
Reaction Attack on Outsourced Computing with Fully
Homomorphic Encryption Schemes

Zhenfei Zhang, Thomas Plantard, and Willy Susilo

School of Computer Science & Software Engineering (SCSSE)
University Of Wollongong

Abstract. Outsourced computations enable more efficient solutions towards practical prob-
lems that require major computations. Nevertheless, users’ privacy remains as a major chal-
lenge, as the service provider can access users’ data freely. It has been shown that fully
homomorphic encryption schemes might be the perfect solution, as it allows one party to
process users’ data homomorphically, without the necessity of knowing the corresponding se-
cret keys. In this paper, we show a reaction attack against full homomorphic schemes, when
they are used for securing outsourced computation. Essentially, our attack is based on the
users’ reaction towards the output generated by the cloud. Our attack enables us to retrieve
the associated secret key of the system. This secret key attack takes O(λ log λ) time for both
Gentry’s original scheme and the fully homomorphic encryption scheme over integers, and
O(λ) for the implementation of Gentry’s fully homomorphic encryption scheme.

Keywords: Cloud Computing, Fully Homomorphic Encryption, Reaction Attack, CCA security,
Secured Outsource Computation

1 Introduction

Cloud computing has changed the phenomena in the Information Technology (IT) industry com-
pletely. It allows access to highly scalable, inexpensive, on-demand computing resources that can
execute the code and store the data that are provided to them. This aspect, known as data out-
sourced computation, is very attractive, as it alleviates most of the burden on IT services from the
consumer (or data owner). Nevertheless, the adoption of data outsourced computation by business
has a major obstacle, since the data owner does not want to allow the untrusted cloud provider
to have access to the data being outsourced. Merely encrypting the data prior to storing it on the
cloud is not a viable solution, since encrypted data cannot be further manipulated. This means
that if the data owner would like to search for particular information, then the data would need
to be retrieved and decrypted - a very costly operation, which limits the usability of the cloud to
merely be used as a data storage centre.

In [1], van Dijk and Juels argued that, cryptography tools alone is not sufficient for providing
privacy for cloud computing. Yet, they found that in a single-client scenario, fully homomorphic
encryption schemes deliver the required security.

Indeed, a fully homomorphic encryption is a solution for enabling operations on the encrypted
data. Essentially, fully homomorphic encryption schemes enable one to apply homomorphic oper-
ations over an arbitrary number (n) of given ciphertexts c1, c2, . . . , cn without the need to know
the corresponding plaintexts m1,m2, . . . ,mn.

This feature is useful in the outsourced computation scenario, where one can upload encrypted
data to the cloud and enable the cloud to process the data without the need for decryption.
Nevertheless, whether a fully homomorphic encryption by itself is sufficient enough to secure the
outsourced computation in practice remains unclear. This will require some further research.

Our Contribution
In this paper, we show a negative result to the above question. Before addressing our contribution,
we should highlight some important factors to motivate our work. In fact, one can categorize an
outsourced computation into the following models:

2 Zhenfei Zhang, Thomas Plantard, and Willy Susilo

1. The user possesses the data and the computation circuit, and the service provider provides
the computation power;
Example: a stock share holder buys/sells his/her stocks via the cloud, and then retrieve the
receipt from the cloud to obtain his/her updated financial status.

2. The user possesses the data, and the service provider provides its computational power, while
the computation circuit can be made available publicly to both of the entities;
Example: a hospital outsources its patients’ information to a research institute for acquiring
further analysis from the institute (such as the result of the prostate cancer), as the institute
has more computational power compared to the hospital.

3. The user possesses the data, and the service provider provides its computational power, only
the cloud has access to the computation circuit;
Example: a company outsources its financial status to an auditing company, however, the
auditing algorithm is auditing the company’s private property.

In all of the above models, the users’ data privacy has to be ensured. The difference among them
lies on the privacy of the computational circuit.

In this paper, we present a practical reaction attack that can be applied to all of the above
models, in which every time a user interacts with the cloud, he/she is under the risk of leaking
some information. As a result, known approaches, i.e., secured outsourced computation (SOC)
[2], becomes essential in the first two models, while for the third model, even SOC technique will
not be sufficient .

Further, using our attack, one can construct a probabilistic decryption oracle. Consequently,
we argue that for any fully homomorphic encryption schemes, the CCA-1 security is essential.
When applying our attack to Gentry’s framework [3, 4], our attack recovers the secret key for
all published fully homomorphic encryption schemes. This secret key attack take O(λ log λ) time
for both Gentry’s original scheme and the fully homomorphic encryption scheme over integers.
Furthermore, for the implementation of Gentry’s fully homomorphic encryption scheme, this secret
key attack requires O(λ) time.

Related Work
In [5], Hall et al. presented a reaction attack against several public key cryptosystems, mainly
on lattice based cryptosystems and coding based cryptosystems. By observing the reaction of the
decryption procedure, one obtains information about the secret key and/or message. Compared to
the result of [5], where one does not observe the reaction of the decryption procedure, our attack
relies on the difference of users’ reactions on receiving different results.

In [2], Gennaro et al. presented a non-interactive verifiable computing protocol, that allows one
to outsource its computation to untrusted workers. This method can be applied to the first two
models, where the users can check if the cloud has modified the demanded computation circuit.
However, it is impossible for this method to be applied to the third model. In addition, the main
obstacle of using this technique is its computation efficiency. Initially, this protocol requires a one
time pre-processing to generate a minimum garbled circuit, which takes O(C) × poly(λ) time,
where C is in function of the computation circuit, and λ is the security parameter. Then, for each
new computation circuit, one is required to modify the minimum garbled circuit, using a fully
homomorphic encryption scheme. Thus, we argue that this method is impractical.

Other related work of this paper can be found in [6].

2 Background

2.1 Fully Homomorphic Encryptions

The idea of fully homomorphic encryption was raised by Rivest, Adleman and Dertouzos [7], shortly
after the invention of RSA [8]. A fully homomorphic encryption scheme consists of following four
algorithms:

– KeyGen(λ): Input a security parameter λ, it outputs public key pk, secret key sk.

Reaction Attack on Outsourced Computing with Fully Homomorphic Encryption Schemes 3

– Encrypt(m, pk): Input a message m and the public key pk, it outputs a corresponding
ciphertext c.

– Decrypt(c, sk): Input a ciphertext c and the secret key sk, it outputs a corresponding message
m.

– Eval(pk, c1, c2, . . . , cn, Cn): Input a public key pk, n ciphertext c1, c2, . . . , cn and a permitted
circuit Cn, it outputs Cn(c1, c2, . . . , cn).

Following this notion, schemes that support partial homomorphism have been proposed. Re-
cently, Gentry [3, 4] successfully provided a framework for constructing homomorphic encryption
schemes (referred to as the Gentry scheme) and, further, he provided a concrete construction. In
addition, subsequent works based on his framework have been proposed recently (such as [9–11]).
For instance, in [12] (referred to as Gentry-Halevi scheme), the author optimized the perfor-
mance of Gentry scheme, while in [11] (referred to as vDGHV scheme), the author proposed an
integer variant of Gentry scheme. In the following, for clarity, we will review Gentry’s framework.

2.2 Gentry’s Framework

Gentry’s framework for constructing fully homomorphic encryption schemes is based on creating
a function to perform two atomic operations which will allow the user to build any kind of circuit.
Effectively, any circuit can be built with two atomic functions, namely addition + and multipli-
cation × over F2 (see [3, 4]). Therefore, to evaluate any circuit, we are only required to be able to
add and multiply over F2 two encrypted bits.

We note that, to ensure security, such an encryption function is required to be indistinguishable,
namely Enc(m0) 6= Enc(m1) 6⇒ m0 6= m1. To build such a function, ⊕ and ⊗, Gentry used a
simple model. Gentry defined the two functions f+ and f× which are equivalent to decrypting
both encrypted bits, adding or multiplying such decrypted bits and then encrypting the resulting
bits (See Figure 1).

Enc

Dec

+/x

Dec

Fig. 1: f+,×

Enc

Dec

+/x Dec

+/x

Dec

Enc

Enc

Enc

Encm

Dec

Dec

Fig. 2: Gentry’s fully homomorphic encryption model

However, if f+ and f× return the desired result for ⊕ and ⊗, the bits are clearly readable and
therefore they do not maintain the intended security requirement.

4 Zhenfei Zhang, Thomas Plantard, and Willy Susilo

To achieve this required property, Gentry used an encryption scheme which allows evaluation
of short circuits. Therefore, it encrypts the ciphertext with a second cryptosystem. Hence, it can
remove the first encryption securely to perform the addition or the multiplication (See Figure 2).
Using such a technique, Gentry simplified the quest of constructing a fully homomorphic encryption
that can evaluate any circuit on encrypted data by finding an encryption system that can evaluate
only some short circuits, namely f+ and f×. In [4, 3], Gentry built such an encryption scheme using
ideal lattices. This work was followed by other fully homomorphic encryption schemes based also
on ideal lattices [10, 9]. Another type of encryption scheme respecting Gentry’s model requirement
was also proposed in [11] using integers.

2.3 The vDGHV Fully Homomorphic Encryption Scheme

In this subsection, we describe the fully homomorphic encryption scheme over integers (vDGHV
scheme), instead of Gentry scheme, since this scheme uses integers rather than ideal lattice, and
therefore, it is easier to demonstrate and explain, and later incorporate our idea into.

vDGHV scheme consists of a somewhat homomorphic encryption scheme (SHE) that supports
limited additions and multiplications, and the bootstrapping technique to break such limitation.

The somewhat homomorphic encryption scheme consists of four algorithms:

– KeyGen(λ): Input a security parameter λ, it firstly generates parameters {α, β, γ, t, n} in
function of λ. It then generates a secret odd integer p ∈ (2β , 2β+1), n different integers {ri ∈
[−2α, 2α)} and another n different integers {gi ∈ [0, 2γ−β)}, respectively. It finally outputs the
public key pk = {xi = gip+ 2ri} and secret key sk = {p}.

– Encrypt(m, pk): Input the public key pk and a message m ∈ {0, 1}, it chooses a random
subset s ⊆ pk and output c = m + 2r +

∑
xi∈s xi mod x0, where x0 is the smallest in {xi},

r ∈ [−2α, 2α) is a random noise.
– Decrypt(c, sk): Input the secret key sk = {p} and a ciphertext c, it outputs m = (c mod 2)⊕

(bc/pe mod 2), where bc/pe returns the closest integer of c/p.
– Evaluate(c1, c2, ..., ck, P, pk). It outputs P(c1, c2, ..., ck), where P is a k-inputs evaluation

polynomial whose circuit depth is lower than the maximum circuit depth allowed by this SHE.

This SHE supports homomorphic additions and multiplications, when α � β. For instance,
suppose c1 = m1 + g1p+ 2r1 and c2 = m2 + g2p+ 2r2 for certain g1, r1, g2, r2, the product of two
ciphertext c1c2 = m1m2 + 2(r1m2 + r2m1 + 2r1r2) + p(g1m2 + 2g1r2 + g2m1 + 2g2r1 + g1g2p). One
can observe that the decryption of c1c2 is m1m2, as long as 2(r1m2 + r2m1 + 2r1r2) ∈ (−p/2, p/2].
Therefore, the above SHE is somewhat homomorphic.

However, the homomorphic circuit depth is limited, i.e., the noise grows after each operation,
and eventually it is possible that the absolute value of the noise will be greater than p/2 and a
decryption error is then being generated.

Suppose we want to evaluate a circuit whose depth is greater than this SHE permits, we break
the circuit into several sub-circuits. For each sub-circuit, the absolute value of resulted noise is
less than the threshold (p/2). Then we refresh the resulted ciphertext using the bootstrapping
technique. We describe the bootstrapping technique in general. We refer the readers to their
original scheme[11] for more details.

To bootstrap, firstly, they modify the decryption circuit. As we have shown earlier, the noise
grows significantly faster in a multiplication than in an addition. Therefore, vDGHV scheme
used a squashing method that breaks the decryption circuit from one multiplication into several
additions. The squashing technique is as follows:

– Generate x = b2κ/pe, where κ is a parameter in λ that is greater than β + 1.
– Build a bit sequence S =< s1, s2, . . . , sη >, si ∈ {0, 1}, with

∑
si = θ. S becomes the new

secret key.
– Choose n random integers ui between 0 and 2κ+1, such that

∑n
i siui = x mod 2κ+1.

– Set yi = ui/2
κ. Then

∑
siyi = 1/p+ ε, where ε is negligible compared with 1/p.

– New ciphertext is a vector z =< z1, z2, . . . , zη >, generated by zi = [c× yi]2.

Reaction Attack on Outsourced Computing with Fully Homomorphic Encryption Schemes 5

– New decryption circuit becomes m = [c− b
∑
si × zie]2

As a result, the decryption circuit now consists only additions, while the growth of noise in
additions is extremely slow. Then, because the modified decryption circuit depth is relatively low,
now it is possible to carry out the decryption circuit homomorphically, through the proposed SHE.

In practice, they encrypt ciphertexts, denoted by {Enc(zi)} and the secret keys, denoted by
{Enc(si)}. Denote CD the decryption circuit, then

Decrypt(CD, {Enc(zi)}, {Enc(si)}) = Enc(m).

This is because firstly CD({zi}, {si}) = m and secondly, CD can be carried out homomorphically.
Therefore, we obtain a new ciphertext Enc(m).

The new ciphertext, Enc(m) has a refreshed noise level (less than 2α), which means Enc(m)
can be evaluated again. By doing this repeatedly, we can evaluate circuit with any depth homo-
morphically. Therefore, a fully homomorphic encryption scheme is achieved.

2.4 Security Models

In the following, we describe briefly both Chosen-Plaintext Attack (CPA) [13] and Chosen-Ciphertext
Attack (CCA) [14] attacks for completeness.

The IND-CPA security game is defined as follows:

1. The challenger runs KeyGen algorithm and outputs a secret key sk and a public key pk;

2. The attacker is given an encryption oracle that computes the functionality Encrypt(m,pk);

3. The attacker then generates two ciphertexts m0 and m1;

4. The challenger generates c = Encrypt(mb, sk), where b ∈ {0, 1};
5. The attacker outputs b′.

We say that an encryption scheme is CPA secure if the advantage of the attacker to win the game
(Pr[b = b′]− 1/2) is negligible.

The IND-CCA-1/2 security game is defined as follows:

1. The challenger runs KeyGen algorithm and outputs a secret key sk and a public key pk;

2. The attacker is given two oracles, an encryption oracle and a decryption oracle;

3. The attacker then generates two ciphertexts m0 and m1;

4. The challenger generates c = Encrypt(mb, sk), where b ∈ {0, 1};
5. (Only for CCA-2) The attacker is given the two oracles again, but it can not query on c;

6. The attacker outputs b′.

We say that an encryption scheme is CCA-1/2 secure if the advantage of the attacker to win the
game (Pr[b = b′]− 1/2) is negligible.

3 Our Reaction Attack

In this section, we will firstly introduce our message attack that recovers a message of any kind of
fully homomorphic systems used in the outsourced computation, in probabilistic manner. Then,
we show that by adapting our attack in Gentry’s framework, we can recover the secret key. We
note that our attack described in this section is applicable to all three models in the first section.
For simplicity, we uses the first model.

6 Zhenfei Zhang, Thomas Plantard, and Willy Susilo

Fig. 3: Using Fully Homomorphic Encryption in a Cloud Search Scenario

3.1 A Message Attack

The Idea In this subsection, we describe our message attack. For any given ciphertext, our attack
recovers the message with provability ε.

We will first illustrate our high level construction for clarity. To use fully homomorphic encryp-
tion schemes in outsourced computation scenarios, the users firstly upload their encrypted data to
the cloud. Then, they submit their demanded circuits to the cloud, in an on-demand fashion. The
demanded circuit consists either some data and an evaluation function, or merely an evaluation
function only. The cloud processes users’ data through the requested circuits, and returns the
result.

Ideally, all the data, including the results, are encrypted, and hence, a malicious cloud provider
cannot gain information from the users, i.e., let ε1 be the possibility of m = 1, then for any
ciphertext, | ε1 − 1/2 | is negligible from the cloud provider’s point of view.

Nevertheless, we notice that the attacker can modify the encrypted circuits/results by adding
some random ciphertext c that encrypts a message m. Because homomorphism is enabled, modi-
fying the demanded circuits/results will affect the plaintext eventually. To be more precise, if the
added random ciphertext encrypts a 0, the returned result remains the same; while if the added
random ciphertext encrypts a 1, the returned result is modified. By observing the users’ reactions,
the service provider can increase or decrease ε1 accordingly, and eventually recover m.

Generally speaking, the cloud provider can compare users’ reaction with their former reaction,
if the users are acting “unexpectedly”, then the cloud can expect m = 1. For completeness, we list
some (but not all) possible reactions that can be defined as “unexpected” behaviors.

– The users set up a new task much sooner than usual, after they acquire the result sent by the
cloud;

– The circuit of a new task is identical from a former one;
– The number of tasks is significantly higher than average - this occurs when the cloud provider

feeds same faulty information for a certain period.

We note that these users’ reactions are very natural and practical. To anticipate the reactions is
even easier, when the users use a certain software, instead of expecting the results themselves,
to communicate with the cloud. We argue that this is very common in practice as nobody will
conduct this process manually. However, the success of our attack relies highly on the actions
performed by the users after receiving valid or error results. Hence, if the users act completely
randomly, then our attack will be unsuccessful. Nevertheless, we argue that the latter usually will
not happen in practice, as it is the users’ interest to acquire the results that they would like to
obtain.

An Example In this subsection, we demonstrate an example of our attack. Suppose we have a
cloud search engine (see Figure 3), which looks up keywords from database A, and outputs the

Reaction Attack on Outsourced Computing with Fully Homomorphic Encryption Schemes 7

corresponding results in database B. Database A consists of names of stocks, while database B
shows corresponding price for each stock.

To distinguish from a traditional search engine, the databases of the cloud search engine are
all encrypted, and the search circuit is a homomorphic circuit. Without losing generality, we use
vDGHV scheme to demonstrate our attack.

Entry A B

1 AAPL 335
2 GOOG 494
3 MSFT 027
4 SPRD 013
5 NDAQ 024
.

Table 1: Databases in plaintext

Table 1 shows the databases in plaintext for our example. We note that this is not exactly the
databases stored in the cloud. The cloud maintains multiple copies of the databases for different
users, each copy is encrypted under different users’ FHE secret key.

Let K, A and B denote the binary form of the keyword, database A and database B, respec-
tively. Let ki, ai and bi be the i-th digit of K, A and B. Then, the database in the cloud consists
of {Enc(ai)} and {Enc(bi)}. Also, let

⊗n
1 ci be c1 ⊗ c2 ⊗ · · · ⊗ cn. A basic search algorithm is

defined in Algorithm 1, and we achieve a fully homomorphic searching algorithm in Algorithm 2
using the fully homomorphic encryption scheme over integers.

Algorithm 1 Basic Search (K,A,B)

la ← LEN OF WORD A //la = 32
lb ← LEN OF WORD B //lb = 24
for j = 0→END OF ENTRY−1 do

for i = 1→ lb do
ri ← bi+jlb ⊗ (

⊗la
t=1(at+jla ⊕ kt+jla))⊕ ri

end for
end for

As shown in Table 2, suppose we want to look for the price of GOOG, with the basic search al-
gorithm, we obtain 52, 57, 52 in ASCII code, which is 494. While with the homomorphic search algo-
rithm, we obtain the third column of Table 2. The cloud cannot decrypt Enc(52)/Enc(57)/Enc(52),
hence, the users’ privacy is guaranteed. The user holds the secret key, therefore, he/she is the only
one who knows the searching results, while the cloud cannot even distinguish the difference between
the two Enc(52).

However, if the cloud acts maliciously, it can recover one bit of message from c through our
attack model, since it adds a value to the keyword. Hence, if Dec(c) = 0, the algorithm will search
for Enc(GOOG) as before, and therefore, no error will occur, and the user will most likely do
nothing. However, if Dec(c) = 1, instead of searching for Enc(GOOG), the input of the algorithm
is actually Enc(GOOH). Therefore, no match will be found. It is reasonable to believe that the
user will start to execute another search, in which case the cloud increases ε1.

As we have stated, a malicious cloud can also modify the circuit/result accordingly. However,
we notice that in the above example, modifying the result merely helps our attack, as if the cloud
induces an Enc(1), the user will receive 495, which will be recognized as a valid result.

8 Zhenfei Zhang, Thomas Plantard, and Willy Susilo

Algorithm 2 Homomorphical Search ({Enc(ki)}, {Enc(ai)}, {Enc(bi)})
la ← LEN OF WORD A //la = 24
lb ← LEN OF WORD B //lb = 32
for j = 0→END OF ENTRY−1 do

for i = 1→ la do
ri ← Enc(bi+jlb)×

∏la
t=1(Enc(at+jla) + Enc(kt+jla)) + ri

end for
end for

Database A Basic Search Homomorphic Search Homomorphic Search + Faulty Info

AAPL 0,0,0 Enc(0), Enc(0), Enc(0) Enc(0),Enc(0),Enc(0)
GOOG 52,57,52 Enc(52), Enc(57), Enc(52) Enc(0),Enc(0),Enc(0)
MSFT 52,57,52 Enc(52), Enc(57), Enc(52) Enc(0),Enc(0),Enc(0)
SPRD 52,57,52 Enc(52), Enc(57), Enc(52) Enc(0),Enc(0),Enc(0)
NDAQ 52,57,52 Enc(52), Enc(57), Enc(52) Enc(0),Enc(0),Enc(0)
.

result 494 Enc(“494”) error

Table 2: Searching Results in ASC II

Formal Construction In this section we show a formal construction of evaluating users’ reactions
in terms of timing. We note that our formal construction is only a function of the time the user
responses. In practice, with the aid of other parameters, the malicious service provider can further
increase the successful rate of this attack.

Let tres be the time period when the user starts a new task after receiving the result from the
cloud. Let tn be the average time when the user sets up his/her tasks when no error is induced,
and te be the minimum time when the user starts a new task if some error occurs. Assume that
tres follows a certain distribution D0 = f0(t) depending on the average time tn when no error
occurs, and another distribution D1 = f1(t) depending on the te when there exists an error. As a
service provider, we assume the cloud is aware of above information.

We note that the success of the message attack relies on the difference between D0 and D1.
For users whose reactions are completely random, i.e., D0 = D1, our attack will not be successful.
However, we argue that, in practice, a reasonable user will have different distributions for different
results.

For any time frame t, D0 has a f0(t) probability to distribute a new task, while D1 has a f1(t)
probability to distribute a new task. As a result, if the cloud receives a new task at time t, the

confidence of m = 0 and m = 1 can be determined by g0(x) = f0(t)
f0(t)+f1(t)

and g1(x) = f1(t)
f0(t)+f1(t)

,

respectively.

Later, we can anticipate the successful rate of our attack as follows. Let ψ = g1(t1) = g2(t2)
(t2 > t1), when the cloud wants to build a minimum ψ confidence. Therefore, any task delivered
prior to t1 will give the cloud at least ψ confidence of m = 1, while any task delivered after t2
will give the cloud at least ψ confidence of m = 0. Then we can evaluate the successful rate ε.
Generally, it can be expressed by the volume of f1(x) in [0, t1] and [t2,∞) over the total volume.
More formally,

ε =

∫ t1

0

f1(x) dx+

∫ ∞
t2

f1(x) dx∫ ∞
0

f1(x) dx

.

In the case the cloud has not developed sufficient confidence for a certain message (i.e., it
receives a new task at time between t1 and t2), it will induce the same faulty information to the next
several tasks. Suppose the cloud takes n tasks to develop the confidence, and the corresponding

Reaction Attack on Outsourced Computing with Fully Homomorphic Encryption Schemes 9

response time are t1, t2, . . . , tn, then the confidence can be determined by ψ′ = max(ψ′0, ψ
′
1), where

ψ′0 =

∏n
i g0(ti)∏n

i g0(ti) +
∏n
i g1(ti)

, ψ′1 =

∏n
i g1(ti)∏n

i g0(ti) +
∏n
i g1(ti)

.

For instance, if the adversary sends an identical message twice, with response time t1 and t2, then
the possibility of two continuous 0-s and 1-s are g0(t1)g0(t2) and g1(t1)g0(t2), respectively. We
note that it is not possible to have 10 or 01, as we are using the same ciphertext. As a result, the
possibility of 10 and 01 are eliminated. Therefore, we have

ψ′0 =
g0(t1)g0(t2)

g0(t1)g0(t2) + g1(t1)g1(t2)
, ψ′1 =

g1(t1)g1(t2)

g0(t1)g0(t2) + g1(t1)g1(t2)
.

Meanwhile, the new successful rate can be determined by ε′ = εn

εn+(1−ε)n . This guarantees that we

can achieve a very high confidence/successful rate by attacking the same ciphertext repeatedly.
To exemplify our construction, without losing generality, we show a example where users’ reac-

tion follows a normal distribution (also known as Gaussian distribution) [15] with the distribution
factor σ = 2 (see Figure 4a). We note that for simplicity we uses smooth curves to illustrate the
distributions, while in practise, the actual distribution will be more discrete.

In this example, tn = 10 minute. Meanwhile, we assume the transmission time/evaluation
time is negligible, which implies te = 0. From this figure, we obtain a figure that illustrates the
confidence of messages in Figure 4b. Hence, if the adversary requires 96% confidence in a single
round, the corresponding t1 and t2 are 4 and 6.5, respectively. Therefore, the successful rate by

one single round can be determined by V1+V0

V1+V0+Ve
, which is essentially

∫ 4
0
f1(x) dx+

∫∞
6.5

f1(x) dx∫∞
0
f1(x) dx

.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 2 4 6 8 10 12 14

P
ro

b
ab

il
it

y

Time (minutes)

An Example of Normal Distribution for Users’ Reactions

V1

V0

Ve

Errors: f1(x)
Normal: f0(x)

(a) An example of Users’ Reactions Using Nor-
mal Distribution

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14

C
o
n
fi

d
en

ce

Time (minutes)

An Example of Confidence of message

0.96

6.50.04

m=1
m=0

(b) An example of Confidence Curve

On CCA Security It is well known that for any public key encryption schemes, the CPA security
is essential. Meanwhile, constructing a CCA-2 secure fully homomorphic encryption scheme is
impossible, since homomorphic operations on ciphertexts are enabled (and also it is due to the
“malleability” of the ciphertext). Moreover, unfortunately, fully homomorphic encryption schemes
that follow Gentry’s framework cannot be CCA-1 secure due to the bootstrapping technique. In
fact, if a somewhat homomorphic encryption scheme is CCA-1 secure is questionable. Indeed, in
[16], the authors presented a CCA-1 attack against Gentry-Halevi SHE scheme.

We note that the consequence of such an attack might be severe. A CCA-1 attack is an attack
model that assumes there exists a decryption oracle. People may argue that this is just merely an
attack model, since in practice, having such an oracle (or an honest user who is helping the attacker
during the learning phase) is impractical. Further, constructing such an oracle in general is not

10 Zhenfei Zhang, Thomas Plantard, and Willy Susilo

really feasible. Nevertheless, with our message attack, it is possible to construct a probabilistic
decryption oracle in practice. Consequently, if for a certain fully homomorphic encryption scheme, a
CCA-1 attack is successful with a non-negligible advantage of φ using a hypothetical deterministic
oracle, then one can achieve this attack with an advantage of φεn using our message attack, where
n is the number of ciphertext required for the CCA-1 attack. Hence, the CCA-1 attack becomes
really practical.

To sum up, we argue that in practice, if a fully homomorphic encryption scheme is not CCA-1
secure, then it alone cannot deliver secured outsourced computation.

3.2 The Secret Key Attack

In this subsection, we propose our secret key attack. We show that for any FHE scheme, even its
SHE schem is CCA-1 secure, as long as it uses Gentry’s bootstrapping technique, it is vulnerable
to our attack.

Recall that in Gentry’s framework, binary operations (i.e., ⊕,⊗) of messages are eventually +
and × of ciphertext in a FHE scheme; also, to enable “bootstrappability”, one has to publish an
encryption of its secret key. Therefore, for any FHE schemes that follows Gentry’s framework, no
matter what kind of circuit the user demands, with our message attack, a malicious cloud recovers
one bit of the secret key through each attack. Eventually, it will recover the whole secret key.

For instance, as in vDGHV scheme, one publishes {Enc(si)}. The cloud can recover si through
each message attack, and recover S as a result. As another example, the secret key in Gentry-
Halevi scheme [17] is a bit sequence of 1024, while the number of encrypted 1-s is 15. Hence, it
takes a maximum 1024 message attacks to recover the secret key.

One may argue that the secret key may contain too many bits, and therefore, it is impractical
to recover them all. For instance, S in vDGHV scheme contains λ5 digits, i.e., η ∼ O(λ5).
Consequently, to recover all bits becomes impractical.

However, we note that, firstly, our attack can be launched with other attacks. For instance, with
the existence of a decryption oracle, the attack in [16] recovers the secret key of Gentry scheme

within O(λ2) queries, consequently, a CCA attack can break the system with an ελ
2

advantage.
Secondly, we notice that the secret keys of Gentry scheme, and that of all other schemes

following Gentry’s framework, are sparse sequences with a significantly smaller Hamming weight.
As an example, in vDGHV scheme, the secret key S =< s1, s2, . . . , sη > only has θ 1-s, while the
rest are 0-s and θ � η (i.e., θ = λ, η = λ5). Hence, inducing Enc(si) will not result into any error,
in most cases. In practice, this means using our attack merely increases the error rate by 1/λ4.
This enables a much higher attacking rate for the cloud. The cloud can induce encrypted secret
key bits at all time without being detected.

Finally, because of the special structure of the secret key, we propose an optimized secret key
attack that improves the performance of our secret key attack significantly. As a result, it only
requires O(λ log λ) operations to recover all λ5 bits. We will describe this optimized attack in the
following section.

Optimized Secret Key Attack In Gentry’s framework, the secret key S =< s1, s2, . . . , sη >
contains η bits, while the Hamming weight θ =

∑η
i si is significantly smaller than η. Therefore, we

propose two optimizations, using fully Dichotomy search and block Dichotomy search algorithm.
For the block Dichotomy search algorithm, if we cut the whole secret key into k blocks, with

each block l = η/k bits, with a very high probability the block will only consist of 0-s. Now,
instead of testing the parity of each bit, we test if a block contains only 0-s. To perform such a
task, one generates

b = Enc(1) +

l∏
i

(Enc(1) + Enc(si)),

and test the parity of b. Because homomorphic operations are enabled, if all the bits are 0-s, then
decrypting b will give us 0, and vice versa. As a result, the adversary recovers l bits in one message
attack.

Reaction Attack on Outsourced Computing with Fully Homomorphic Encryption Schemes 11

There is one exception, where there are at least one 1 in the block. Hence, a Dichotomy search
algorithm is required. The average case takes place when there are no more than one encrypted 1
in a block. Therefore, for each encrypted 1, it requires additional log(l) message attacks.

To sum up, this optimization reduces the number of message attacks from η to k+ θ log(η/k).
With the configuration of vDGHV scheme/Gentry scheme (θ ∼ λ and η � θ), the minimum
number for message attacks is O(λ log λ). While with the configuration of Gentry-Halevi scheme
(θ = λ/ log λ and η = 2d2 log λe), the minimum number for message attacks is O(λ).

While for the fully Dichotomy search algorithm, one cuts the secret key into two halves for
each round. For each half, one generates b′ = Enc(1) +

∏
i(Enc(1) +Enc(si)). If one or more 1-s

is anticipated in any piece, the adversary feeds the user with the inverse of b′, and vice versa. This
method is to ensure that the induced ciphertexts always have a higher probability of encrypting
0-s, and consequently, the error rate will be minimized. For instance, for the first round, any half
has 1−

(
η/2
θ

)
/
(
η
θ

)
possibility of having at least a 1. Therefore, the cloud sends b′ + 1.

In the worst case, the fully Dichotomy search algorithm requires θ log(η/θ) + θ enquiries.
Applying over the FHE schemes, we observe a similar result with the previous optimization, i.e.,
O(λ log λ) for vDGHV scheme/Gentry scheme and O(λ) for Gentry-Halevi scheme. However,
we note that in practice, this optimization might work better, because we will have a higher
probability to eliminate a big block of 0-s.

We use vDGHV scheme to exemplify our secret key attack. The recommended configuration
for this scheme is θ = 80 and η = 805. Our optimization reduces the number of messages attacks
from 805 to approximately 2100. Meanwhile, the actual successful rate for the secret key attack
depends on the confidence from the message attack. Suppose through the message attack the cloud
develops 0.999 confidence on the message (this ratio can be achieved by launching the message
attack repeatedly on a same message), then the cloud can recover the secret key with a probability
of 0.9992100 = 0.122. That is to say, in average case, the cloud needs to use the secret key attack
for 8 times to recover the secret key, which is unacceptable by the users.

4 Discussion

4.1 Practicality of Our Attack

In practice, errors cannot be eliminated in the outsourced computation scenario. The users cannot
distinguish if it is caused by a malicious service provider, or by some connection/transmission
error, or even by the algorithm itself. As we have shown before, most of our message attacks in
the (optimized) secret key attack will not cause errors. Even with our optimization, the error
rate is still significantly small, compared with other causes. If λ = 80, the error rate can be as
small as 2.44× 10−8 for the original secret key attack. Meanwhile, the cloud can manipulate the
attacking rate, i.e., it attacks only when the current error rate of the network is lower than normal.
Therefore, the user is incapable of detecting this attack.

As a result, most of the decryption errors is generated by other reasons. The user cannot afford
to transfer its data to another cloud every time an error occurs, since transferring encrypted data
is too costly.

One may also argue that when the attacker induces Enc(0) and it might also be so coincidence
that a user is proceeding another search subsequently. Consequently, the attacker would recognize
the corresponding bit to be 1. Will this mislead the attacker? Possibly. This is the reason why
we stated that our attack is probabilistic, and we have shown that our attack can minimize the
impact of this event to occur. The attacker performs one attack during a period, instead of one
interaction. During this period, ε1 may have already been decreased a lot times for other reasons.
Therefore, one increase will not mislead the cloud after all.

4.2 Protecting FHE with Verifiable Computation

In theory, using FHE with verifiable computation will stop our attack in model 1 and 2. Since
the user is able to verify the computation, the cloud will not be able to modify the computation

12 Zhenfei Zhang, Thomas Plantard, and Willy Susilo

circuit without be detected. As a result, our attack will be unsuccessful. However, we argue that,
in order to use FHE in those models, one must use verifiable computation all the time.

Moreover, we also observe that, although the cost of verification is low, to generate the minimum
circuit and to homomorphically modify it is costly. Thus, whether this technique can be used in
practise is doubtful.

Finally, as far as model 3 is concerned, the computation circuit is private to the cloud, hence,
verifiable computation protocols are not applicable in this scenario.

4.3 Other Possible Protections

A possible solution to the secret key attack could be removing the necessity of bootstrapping
technique. If there is such a FHE scheme that supports arbitrary circuit depth without the boot-
strapping technique, then the users can avoid publishing his/her encrypted secret keys. Unfortu-
nately, so far all FHE schemes except [18] follow Gentry’s framework, and to bootstrap is essential
for them to achieve fully homomorphic. Meanwhile, even if there exists a FHE scheme without
bootstrapping, by incorporating our attack, the attacker is still capable of recovering data (but
not the secret key) from the users.

To stop the message attack is much more difficult, as one cannot determine where an error
is actually from. A possible solution could be setting up certain protocols between the service
provider and the users. This protocol has to minimize the error rate. Further, whenever an error
occurs, the provider has to show the users’ full details of the evaluation circuit, in order to convince
the users.

Another possible but expensive solution would be letting the users to generate random “mean-
ingless” tasks (or “stubs”) periodically. Whenever the user needs to use the service, he/she replaces
a stub with the one he/she really requires. Even though the user receives some errors and needs to
set up the same task again, he/she does not process immediately. Instead, he/she will wait till the
next period of sending tasks. As a result, the attacker will not be able to distinguish if a task is a
valid one, or a repeated one (due to message attack), or merely a random one. Also, the overall
average task rate remains the same.

However, we note that this solution is very expensive, as it requires periodic communications
between the users and the cloud. Meanwhile, the user sometimes has to wait for several periods
when he/she requires multiple tasks. As a result, the availability of the cloud is not always ensured.
Further, in practice, the service providers charge users based on their tasks, and additional random
meaningless tasks will significantly increase the cost of using cloud computing.

5 Conclusion

It is widely believed that cloud computing has become the next stage of the Internet, as it enables
outsourced computation. However, how to ensure information security and users’ privacy remains
a challenging open problem. In this paper, we showed that, fully homomorphic encryption schemes,
although seem to be a promising candidate, have some problems when they are used in the context
of cloud computing.

Subsequently, we presented a practical message attack against all fully homomorphic encryption
schemes, in that a malicious cloud can recover the messages by observing users reactions. With
several examples, we showed that in practice, our message attack has a very high probability to
be successful.

In addition, this message attack can be extended to construct a probabilistic decryption oracle.
This brings CCA-1 security as an essential requirement for constructing a secure fully homomorphic
encryption scheme.

Further, because of the bootstrapping technique that is used in Gentry’s framework, we obtain a
secret key attack against all fully homomorphic encryption schemes that follow this framework [11,
4, 3, 9, 17, 19, 10, 12, 16], and this secret key attack is very practical that only takes a maximum
O(λ log λ) time.

Reaction Attack on Outsourced Computing with Fully Homomorphic Encryption Schemes 13

Finally, we argued that CCA-1 security and no bootstrappability are the two essential require-
ments for fully homomorphic encryption schemes that can be used to secure cloud computing
scenarios.

References

1. van Dijk, M., Juels, A.: On the impossibility of cryptography alone for privacy-preserving cloud
computing. Cryptology ePrint Archive, Report 2010/305 (2010) http://eprint.iacr.org/.

2. Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable computing: Outsourcing computation
to untrusted workers. In: CRYPTO. (2010) 465–482

3. Gentry, C.: A Fully Homomorphic Encyrption Scheme. PhD thesis, Stanford University (2009)
4. Gentry, C.: Fully homomorphic encryption using ideal lattices. In Mitzenmacher, M., ed.: STOC,

ACM (2009) 169–178
5. Hall, C., Goldberg, I., Schneier, B.: Reaction attacks against several public-key cryptosystems. In

Varadharajan, V., Mu, Y., eds.: ICICS. Volume 1726 of Lecture Notes in Computer Science., Springer
(1999) 2–12

6. Myers, S., Shelat, A.: Bit encryption is complete. In: FOCS, IEEE Computer Society (2009) 607–616
7. Rivest, R., Adleman, L., Dertouzos, M.: On data banks and privacy homomorphisms. In: Foundations

of Secure Computation, Academic Press (1978) 169–177
8. Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital signatures and public-key

cryptosystems. Commun. ACM 21(2) (1978) 120–126
9. Smart, N.P., Vercauteren, F.: Fully homomorphic encryption with relatively small key and ciphertext

sizes. In Nguyen, P.Q., Pointcheval, D., eds.: Public Key Cryptography. Volume 6056 of Lecture Notes
in Computer Science., Springer (2010) 420–443

10. Stehlé, D., Steinfeld, R.: Faster fully homomorphic encryption. In Abe, M., ed.: ASIACRYPT. Volume
6477 of Lecture Notes in Computer Science., Springer (2010) 377–394

11. van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic encryption over the
integers. In Gilbert, H., ed.: EUROCRYPT. Volume 6110 of Lecture Notes in Computer Science.,
Springer (2010) 24–43

12. Gentry, C., Halevi, S.: Implementing gentry’s fully-homomorphic encryption scheme. In Paterson,
K.G., ed.: EUROCRYPT. Volume 6632 of Lecture Notes in Computer Science., Springer (2011) 129–
148

13. Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2) (1984) 270–299
14. Bellare, M., Desai, A., Pointcheval, D., Rogaway, P.: Relations among notions of security for public-

key encryption schemes. In Krawczyk, H., ed.: CRYPTO. Volume 1462 of Lecture Notes in Computer
Science., Springer (1998) 26–45

15. Georgii, H.O.: Stochastics: Introduction to Probability and Statistics (de Gruyter Textbook). 1 edn.
Walter de Gruyter (2008)

16. Loftus, J., May, A., Smart, N., Vercauteren, F.: On cca-secure fully homomorphic encryption. In:
Selected Areas in Cryptography. (2011)

17. Gentry, C., Halevi, S., Vaikuntanathan, V.: i-Hop Homomorphic Encryption and Rerandomizable Yao
Circuits. In Rabin, T., ed.: CRYPTO. Volume 6223 of Lecture Notes in Computer Science., Springer
(2010) 155–172

18. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: Fully homomorphic encryption without bootstrapping.
Electronic Colloquium on Computational Complexity (ECCC) 18 (2011) 111

19. Gentry, C.: Computing arbitrary functions of encrypted data. Commun. ACM 53(3) (2010) 97–105

