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Abstract. The notion of fully homomorphic encryption is very impor-
tant since it enables many important applications, such as the cloud
computing scenario. In EUROCRYPT 2010, van Dijk, Gentry, Halevi
and Vaikuntanathan proposed an interesting fully homomorphic encryp-
tion scheme based on a somewhat homomorphic encryption scheme using
integers. In this paper, we demonstrate a very practical CCA-1 attack
against this somewhat homomorphic encryption scheme. Given a decryp-
tion oracle, we show that within O(λ2) queries, we can recover the secret
key successfully, where λ is the security parameter for the system.
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1 Introduction

Fully homomorphic encryption is a very important notion for cloud computing.
It allows the cloud to process users’ encrypted data without the need to decrypt
them.

Essentially, fully homomorphic encryption schemes enable one to apply ho-
momorphic operations over arbitrary number (n) of given ciphertexts c1, c2, ...,
cn without the need to know the corresponding plaintexts m1, m2, ..., mn.

This notion, which was initially named “data homomorphisms”, was pro-
posed by Rivest, Shamir and Dertouzos [1] shortly after the introduction of
RSA [2]. For many years, schemes that support partial homomorphism have
been proposed. Nevertheless, the construction of fully homomorphic encryption
had been a long standing open research problem, until the recent Gentry’s break-
through work [3, 4], where a fully homomorphic scheme was proposed.

The initial construction of Gentry’s FHE scheme (referred to as Gentry
scheme throughout this paper) uses ideal lattices. His work was then refined and
optimized by Smart and Vercauteren [5] (referred to as Smart-Vercauteren
variant), Stehlé and Steinfeld [6], and Gentry and Halevi [7] (referred to as
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Gentry-Halevi variant). Meanwhile, van Dijk et al. proposed a FHE scheme
using integers (referred to as vDGHV variant) [8], which is later extended by
Coron et al. [9] (referred to as CMNT variant), Coron et al. [10], whose security
was re-evaluated by Chen and Nguyen [11]. There is also a third type of FHE
variants that are based on coding theory proposed recently [12], whose structure
is very close to the construction from ideal lattices.

The essential idea of such a scheme is to construct a somewhat homomor-
phic encryption (SHE) scheme and then convert it to a fully one using Gentry’s
bootstrapping technique (see section 2.2) [3, 13]. Therefore, usually a fully ho-
momorphic encryption scheme contains two parts, a somewhat homomorphic
encryption scheme whose ability of homomorphic operations is limited, and a
bootstrapping technique that breaks such a limitation.

It is known that any FHE scheme that adopts Gentry’s bootstrapping tech-
nique cannot be CCA-1 secure (see Subsection 2.4 for definitions). Since the
bootstrapping technique requires one to publish the encryption of their secret
keys, therefore, if there exists a decryption oracle, then the attacker can recover
the secret key by incorporating this oracle within k queries, where k is the num-
ber of bits of the security key (in the case of vDGHV scheme, the secret key
of the squashed decryption algorithm has O(λ5) bits, hence, a CCA-1 attack is
successful in O(λ5) queries). As a result, the CCA-1 security cannot be achieved
by FHE schemes that use bootstrapping technique.

We should highlight that it is important to investigate a somewhat homomor-
phic encryption (SHE) scheme by itself, since it has many applications, such as
medical, financial and the advertising domains as mentioned in [14]. It is noted
that in these applications, only SHE schemes are required.

As far as a SHE is concerned, the CCA-2 security is also not achievable. As
a SHE allows certain level of homomorphic operations on ciphertexts, one can
modify the CCA-2 challenge ciphertext and submit it to the decryption oracle.
Therefore, the attacker can recover the plaintext.

However, whether a SHE can be CCA-1 secure remains an open problem.
Indeed, in [15], Loftus et al. showed a CCA-1 attack against Gentry-Halevi
SHE scheme and Smart-Vercauteren SHE scheme (we refer to this work
as LMSV attack), and proposed a CCA-1 secure SHE scheme (referred to as
LMSV variant).

Our Contributions

In this paper, we propose a CCA-1 attack against vDGHV SHE scheme, which
is different from the LMSV attack. We should highlight that the technique used
in the LMSV scheme to stop the LMSV attack is not applicable to our case.
With a decryption oracle of vDGHV SHE scheme, we can recover the secret key
successfully. Also, since the ciphertexts of vDGHV SHE scheme and CMNT
SHE scheme share the same structure, our attack can be applied to CMNT SHE
scheme as well. Moreover, our CCA-1 attack against vDGHV FHE scheme uses
O(λ2) queries, where λ is the security parameter of the system, while a trivial
CCA-1 attack uses O(λ5) queries.
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2 Preliminaries

2.1 Notations

Let λ be the security parameter of the system, i.e., it takes at least 2λ operations
to break the system. For integers z and d, denote [z]d for the reduction of z mod
d within (−d/2, d/2]. For a rational number q, let bqe be the closest integer to
q, [q] the fractional part of q.

2.2 Gentry’s Framework

As stated earlier, a fully homomorphic encryption scheme essentially consists of
two parts: a somewhat homomorphic encryption scheme and a bootstrapping
technique.

The somewhat homomorphic encryptions scheme enables basic additions and
multiplications over F2. Hence, it is arithmetically “complete”, because essen-
tially any circuit is derived from additions and multiplications over F2 [3]. How-
ever, in such a scheme, in order to bring some security strength, the ciphertexts
contain a random “noise”. The size of the noise is limited, to ensure a valid
decryption. Nevertheless, it grows in size as the ciphertext is processed to ho-
momorphically evaluate the function on its plaintext. Once the size of the noise
in the ciphertext exceeds a certain threshold, then the ciphertext can no longer
be decrypted correctly.

The “bootstrapping technique” is to solve such a limitation. If there is a
guarantee that the maximum evaluation circuit depth of this somewhat homo-
morphic scheme is greater than its decryption circuit depth, then one can reduce
the noise by evaluating its own decryption circuit, and consequently, convert the
somewhat homomorphic scheme to a fully homomorphic scheme.

The general idea of bootstrapping is to “refresh” a ciphertext, namely given
a ciphertext c for some plaintext m, compute a ciphertext c′ such that the size of
the noise in c′ is smaller than the size of the noise in c. The algorithm to conduct
this ciphertext refreshing operation is called “Recrypt”, which enables one to
evaluate arbitrarily large circuits.

To enable Recrypt, one publishes an encryption of the (SHE) secret key.
The new ciphertext c′ encrypts the same message, but it maintains a smaller
noise,

c′ = Recrypt(Encrypt(sk),Encrypt(c)),

Decrypt(sk, c′) = Decrypt(sk, c).

2.3 Overview of vDGHV SHE Scheme

In this subsection, we briefly review the vDGHV SHE scheme. We omit the
description of CMNT scheme. However, it is important to note that the cipher-
texts of those two schemes resemble the same structure (i.e., ci = gip+2ri), and
their decryption algorithms are identical.
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Parameters The following are the parameters used in the vDGHV somewhat
homomorphic encryption scheme.

– α: the maximum length of the noise ri, i.e.: ri ∈ [−2α, 2α);
– β: the length of the secret key p, i.e.: p ∈ (2β , 2β+1)
– γ: the maximum length of an integer in the public key;
– σ: the number of public keys used in one encryption;
– n: the number of integers in the public key;

α β γ n

Minimum λ λ2 λ4 log λ λ4 log λ+ λ

Recommended λ λ2 λ5 λ5 + λ
Table 1. Parameter Configurations.

In their paper, the author also gave two sets of parameters, one for the mini-
mum requirement of the system, and another for the recommended configuration.
We briefly list their configurations in table 1.

The Scheme Now we describe vDGHV SHE scheme. The somewhat homo-
morphic encryption scheme consists of four algorithms:

KeyGen(λ)

– Generate parameters α, β, γ, σ, n in function of λ;
– Generate a random odd integer p ∈ [2β , 2β+1);
– Generate n random integers {ri ∈ [−2α, 2α)};
– Generate n random integers {gi ∈ [0, 2γ−β)};
– sk ← p;
– x0 ← g0p+ 2r0;
– xi ← gip+ 2ri mod x0, 0 < i ≤ n;
– Reorder {xi} such that x0 is the smallest;
– pk ← {xi, α, σ}.

Encrypt(m, pk)

– Generate a bit sequence {si}, such that
∑
si = σ;

– c← m+ 2× r +
∑n−1
i=1 (si × xi) (mod x0), where r ∈ [−2α, 2α);

Decrypt(c, sk)

– m← (c mod 2)⊕ (bc/pe mod 2).
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Remark 1 Essentially, the Decrypt algorithm is simplified from [c− bc/pe]2,
where bze is to find the closest integer to z, while [z]p is to find the residue of
z mod p in (−p/2, p/2]. This is slightly different from c mod p mod 2. c mod p
returns an integer in [0, p), while c− p× bc/pe finds an integer in (−p/2, p/2].

Evaluate(c1, c2, ..., ck, P, pk)

– Return P(c1, c2, ..., ck).

P is a k-inputs evaluation polynomial while the depth of its circuit CD is lower
than the maximum circuit depth allowed by this SHE.

This SHE supports homomorphic additions and multiplications, when α� β.
For instance, suppose c1 = m1 + g1p+ 2r1 and c2 = m2 + g2p+ 2r2 for certain
g1, r1, g2, r2, the product of two ciphertexts c1c2 = m1m2 + 2(r1m2 + r2m1 +
2r1r2) + p(g1m2 + 2g1r2 + g2m1 + 2g2r1 + g1g2p). One can observe that the
decryption of c1c2 is m1m2, as long as 2(r1m2 + r2m1 + 2r1r2) ∈ (−p/2, p/2].
Therefore, the above scheme is somewhat homomorphic.

However, the homomorphic circuit depth is limited, i.e., the noise grows after
each operation, and eventually the absolute value of the noise will be greater than
p/2 and a decryption error is then possibly generated.

Suppose we want to evaluate a circuit whose depth is greater than this SHE
permits, we break the circuit into several sub-circuits. For each sub-circuit, the
resulting noise is less than the threshold (p/2). Then we refresh the resulting
ciphtertext using the bootstrapping technique. We refer the readers to the orig-
inal scheme for more details. In the following, we describe the bootstrapping
technique in general.

To bootstrap, firstly, decryption circuit in Remark 1 need to be modified. The
original decryption requires at least one division, while the modified one consists
of only additions. As we have shown earlier, the noise grows significantly faster
in a multiplication than in an addition.

Remark 2 The squash technique transfers an original secret key of O(λ2) bits
into a new secret key of O(λ5) bits. As a requirement of bootstrapping, one is
obliged to publish the encryption of the secret key, which in this case is the new
one. Therefore, a trivial CCA-1 attack to the vDGHV FHE uses O(λ5) queries.

Then, because the modified decryption circuit depth is relatively low, now it
is possible to carry out the decryption circuit homomorphically, through the
proposed SHE. In practice, we encrypt ciphertexts, denoted by Enc(c) and
the public keys, denoted by Enc(pk). Let CD be the decryption circuit, then
Eval(CD, Enc(c), Enc(pk)) = Enc(m). This is because firstly CD(c, pk) = m
and secondly, CD can be carried out homomorphically. Therefore, we obtain a
new ciphertext Enc(m).

The new ciphertext, Enc(m) has a refreshed noise level (less than 2α), which
means Enc(m) can be evaluated again. By doing this repeatedly, we can eval-
uate circuit with any depth homomorphically. Therefore, a fully homomorphic
encryption scheme is achieved.
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2.4 Security Models

In the following, we describe briefly both CCA-1 and CCA-2 attacks for com-
pleteness [16]. The IND-CCA-1/2 security game is defined as follows:

1. The challenger runs KeyGen algorithm and output a secret key sk and a
public key pk;

2. The attacker is given two oracles, an encryption oracle and a decryption
oracle;

3. The challenger generates c = Encrypt(mb, sk), where b ∈ {0, 1};
4. (Only for CCA-2) The attacker is given two oracles again, but it can not

query on c;
5. The attacker output b′.

We say that an encryption scheme is CCA-1/2 secure if the advantage of the
attacker to win the game (Pr[b = b′]− 1/2) is negligible.

2.5 LMSV CCA-1 Attack

In this subsection we briefly revisit the LMSV attack against Gentry-Halevi
SHE and Smart-Vercauteren SHE schemes. For completeness, we show the
above SHE schemes first, as well as LMSV SHE scheme, which is resistant
against their own CCA-1 attack.

Recall that all three SHE schemes consist of four algorithms, KeyGen, En-
crypt, Decrypt and Evaluate. The LMSV attack requires the first three
algorithms.

KeyGen(λ)

– Generate parameters n, t, ρ in function of λ;
– Set f(x)← xn + 1, n is a power of 2;
– Pick a random n − 1 degree polynomial v(x), with coefficients vi ∈ (0, 2t),

denote ~v the vector form of coefficients of v(x);
– Generate a matrix V from ~v and check if the Hermite Normal Form (HNF)

of V has the correct form (as shown below) and if d is an odd number;

V =

∣∣∣∣∣∣∣∣∣∣∣

v0 v1 v2 . . . vn
−vn v0 v1 . . . vn−1
−vn−1 −vn v0 . . . vn−2

...
...

...
. . .

...
−v1 −v2 −v3 . . . v0

∣∣∣∣∣∣∣∣∣∣∣
, HNF (V ) =

∣∣∣∣∣∣∣∣∣∣∣

d 0 0 . . . 0
[−a]d 1 0 . . . 0
[−a2]d 0 1 . . . 0

...
...

...
. . .

...
[−an−1]d 0 0 . . . 1

∣∣∣∣∣∣∣∣∣∣∣
.

– Find the polynomial w(x), such that w(x)× v(x) = d mod f(x);
– sk ← w, where w is one of odd coefficients of w(x);
– pk ← {a, d, ρ}.

Encrypt(m, pk)
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– Generate a degree n− 1 polynomial r(x), with coefficients ri ∈ (0, ρ);
– c(x)← m+ 2× r(x), where m ∈ {0, 1};
– c← [m+ c(a)]d.

The three SHE schemes have different decryption algorithms. We firstly in-
troduce DecryptGH and DecryptSV that are used in Gentry-Halevi SHE
and Smart-Vercauteren SHE, respectively.

DecryptGH/DecryptSV(c, sk)

– m← [c× w]d mod 2.

The decryption algorithm for LMSV SHE uses a ciphertext check procedure
to stop the LMSV attack. Here, T is the threshold used for the ciphertext check.
T need to be greater than a function of ρ.
DecryptLMSV(c, sk)

– c(x)← c− bc× w(x)/de × g(x) mod f(x);
– c′ ← [c(a)]d;
– If c′ 6= c or ‖c(x)‖∞ ≥ T return ⊥;
– Else, return c(x) mod 2

Now we describe the LMSV attack. Decrypt algorithms for Gentry-
Halevi SHE and Smart-Vercauteren SHE schemes are m← [c×w]d mod 2.
This decryption will be valid as long as [c×w/d] ≤ 1/2. Therefore, for a certain
key set (w, d), the maximum value c′ allowed is a fixed integer. The adversary
picks several different “ciphertexts”, and pass them to the decryption oracle to
check if they can be decrypted correctly. Eventually, the attacker will recover
the threshold c′ which is the maximum integer that can be decrypted correctly.
This c′ in return gives the attacker w, the secret key.

To stop this attack, Loftus et al. proposed a ciphertext check procedure. The
ciphertext that is to be decrypted, will be “disassembled” into the generating
polynomial c(x). Recall that c(x) = 2 × r(x) + m, hence, for valid ciphertexts,
‖c(x)‖∞ is bounded by a certain threshold smaller than T , while for invalid
“ciphertexts” (i.e., integers picked by attacker), the corresponding c(x) can have
arbitrary coefficients. Therefore, in the latter case, an error ⊥ is generated, and
the decryption stops.

3 Our CCA-1 attack

In this section we present our CCA-1 attack. We use vDGHV SHE scheme to
demonstrate our attack. However, the following attack can be applied to CNMT
with a trivial modification.

The security strength of vDGHV SHE comes from the noise that is added to
ciphertexts. If we can somehow reduce the noise in ciphertext, then the scheme
will no longer be secure. With the help of a decryption oracle, we can eliminate
the noise. Hence, we achieve a CCA-1 attack.
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We propose two variants that follow the same idea. The first variant requires
several ciphertexts. The main idea is to eliminate the noise and then, to find the
GCD of the remaining parts. The second variant requires only one ciphertext,
and we are able to recover the secret key directly.

We note that our attack recovers the secret key that allows us to decrypt
any valid ciphertexts, and does not require any access to OD at Stage 5 in the
CCA attack model. Thus, our attack falls in the category of CCA-1. However,
we also note that essentially, our attack is stronger than CCA-1, because instead
of solving one challenge, we recover the secret key.

3.1 The Attack

Essentially, in vDGHV SHE scheme, the public keys (xi-s) can be treated as
ciphertexts encrypting 0-s with smaller noise. Therefore, the following algorithms
can be applied on public keys with less cost. However, in order to strictly follow
the definition of CCA-1 attack, we apply our algorithms on real ciphertexts.

We note that for any correct ciphertext ci, the following holds that

ci = mi + 2r′i + g′ip

for certain r′i ∈ (−p/4, p/4] and integer g′i, since if |2r′| > p/2 decryption error
will be induced. For convenience, denote α′ = β − 1.Using the recommended
parameter configuration, we have α′ = λ2 − 1.

Now we show our attack against vDGHV SHE scheme. Suppose we have
k ciphertexts c1, c2, ..., ck of encrypted 0-s, i.e.: ci = g′ip + 2r′i. It holds that
Decrypt(ci, sk) = 0. The length of r′i-s is no greater than α′.

Let OD(c) be the decryption oracle that returns Decrypt(c, sk). The fol-
lowing pieces of pseudo-code describe two variants of our attack.

Algorithm 1 NoiseEli(c)

lp ← 2β − 2α
′+1

rp ← 2β+1 + 2α
′+1

while rp − lp > 2 do
s← b(lp + rp)/4e × 2
if OD(c+ s) = 0 then
lp ← s

end if
if OD(c+ s) = 1 then
rp ← s

end if
end while
if OD(c+ s+ 1) = 1 then
s← s+ 1

end if
return c′ ← c+ s
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Algorithm 1: NoiseEli is to help to eliminate the noise in ciphertext. Instead
of generating a ciphertext with no noise, this algorithm generates a ciphertext
with a fixed noise.

Algorithm 2: CCA-GCD describes the first variant of our attack, while Al-
gorithm 3 CCA-p describes the second variant of our attack.

Algorithm 2 CCA-GCD(c0, c1, ..., ck)

c′0 ← NoiseEli(c0)
c′1 ← NoiseEli(c1)
c′2 ← NoiseEli(c2)
p′ ← gcd(c′2 − c′1, c′1 − c′0)
t← 3
while p′ ≥ 2β+1 and t ≤ k do
c′t ← NoiseEli(ct)
p′ ← gcd(c′t − c′t−1, p

′)
t← t+ 1

end while
return p′

The first algorithm inputs a ciphertext c = 2r′ + g′p with any noise r′,
it outputs a new ciphertexts c′ = g′p + bp/2c. The new ciphertext contains a
constant noise of bp/2c.

For any ciphertext c = 2r + gp, the Decrypt algorithm will always output
0, as long as |2r| ≤ bp/2c, and output 1 if 2r > bp/2c. Denote l = bp/2c − 2r. l
represents the threshold, such that OD(c+ l) = 0 and OD(c+ l + 2) = 1. Also,
we know that l ∈ (2β − 2α

′+1, 2β+1 + 2α
′+1). Therefore, we set lp and rp to be

the lower and upper bound of l. Then we start a while loop to narrow the bound
as in Algorithm 1.

Algorithm 3 CCA-p(c)

a← NoiseEli(c)
b← NoiseEli(−c)
return a+ b+ 1

3.2 Correctness

In this subsection we prove the correctness of our attack.
For any even integer s ∈ (2β − 2α

′+1, 2β+1 + 2α
′+1), decrypting c+ s has two

possible consequences:

– If OD(c+ s) = 1, we know that the threshold l for this ciphertext is smaller
than s, then we move the upper bound rp to s;



10

– One the other hand, if OD(c+ s) = 0, we know that the threshold l for this
ciphertext is greater than s, then we move the lower bound lp to s;

By the end of the loop, we have s = lp = rp− 2. Also, it holds that OD(c+ s) =
0 and OD(c + s + 2) = 1. If bp/2c is an even integer, then s = bp/2c, and
OD(c + s + 1) = 1. By contrast, if bp/2c is odd, then s = bp/2c − 1, and
OD(c+ s+ 1) = 0. In this case, we increase s by 1.

Hence, s is the threshold l we were looking for, and c + s = gp + bp/2c.
Therefore, we successfully generate a fixed noise ciphertext in log(2β+2α

′+2)+1
queries.

The second algorithm is more straightforward. Given k + 1 outputs of Al-
gorithm 1, we obtain k linear independent noise free ciphertexts. By running a
classic GCD algorithm we obtain p′. It holds that either p = p′ or p|p′.

To have p = p′ it requires gcd(g2 − g1, g3 − g2, ..., gk − gk−1) = 1. The
probability of k random integers from Z to be coprime is 1/ζ(k), where ζ(x)
is the Riemann Zeta function

∑∞
i=1

1
ix (see [17] for more details), while the

probability of having k numbers randomly chosen form (0, 2λ
5

) to be coprime is
greater than 1/ζ(k).

In practice, 4 random integers has 1/ζ(4) > 92% probability of being coprime,
while 7 random integers has 1/ζ(7) > 99% probability of being coprime. Our
test (see subsection 3.5) confirmed this result, where on average cases, 3 random
integers are coprime.

For the last algorithm, we generate a = NoiseEli(c) and b = NoiseEli(−c).
It holds that:

a = gp+ bp/2c, b = −gp+ bp/2c.

Therefore, we obtain 2×bp/2c from a+b. Because p is an odd integer, we recover
the secret key by p = a+ b+ 1.

3.3 Efficiency

We examine the efficiency of our last two algorithms. For original ciphertexts
(no homomorphic operations have been evaluated on them), it requires log(2β +
2α

′+2)+1 < β+3 queries to find the fixed noise ciphertext. CCA-GCD algorithm
requires a minimum 3 fixed noise ciphertexts. Therefore, in best cases we recover
the secret key in 3(β + 3) queries. As β = λ2, Algorithm 2 recovers the secret
key in O(λ2) operations.

Algorithm 3 also works on O(λ2) but with better performance. To be more
precise, it uses one ciphertext only, therefore to eliminate the noise requires at
most 2(β + 3) queries.

It is true that Algorithm 3 is more efficient that Algorithm 2. The reason
that we propose Algorithm 2 is that we observe Algorithm 3 will fail if we modify
the decryption circuit. For instance, if c mod p returns an integer within [0, p)
instead of (−p/2, p/2], then Algorithm 3 will be unsuccessful. However, in this
case Algorithm 2 is still valid.
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3.4 An Example

In this subsection, we give an example of our CCA-1 attack. In our example,
the security parameter λ is 2. Therefore, the noise r′i and the multiplier g′i are
bounded by 22 and 228, respectively. The secret key p is an odd integer between 24

and 25. The ciphertext is in form of c′i = 2r′i+g
′
ip. Table 2 lists three ciphtertexts.

r′i p g′i c′i
c1 -3 19 343759059 6531422115

c2 1 19 230194545 4373696357

c3 2 19 276209466 5247979858

Table 2. Three sample ciphertexts.

The results below indicate that we retrieve the secret key successfully. Table 3
shows that the noise is successfully eliminated within maximum 5 queries for each
ciphertext. We recover si for each ciphertext such that ci+ si = gip+ (p−1)/2.

3.5 Implementation

In this subsection, we show the result of our implementation of our attack with
different λ. This implementation is based on the NTL library [18].

The implementation was conducted in a 2.66 GHz CPU. The memory was
always sufficient, as it merely required more than 600 Mbs. We started from
λ = 2, and increased λ continuously until it reached 32. For each λ, we fed
the program with 100 different seeds, and recorded the average time to find the
secret key p, as well as average number of ciphertexts required for Algorithm 2.

The average number of ciphertexts required for Algorithm 2 for different
choice of λ is quite stable. Approximately 3.8 ciphertexts are required to recover
the secret key p. This implies that on average case the number of integers required
to have them being coprime is 2.8.

Fig. 1 shows the timing results of our implementation. The x axis shows
the choice of λ, while the y axis indicates the average time (in seconds) for
each attack. Statistically, attack CCA-p uses approximately 1.9 times less time
in comparison to attack CCA-GCD (this is due to the number of ciphertexts
required to be noise-eliminated), and this is consistent with our result.

4 Discussions

4.1 On the Difference between our attack and LMSV attack

We note that the LMSV attack is different from the attack described in this
paper. The LMSV attack uses the decryption oracle to find the integer s such
that [w × s/d] = 1/2, and eventually recover the secret key, while our attack
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NoiseEli(c1)

lp rp s1 OD(c1 +
s1)

action

0 24 12 0 lp ← 12
12 24 18 1 rp ← 18
12 18 14 0 lp ← 14
14 18 16 1 rp ← 16
14 16 14 end of

loop

OD(c1 + s1 + 1) = 1 =⇒ s1 = 15

NoiseEli(c2)

lp rp s2 OD(c2 +
s2)

action

0 24 12 1 rp ← 12
0 12 6 0 lp ← 6
6 12 8 1 rp ← 8
6 8 6 end of

loop

OD(c2 + s2 + 1) = 1 =⇒ s2 = 7

Table 4 and 5 show how to extract p from c′i in two ways. Both of the two examples
uses NoiseEli to find constant noise ciphertext. As displayed in the tables, in GCD-
CCA we recover 3p instead of p, and we did not further proceed the algorithm, since
it is merely an example. This example requires access to the oracle for 14 times for the
GCD-CCA variant and 10 times for CCA-p.

NoiseEli(c3)

lp rp s3 OD(c3 +
s3)

action

0 24 12 1 rp ← 12
0 12 6 1 rp ← 6
0 6 2 0 lp ← 2
2 6 4 0 lp ← 4
4 6 4 end of

loop

OD(c3 + s3 + 1) = 1 =⇒ s3 = 5

Table 3. Eliminate the noise of three ciphertexts.

CCA-GCD(c1,c2)

c′1 = c1 + 15− c2 − 7 c′2 = c2 + 7− c3 − 5

p′ = gcd(c′1, c
′
2) = 57

Table 4. Find p with CCA-GCD.
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NoiseEli(c1)

lp rp s1 OD(c1 +
s1)

action

0 24 12 0 lp ← 12
12 24 18 1 rp ← 18
12 18 14 0 lp ← 14
14 18 16 1 rp ← 16
14 16 14 end of

loop

OD(c1 + s1 + 1) = 1 =⇒ s1 = 15

NoiseEli(−c1)

lp rp s−1 OD(c1 +
s−1)

action

0 24 12 1 rp ← 12
0 12 6 1 rp ← 6
0 6 2 0 lp ← 2
2 6 4 1 rp ← 4
2 4 2 end of

loop

OD(−c1 + s−1 + 1) = 1 =⇒ s−1 = 3

CCA-p(c1)

a← c1 + 15 b← −c1 + 3

p← (a+ b) + 1 = 19

Table 5. Find p with CCA-p.
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Fig. 1. Average time for recovering p.

aims to manipulate the noise in the ciphertexts. By recovering the noise, our
attack will recover the secret key of vDGHV variant.

A proof of such a difference is that our attack can be adapted to recover the
noise for LMSV SHE scheme as well. However, this does not help us to recover
the secret key or break the CCA-1 security (see subsection 4.2). Another evidence
is that using LMSV SHE’s solution (i.e., generating ⊥ for invalid ciphertext)
will not stop our attack either (see subsection 4.3).

4.2 On Adapting Our Attack to SHE Schemes with Ideal Lattice

We note that our method cannot be adapted to attack SHE schemes that use
ideal lattices. In a typical SHE scheme with ideal lattice, a message is encrypted
in a similar way:

c = m+ rBI + gBpkJ ,

where I and J are two ideal lattices that are co-prime. r and g are some random
elements generated during encryption. Lattice I is usually < 2 >, which are all
even numbers, and BI is a basis of I. As for lattice J , it generates a good basis
BskJ and a bad basis BpkJ . Then BpkJ is used for encryption, while BskJ becomes
the secret key.

Therefore, even we can somehow eliminate r through our attack, we still
need to solve such a problem: given as many giB

pk
J , find BskJ . This is a GGH
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type cryptosystem [19]. As a result, we cannot recover BskJ directly using our
technique.

Take LMSV SHE scheme for instance, for a ciphertext c = 2r(a) + m
(mod d), our attack recovers r(x). To recover the i-th coefficient of r(x), one
passes c + 2 × r′ × ai to the decryption oracle, where r′ is a random integer
picked by the attacker. By observing if the oracle returns m or ⊥, one increases
or decrease r′ accordingly. Eventually, the attacker obtains r′ + ri = T . As a
result, the attacker recovers one coefficient of r(x). By doing this repetitively,
one recovers the entire r(x).

However, we note that this does not lead to a CCA-1 attack or a secret key
attack. To recover the secret key one still need to solve the following problem:
given an ideal lattice in the form of a, d, find a good basis of this lattice.

4.3 On LMSV SHE CCA-1 Approach

In this subsection we consider the existing proposed solution to make vDGHV
SHE scheme CCA-1 secure. We note that our attack is successful, since we are
able to eliminate the noise. Therefore, if there exist some techniques to disturb
the noise elimination, our attack will fail.

Loftus et al. [15] showed a solution to combat their own CCA-1 attack against
Gentry-Halevi SHE scheme/Smart-Vercauteren SHE scheme (which we
refer to as the LMSV SHE scheme). However, the solution in LMSV SHE
scheme is not applicable in our case. Their possible solution is to generate some
error ⊥ (or even some random 0-s or 1-s), when the decryption oracle detects
that the noise r is very close to ±(p − 1)/2. The decryption algorithm sets a
bound T , such that when (p − 1)/2 − |r| < T , it will not proceed decryption.
However, essentially it will still leak some information. We can modify our attack
to find T and consequently find a fixed noise ciphertext.

We modify our attack as follows: for each round, we query to the oracle
multiply times. If the feedbacks are consistent (meaning that the attacker is not
confused by random 0-s and 1-s) and not ⊥, we proceed to the next round.
Otherwise, we recover a fixed noise ciphertext with a noise level of T . Hence,
our attack will still be successful even after the “patch” suggested by Loftus et
al. [15].

5 Conclusion

Fully homomorphic encryption schemes play an important role in the security
of many practical applications, such as cloud computing. Although the CCA-1
security for a FHE scheme is not achievable, whether its SHE scheme is CCA-1
secure remains an interesting research question, since a SHE scheme has potential
to enable promising applications.

In this paper, we proposed a CCA-1 attack against vDGHV SHE scheme
with integers. Unlike other schemes where the ciphertexts are protected by some
noise and lattices, the strength of ciphertexts in SHE scheme with integers comes
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only from the noise. We demonstrated that we successfully eliminated the noise
and recovered the secret key. Hence, we achieve a CCA-1 attack against vDGHV
SHE scheme.
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