. As a result, the worst case rEnc =
√

1024
√

5
√

5, although in

most cases, it will be much smaller.

To bootstrap, we need 2η ≥
√
m(rEnc)

1023, where m =
(
1023
1

)(
1023
2

)
· · ·
(
1023
512

)
∼ 23180.

Therefore, the setting η = 9080 will allow us to bootstrap. Having set all parameters

as above, we choose the smallest γ allowed according to Equation 3 and 4. As a result,

we obtain parameters in the second row of Table 10.2. For the completeness, we also

list the parameters for security level λ = 128 and 160.

10.4.2 Parameter Setting 2

As for the conjectured security, we assume that the best known attack works on a

lattice which dimension is quadratic with the hidden lattice. Therefore, we build our
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ρ η γ τ ζ n t l Conjecture

λ = 80
√

5 9080 1280000 310
√

5 1023 1 2 N

λ = 80
√

10 222 18255 111
√

11 31 1 6 Y

λ = 128 8 595 88411 301
√

17 63 1 5 Y

λ = 160 8 604 91127 307
√

21 63 1 6 Y

Table 10.2: Parameters

hidden lattice which dimension is square root of the dimension where a normal lattice

problem is secure. However, due to the fact that the dimension is smaller than the

proved scheme, the noise in each vector has to be increased to deliver the same security.

GH Scheme Our Parameter Setting 2
λ = 72 λ = 80

Lattice dimension 2048 31
Lattice determinant 2780,000 2573,000

Set size 1024 6
Subset size 15 1
Public key size (Mbits) 552 173.5
Ciphertext size (kbits) 780 573

Table 10.3: Comparisons with Gentry and Halevi’s implementation

We also use λ = 80 as an example. The parameters for security level λ = 128

and 160 are listed in Table 10.2. For λ = 80 it requires a lattice with dimension 31,

with 57 public keys. To stop the birthday paradox attack, we allow the coefficient of

each noise for each πi to be −1, 0, or 1, so the maximum norm of the noise is
√

32.

This allows 332 > 2λ/2 possibilities. Further, ~s maintains τ + 1 blocks. Each block

has 32 coefficients. We set maximum 11 coefficients to be 1 or −1 (10 coefficients

if the encrypted message is 0), with the rest 0-s. As a result, there are maximum 5

blocks with non-zero entries besides the τ -th block. The total possibility is at least(
τ+1
5

)
(
(
n
2

)
22)5 > 280. Hence, we are secure against the brute force attack. We also use

a 1, 6-SSP setting to achieve a 632 ∼ 282 security level of the squashed secret keys.

As for the rEnc, the maximum noise of each ψi is 11, since ~s contains only 11 non-

zero coefficients. As a result, the worst case rEnc = 11
√

32. To bootstrap, it requires

2η ≥
√

275(11
√

31)31, which gives us η = 222. Finally, we choose the smallest γ allowed

according to Equation 3 and 4. As a result, we obtain parameters in the third row of
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Table 10.2.

10.4.3 Comparisons

Here we focus on the performance of our second parameter setting. We omit the

comparison with parameter setting 1, as this setting is highly inefficient as stated

earlier.

For our conjectured cryptosystem, our SHE scheme uses a ciphertext size of (222 +

18255) × 31 ∼ 573 kbits. The SHE also uses a public key space of 111 × 573 kbits

∼ 63.6 Mbits. The squashed scheme uses a public key of size 6 × 31 × (222 + 18255)

bits ∼ 3.4 Mbits. Finally, one needs to encrypt the squashed secret key, which further

adds another 6 × 31 × 573 kbits ∼ 106.5 Mbits. As a result, our whole system uses a

public key size of 63.6 + 3.4 + 106.5 ∼ 173.5 Mbits.

To compare with the van Dijk et al.’s scheme, it is almost straightforward to see

that we are more efficient, since their scheme works with approx 231.6 integers, each of

the length 231.6 bits, to obtain a security level of λ = 80. Therefore we mainly compare

our scheme with Gentry and Halevi’s implementation.

To compare with Gentry and Halevi’s implementation, our first parameter setting

uses similar parameters with their SHE scheme. Nevertheless, due to the fact that the

lattice is hidden, we achieve a better bootstappability by removing the necessity of re-

lying on the SSP problem. While for our conjectured version of the scheme, we improve

the efficiency by both the reducing the dimension and removing the SSP. To complete

this subsection, we list the parameters used in Gentry and Halevi’s implementation

with λ = 72 (see [GH11]). It is easy to see that ours is more efficient than Gentry

and Halevi’s scheme in terms of space. The running time of the system is mainly in-

fluenced by the size of the ciphertext and the squashed decryption polynomial (both

degree and number of monomials). We also note that those parameters in our scheme

are smaller than Gentry and Halevi’s system, therefore, it is straightforward to see that

the running time of our scheme is better.
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We briefly reiterate our main contributions.

• An adaptive precision floating-point LLL algorithm.

In chapter 3, we proposed an improvement of LLL algorithm can be used for all

purposes of lattice reduction. It accelerates the procedure by 20% on average,

and its asymptotic complexity remains the same with classic algorithms.

• A recursive reduction algorithm for knapsack-type lattice basis.

In chapter 4, we present a method of recursive reduction. It can be applied over

a knapsack-type basis, and it successfully improves the asymptotic complexity

from O(d3+εβ2 + d4+εβ) to O(d2+εβ2 + d4+εβ).

• An dedicated LLL algorithm for ideal lattices.

In chapter 5 we present the iLLL algorithm. It can be applied over ideal lattice

basis and bases with similar structures. Combining this technique with ap-fplll,

we predict to solve the Gentry Halevi’s fully homomorphic encryption challenge

in 15.7 years. The details of the results are presented in chapter 6.

• A CCA-1 attack against fully homomorphic encryption schemes using

integers.

In chapter 7, we show a CCA-1 attack against fully homomorphic encryption

scheme with integers. We also present a reaction attack that can be used to

construct a decryption oracle when a fully homomorphic encryption scheme is

used in outsourced computing.

• A new fully homomorphic encryption scheme using hidden lattice.

In Chapter III we presented a new fully homomorphic encryption scheme using

hidden lattice. We based our scheme on a hidden lattice problem, which unifies

the problems that the ideal lattice based and integer based schemes are relying

on. It also delivers the best performance among the three under a security con-

jecture. Hence, it is the best alternative to the learning with error based fully

homomorphic encryption schemes.
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In this thesis, we have reviewed the state-of-art fully homomorphic encryption

schemes and their cryptographic primitives. Although the results presented in this

thesis have several new techniques towards the fully homomorphic encryptions, it could

be further developed in a number of ways:

• A better precision strategy for L2 algorithm.

As we have stated earlier, the update strategy for floating points in this thesis

might not be the best solution. Further research needs to be done to confirm if

it is the best, or to find the best solution.

• Cryptanalysis NTRUencryption scheme with iLLL-type algorithm

To cryptanalysis an NTRUencryption scheme one usually starts with reducing a

Coppersmith-Shamir basis. The proposed iLLL algorithm can be applied directly

over this kind of bases to accelerate reduction. However, in terms of cryptanalysis,

the LLL type algorithms are not strong enough, and one usually need to do a

BKZ reduction. Thus, it would be interesting to see if the rotation method in

the iLLL algorithm can be applied over other lattice reduction algorithms and

potentially produces better results.

• A better reduction between hidden lattice problems and classic lattice

problems.

In this thesis, we have shown that a BDDH problem over a dimension nε lattice

is equivalent to a BDD problem over a dimension n normal lattice for ε ≥ 1.

The BDDH problem enables our fully homomorphic encryption scheme, and the

parameters of our scheme rely on the hardness of this problem. So if there exists

a better reduction between the problems, (for instance, ε ≥ 1.5) then we shall be

able to use more loose parameters which will make our scheme more efficient.
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