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Abstract

Hermite Normal Form (HNF) matrices are a standard form of integer matrices

used in applications such as lattice based cryptography and integer programming.

Calculating the HNFs of randomly selected matrices, however, is not efficient and,

although polynomial algorithms exist to address this issue, they do not address the

private and public key selection process that attempts to search for a reduced public

key size. At best, searching for a matrix (private key) whose HNF (public key) is in

‘minimal’ form (that is, it can be expressed as a single column of values) is a trial

and error process with only a 40% chance of success.

In this thesis, a way of reducing the trial and error associated with this process

is studied. It does so by taking advantage of the incremental nature of Micciancio

and Warinschi’s algorithm for calculating HNF matrices row by column. The first

contribution of this thesis reveals a stochastic observation relating to prime deter-

minants. Specifically, if a leading principal minor of a matrix is prime (that is, if

the determinant of a k × k sub-matrix of an n × n matrix is prime), it increases

the probability of the next (or (k+ 1)-th) leading principal minor also being prime.

Test results have revealed a reduction in the average number of steps of selecting a

matrix with a prime determinant by a factor of 12 when compared to the traditional

trial and error techniques of selecting such a matrix.

Since the determinant of a matrix does not need to be prime in order for its

HNF to be in ‘minimal’ form, an alternative way of reducing the public key matrix

is also studied, again taking advantage of the incremental nature of Micciancio and

Warinschi’s algorithm for calculating HNF matrices.

Finally, this thesis also looks at an alternative way of selecting private key ma-

trices whose HNF public key matrices are in ‘minimal’ form. It does so by using

a simple sieving method, which filters prime (or probable prime) determinants of

a matrix. With a success rate of about 99%, this method leads more directly to a

solution rather than a subset of possible solutions.
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Chapter 1

Introduction

Lattice based cryptography is an important area of study in modern cryptography.

The motivation for introducing lattice-based cryptosystems is twofold. First, it is

certainly of interest to have cryptosystems based on a variety of hard mathemati-

cal problems, since a breakthrough in solving one mathematical problem does not

compromise the security of all systems. Second, lattice-based cryptosystems are

frequently much faster than factorisation or discrete logarithm-based systems like

ElGamal, RSA and ECC. Furthermore, the simple linear algebra operations used

by lattice-based systems are very easy to implement in hardware and software.

1.1 Lattice Based Cryptography

In Crypto ’97, Goldreich, Goldwasser and Halevi proposed a one-way trapdoor func-

tion called GGH from which they could derive public-key encryption and digital

signatures. The security of this scheme was based on the conjectured computational

difficulty of lattice problems, thereby providing a possible alternative to existing

public-key encryption algorithms and digital signature schemes. In particular, the

scheme relied on the Closest Vector Problem (CVP) as its underlying hard problem

to construct trapdoor functions.

The methods described by Goldreich et al. were asymptotically more efficient

than the RSA and ElGamal encryption schemes, for example, in that the compu-

tation time for encryption, decryption, signing, and verifying were all quadratic in

the natural security parameter [GGH97]. Specifically, for the security parameter of

k, the new scheme required a computational time of O(k2) to execute, compared

to the RSA and ElGamal schemes, which required a computational time of O(k3)1.

1Note that more advanced techniques provided better results. For instance, RSA encryp-
tion/decryption requires O(kM(k)) where M(k) is the complexity of multiplying two values modulo

1
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The size of the public key, however, was longer: O(k2) compared to O(k) for the

RSA and ElGamal schemes. The authors of this new scheme, however, argued that

given today’s technologies, the increase in key size is more than compensated by the

decrease in computational time.

The GGH signature scheme, for example, can be described in three steps:

Setup: Compute a ‘good basis’, G, and a ‘bad basis’, B, of a lattice L, such

that both span the same lattice L, (i.e. L(G) = L(B)). Provide B as a public

basis (key) and keep G as a private basis (key).

Sign: Use the good basis to calculate an efficient approximation of the closest

vector to a vector. In this case, the initial vector is the message and the

approximation is the signature.

Verify: Check if the approximation is in the lattice spanned by the bad basis.

Note that GGH uses the first of Babai’s methods [Bab86] to approximate CVP.

That is s = dmG−1cG, where dxc represents the closest integer of x if x is real, and

the vector (dx0c, dx1c, ..., dxn−1c) if x is a vector of Rn. The important points for

the security and efficiency of this cryptosystem to consider as follows.

i) It is easy to compute a ‘bad basis’ from a “good basis”, but difficult to compute

a ‘good basis’ from a ‘bad basis’.

ii) It is easy to compute a good approximation of CVP with a ‘good basis’, but

difficult to do so with a ‘bad basis’.

iii) It is easy to check the inclusion of a vector in a lattice even with a ‘bad basis’.

In 1999, Nguyen demonstrated a major flaw in the design of this scheme which

had two implications: any ciphertext leaked information on the plaintext, and the

problem of decrypting ciphertexts could be reduced to a special closest vector prob-

lem which was much easier to solve than the general problem. In particular, the

given vector was very close to the lattice, which made it possible in practice to find

the closest vector by standard techniques [Ngu99]. Due to this attack, the utiliza-

tion of GGH required that a lattice be defined with dimension greater than 500 to

N of size k bits. Also, with Montgomery representation (allowing for a fast reduction) and Fast
Fourier Transforms, M(k) = O(k log k log log k).
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ensure its security. Nguyen suggested other solutions that would prevent the flaw

but concluded that, even modified, the scheme could not provide sufficient security

without being impractical.

1.2 HNF to Improve Lattice Based Cryptography

In 2001, Micciancio [Mic01] proposed some major improvements to the speed and

security of GGH. In particular, he showed how to build lattice based trapdoor func-

tions with public key sizes of 330KB and less, and still be secure against the best

known lattice attacks. He did so by using Hermite Normal Form (HNF) matrices,

which are upper triangular matrices analogous to reduced row echelon form matrices

over Z. Specifically, a square matrix, H = (hi,j), with integer entries is in Hermite

Normal form if it satisfies the following conditions2.

1. H is an upper triangular matrix, i.e. hi,j = 0 if i > j,

2. For every i, hi,i > 0 (i.e. its diagonal entries, hi,i, are positive),

3. For every i > j, we have 0 ≤ hi,j < hi,i (i.e. in a given column, the entries

above the diagonal are less than the diagonal coefficient, and at least zero).

Also, for every integer matrix A, there exists a unimodular matrix, U , such that

H = A · U , and H is unique [Coh93].

The following matrix is in Hermite Normal Form.

H =


2 0 1 11

0 1 5 12

0 0 6 12

0 0 0 33


Notice that all off diagonal entries in the lower half of the matrix are zero (condi-

tion 1); all diagonal entries are greater than zero (condition 2); and all off diagonal

entries in the upper half of the matrix are greater than or equal to zero, but less

than the value of the entry on the diagonal (condition 3).

Note that, some authors (like Micciancio and Warinschi) use lower triangular

matrices, rather than upper triangular matrices, in which case suitable adjustments

2This is different from the traditional definition of HNF, however, there is an easy transformation
to go from one to the other. See [Coh93] for further details.
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need to be made to the rest of the definition. This will depend on how the ma-

trices are represented. Typically, matrices that are represented as column vectors

have their HNF represented as a lower triangular matrix, while matrices that are

represented as row vectors have their HNF being represented as an upper triangular

matrix (as above) [Coh93].

The advantage of using Hermite Normal Form matrices is that they improve the

efficiency of cryptosystems in terms of key length and computation time without

compromising their security [PSW08]. And, if used for digital signature schemes,

they are better for verifying digests, as well as making it more difficult to recover

the private key [Mic01] [MW01] [PSW08].

In 2003, NTRUSign [HHGP+03] was developed based on similar methods to

GGH, but with improvements to the CVP approximation algorithm. In particular,

Hoffstein et al. noted that such approximation algorithms do not provide a zero-

knowledge scheme since the transcript of signatures leaks information about the

private key. They introduced a perturbation technique as a general way of reducing

the effectiveness of transcript analysis in CVP-based signature schemes. In the case

of NTRUSign, the use of perturbations guaranteed that the number of signatures

required to extract useful information far exceeded practical requirements.

They also proposed a slightly different class of convolution modular lattices, re-

ferred to as transpose NTRU lattices, that seemed to be more resistant to previously

known attacks. Nevertheless, in 2006, Nguyen and Regev proposed a general at-

tack against both the GGH signature scheme and NTRUSign [NR06]. This clever

attack used large CVP approximations to recover the parallelepiped that made up

the private key.

In 2008, Plantard et al. proposed a digital signature scheme similar to that of

GGH, except that it uses the l∞-norm to construct digital signatures, instead of the

l2-norm used by GGH. The advantage of this scheme is that it increases the security

of the resulting digest, making it difficult to recover the parallelepiped that makes

up the private key [PSW08]. It, too, uses HNF matrices to reduce the public key.

Like GGH, it also provides for a more efficient implementation.

1.3 HNF Computations

As a comparison, the simplest algorithms for computing the Hermite Normal Form

use a procedure similar to the Euclidean algorithm by replacing the diagonal element
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in a given row by the gcd of the elements in the same row. This approach requires

O(m2n) operations on rational numbers, where m and n are the number of rows and

columns of the matrix, respectively. This method, however, does not properly bind

the coefficients of intermediate results, even in very reasonable situations [Coh93].

For example, in [HM90], Hefner and McCurley provide a 20 × 20 integer matrix

whose coefficients are less than or equal to 10, but needs integers of up to 1500

decimal digits to perform the calculation.

When m ≤ n and A is a matrix of rank m (in which case, H is an upper trian-

gular matrix with non-zero determinant D), an important improvement suggested

by several authors is to work modulo a multiple of the determinant (see [KB79]

and [HM91] for examples). The first published algorithm to use this technique was

by Frumkin [Fru77]. He based it on an algorithm for solving linear Diophantine

equations, and had a running time that was bounded by a polynomial of O(n6) in

the length of the input. Kannan and Bachem published another polynomial time

algorithm shortly after [KB79]. Their method rearranged the order of operations of

the classical Hermite Normal Form algorithm, and in doing so were able to prove a

polynomial space and time bound for the algorithm. Chou and Collins gave a better

space and time bound by modifying the Kannan-Bachem procedure [CC82], as did

Iliopoulos who extended this procedure by using modular techniques [Ili89].

In the case of square matrices, Domich, Kannan and Trotter limit the size of the

entries by modulo computation. They do so by first performing Gaussian elimina-

tion modulo the determinant, and then recovering the Hermite Normal Form of the

original matrix by applying unimodular operations [DKT87]. Hafner and McCurley

extend this result to non-square matrices, and also show how to use fast matrix mul-

tiplication in computing a triangular form of the input matrix [HM91]. In particular,

they demonstrate that the running time of the algorithm is O(m3n(log logm)3).

An even faster algorithm for computing the HNF of a triangular matrix is given

by Storjohann in [Sto96]. The running time of the HNF algorithm obtained this way,

which is dominated by the Hafner-McCurley triangularisation procedure, is equal to

O(n2+θ log2M), where M is a bound on the entries of A, and nθ is the number of

arithmetic operations required to multiply two n×n matrices3. Although the space

efficiency is not analysed, it follows from the triangularisation procedure that the

space requirement of this, and all previous HNF algorithms, is O(n3 logM) [MW01].

3Often referred to as the matrix exponent, Coppersmith and Winograd [CW87] were able to
reduce θ to 2.376. In 2012, Williams [Wil12] reduced this to 2.3727.
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In [MW01], Micciancio and Warinschi were able to reduce the space bound to

O(n2 logM) (i.e. essentially the same size as the input matrix). They do so by using

two space saving techniques. The first uses the Chinese Remainder Theorem on row

vectors with appropriately selected prime numbers, while the second technique uses

the Extended Euclidean Algorithm modulus the determinant to derive the column

vectors. These space saving techniques also reduce the running time bound to

O(n5 log2M), although they also propose a heuristic version of their algorithm that

further reduces the running time to O(n4 log2M), or even O(n3 log2M) based on

whether or not certain conditions of the input matrix hold.

Steel [Ste] has reportedly been able to reduce the time complexity in Magma

by extending the ideas of Micciancio and Warinschi and by using high performance

linear algebra code within Magma [BCP97, BCFS10]. His techniques were further

extended by Pernet and Stein [PS10], who have also reportedly been able to re-

duce the time complexity in Sage [S+07] by improving on the heuristic version of

Micciancio and Warinschi’s implementation. They do so by defining a double deter-

minant function which reduces the system of equations required for calculating the

determinant of the sub-matrices that constitute the HNF matrix. Although they do

provide timings that demonstrate that their implementation is asymptotically faster

than other available versions (for example, compared to NTL [Sho09], Magma, GAP

[S+97] and Pari [Bat11]), it appears, at least for square matrices, that Magma is

still superior in its performance for matrices whose elements are bound by eight bits.

Furthermore, their implementation for square matrices does not appear to handle

small matrix dimensions4.

1.4 Motivation and Objectives

Although the techniques for calculating the HNF of a matrix have improved, the

aim of finding a matrix whose HNF matrix can be expressed in ‘optimal’ form has

not. That is, a HNF matrix whose triangular form is a single column of values. For

4This is a limitation of Micciancio and Warinschi’s heuristic implementation of the HNF algo-
rithm. The space efficient version of the algorithm overcomes this limitation. For further details,
see [MW01]



1.5. Contributions 8

instance, the following HNF matrix is in optimal form.

H =


1 0 0 335

0 1 0 286

0 0 1 1663

0 0 0 2873


This, for example, is useful for reducing the public key of a lattice based cryptosys-

tem. According to Rose et al. [RPS11], the chances of finding such a matrix at

random is approximately 40%. This means that, if the matrix were to be discarded

every time its HNF was found not to be optimal, it would take between two to three

times longer than the time for calculating its HNF, using Micciancio and Warinschi’s

heuristic technique.

The solution of Rose et al. was to calculate the determinant of the matrix prior

to calculating its HNF, the assumption being that if the determinant were prime,

its HNF would be in optimal form. This is because calculating the determinant

is reduced to multiplying the diagonal entries of the matrix. This is because a

prime determinant will have no factors, meaning that all coefficients on the diagonal

except for the determinant will be equal to 1. In terms of solving linear diophantine

equations, this means that if there are no trivial solutions, the determinant will be

the last coefficient on the diagonal. This, therefore, reduces the complexity of finding

an optimal HNF to that of calculating its determinant. That is, approximately two

to three times the order of calculating the determinant, plus the time it takes to

calculate its HNF. Although this does reduce the complexity of finding an optimal

solution, there is still room to reduce a lot of the trial and error associated with the

process.

1.5 Contributions

This thesis explores ways of reducing the trial and error associated with this process.

It does so by utilising a property that encourages the determinant of a randomly

chosen matrix to be prime. The idea is to ensure that the determinant of the matrix

remains prime during its construction, and by doing so improves the likelihood of the

target matrix determinant also being prime. This thesis also explores other ways of

optimising HNF matrices, which does not involve prime determinants. The idea here

is ensure that the HNF of randomly selected matrices remain optimal during their
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construction, and by doing so improves the likelihood of the target HNF matrices

also being optimal.

While the aim of this thesis is to optimise public key construction of the digital

signature scheme proposed by Plantard et. al. [PSW08], it can also be adapted

to the public key construction of other homomorphic cryptosystems proposed by

Gentry et al. [GPV08] and Smart et al. [SV10]. It can further be adapted to

the resolution of linear diophantine equations [CC82, Dwo98], as well as to loop

optimisation techniques proposed by Ramanujam [Ram95].

1.6 Thesis Structure

This thesis is organised into five chapters, as illustrated in Table 1.2. The contents

of each chapter are discussed below.

Chapter 1 Introduction

Background
Chapter 2 Hermite Normal Forms
Chapter 3 Distribution of Prime Determinants

Contributions Chapter 4 Selecting an Optimal HNF
Chapter 5 Conclusion and Future Work

Table 1.2: Structure of the thesis.

Chapter 1 provides readers with an introduction to this thesis, at the same

time addressing its objectives and motivation. It also highlights its contributions,

as well as its structure.

Chapter 2 provides a concise definition of an HNF matrix, as well as the dif-

ferent algorithms relating to its construction.

Chapter 3 looks at the asymptotic distribution of prime numbers, and how they

relate to the distribution of prime determinants of a matrix.

Chapter 4 presents the contributions of this thesis; namely, a method of se-

lecting an integer matrix such that its HNF is in optimal form. Typically, selecting

a matrix whose determinant is prime will result in such an HNF matrix, however,

this chapter also looks at other methods of selecting integer matrices which does not

entail prime determinants.

Chapter 5 summarises the contributions of this thesis, and discusses direction

for future work.



Chapter 2

Hermite Normal Forms

As noted in Chapter 1, the advantage of using Hermite Normal Form matrices is

that they improve the efficiency of lattice based cryptosystems in terms of key length

and computation time without compromising their security. This chapter provides

a concise definition of an HNF matrix, as well as different algorithms relating to its

construction.

2.1 Hermite Normal Form

A classical result of Hermite states that for every integer matrix A, there exists a

unimodular matrix, U , such that H = U · A is an upper triangular matrix which

is analogous to reduced row echelon form matrices over Z, and is unique [Coh93].

Such matrices are known as Hermite Normal Forms, and are used in applications

such as integer programming [HR90], loop optimisation [Ram95], and for finding the

solution to a system of linear Diophantine equations [Dwo98]. They are also used

for solving algorithmic problems in lattice based theory [HM89]. In 2001, Micciancio

[Mic01] suggested the use of HNF matrices for improving the security and efficiency

of GGH [GGH97]. In [PSW08] and [RPS11], HNF matrices form the public key to a

digital signature scheme similar to that of GGH, except that the geometric distance

between points in the lattice are calculated differently.

Definition 2.1 An m × n matrix H = (hi,j) is in Hermite Normal Form if there

exists r ≤ m, and a strictly increasing map f : [r + 1] → [1,m] satisfying the

following properties.

1. For r + 1 ≤ j ≤ m,hf(j),j ≥ 1, hi,j = 0 if i > f(j) and 0 ≤ hf(k),j <

hf(k),k if k < j.

2. The last m− r rows of H are equal to 0.

10
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More generally, if m ≥ n, a matrix H ∈ Zm×n in Hermite Normal Form has the

following shape, 

∗ ∗ . . . ∗
0 ∗ . . . ∗
...

. . .
. . .

...

0 . . . 0 ∗
0 . . . 0 0

0 . . . 0 0
...

. . .
...

...

0 . . . 0 0


where the first m rows form a matrix in HNF.

In the special case where m = n and f(k) = k, H is in Hermite Normal Form if

it satisfies the following conditions.

1. H is an upper triangle matrix, i.e. hi,j = 0 if i > j.

2. For every i, hi,i > 0.

3. For every i > j, we have 0 ≤ hi,j < hi,i.

For example, the following matrix is in Hermite Normal Form.

H =


2 0 1 11

0 1 5 12

0 0 6 12

0 0 0 33


Notice that all off diagonal entries in the lower half of the matrix are zero (condi-

tion 1); all diagonal entries are greater than zero (condition 2); and all off diagonal

entries in the upper half of the matrix are greater than or equal to zero, but less

than the value of the entry on the diagonal (condition 3).

Theorem 2.1 Let A be an m× n matrix with coefficients in Z. Then, there exists

a unique m× n matrix H = (hi,j) in HNF of the form H = UA with U ∈ GLm(Z),

where GLm(Z) is the general linear group of matrices with integer coefficients which

are invertible, and whose determinant is equal to ±1. Such matrices are commonly

referred as being unimodular.
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Proof: The existence statement of Theorem 2.1 is proved by [Coh93], while the

uniqueness statement is proved by [MG02]. �

Note that, although H is unique, the matrix U will not be unique. Further note

that the non-zero rows of H form the HNF of the matrix A. Algorithm 1 illustrates

the traditional method of calculating HNF using Gaussian elimination; the only

difference is that there is no last column.

This algorithm terminates since one can easily prove that |ai,k| is strictly decreas-

ing with each iteration of the first loop. Also, it is clear that H is the HNF of A,

since it has been obtained from A using elementary row operations of determinant

±1.

Example. Suppose one is given the following matrix.

A =


0 −1 1 0

−2 3 2 1

−6 −1 −2 0

4 −2 −2 10


On the first iteration of the first loop, row 2 is found to contain the smallest absolute

coefficient in the first column of the matrix. This is often referred to as the pivot

entry. It is therefore swapped with row 1 of the matrix giving

A
(j←1)
(first loop) =


−2 3 2 1

0 −1 1 0

−6 −1 −2 0

4 −2 −2 10


Since a1,1 is less than zero, the entire row is negated giving

A
(j←1)
(first loop) =


2 −3 −2 −1

0 −1 1 0

−6 −1 −2 0

4 −2 −2 10


Each row below the first row is then reduced based on the pivot entry (in this case,

the first coefficient of the matrix) resulting in the following matrix

A
(j←1)
(first loop) =


2 −3 −2 −1

0 −1 1 0

0 −10 −8 −3

0 4 2 12


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Algorithm 1 Compute Hermite Normal Form

Given an m×n matrix A with integer coefficients (ai,j) the following algorithm finds
the HNF H of A. As usual, hi,j is written for the coefficients of H, Ai (resp. Hi)
for the rows of A (resp. H).

Input: An m× n matrix A with integer coefficients (ai,j).
Output: The HNF H of A.
k ← 1;
for j ← 1 to n do

// Choose Pivot
i0 ← {i ∈ [k, n] : ai,j = min{|ai,j| : i ∈ [k, n]}};
if i0 > k then

Exchange row Ak with row Ai0 ;
if ak,j < 0 then
Ak ← −Ak;

end if
end if
// Reduce Rows
b← ak,j;
for i← (k + 1) to n do
q ← bai,j/be;
Ai ← Ai − q × Ak;

end for
k ← k + 1;

end for

// Final Reductions
k ← 1;
for j ← 1 to n do

if ak,j < 0 then
Ak ← −Ak;

end if
b← ak,j;
if b = 0 then

continue;
else

for i← 1 to (k − 1) do
q ← bai,j/bc;
Ai ← Ai − q × Ak;

end for
end if
k ← k + 1;

end for

for i← 1 to n do
Hi ← Ai;

end for
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Reducing a row involves eliminating the coefficients below the pivot entry by means

of elementary row operations (in this case, by some multiple of the first row). As

such, they do not change the solution set of the system of linear equations repre-

sented by the matrix.

On the second iteration of the first loop, row 2 is found to contain the pivot

entry (that is, the smallest absolute coefficient, this time in the second column

of the matrix). It, therefore, does not need to be swapped. It does, however,

need to be negated, although this is deferred till the second loop of the algorithm.

The remaining rows are, again, reduced based on the pivot entry, resulting in the

following matrix

A
(j←2)
(first loop) =


2 −3 −2 −1

0 −1 1 0

0 0 −18 −3

0 0 6 12


On the third iteration of the first loop, row 4 is found to contain the pivot entry (that

is, the smallest absolute coefficient, this time in the third column of the matrix). It

is, therefore, swapped with row 3 of the matrix giving

A
(j←3)
(first loop) =


2 −3 −2 −1

0 −1 1 0

0 0 6 12

0 0 −18 −3


Note that, since the pivot entry is already positive, the row does not need to be

negated. The remaining row, however, is reduced based on the pivot entry giving

rise to the following matrix

A
(j←3)
(first loop) =


2 −3 −2 −1

0 −1 1 0

0 0 6 12

0 0 0 33


Having completed the first loop, the second loop of the algorithm then reduces

the coefficients in the upper triangular portion of the matrix, only this time making

them consistent with Definition 2.1. It turns out that this forms the uniqueness of

the HNF matrix. Since this reduction is based on the pivot entry on the diagonal,

the first iteration of the second loop will have no effect on the matrix. On the second
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iteration of the loop, however, the first row of the matrix is reduced giving

A
(j←2)
(second loop) =


2 0 −5 −1

0 1 −1 0

0 0 6 12

0 0 0 33


Notice that the step to negate the second row of the matrix is performed prior to

the reduction step, and was combined with the above result. This ensures that all

coefficients on the diagonal remain positive in line with the definition. On the third

iteration of the second loop, both rows 1 and 2 are reduced giving

A
(j←3)
(second loop) =


2 0 1 11

0 1 5 12

0 0 6 12

0 0 0 33


As the matrix is now in HNF format, the final iteration of the second loop will have

no effect. Thus,

H =


2 0 1 11

0 1 5 12

0 0 6 12

0 0 0 33


Note that the final reduction steps could have easily been placed inside the first

loop, thereby avoiding the second loop, and making the implementation more effi-

cient. In this and subsequent algorithms, the final reduction steps are kept separate

for clarity of implementation, but also to demonstrate their independence to other

row reduction steps.

Remarks.

1. In the case where A is of equal rank (i.e. m = n), it is easy to modify the

above algorithm (as well as subsequent ones) so as to give a lower triangular

HNF of A.

2. If the matrix U ∈ GLn(Z) is required, it is easy to add the corresponding

statements to calculate it (see Algorithm 2.4.10 in [Coh93]).
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2.2 Hermite Normal Form using GCD

Consider the simple case where m = 2, n = 1 of this algorithm. The result will

typically be a 1 × 1 matrix whose unique element is equal to the GCD of a1,1

and a2,1. Hence, it is usually faster to replace the divisions of Algorithm 1 with

(extended) GCD’s. This gives rise to Algorithm 2.

Example. Suppose one is given the same matrix as the previous example,

A =


0 −1 1 0

−2 3 2 1

−6 −1 −2 0

4 −2 −2 10


On the first iteration of the first (outer) loop, the Euclidean step is used to determine

the GCD between rows 1 and 2 of the matrix. Unlike Algorithm 1, there is no pivot

entry, and therefore no need to swap the rows. Instead, the GCD of a1,1 and a2,1 is

computed with d = 2, u = 0 and v = −1. These values are first used to compute

the auxiliary vector B, which will be the final result (in this case) of the first row.

B = (2,−3,−2,−1)

These values are then used to reduce the second row of the matrix based on a

multiple of the entries in the first row.

A2 = (0,−1, 1, 0)

Finally, the auxiliary vector is assigned to the first row of the matrix giving

A
(j←1,i←2)
(first loop) =


2 −3 −2 −1

0 −1 1 0

−6 −1 −2 0

4 −2 −2 10


The Euclidean step is then used to determine the GCD between rows 1 and 3 of

the matrix. This time, the GCD of a1,1 and a3,1 is computed with d = 2, u = 1

and v = 0. This does not change the auxiliary vector, however, the third row of the

matrix is reduced to

A3 = (0,−10,−8,−3).
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Algorithm 2 Compute Hermite Normal Form using GCD

Given an m×n matrix A with integer coefficients (ai,j) this algorithm finds the HNF
H of A, using an auxiliary row vector B.

Input: An m× n matrix A with integer coefficients (ai,j).
Data: Auxiliary row vector B.
Output: The HNF H of A.
k ← 1;
for j ← 1 to n do

for i← (k + 1) to n do
if ai,j 6= 0 then

// Euclidean Step
Compute (d, u, v) such that uak,j + vai,j = d = gcd(ak,j, ai,j);
B ← uAk + vAi;
Ai ← (ak,j/d)Ai − (ai,j/d)Ak;
Ak ← B;

end if
end for
k ← k + 1;

end for

// Final Reductions
k ← 1;
for j ← 1 to n do

if ak,j < 0 then
Ak ← −Ak;

end if
b← ak,j;
if b = 0 then

continue;
else

for i← 1 to (k − 1) do
q ← bai,j/bc;
Ai ← Ai − q × Ak;

end for
end if
k ← k + 1;

end for

for i← 1 to n do
Hi ← Ai;

end for
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This results in the following matrix

A
(j←1,i←3)
(first loop) =


2 −3 −2 −1

0 −1 1 0

0 −10 −8 −3

4 −2 −2 10

 .

Applying the same process to rows 1 and 4 of the matrix results in the following

matrix

A
(j←1,i←4)
(first loop) =


2 −3 −2 −1

0 −1 1 0

0 −10 −8 −3

0 4 2 12

 .

On the second iteration of the first (outer) loop, the Euclidean step is used to

determine the GCD between rows 2 and 3 of the matrix. In this case, the GCD of

a2,2 and a3,2 is computed with d = 1, u = −1 and v = 0. These values are first used

to compute the auxiliary vector B, which will be the final result (in this case) of the

second row.

B = (0, 1,−1, 0)

These values are then used to reduce the third row of the matrix based on a multiple

of the entries in the second row.

A3 = (0, 0, 18, 3)

Finally, the auxiliary vector is assigned to the second row of the matrix giving

A
(j←2,i←3)
(first loop) =


2 −3 −2 −1

0 1 −1 0

0 0 18 3

0 4 2 12


The Euclidean step is then used to determine the GCD between rows 2 and 4 of the

matrix. This time, the GCD of a2,2 and a4,2 is computed with d = 1, u = 1 and

v = 0. This does not change the auxiliary vector, however, the fourth row of the

matrix is reduced to

A4 = (0, 0, 6, 12).
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This results in the following matrix

A
(j←2,i←4)
(first loop) =


2 −3 −2 −1

0 1 −1 0

0 0 18 3

0 0 6 12

 .

On the third iteration of the first (outer) loop, the Euclidean step is used to

determine the GCD between rows 3 and 4 of the matrix. In this case, the GCD of

a3,3 and a4,3 is computed with d = 6, u = 0 and v = 1. These values are first used

to compute the auxiliary vector B, which will be the final result (in this case) of the

third row.

B = (0, 0, 6, 12)

These values are then used to reduce the fourth row of the matrix based on a multiple

of the entries in the third row.

A4 = (0, 0, 0, 33)

Finally, the auxiliary vector is assigned to the third row of the matrix giving

A
(j←3,i←4)
(first loop) =


2 −3 −2 −1

0 1 −1 0

0 0 6 12

0 0 0 33

 .

Note that the second loop of the algorithm is identical to that of Algorithm 1.

As such, its output will be no different to that of Algorithm 1. It reduces the

coefficients in the upper triangular portion of the matrix, making them consistent

with Definition 2.1. This ultimately results in the following matrix

H =


2 0 1 11

0 1 5 12

0 0 6 12

0 0 0 33


which is in HNF format. Like Algorithm 1, the final reduction steps could have

easily been placed inside the first loop. Like before, they were kept separate for

clarity of implementation, but also to demonstrate their independence to other row

reduction steps.
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Remark. Cohen [Coh93] suggests that u and v be chosen between a certain range

in order to avoid an infinite loop. The above adaptation of Cohen’s algorithm uses

structured programming techniques, which avoids infinite loops, regardless of how u

and v are selected. Furthermore, most implementations of Euclid’s extended algo-

rithm calculate u and v to be consistent with the bound noted by Cohen. According

to Cohen, such a pair exists and is unique.

2.3 Hermite Normal Form using Modulo D

Note that Algorithms 1 and 2 work entirely with integers, and there are no divisions

except for those of the Euclidean steps. One would therefore expect that they behave

reasonably well with respect to the size of the integers involved. Unfortunately,

this is not entirely the case, since they fail to bind the coefficients of intermediate

results, even in very reasonable circumstances. For instance, in [HM90], Hefner and

McCurley provide an example of a 20× 20 integer matrix whose coefficients are less

than or equal to 10, but need integers of up to 1500 decimal digits to perform the

calculation.

One improvement to Algorithm 2 would be to fix column j and, instead of

performing operations between rows i and j, perform the operations between rows

k and k−1, then k−1 and k−2, and so forth until rows 2 and 1 are reached. Then,

exchange rows 1 and k. This idea was contributed by Bradley [Bra71].

Yet another modification is to perform row operations in the following order:

(k, k − 1), (k, k − 2), . . . , (k, 1). For every column j, one can also work with the

pair of rows (i1, i2) where ai1,j and ai2,j are the largest and second largest non-

zero elements of column j with i ≤ k. Experiments show that the coefficients

of intermediate results are considerably reduced, as is the computational time of

preceding versions [Coh93].

When m ≤ n and A is of rank m (in which case H is an upper triangular matrix

with non-zero determinant D), an important improvement suggested by several

authors is to work modulo the determinant of H, or even modulo a multiple of the

determinant of H.

In the case where m = n, the det(H) = ±det(A). Therefore, the determinant

can be computed before doing the reduction if required. In general, however, one

does not know det(H) in advance. In practice, however, the HNF is often used for

obtaining a basis for a lattice L, in which case one typically knows a multiple of
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the determinant of L. This gives rise to Algorithm 3 contributed by Hafner and

McCurley [HM91].

Algorithm 3 Compute Hermite Normal Form modulo D

Let A be an m× n integer matrix of rank n. Let L = (li,j)1≤i,j≤n be the n× n upper
triangular matrix obtained from A by doing all operations modulo D in any of the
above mentioned algorithms, where D is a positive multiple of the determinant of
the subspace generated by the columns of A (or equivalently, the determinant of the
HNF of A). This algorithm outputs the true upper triangular HNF H = (hi,j)1≤i,j≤n
of A. Also, let Hi and Li denote the i-th rows of H and L respectively.

Input: An n× n matrix L with integer coefficients (li,j).
Output: The HNF H of L.
b← det(A);
for i← 1 to n do

// Euclidean Step
Compute (d, u, v) such that uli,i + vb = d = gcd(li,i, b);
Hi ← uLi mod |b|;
if d = |b| then
hi,i ← d;

end if
b← b/d;

end for

for j ← 2 to n do
for i← 1 to (j − 1) do
q ← bhi,j/hj,jc;
Hi ← Hi − q ×Hj;

end for
end for

To prove that this algorithm is valid note that, since the first loop is executed

exactly n times, the algorithm terminates. Therefore, the only thing to prove is

that the matrix H is indeed the HNF of A. For any m × n matrix M of rank

n, let γi(M) denote the GCD of all the i× i sub-determinants (or leading principal

minors) obtained from the first i rows of M for 1 ≤ i ≤ n. It is clear that elementary

row operations like those of Algorithms 1 and 2 leave these quantities unchanged.

Furthermore, reduction modulo D changes these i × i leading principal minors by

multiples of D, and hence does not change the GCD of γi(M) and D. It is also clear
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that γn−i+1(H) = hi,i · · ·hn,n divides det(H), and hence divides D. Therefore,

hi,i · · ·hn,n = gcd(D, γn−i+1(H))

= gcd(D, γn−i+1(A))

= gcd(D, γn−i+1(L))

= gcd(D, li,i · · · ln,n). (2.1)

Hence, the value given by Algorithm 3 for hn,n is correct.

Let Di denote the value of b at the i-th iteration (that is, the i × i leading

principal minor of matrix A), and set Pi = hi+1,i+1 · · ·hn,n. Then, assuming that

the diagonal elements of hj,j are correct for j > i, by definition Di = D/Pi. Hence,

if equation 2.1 is divided by Pi, then

1 = gcd(Di, (li+1,i+1 · · · ln,n)/Pi)

for 1 ≤ i < n. Now, by the preceding formula,

hi,i = gcd(Di, (li,i · · · ln,n)/Pi) = gcd(Di, li,i).

Hence, the diagonal elements of the matrix H which are output by Algorithm 3

are correct. Since H is an upper triangular matrix, it follows that its determinant

is equal to the determinant of the HNF of A. It remains to show that the rows

Hi = (uLi mod Di) output by the algorithm are in the lattice L generated by the

rows of A. See [Coh93] for further details.

Example. To fully demonstrate the capability of this algorithm, Algorithm 2 is first

modified to perform row operations modulus the determinant of the input matrix A.

The steps that will be specifically affected include the calculation of the auxiliary

vector, as well as the row reduction of the lower triangular portion of the matrix.

B ← uAk + vAi (mod | detA|);

Ai ← (ak,j/d)Ai − (ai,j/d)Ak (mod | detA|);

Ak ← B (mod | detA|);

Also affected is the final reduction step which reduces the upper triangular portion

of the matrix.

Ai ← Ai − q × Ak (mod | detA|);
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Rather than using the same matrix as the previous example as input, though,

consider the following matrix,

A =


1 2 −4 1

2 −5 −3 −3

−6 −3 0 5

−6 7 0 −8


Using the modified version of Algorithm 2 to determine the HNF of A results in the

following matrix,

L =


1 0 0 335

0 1 2 739

0 0 3 2116

0 0 0 0


which is an upper triangular matrix in HNF format, but not quite the HNF of A.

To correct this, Algorithm 3 is used.

On the first iteration of the first loop, the Euclidean step is used to determine

the GCD between l1,1 and the determinant of the matrix denoted by b. This results

in d = 1, u = 1 and v = 0. These values are used to compute the first row of H,

modulo the determinant of A.

H1 = (1, 0, 0, 335)

This results in the following matrix,

H
(i←1)
(first loop) =


1 0 0 335

0 0 0 0

0 0 0 0

0 0 0 0


The determinant of the matrix denoted by b is then factored using the GCD of l1,1

and b as the divisor. Since d = gcd(l1,1, b) = 1, this results in b = −2873.

On the second iteration of the first loop, the Euclidean step is used to determine

the GCD between l2,2 and b. This results in d = 1, u = 1 and v = 0. These values

are used to compute the second row of H, modulo the factored determinant of A

denoted by b.

H2 = (0, 1, 2, 739)
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This results in the following matrix,

H
(i←2)
(first loop) =


1 0 0 335

0 1 2 739

0 0 0 0

0 0 0 0


The determinant of the matrix denoted by b is then factored using the GCD of l2,2

and b as the divisor. Since d = gcd(l2,2, b) = 1, this results in b = −2873.

On the third iteration of the first loop, the Euclidean step is used to determine

the GCD between l3,3 and b. This results in d = 1, u = 958 and v = 1. These

values are used to compute the third row of H, modulo the factored determinant of

A denoted by b.

H3 = (0, 0, 1, 1663)

This results in the following matrix,

H
(i←3)
(first loop) =


1 0 0 335

0 1 2 739

0 0 1 1663

0 0 0 0


The determinant of the matrix denoted by b is then factored using the GCD of l2,2

and b as the divisor. Since d = gcd(l3,3, b) = 1, this results in b = −2873.

On the fourth iteration of the first loop, the Euclidean step is used to determine

the GCD between l4,4 and b. This results in d = 2873, u = 0 and v = −1. These

values are used to compute the fourth row of H, modulo the factored determinant

of A denoted by b.

H4 = (0, 0, 0, 0)

But, since d is now equal to |b|, h4,4 is assigned the value of d, resulting in the

following matrix,

H
(i←4)
(first loop) =


1 0 0 335

0 1 2 739

0 0 1 1663

0 0 0 2873


Notice how the resulting matrix is closer to the true HNF of A. It, however, is

not in HNF format. To fix this, the second loop of Algorithm 3 which reduces the

upper triangular portion of the matrix is used.
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On the first iteration of the (outer) loop, row 1 is reduced by a multiple of row

2 based on the diagonal entry. Specifically, a factor between h1,2 and h2,2 is chosen.

In this case, since h1,2 = 0, q will be equal to zero, and therefore no change to the

first row will occur.

H
(j←2)
(second loop) =


1 0 0 335

0 1 2 739

0 0 1 1663

0 0 0 2873


On the second iteration of the (outer) loop, row 1 is first reduced by a multiple

of row 3, only this time a factor between h1,3 and h3,3 is chosen. Since h1,3 = 0, q

will be equal to zero and, once again, no change to the first row will occur. Row 2 is

then reduced by a multiple of row 3, choosing a factor between h2,3 and h3,3. Since

h2,3 = 2, q will be assigned a value of 2, resulting in the second row of the matrix

being reduced to

H2 = (0, 1, 0,−2587).

This results in the following matrix,

H
(j←3)
(second loop) =


1 0 0 335

0 1 0 −2587

0 0 1 1663

0 0 0 2873


On the third iteration of the (outer) loop, rows 1, 2 and 3 are reduced by a

multiple of row 4, each time choosing factors between h1,4 and h4,4, h2,4 and h4,4,

and h3,4 and h4,4, respectively. Reducing row 1 by a multiple of row 4 will not have

any effect since h4,4 does not divide h1,4. This is also true for reducing row 3 by a

multiple of row 4. Reducing row 2 by a multiple of row 4, however, will result in a

factor of -1 being calculated for q, thereby reducing the second row of the matrix to

H2 = (0, 1, 0, 286).

This results in the following matrix, which is the true HNF of A.

H =


1 0 0 335

0 1 0 286

0 0 1 1663

0 0 0 2873


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Remark. In the case where the modified version of Algorithm 2 returns a true

HNF matrix, applying Algorithm 3 to it will have no effect. Such is the case for

the example of the previous section. Knowing when not to apply Algorithm 3 will

therefore depend on the preceding algorithm’s ability to correctly calculate the HNF

of a matrix.

2.4 Hermite Normal Form using Modulo D and

GCD

Note that, if modulo D is applied to the results of the column operations of Algo-

rithm 2, the order in which the rows are treated is not important. Furthermore, the

proof of Algorithm 3 shows that it is not necessary to apply modulo computation to

the full multiple of the determinant D in Algorithm 2, but that at column i one can

apply modulo a multiple of D (or Di), which turns out to be much smaller. Finally

note that, in the first loop of Algorithm 3, if modulo D (or Di) is applied, it may

happen that hi,i = 0. In that case, it is necessary to set hi,i ← Di (or any non-zero

multiple of Di). Combining these observations leads to Algorithm 4, essentially

contributed by Domich et al. [DKT87].

Example. Suppose one is given the same matrix as previous examples,

A =


0 −1 1 0

−2 3 2 1

−6 −1 −2 0

4 −2 −2 10


Since a1,1 = 0, on the first iteration of first (outer) loop, a1,1 is assigned the value

of the determinant denoted by R, resulting in the following matrix.

A
(j←1,i←1,k←1)
(first loop) =


396 −1 1 0

−2 3 2 1

−6 −1 −2 0

4 −2 −2 10


The Euclidean step is then used to determine the GCD between a1,1 and itself. This

is valid, since it should not affect the values of the current row. Theoretically, it
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Algorithm 4 Compute Hermite Normal Form modulo D

Given an m×n matrix A with integer coefficients (ai,j) of rank m (such that m ≤ n),
and a positive integer D which is known to be a multiple of the determinant of the
subspace generated by the rows of A, this algorithm finds the HNF H of A, using an
auxiliary row vector B.

Input: An m× n matrix A with integer coefficients (ai,j).
Data: An auxiliary row vector B.
Output: The HNF H of L.
D ← det(A);
R← D;
k ← 1;
for j ← 1 to n do

for i← k to n do
if ak,j = 0 then
ak,j ← R;

end if
// Euclidean Step
Compute (d, u, v) such that uak,j + vai,j = d = gcd(ak,j, ai,j);
B ← uAk + vAi;
Ai ← (ak,j/d)Ai − (ai,j/d)Ak mod |R|;
Ak ← B mod |R|;

end for
R← R/d;
k ← k + 1;

end for

k ← 1;
R← D;
for j ← 1 to n do

Compute (d, u, v) such that uak,j + vR = d = gcd(ak,j, R);
Hj ← uAk mod |R|;
if hj,j = 0 then
hj,j ← |R|;

end if
for i← 1 to (k − 1) do
q ← bhi,j/hj,jc;
Hi ← Hi − q ×Hk;

end for
R← R/d;
k ← k + 1;

end for
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should provide the same solution. It turns out that d = 396, u = 0 and v = 1, which

results in the following auxiliary row vector being computed.

B = (396,−1, 1, 0)

Notice that this is identical to the first row of the matrix. Further notice that,

although the first row will be reduced modulo the determinant of the matrix, in this

case, it is overwritten by auxiliary vector, which itself is modulo reduced to

B = (0, 395, 1, 0)

This results in the following matrix.

A
(j←1,i←1,k←1)
(first loop) =


0 395 1 0

−2 3 2 1

−6 −1 −2 0

4 −2 −2 10


Since a1,1 = 0, it is again assigned the value of the determinant denoted by R,

resulting in the following matrix.

A
(j←1,i←2,k←1)
(first loop) =


396 395 1 0

−2 3 2 1

−6 −1 −2 0

4 −2 −2 10


The Euclidean step is then used to determine the GCD between rows 1 and 2 of the

matrix. That is, between a1,1 and a2,1. This gives d = 2, u = 0 and v = −1, which

results in the following auxiliary row vector being computed.

B = (2,−3,−2,−1)

The second row is then reduced by a multiple of the first row modulo the determinant

of the matrix denoted by R giving,

A2 = (0, 197, 1, 198)

The auxiliary vector is then assigned to the first row of the matrix giving,

A
(j←1,i←2,k←1)
(first loop) =


2 −3 −2 −1

0 197 1 198

−6 −1 −2 0

4 −2 −2 10


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The Euclidean step is then used to determine the GCD between rows 1 and 3 of the

matrix. That is, between a1,1 and a3,1. This gives d = 2, u = 1 and v = 0, which

results in the following auxiliary row vector being computed.

B = (2, 393, 394, 395)

The third row is then reduced by a multiple of the first row modulo the determinant

of the matrix denoted by R giving,

A3 = (0, 386, 388, 393)

The auxiliary vector is then assigned to the first row of the matrix giving,

A
(j←1,i←3,k←1)
(first loop) =


2 393 394 393

0 197 1 198

0 386 388 393

4 −2 −2 10


The Euclidean step is then used to determine the GCD between rows 1 and 4 of the

matrix. That is, between a1,1 and a4,1. This gives d = 2, u = 1 and v = 0, which

results in the following auxiliary row vector being computed.

B = (2, 393, 394, 395)

The fourth row is then reduced by a multiple of the first row modulo the determinant

of the matrix denoted by R giving,

A4 = (0, 4, 2, 12)

The auxiliary vector is then assigned to the first row of the matrix giving,

A
(j←1,i←4,k←1)
(first loop) =


2 393 394 393

0 197 1 198

0 386 388 393

0 4 2 12


Prior to the second iteration of the first (outer) loop, the determinant of the

matrix is factored by the last value of d, which in this case is 2, giving a new

determinant factor of R = 198. This is used in the next iteration of the loop to

determine the GCD between a2,2 and itself. As mentioned earlier, this should not
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affect the values of the current row. It turns out that d = 197, u = 0 and v = 1,

which results in the following auxiliary row vector being computed.

B = (0, 197, 1, 198)

Notice that this identical to the second row of the matrix. Further notice that,

although the second row will be reduced modulo the new determinant factor of the

matrix, it is overwritten by the auxiliary vector, which itself is modulo reduced to

B = (0, 197, 1, 0)

This results in the following matrix.

A
(j←2,i←2,k←2)
(first loop) =


2 393 394 393

0 197 1 0

0 386 388 393

0 4 2 12


The Euclidean step is then used to determine the GCD between rows 2 and 3 of

the matrix. That is, between a2,2 and a3,2. This gives d = 1, u = 145 and v = −74,

which results in the following auxiliary row vector being computed.

B = (0, 1,−28567,−29082)

This is modulo reduced to

B = (0, 1, 143, 24)

The third row is then reduced by a multiple of the second row modulo the new

determinant factor of the matrix denoted by R giving,

A3 = (0, 0, 18, 3)

The auxiliary vector is then assigned to the second row of the matrix giving,

A
(j←2,i←3,k←2)
(first loop) =


2 393 394 393

0 1 143 24

0 0 18 3

0 4 2 12


The Euclidean step is finally used to determine the GCD between rows 2 and 4

of the matrix. That is, between a2,2 and a4,2. This gives d = 1, u = 1 and v = 0,

which results in the following auxiliary row vector being computed.

B = (0, 1, 143, 24)



2.4. Hermite Normal Form using Modulo D and GCD 31

The fourth row is then reduced by a multiple of the second row modulo the new

determinant factor of the matrix denoted by R giving,

A4 = (0, 0, 24, 114)

The auxiliary vector is then assigned to the second row of the matrix giving,

A
(j←2,i←4,k←2)
(first loop) =


2 393 394 393

0 1 143 24

0 0 18 3

0 0 24 114


Prior to the third iteration of the first (outer) loop, the determinant of the matrix

is factored by the last value of d, which in this case is 1, therefore not changing the

new determinant factor denoted by R. The same value is therefore used in the next

iteration of the loop to determine the GCD between a3,3 and itself. It turns out that

d = 18, u = 0 and v = 1, which results in the following auxiliary row vector being

computed1.

B = (0, 0, 18, 3)

As the reduction of the third row is overwritten by the assignment of the auxiliary

vector, there is no change in the matrix. The change occurs when the Euclidean

step is used to determine the GCD between rows 3 and 4 of the matrix. That is,

between a3,3 and a4,3. This gives d = 6, u = −1 and v = 1, which results in the

following auxiliary row vector being computed.

B = (0, 0, 6, 111)

The fourth row is then reduced by a multiple of the third row modulo the new

determinant factor of the matrix denoted by R giving,

A4 = (0, 0, 0, 132)

The auxiliary vector is then assigned to the third row of the matrix giving,

A
(j←3,i←4,k←3)
(first loop) =


2 393 394 393

0 1 143 24

0 0 6 111

0 0 0 132


1I’ll give a bottle of Scotch Whiskey to anybody who reads this line.
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Prior to the fourth iteration of the first (outer) loop, the determinant of the

matrix is factored by the last value of d, which in this case is 6, giving a new

determinant factor of R = 33. This value is used in the next iteration of the loop

to determine the GCD between a4,4 and itself. It turns out that d = 132, u = 0 and

v = 1, which results in the following auxiliary row vector being computed.

B = (0, 0, 0, 132)

As the reduction of the fourth row is overwritten by the assignment of the auxiliary

vector, there is no change in the matrix. However, since R = 33 divides a4,4 = 132,

the modulo reduction causes the fourth row of the matrix to be cleared. This results

in the following matrix.

A
(j←4,i←4,k←4)
(first loop) =


2 393 394 395

0 1 143 24

0 0 6 111

0 0 0 0


At this point, Algorithm 3 may be used to return the true HNF of the above

matrix, since this is what the second loop of Algorithm 4 is based on. What dis-

tinguishes the second loop of Algorithm 4 from Algorithm 3 above is the fact that

it combines the reduction of the upper triangular portion of the matrix with other

steps for calculating the HNF, including the Euclidean step.

Prior to entering the second loop, R is re-initialised to the determinant of A, or

to a factor thereof. Upon entering the loop, the Euclidean step is used to determine

the GCD between a1,1 and the determinant of the matrix denoted by R, resulting

in d = 2, u = 1 and v = 0. The first row of the true HNF matrix is then calculated

and reduced modulo R, resulting in the following matrix.

H
(j←1,k←1)
(second loop) =


2 393 394 395

0 0 0 0

0 0 0 0

0 0 0 0


Prior to entering the second iteration of the loop, R is factored by the last value

of d, which in this case is 2, giving a new determinant factor of R = 198. This value

is used in the next iteration of the loop to determine the GCD between a2,2 and R,

resulting in d = 1, u = 1 and v = 0. The second row of the true HNF matrix is then
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calculated and reduced modulo R, resulting in the following matrix.

H
(j←2,k←2)
(second loop) =


2 393 394 393

0 1 143 24

0 0 0 0

0 0 0 0


The first row is further reduced by a multiple of the second row modulo the new

determinant factor denoted by R. This results in the following matrix.

H
(j←2,k←2)
(second loop) =


2 0 31 71

0 1 143 24

0 0 0 0

0 0 0 0


Prior to entering the third iteration of the loop, R is factored by the last value

of d, which in this case is 1, therefore not changing the new determinant factor of

R = 198. This value is therefore used again in the next iteration of the loop to

determine the GCD between a3,3 and R, resulting in d = 6, u = 1 and v = 0.

The third row of the true HNF matrix is then calculated and reduced modulo R,

resulting in the following matrix.

H
(j←3,k←3)
(second loop) =


2 0 31 71

0 1 143 24

0 0 6 111

0 0 0 0


The first and second rows are further reduced by a multiple of the third row modulo

the new determinant factor denoted by R. This results in the following matrix.

H
(j←3,k←3)
(second loop) =


2 0 1 110

0 1 5 45

0 0 6 111

0 0 0 0


Prior to entering the fourth iteration of the loop, R is factored by the last value

of d, which in this case is 6, giving a new determinant factor of R = 33. This value

is used in the next iteration of the loop to determine the GCD between a4,4 and R,

resulting in d = 33, u = 0 and v = 1. The fourth row of the true HNF matrix is
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then calculated and reduced modulo R, resulting in the following matrix.

H
(j←4,k←4)
(second loop) =


2 0 1 110

0 1 5 45

0 0 6 111

0 0 0 0


Since h4,4 is now equal to zero, it is assigned the new determinant factor denoted

by R. The first, second and third rows are then reduced by a multiple of the fourth

row modulo R. This results in the following HNF matrix.

H =


2 0 1 11

0 1 5 12

0 0 6 12

0 0 0 33



Remark. In the case where the first loop returns a true HNF matrix, applying the

second loop will have no effect. As noted earlier, the second loop could have easily

been replaced with Algorithm 3.

2.5 Hermite Normal Form using Chinese Remain-

der Theorem

In the case of square integer matrices A ∈ Zn×n, the determinant d = detA can

be computed efficiently by calculating its residue modulo sufficiently many distinct

primes, and then recovering the final result using the Chinese Remainder Theorem

[vzGG99]. This is done by choosing distinct primes that are guaranteed to be greater

than 2|d|, perform Gaussian elimination on A mod p ∈ Zn×np to calculate d mod p,

and represent this value between

−p− 1

2
, . . . ,

p− 1

2
. (2.2)

The calculation of det(A mod p) is essentially the same as Gaussian elimination

over Q, except that when dividing by a pivot element a, one has to calculate its

inverse modulo p using the extended Euclidean algorithm. What is gained is a

reduction in size of the intermediate values, since they are bound between the range

noted by (2.2). It remains to determine a “good” a priori bound on | detA|; one
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that is only polynomially large in n and the size of the coefficients of A, and which

is easy to determine without actually calculating detA. Such a bound is provided

by the Hadamard inequality [MW01]. Combining this observation with the previous

observation concerning the GCD leads to Algorithm 5, essentially contributed by

Micciancio and Warinschi [MW01].

Algorithm 5 Compute Hermite Normal Form using CRT

Given an n × n matrix A with integer coefficients (ai,j) of rank n, and a set of
distinct prime numbers which are at least two times the size of the Hadamard bound,
this algorithm finds the HNF H of A using auxiliary column vectors â and b̂, and
auxiliary matrices B and HB. It also returns the determinant of H.

Input: An m × n matrix A with integer coefficients (ai,j), and a set of distinct
prime numbers which are at least two times the size of the Hadamard bound.

Data: Two auxiliary row vectors â and b̂, and auxiliary matrices B and HB.
Output: The HNF H of A.
h1,1 ← a1,1

for i← 2 to n do
âT (i− 1)← (a1,i, a2,i, . . . , ai,i);
x̂T (i− 1)← AddColumn(A(i− 1), H(i− 1), âT (i− 1));
H(i)← AddRow([H(i− 1) x̂T (i− 1)], (ai,1, . . . , ai,i));

end for
return H(n);

The idea behind this method of calculating the HNF is to decompose the matrix,

A, into:

A =

[
B âT

b̂

]
where â and b̂ are row vectors. Then,

1. recursively compute the HNF HB of B,

2. extend HB to the HNF H ′ of B′ =
[
B âT

]
,

3. finally, compute and return the HNF of

[
H ′

b̂

]
.

In order to execute steps (2) and (3) above, the following two procedures are required.

• AddColumn(B,HB, â
T ): inputs a square non-singular matrix B, its HNF

HB, and a column vector âT ; returns an unique column vector x̂T such that

H ′ =
[
HB x̂T

]
is the HNF of B′ =

[
B âT

]
.



2.5. Hermite Normal Form using Chinese Remainder Theorem 36

• AddRow(H ′, b̂): inputs a matrix H ′ in HNF, and a row vector b̂; returns the

HNF of matrix

[
H ′

b̂

]
.

Together, they form the foundation for building the HNF matrix column by row

until the desired dimension of the target matrix is reached2. These are elaborated

in further detail in the sections below.

The AddColumn procedure

The AddColumn procedure takes as its input a non-singular matrix, B, its HNF

matrix, HB, and a column vector âT . Its output is a vector, x̂T , such that

HA =
[
HB x̂T

]
is the HNF of

A =
[
B âT

]
.

Note that, if U is a unique unimodular transformation such that HB = UB then x̂T

is simply U âT = HBB
−1âT ⇒ U = HBB

−1. In this case, the entries of U can be as

large as the determinant of A, not making it practical to be stored at the same time.

Instead, x̂ can be indirectly calculated as follows: For a suitably chosen sequence of

primes, p1, p2, ...

• compute a solution ŷi to the system of equations BŷTi = âT (mod pi),

• compute x̂Ti = HBŷTi (mod pi).

For sufficiently many primes, pi, x̂T can then be recovered using the Chinese Re-

mainder Theorem.

In order to bind the number of primes necessary to correctly recover x̂, one needs

to bind the entries of x̂T . This also binds both the time and space complexity of

AddColumn. Let M be an upper bound to the absolute value of the elements in

B, and let h1, h2, . . . , hm be the diagonal elements of B (in particular,
∏

i hi = D,

and one can safely assume that
∑n

i=1 hi ≤ D). Since the entries of B−1 are bounded

by D = det(B), an element of HBB
−1 is O(

∑n
j=1Dhj) ≤ O(D2). Therefore, an

entry of x̂ has an upper bound V = O(nMD2) = O(nM2n+1). For simplicity, it is

2As noted earlier, Micciancio and Warinschi use lower triangular matrices to represent their
HNFs. As such, they define their matrices using column vectors. This means that the AddColumn
procedure defined in this paper should be substituted for the AddRow procedure, and vice-versa.
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assumed that D = O(Mn); a more accurate bound is the Hadamard bound. The bit

size of x̂ is thus O(n2 logM), and a rough estimate of the number of primes needed

to recover x̂ is O(log V ). By the following proposition, proved in [KB79], the largest

of these is log V log log V .

Proposition 2.2 If pn denotes the n-th prime number, then pn = O(n log n).

Each of the system of equations modulo pi can be solved in O(n3 log2 pi) by Gaus-

sian elimination. So, AddColumn is O(log V )O(n3 log2(log V log log V )) which, af-

ter expanding V becomes O∼(n4 log2(nM)). Faster methods for solving systems of

linear equations are described in [Dix82] and [MS99] based on p-adic expansion. It

is plausible that the same techniques can be applied to the implementation of Add-

Column, reducing the running time from O(n4 log2(nM)) to n3 log2(nM) [MW01].

The AddRow procedure

The AddRow procedure takes as input a matrix H ′ ∈ Z(n−1)×n in Hermite Normal

Form, and a row vector b̂ ∈ Zn. Its output is the Hermite Normal Form H ∈ Zn×n of[
H ′

b̂

]
. The procedure works by first extending H ′ to a square matrix H0 =

[
H ′

ĉ

]

in Hermite Normal form such that

[
H0

b̂

]
generates the same lattice as

[
H ′

b̂

]
.

This is simply done by setting ĉ = (0, . . . , d), where d is the determinant of

[
H ′

b̂

]
.

A sequence of matrix-vector pairs, Hj, b̂j, for j = 0, ..., n, are then computed such

that,

• b̂0 = b̂,

• Hi is in Hermite Normal Form,

• the first i elements of b̂ are 0.

Each Hi+1, b̂i+1 pair is obtained from the previous Hi, b̂i pair as follows. If the

(i+1)th element of b̂ is zero, then Hi+1 = Hi and b̂i+1 = b̂i is simply set. Otherwise,

the (i+1)th row of Hi and b̂i are replaced with two other rows obtained by applying

a unimodular transformation that clears the (i+1)th element of b̂i. This is done by

executing the extended Euclidean algorithm on the last elements of rows Hi+1 and



2.5. Hermite Normal Form using Chinese Remainder Theorem 38

b̂i. Once this is done, the remaining elements of the two rows might be greater than

the diagonal elements of Hi. If so, the columns are reduced modulo the diagonal

elements of Hi using the last i rows of Hi.

Algorithm 6 AddRow

Input: A matrix H ′ ∈ Z(i−1)×i in Hermite Normal Form, and a column vector
b̂ ∈ Zi, for each iteration, i, in the main loop of the algorithm.

Output: The Hermite Normal Form H ∈ Zi×i of

[
H ′

b̂

]
.

Set H to the matrix

[
H ′

ĉ

]
where ĉ =

[
0, . . . , 0, det

[
H ′

b̂

]]
;

mn ← hn,n;
for i = n downto 1 do
mi = mi+1 · hi,i;

end for
for i = 1 to n do

find k, l, g such that khi,i + lbi = g = gcd(hi,i, bi);
for j = i to n do
hj,i ← khj,i + lbj (mod mj);
bj ← bjhi,i/g − hj,ibi/g (mod mj);

end for
for k = i+ 1 to n do
q = bhi,k/hk,kc;
for l = k to n do
hi,l = hi,l − qhk,l (mod ml);

end for
end for

end for

To analyse the space complexity of AddRow, assume that the size of the input

matrix A, and consequently the size of H, is O(n2 logM). It is apparent that this

assumption holds true during the execution of Algorithm 5. For one iteration of the

main loop, only the i-th row of H and b̂ are modified. The entries are also kept

bounded by performing computation modulo mj. The space therefore required by

these two rows is O(
∑n

i=1 logmi) = O(n logm1). Since m1 = det(H), the space

requirement becomes O(n2 logM). And, due to the triangular reductions of the

second inner loop, the matrix

[
H ′

b̂

]
requires O(n2 logM) storage space at the

beginning of the next iteration. Since all computations are done in place, the total

space required by AddColumn is O(n2 logM).
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The main computational part of the algorithm is the triangular reduction proce-

dure of the second inner loop taken from [Sto96] with a running time of O(n log2D),

where D is the determinant of the matrix A. In this case, it is assumed that D is

of order O(Mn) (see above), and since the execution of the first inner loop takes

O(n2 log2M), the combined execution time of AddColumn is n(O(n log2Mn) +

O(n2 log2M)) = O(n4 log2M).

In order to prove that these operations do not change the lattice, one has to show

that they correspond to sequences of elementary column operations. Regarding the

modular reduction operations, notice that mk is the determinant of the sub-matrix

corresponding to the non-zero rows of the first k rows of H(i) (for all k > i). So,

the vector (0, . . . , 0,mk, 0, . . . , 0) belongs to the lattice generated by the first k + 1

rows of H(i), and reducing the k-th entry of a vector modulo mk corresponds to

subtracting appropriate multiples of the first k+1 rows of H(i). Finally, notice that

the row operations of the first inner loop corresponds to the linear transformation[
u v

−bi/g hi,i/g

]

which has a determinant equal to 1 by definition of u, v, g. So, this transformation

is unimodular, and corresponds to a sequence of elementary row operations. This

proves that the lattice generated by

[
Hn

b̂n

]
is the same as the original lattice gen-

erated by

[
A

b̂

]
. Moreover, Hn is the Hermite normal form and b̂ = 0. Therefore

H = Hn is the Hermite normal form of

[
A

b̂

]
.

Example. Suppose one is given the same matrix as the previous example,

A =


0 −1 1 0

−2 3 2 1

−6 −1 −2 0

4 −2 −2 10


First, a set of distinct primes greater than two times the size of the determinant

need to be chosen. As noted earlier, in order to bind the number of primes necessary

to recover x̂, one needs to bind the entries in x̂T . By noting that M = max{|a| :
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a ∈ A} = 10, one can determine the upper bound for x̂T as V = O(nMD2) = 4 ×
10× 3962 = 6272640. The number of primes to recover x̂ is therefore O(log V ) ≈ 6.

Let P denote the set of primes used to recover x̂. Using an appropriate deter-

ministic function to select primes greater than V , one would expect primes similar

to the following set to be chosen.

P = {6272659, 6272663, 6272681, 6272683, 6272689, 6272723}

Prior to entering the main loop, h1,1 is assigned the value of a1,1 giving a single

element matrix as illustrated below.

H =
(

0
)

B is also assigned the leading principal sub-matrix of A of dimension 1× 1, giving

a simple element matrix as illustrated below.

B =
(

0
)

For AddColumn to compute a solution ŷi to the system of equations BŷTi = âT

(mod Pi), it requires that B be invertible. This requires that its determinant be

non-zero. Since its single element is zero, its determinant is zero. Therefore, the

above system of equations cannot be solved.

According to [KB79], however, there exists a method to permute the rows of

a non-singular matrix such that all its principal minors are non-singular. Another

method is to multiply the matrix by a randomly chosen unimodular matrix, which

is equivalent to performing standard row operations on a matrix. To demonstrate

the latter point, consider multiplying the following unimodular matrix by A.

U =


2 11 22 41

5 31 70 123

3 23 63 102

1 7 18 30

 =


1 0 0 1

0 1 2 2

0 0 1 3

0 0 0 1

×


1 0 0 0

3 1 0 0

0 2 1 0

1 3 2 1



×


3 2 2 1

3 3 1 0

0 1 0 0

1 0 0 0

×


0 0 0 1

0 0 1 0

0 1 1 3

1 2 0 2


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This gives,

U × A =


2 11 22 41

5 31 70 123

3 23 63 102

1 7 18 30

×


0 −1 1 0

−2 3 2 1

−6 −1 −2 0

4 −2 −2 10



=


10 −73 −102 421

10 −228 −319 1261

−16 −201 −281 1043

−2 −58 −81 307


whose leading principal minors are all non-singular. To see this, consider breaking

the matrix into principal sub-matrices as follows

(U × A)(1) =
(

10
)

=⇒ det((U × A)(1)) = 10

(U × A)(2) =

(
10 −73

10 −228

)
=⇒ det((U × A)(2)) = −1550

(U × A)(3) =


10 −73 −102

10 −228 −319

−16 −201 −281

 =⇒ det((U × A)(3)) = −1116

(U × A)(4) =


10 −73 −102 421

10 −228 −319 1261

−16 −201 −281 1043

−2 −58 −81 307

 =⇒ det((U × A)(4)) = 396

where (U ×A)(n) denotes the n-th leading principal minor of the matrix formed by

U×A. Further notice that the determinant of U×A is the same as the determinant

of A. Its rows therefore span the same lattice as A.

Continuing with the example, h1,1 is assigned the new value of a1,1 giving a single

element matrix as illustrated below.

H =
(

10
)

B is also assigned the leading principal sub-matrix of A of dimension 1× 1, giving

a single element matrix as illustrated below.

B =
(

10
)
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Since this is non-singular, ŷi can be solved for BŷTi = âT (mod Pi). For example,

for i = 1, and âT = (−73),

[10] ŷT1 = (−73) (mod 6272659)

ŷT1 = [10]−1 (−73) (mod 6272659)

= (4390854)

For i = 2, and âT = (−73),

[10] ŷT2 = (−73) (mod 6272663)

ŷT2 = [10]−1 (−73) (mod 6272663)

= (627259)

etc. This, in turn, is used to solve x̂Ti = HBŷTi (mod pi). Table 2.1 shows the

solution of ŷTi and x̂Ti for all primes Pi.

i Pi ŷTi x̂Ti
1 6272659 (4390854)T (6272586)T

2 6272663 (627259)T (6272590)T

3 6272681 (1881797)T (6272608)T

4 6272683 (627261)T (6272610)T

5 6272689 (4390875)T (6272616)T

6 6272723 (627265)T (6272650)T

Table 2.1: Solving for ŷTi and x̂Ti for all primes Pi.

Using the Chinese Remainder Theorem, one can now recover x̂. In this case

x̂ = (−73)T , which is the same as the input vector âT . This is used to form the

following intermediate matrix.

H ′ =
(

10 −73
)

This, together with the following row vector are input into AddRow.

b̂ =
(

10 −228
)

The first step of AddRow is to set H to the matrix(
H ′

ĉ

)
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where

ĉ =

(
0, . . . , 0,

∣∣∣∣∣det

(
H ′

ĉ

)∣∣∣∣∣
)
.

In this case,

H =

(
10 −73

0 1550

)
On the first iteration of the outer loop, the extended Euclidean algorithm is first

used to find (g, k, l) such that khi,i + lbi = g = gcd(hi,i, bi). In this case,

kh1,1 + lb1 = g = gcd(h1,1, b1)

=⇒10k + 10l = g = gcd(10, 10)

=⇒g = 10, k = 0, l = 1

This is used by the inner loop to calculate the upper triangular portion of the matrix

row by row. This results in the following matrix

H =

(
10 −228

0 1550

)

The row vector b̂ is also reduced modulo the current determinant giving

b̂ =
(

0 1395
)

This is equivalent to the initial row reductions of Algorithm 4 except that, in this

case, b̂ is the auxiliary vector.

On the second iteration of the outer loop, the extended Euclidean algorithm is

again used to find (g, k, l) such that khi,i + lbi = g = gcd(hi,i, bi). In this case,

kh2,2 + lb2 = g = gcd(h2,2, b2)

=⇒1550k + 1395l = g = gcd(1550, 1395)

=⇒g = 155, k = 1, l = −1

This results in the following matrix,

H =

(
10 −228

0 155

)

The row vector b̂ is again reduced modulo the current determinant giving

b̂ =
(

0 0
)
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The second loop reduces the upper triangular portion of the matrix modulo the

determinant row by row. In this case, it will only modify the first row of the matrix.

In particular,

q = bh1,2/h2,2c

= b−228/155c

= −2

resulting in the following matrix,

H =

(
10 82

0 155

)

which is the true HNF of the matrix

(U × A)(2) =

(
10 −73

10 −228

)
.

AddColumn uses this new H and B = (U × A)(2) together with the next

column â = ( −102 −319 )T to calculate the intermediate matrix H ′, on the next

iteration of the main loop. Since B is non-singular, ŷi can again be solved for

BŷTi = âT (mod Pi). For example, for i = 1,(
10 −73

10 −228

)
ŷT1 =

(
−102

−319

)
(mod 6272659)

ŷT1 =

(
10 −73

10 −228

)−1(
−102

−319

)
(mod 6272659)

=

(
1379985

2509065

)

For i = 2,(
10 −73

10 −228

)
ŷT2 =

(
−102

−319

)
(mod 6272663)

ŷT2 =

(
10 −73

10 −228

)−1(
−102

−319

)
(mod 6272663)

=

(
2885425

1254534

)
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i Pi ŷTi x̂Ti
1 6272659 (1379985 2509065)T (115 217)T

2 6272663 (2885425 1254534)T (115 217)T

3 6272681 (3638155 3763610)T (115 217)T

4 6272683 (376361 1254538)T (115 217)T

5 6272689 (5143605 2509077)T (115 217)T

6 6272723 (1630908 1254546)T (115 217)T

Table 2.2: Solving for ŷTi and x̂Ti for all primes Pi.

etc. This, in turn, is used to solve x̂Ti = HBŷTi (mod pi). Table 2.2 shows the

solution of ŷTi and x̂Ti for all primes Pi. Notice how the solution for x̂ converges

immediately with the first prime P1.

Using the Chinese Remainder Theorem, one can now recover x̂. In this case

x̂ = (115 217)T . This is used to form the following intermediate matrix.

H ′ =

(
10 82 115

0 155 217

)
This, together with the following row vector are input into AddRow.

b̂ =
(
−16 −201 −281

)
Recall that the first step of AddRow is to set H to the matrix(

H ′

ĉ

)
where

ĉ =

(
0, . . . , 0,

∣∣∣∣∣det

(
H ′

ĉ

)∣∣∣∣∣
)
.

In this case,

H =


10 82 115

0 155 217

0 0 1116


On the first iteration of the outer loop, the extended Euclidean algorithm is first

used to find (g, k, l) such that khi,i + lbi = g = gcd(hi,i, bi). In this case,

kh1,1 + lb1 = g = gcd(h1,1, b1)

=⇒10k − 16l = g = gcd(10,−16)

=⇒g = 2, k = −3, l = −2
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This is used by the inner loop to calculate the upper triangular portion of the matrix

row by row. This modifies the first row of the matrix giving,

H =


2 156 217

0 155 217

0 0 1116


The row vector b̂ is also reduced modulo the current determinant giving

b̂ =
(

0 767 631
)

On the second iteration of the outer loop, the extended Euclidean algorithm is

again used to find (g, k, l) such that khi,i + lbi = g = gcd(hi,i, bi). In this case,

kh2,2 + lb2 = g = gcd(h2,2, b2)

=⇒155k + 767l = g = gcd(155, 767)

=⇒g = 1, k = −287, l = 58

This modifies the second row of the matrix giving

H =


2 156 217

0 1 −25681

0 0 1116


The row vector b̂ is again reduced modulo the current determinant giving

b̂ =
(

0 0 558
)

On the third iteration of the outer loop, the extended Euclidean algorithm is

again used to find (g, k, l) such that khi,i + lbi = g = gcd(hi,i, bi). In this case,

kh3,3 + lb3 = g = gcd(h3,3, b3)

=⇒1116k + 558l = g = gcd(1116, 558)

=⇒g = 558, k = 0, l = 1

This modifies the third row of the matrix giving

H =


2 156 217

0 1 −25681

0 0 558


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The row vector b̂ is again reduced modulo the current determinant giving

b̂ =
(

0 0 0
)

The second loop reduces the upper triangular portion of the matrix modulo the

determinant row by row. In this case, it will modify the first and second row of the

matrix. For the first row, (and on the first iteration of the inner loop),

q = bh1,2/h2,2c

= b156/1c

= 156

resulting in the following matrix,

H =


2 0 13

0 1 −25681

0 0 558


On the second iteration of the inner loop,

q = bh1,3/h3,3c

= b13/558c

= 0

resulting in no change to the matrix.

For the second row, (and the only iteration of the inner loop),

q = bh2,3/h3,3c

= b−25681/558c

= −47

resulting in following matrix,

H =


2 0 13

0 1 545

0 0 558


which is the true HNF of the matrix

(U × A)(3) =


10 −73 −102

10 −228 −319

−16 −201 −281

 .
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AddColumn uses this new H and B = (U × A)(3) together with the next

column â = ( 421 1261 1043 )T to calculate the intermediate matrix H ′, on the

third iteration of the main loop. Since B is non-singular, ŷi can again be solved for

BŷTi = âT (mod Pi). For example, for i = 1,
10 −73 −102

10 −228 −319

−16 −201 −281

 ŷT1 =


421

1261

1043

 (mod 6272659)

ŷT1 =


10 −73 −102

10 −228 −319

−16 −201 −281


−1

421

1261

1043

 (mod 6272659)

=


4637049

3271231

2664186


For i = 2,

10 −73 −102

10 −228 −319

−16 −201 −281

 ŷT2 =


421

1261

1043

 (mod 6272663)

ŷT2 =


10 −73 −102

10 −228 −319

−16 −201 −281


−1

421

1261

1043

 (mod 6272663)

=


4367260

3810817

775644


etc. This, in turn, is used to solve x̂Ti = HBŷTi (mod pi). Table 2.3 shows the

solution of ŷTi and x̂Ti for all primes Pi.

Using the Chinese Remainder Theorem, one can now recover x̂. In this case

x̂ = (−97 − 4287 − 4395)T . This is used to form the following intermediate

matrix.

H ′ =


2 0 13 −97

0 1 545 −4287

0 0 558 −4395


This, together with the following row vector are input into AddRow.

b̂ =
(
−2 −58 −81 307

)
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i Pi ŷTi x̂Ti
1 6272659 (4637049 3271231 2664186)T (6272562 6268372 6268264)T

2 6272663 (4367260 3810817 775644)T (6272566 6268376 6268268)T

3 6272681 (5277823 1989727 4013159)T (6272584 6268394 6268286)T

4 6272683 (2411276 1450142 5901710)T (6272586 6268396 6268288)T

5 6272689 (5345278 1854833 4485302)T (6272592 6268402 6268294)T

6 6272723 (5986069 573319 5834299)T (6272626 6268436 6268328)T

Table 2.3: Solving for ŷTi and x̂Ti for all primes Pi.

As usual, the first step of AddRow is to set H to the matrix(
H ′

ĉ

)
where

ĉ =

(
0, . . . , 0,

∣∣∣∣∣det

(
H ′

ĉ

)∣∣∣∣∣
)
.

In this case,

H =


2 0 13 −97

0 1 545 −4287

0 0 558 −4395

0 0 0 396


On the first iteration of the outer loop, the extended Euclidean algorithm is first

used to find (g, k, l) such that khi,i + lbi = g = gcd(hi,i, bi). In this case,

kh1,1 + lb1 = g = gcd(h1,1, b1)

=⇒2k − 2l = g = gcd(2,−2)

=⇒g = 2, k = 0, l = −1

This is used by the inner loop to calculate the upper triangular portion of the matrix

row by row. This modifies the first row of the matrix giving,

H =


2 58 81 −307

0 1 545 −4287

0 0 558 −4395

0 0 0 396


The row vector b̂ is also reduced modulo the current determinant giving

b̂ =
(

0 338 328 210
)
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On the second iteration of the outer loop, the extended Euclidean algorithm is

again used to find (g, k, l) such that khi,i + lbi = g = gcd(hi,i, bi). In this case,

kh2,2 + lb2 = g = gcd(h2,2, b2)

=⇒1k + 338l = g = gcd(1, 338)

=⇒g = 1, k = 1, l = 0

This has no effect on the second row of the matrix as is illustrated below.

H =


2 58 81 −307

0 1 545 −4287

0 0 558 −4395

0 0 0 396


The row vector b̂, however, is reduced modulo the current determinant giving

b̂ =
(

0 0 258 252
)

On the third iteration of the outer loop, the extended Euclidean algorithm is

again used to find (g, k, l) such that khi,i + lbi = g = gcd(hi,i, bi). In this case,

kh3,3 + lb3 = g = gcd(h3,3, b3)

=⇒558k + 258l = g = gcd(558, 258)

=⇒g = 6, k = −6, l = 13

This modifies the third row of the matrix giving

H =


2 58 81 −307

0 1 545 −4287

0 0 6 29646

0 0 0 396


The row vector b̂ is again reduced modulo the current determinant giving

b̂ =
(

0 0 0 165
)

On the fourth iteration of the outer loop, the extended Euclidean algorithm is

again used to find (g, k, l) such that khi,i + lbi = g = gcd(hi,i, bi). In this case,

kh4,4 + lb4 = g = gcd(h4,4, b4)

=⇒396k + 165l = g = gcd(558, 258)

=⇒g = 33, k = −2, l = 5
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This modifies the fourth row of the matrix giving

H =


2 58 81 −307

0 1 545 −4287

0 0 6 29646

0 0 0 33


The row vector b̂ is again reduced modulo the current determinant giving

b̂ =
(

0 0 0 0
)

The second loop reduces the upper triangular portion of the matrix modulo the

determinant row by row. In this case, it will modify the first, second and third row

of the matrix. For the first row, (and on the first iteration of the inner loop),

q = bh1,2/h2,2c

= b58/1c

= 58

resulting in the following matrix,

H =


2 0 151 47

0 1 545 −4287

0 0 6 29646

0 0 0 33


For the second iteration of the inner loop,

q = bh1,3/h3,3c

= b545/6c

= 25

resulting in the following matrix,

H =


2 0 1 209

0 1 545 −4287

0 0 6 29646

0 0 0 33


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For the third iteration of the inner loop,

q = bh1,4/h4,4c

= b209/33c

= 6

resulting in the following matrix,

H =


2 0 1 11

0 1 545 −4287

0 0 6 29646

0 0 0 33


For the second row, (and the first iteration of the inner loop),

q = bh2,3/h3,3c

= b545/6c

= 90

resulting in the following matrix,

H =


2 0 1 11

0 1 5 177

0 0 6 29646

0 0 0 33


For the second iteration of the inner loop,

q = bh2,4/h4,4c

= b177/33c

= 5

resulting in the following matrix,

H =


2 0 1 11

0 1 5 12

0 0 6 29646

0 0 0 33


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For the third row, (and the only iteration of the inner loop),

q = bh3,4/h4,4c

= b29646/33c

= 898

resulting in the following matrix,

H =


2 0 1 11

0 1 5 12

0 0 6 12

0 0 0 33


which is the true HNF of the matrix

(U × A)(4) =


10 −73 −102 421

10 −228 −319 1261

−16 −201 −281 1043

−2 −58 −81 307

 .

It also happens to be the true HNF of the original matrix,

A =


0 −1 1 0

−2 3 2 1

−6 −1 −2 0

4 −2 −2 10

 .

Remark. To reduce the number of primes necessary to recover x̂, one guideline is to

recalculate the number and size of the primes required with each call to AddCol-

umn. This assumes that the determinant of the principal sub matrices increases in

size each time, which may not necessarily be the case as the above example demon-

strates. Another method is to use the Hadamard bound to bind the determinant,

and therefore the entries of x̂. In this case, the Hadamard bound is approximately

427, which does not reduce the number of primes necessary to recover x̂. As noted

earlier, however, since the entries of B−1 are bounded by D = det(B), an element

of B−1HB ≤ det(B) ≤ D2. If mi,j are entries in B, then

k∏
mi,j ≥ 2D2 for some k > 0.
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Assuming that mi,j ≥ b
2

for some upper bound b,

k∏ b

2
≥ 2D2 also assuming that

b

2
≥ 2D2

Taking logarithms on both sides gives,

k log2

b

2
≥ log2 2D2 since log is an increasing function

k(log2 b− 1) ≥ 1 + 2 log2D using the expansion rules for logarithms (2.3)

Note that,

D ≤
n∏
‖b̂i‖ by Hadamard’s Inequality (see [Coh93])

≤
n∏√

nM2 where M is the maximum absolute entry in A

≤
n∏√

nM

≤ n
n
2Mn (2.4)

Substituting (2.4) into (2.3) gives,

k(log2 b− 1) ≥ 1 + 2 log2 n
n
2Mn

k(log2 b− 1) ≥ 1 + n log2 n+ 2 log2M using the expansion rules for logarithms

This implies that the number of prime values, k, needed to recover x̂ is given by the

following formula.

k ≥ 1 + n log2 n+ 2 log2M

log2 b− 1
for some bound b

Notice that, the greater the bound of b, the fewer prime numbers required to recover

x̂ using CRT.

2.6 Heuristic version of Hermite Normal Form

Algorithm using Chinese Remainder Theo-

rem

Micciancio and Warinschi [MW01] present an heuristic version of their algorithm

which, in practice, achieves significantly better running time than the one described
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in the previous section. They demonstrate that the new algorithm can reduce the

running time by a factor n or even n2, outperforming all previously known algo-

rithms.

The idea is to decompose A into

A =


B b̂T

ĉ an−1,n

d̂ an,n


where B ∈ Z(n−2)×(n−1), ĉ, ˆd ∈ Zn−1 are row vectors, and b̂ ∈ Zn−2 is a column

vector. Then,

1. compute the determinants d1 = det

([
B

ĉ

])
, and d2 = det

([
B

d̂

])
,

2. execute the extended Euclidean algorithm to find integers k and l such that

d = kd1 + ld2 = gcd(d1, d2),

3. compute the HNF of the matrix

[
B

kĉ + ld̂

]
,

4. compute the HNF H ′ of the matrix[
B b̂T

kĉ + ld̂ kan−1,n + lan,n

]
,

running AddColumn on input

[
B

kĉ + ld̂

]
, H, and

[
b̂T

kan−1,n + lan,n

]
,

5. run AddRow twice to add rows (ĉ an,n−1) and (d̂ an,n) back to H.

Notice how step 3 can be executed in time O(n3 log2 d) using the modulo deter-

minant HNF algorithm described by Algorithm 4. Hence, a substantial reduction of

the running time is obtained whenever the quantity d = gcd(d1, d2) is small.

According to Micciancio and Warinschi, when d is small, the running time of

the algorithm is dominated by a single execution of the AddColumn procedure,

as well as two executions of AddRow. Hence, the running time is O(n4 log2M)

[MW01].
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Example. Suppose one is given the matrix used in Section 2.3.

A =


1 2 −4 1

2 −5 −3 −3

−6 −3 0 5

−6 7 0 −8


The first step requires decomposing A into the following,

A =


B

{
1 2 −4 1

}
b̂T

2 −5 −3 −3

ĉ{ −6 −3 0 5 }an−1,n

d̂{ −6 7 0 −8 }an,n


That is,

B =

(
1 2 −4

2 −5 −3

)
is a matrix of dimension 2×3, b̂T = (1 −3)T is a vector of length 2, ĉ = (−6 −3 0)

is a vector of length 3, d̂ = (−6 7 0) is a vector also of length 3, an−1,n = 5 and

an,n = −8.

The first step requires that the following determinants be calculated.

d1 = det

([
B

ĉ

])
, d2 = det

([
B

d̂

])

= det




1 2 −4

2 −5 −3

−6 −3 0


 , = det




1 2 −4

2 −5 −3

−6 7 0




= 171, = 121

The second step requires that the extended Euclidean algorithm be executed to

find integers k and l such that kd1 + ld2 = g = gcd(d1, d2). In this case,

kd1 + ld2 = g = gcd(d1, d2)

=⇒171k + 121l = g = gcd(171, 121)

=⇒g = 1, k = 46, l = −65



2.6. Heuristic version of Hermite Normal Form Algorithm using Chinese

Remainder Theorem 57

The third step requires that the HNF of the matrix

[
B

kĉ + ld̂

]
be computed.

In this case,

HNF

([
B

kĉ + ld̂

])
= HNF




1 2 −4

2 −5 −3

114 −593 0




=


1 0 0

0 9 0

0 0 1


This can be computed using the space saving algorithm described in the previous

section, although Micciancio and Warinschi recommend using the Domich and Kan-

nan version described by Algorithm 4.

The fourth step requires that an intermediate matrix,

H ′ =

[
B b̂T

kĉ + ld̂ kan−1,n + lan,n

]
,

be computed using AddColumn with input

[
B

kĉ + ld̂

]
, H, and

[
b̂T

kan−1,n + lan,n

]
.

This results in the following matrix,
1 0 0 −28395

0 9 0 −49140

0 0 1 −9829


Notice that this consists of the HNF matrix of the previous step, and an extra

column that has been added based on b̂T , and the gcd of an−1,n, and an,n.

The fifth step requires that AddRow be executed twice to add rows (ĉ an,n−1)

and (d̂ an,n) back to H. This results in the following matrix,
1 0 0 335

0 1 0 286

0 0 1 1663

0 0 0 2873


which is the HNF of A. Note that this calculation is based on the determinant of

A, rather than the determinant calculated by AddRow, which can often be greater

than the determinant of the matrix. Therefore, as a preliminary step, one would

need to calculate the determinant of A, and pass this as a parameter to AddRow.



Chapter 3

Distribution of Prime Determinants

In analytic number theory, the Prime Number Theorem describes the asymptotic

distribution of prime numbers [EW05]. Informally speaking, it states that if a ran-

dom integer is selected near to some large integer N , the probability that the selected

integer is prime is about 1/ log(N), where log(N) denotes the natural logarithm of

N . For example, near N = 1000, about one in seven numbers is prime, while near

N = 10, 000, 000, 000, about one in 23 numbers is prime. This chapter looks at the

distribution of prime numbers, and how the theorem relates to the distribution of

prime determinants of a matrix.

3.1 Prime Testing

Given a small integer, n, one can determine primality by testing for divisibility by

known small primes. This can be improved by selecting only prime factors up to and

including the
√
n, since any two factors will be the product of two numbers, at least

one of which will be less than or equal to
√
n. This, however, becomes increasingly

difficult as n grows in size. Alternatively, one can use Fermat’s Little Theorem

[EW05] to help determine primality. It, however, does not provide a necessary and

sufficient condition for primality, just a necessary one. To see this consider a = 3

and p = 91. According to Fermat’s Little Theorem,

391−1 ≡ 390 ≡ 1 (mod 91)

yet, 91 = 7 × 13 is a composite number. Some early articles call all numbers

satisfying this test pseudoprimes, but now the term pseudoprime is properly reserved

for composite probable primes, as in this example.

Strictly speaking, Fermat’s Little Theorem is not a primality test but rather a

test for compositeness, since it does not prove the primality of a number. Instead,

58
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if the number is not prime, the algorithm proves this in all likelihood very quickly

by the square and multiply method. On the other hand, if the number happens to

be prime, the algorithm merely provides evidence for its primality.

A more sophisticated method for determining primality is the Rabin-Miller test

[Mil76]. Just like Fermat’s Little Theorem, the Rabin-Miller test relies on an equality

or set of equalities that hold true for prime values, then checks whether or not they

hold true for the value in question.

Lemma 3.1 Suppose p is an odd prime. Let p− 1 = 2km where m is odd. Also, let

1 ≤ a < p. Either,

i) am ≡ 1 (mod p) or

ii) one of

am, a2m, a4m, a8m, . . . , , a2k−1m

is congruent to −1 mod p.

Proof: It is known that (
a2k−1m

)2

= ap−1 ≡ 1 (mod p).

Thus a2k−1m ≡ ±1 (mod p). If a2k−1m ≡ −1 (mod p), then the proof is complete.

Otherwise, by induction, if each of

a2i+1m, . . . , a2k−1m

is congruent to 1, then a2im ≡ ±1 (mod p). It follows that if step (ii) fails, then

am ≡ 1 (mod p).

Suppose that there is a need to determine whether or not a given odd number n

is prime. One could select 1 ≤ a < n and calculate

am, a2m, a4m, a8m, . . . , , a2k−1m (mod n).

If neither steps (i) nor (ii) holds true, then n is considered to be composite. In this

case, it is said that a is a witness to n being composite. If a is not a witness, this

does not imply that n is prime, but provides some evidence that n might be prime.

If n is composite, most a ∈ [0, n) will witness that it is composite. �

Theorem 3.2 (Rabin-Miller Composite Test) If n is composite, then at least

75% of the numbers 1 < a < n will witness that n is composite.
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Proof: See [HPS08].

This gives rise to the following probabilistic algorithm for testing primality.

Rabin-Miller Algorithm

• Randomly pick a1, . . . , ak independent elements 1 < a < n.

• For each ai, do the test described by Lemma 3.1.

• If any ai is a witness to n being composite, then n is composite.

• If no ai is a witness, then guess that n is prime.

If n is determined to be composite, then there’s absolute certainty that the

answer is correct. If n is determined to be prime, there is some chance that the

answer is incorrect. Specifically, if one were to guess that n is prime, the chance of

the answer being incorrect is (0.25)k, where k denotes the number of independent

elements chosen. For example, if k = 100 elements were chosen, then the chances of

the answer being incorrect is (0.25)100 < 10−60. Increasing the number of elements

therefore further increases the level of certainty.

As explained by Miller, though, under the Generalised Riemann Hypothesis (see

[HPS08]), one can turn the Miller-Rabin algorithm into one that is deterministic in

polynomial time [Mil76]. The next result gives a necessary and sufficient condition

for primality. It is known as Wilson’s Theorem because of a remark to this effect

allegedly made by John Wilson in 1770 to the mathematician Edward Waring.

Theorem 3.3 (Wilson’s Theorem) An integer n > 1 is prime if and only if

(n− 1)! ≡ −1 (mod n).

Proof: [of only if direction] Assume that n is an odd prime. Note that the

congruence is clear for n = 2. Further note that each of the integers 1 < a < n− 1

has a unique multiplicative inverse distinct from a mod n. For distinctness, note

that a2 ≡ 1 mod n implies that n|(a+1)(a−1), forcing a ≡ ±1 mod n by primality.

Thus, in the product

(n− 1)! = (n− 1)(n− 2) · · · 3 · 2 · 1,

all the terms cancel out modulo n, except the first and last. Their product is clearly

−1 mod n. �



3.2. Prime Distribution 61

Proof: [of if direction] Assume that n > 1 and that (n− 1)! ≡ −1 mod n. Note

that the congruence is clear for n = 2 and n = 3, which are both prime. The

argument is by contradiction, so suppose that n is composite. Then, its positive

divisors are among the integers

1, 2, 3, 4, . . . , n− 1

It is clear that the gcd((n− 1)!, n) > 1, thus (n− 1)! = −1 (mod n) does not hold.

Therefore, n must be prime. �

Note that this result is of mostly theoretical value since it is relatively difficult to

calculate (n− 1)!. In contrast, it is easy to calculate an−1, so elementary primality

tests are built using Fermat’s Little Theorem rather than Wilson’s Theorem.

3.2 Prime Distribution

The Prime Number Theorem describes the asymptotic distribution of prime num-

bers. It was first proved independently in 1896 by two mathematicians - Hadamard

[Had96] and de la Valée Poussin [dlVP96]. Their proofs used the Riemann zeta

function and they were able to give an estimate for the error term in the formula,

based upon an estimate for a zero-free region of the zeta function (See [EW05] for

further details).

Let π(x) be the prime counting function that returns the number of primes less

than or equal to x, for any real number x > 0. For example, π(10) = 4, since the

prime numbers less than or equal to 10 are 2, 3, 5 and 7.

Theorem 3.4 (Prime Number Theorem) Asymptotically, the number of primes

p less than or equal to x is given by

π(x) = |{p ∈ P|p ≤ x}| ∼ x

log x

That is, the limit of the quotient of the two functions π(x) and x/ log(x) as x

approaches infinity is 1. This is expressed by the following formula.

lim
x→∞

π(x)

x/ log(x)
= 1

This theorem does not say anything about the limit of the difference of the two

functions as x approaches infinity. Indeed, the behaviour of this difference is very
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complicated, and related to the Riemann hypothesis [EW05]. Instead, the theorem

states that x/ log(x) approximates π(x) in the sense that the relative error of this

approximation approaches zero as x approaches infinity.

The prime number theorem is also equivalent to the statement that the n-th

prime number pn is approximately equal to n log(n), again with the relative error of

this approximation approaching zero as n approaches infinity.

Intuitively, the Prime Number Theorem states that the proportion of prime num-

bers between 1 and x is approximately 1/ log(x). Turning this statement around, the

Prime Number Theorem states that a chosen number x has a probability 1/ log(x)

of being prime. For example, near x = 1000, about one in seven numbers is prime

(14.29%), while near x = 10, 000, 000, 000, about one in 23 numbers is prime (4.35%).

Around the beginning of the nineteenth century, Legendre published a conjecture

equivalent to the Prime Number Theorem (see [Wei]). Gauss also studied the values

of π(x) at a similar time, and conjectured that an even better approximation is given

by the logarithmic integral function Li(x), defined by

π(x) ∼ Li(x) =

∫ x

2

1

log t
dt.

Indeed, this integral strongly suggests that the ‘density’ of primes around t should

be 1/ log(t). For small values of x, π(x) < Li(x). Several prominent mathematicians

conjectured that the inequality always holds. However, in 1914 Littlewood [Lit14]

proved that the inequality reverses infinitely often. Astonishingly, the smallest value

of x where the inequality first reverses is still unknown. It is, however, known to be

below 10371 (see [EW05] for further details).

In 1837, Dirichlet [Dir37] famously proved that there are infinitely many primes

p ≡ a (mod q) if and only if gcd(a, q) = 1. The key ingredient was Dirichlet’s L-

functions L(s, χ) to study arithmetic progressions. He provides an asymptotic result

that can be expressed in the following form.

π(x; a, q) = |{q ∈ P : p ≤ x, p ≡ a (mod q)}| ∼ x

ϕ(q) log(x)
(3.1)

where ϕ is Euler’s totient function. This formula holds for each given progression

as x→∞ and one interested in estimates uniform with q as large as possible. The

Generalised Riemann Hypothesis allows q to be as large as x1/2−ε, but all that is

known unconditionally is the much smaller range q < (log x)A for some arbitrary

constant A, known as the Siegel-Walfisz theorem. On the other hand, one expects
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(3.1) to hold with q as large as x1−ε, although it is known to fail in the range

q < x(log x)−A for every A (see [FG89] for further details).

Viggo Brun [Bru16, Bru19, Bru22] first showed how to improve on the Legen-

dre method by relaxing the asymptotic requirements. Instead, he concentrated on

inequalities of the prime distribution, giving rise to a powerful sieve method which

helped prove the following upper bound,

π(x; a, q) <
cx

φ(q) log(x/q)

where c is an absolute constant which yields the correct order of magnitude through-

out the range q < x1−ε. This is known as the Brun-Titchmarsh theorem due to the

work of Titchmarsh [Tit30]. Progress in the sieve also led to the result of c = 2 + ε,

which can now be obtained in one of several ways (e.g. Selberg sieve, combina-

torial sieve, large sieve). This is the limit of the method in several respects. An

improvement in the constant c for small q would have striking consequences for the

problem of exceptional zeros of L-functions, and hence for class numbers. Moreover,

it is known that there are sequences of integers satisfying the same standard sieve

axioms for which the corresponding bound cannot be improved. For example, the

set of those integers in progression composed of an odd number of prime factors.

In view of this limitation, Y. Motohashi [Mot75] was able to improve this constant

to c = 2 by using non-trivial information about the nature of arithmetic progressions.

This work has had a significant impact on subsequent developments in general sieve

theory.

3.3 Simple Prime Sieve

In terms of searching for 1024 bit primes, (i.e. primes that are approximately 21024),

the theorem says that the probability of randomly choosing such a number is ap-

proximately 0.14%. Rather than selecting a number completely at random, though,

one could restrict attention (say) to numbers that are relatively prime to 2, 3, 5, 7

and 11. That is, ignore all numbers that are even, all numbers that are divisible by

3, all numbers that are divisible by 5, etc., from the search. To do this, a simple

sieve method described in [HPS08] is used. It first chooses a random number that

is relatively prime to 2 ·3 ·5 ·7 ·11 = 2310, say 1139, for example. Then, it considers

only numbers N of the form

N = 2 · 3 · 5 · 7 · 11 ·K + 1139 = 2310K + 1139 (3.2)
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The probability that an N is prime is approximately

2

1
· 3

2
· 5

4
· 7

6
· 11

10
· 1

log(N)
≈ 4.8

log(N)
.

That is, if one chooses a random number N of the form indicated by equation

(3.2) with N ≈ 21024, then the probability that it is prime is approximately 0.67%.

Therefore, only 150 numbers need be checked in order to find one that is prime.

3.4 Distribution of Prime Determinants

Just like determining the distribution of prime numbers up to and including a cer-

tain bound is useful, so too is the distribution of prime determinants of matrices

up to and including a certain dimension. In terms of discrete random matrices,

Maples [Map10] proposed an inequality similar to the Brun-Titchmarsh theorem to

determine a bound on the number of determinants that are prime. Noting that the

Brun-Titchmarsh theorem is a simple consequence of the large sieve inequality, he

uses a probabilistic analogue of the large sieve developed by Kowalski [Kow08] to

prove the following theorem.

Theorem 3.5 For all n sufficiently large, let A be a randomly chosen n×n matrix

with entries taken from a distribution that is not concentrated on an arithmetic

progression. Then,

Prob(detA ∈ P and ≡ a mod q) .
1

ϕ(q)

1

n

for all positive integers q ≤ O(ecn) and invertible residues a ∈ (Z/qZ)×.

In other words, the probability of the determinant of A being prime is roughly one

in n, the dimension of the matrix.

Kowalski developed the following probabilistic analogue of the large sieve in

[Kow08]. Let X1, . . . , Xn denote independent, identically distributed copies of a

Bernoulli random variable X = ±1 with Prob(X = +1) = Prob(X = −1) = 1/2.

Next, define the random sum Sn = X1 + · · · + Xn. One can then view Sn as

a probabilistic model for a random integer in the interval [−
√
n,
√
n]. With his

probabilistic sieve, Kowalski proved an analogue of the Brun-Titchmarsh theory for

this random sum.
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Theorem 3.6 (Kowalski) For all q ≤ x1/4−ε and invertible residues a ∈ (Z/qZ)×,

Prob(Sn ∈ Pand ≡ a mod q) .
1

ϕ(q)

1

log(n)

where the implied constant depends only on ε.

Since |Sn| ∼
√
n with high probability, it is reasonable to expect this theorem to

hold for all q ≤ x1/2−ε, as predicted in [Kow08].

3.5 Minors and Determinants

Following are some fundamental concepts, definitions and notation, taken from linear

algebra. Although not related to prime determinants, its inclusion here is primarily

for understanding the next chapter.

A minor of a matrix A is the determinant of a smaller square matrix, deduced

from A by removing one or more of its rows or columns. Minors obtained by re-

moving just one row and one column from square matrices are called first minors.

Minors obtained by removing two rows and two columns from square matrices are

called second minors, etc. For example, given the following matrix,
1 4 7

3 0 5

−1 9 11


the first minor obtained by deleting row 2 and column 3 is calculated as follows,

det


1 4 �

� � �

−1 9 �

 = det

(
1 4

−1 9

)
= (9− (−4)) = 13

Since there are

(
n

k

)
ways of selecting k rows from n, and there are

(
n

k

)
ways

of selecting k columns from n, there are a total of

(
n

k

)
·

(
n

k

)
minors of order

k.

Definition 3.1 Let A be an n×n matrix and k an integer with 0 < k ≤ n. A k×k
minor of A is the determinant of the k×k matrix obtained from A by deleting n−k
rows and n− k columns.
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Definition 3.2 If A is an n× n matrix, I is a subset of {1, ..., n} with k elements,

and J is a subset of {1, ..., n} with k elements, then let [A]I,J denote the submatrix

of A whose row and column indices are respectively taken from I and J .

Definition 3.3 If the indices that reference the rows and columns of a matrix A are

equal (i.e. I = J), then det([A]I,J) is called a principal minor. If the matrix that

corresponds to the principal minor is an upper-left part of the larger matrix (i.e. it

is formed by deleting the last n−k rows and the last n−k columns of the matrix A),

then the principal minor is called a leading principal minor. For an n × n matrix,

there are n leading principal minors. Let Ak,k denote a leading principal minor of

A of order k.



Chapter 4

Selecting a Matrix with an Optimal HNF

Hermite Normal Form matrices are used in lattice based cryptography since they are

better for answering questions of vector inclusion, without compromising security.

Although the techniques for constructing HNF matrices have improved, they do not

cater for the need of reducing the key length of the public key cryptosystems nor the

digital signature schemes that use them. That is, for selecting private key matrices

whose public key HNF matrices can be expressed as a single column of values, as

depicted by Definition 4.1.

Definition 4.1 Let H ∈ Zn×n be the HNF of a matrix A ∈ Zn×n. H is optimal if

for all i < n,Hi,i = 1.

For example, the following HNF matrix is in optimal form.

H =


1 0 0 335

0 1 0 286

0 0 1 1663

0 0 0 2873


Notice that, since most diagonal entries of this matrix are equal to 1, it can be

expressed by a single column of values, (or a vector), thereby reducing the signature

length. Further notice that the determinant of such a matrix is expressed as the

product of all the diagonal entries, implying that if a random matrix is carefully

chosen to have a prime determinant then, in all likelihood, its HNF will be in

optimal form. Note that this is not necessarily the case. That is, there can exist

a matrix with a prime determinant that is not in optimal form as the following

example illustrates. Suppose one is given the following matrix,

67
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A =


1 0 0

0 2 0

0 0 1

 , where HNF(A) =


1 0 0

0 2 0

0 0 1

 .
Notice that the determinant of A is prime, yet its HNF is not in optimal form.

Clearly, the probability of randomly selecting such a matrix is negligible. Further-

more, if any prime determinant matrix has an HNF that is not optimal, it will be

unique with respect to the column where the prime value exists, and hence, one

permutation away to being optimal. Therefore, one need only be concerned with

selecting a matrix whose determinant is prime. Finding an optimal HNF matrix

efficiently, however, is not apparent and can lead to many trial and error attempts

before one is selected. Similarly so even if the determinant of the matrix is not prime

[RPS11].

One method employed in the paper by Rose, Plantard and Susilo, “Improving

BDD Cryptosystems in General Lattices” [RPS11] is to check whether or not the

determinants of the randomly chosen matrices are co-prime to a set of small prime

factors prior to calculating their HNF. Although the time complexity of calculating

the determinant is less than that for calculating the HNF, this can also be an

expensive process since, according to Rose et al., only 40% of matrices selected

in this manner will result in an optimal HNF.

This chapter proposes yet another method of selecting private key matrices such

that their public key HNF matrices are optimal. It takes advantage of the incremen-

tal nature of Micciancio and Warinschi’s algorithm for calculating Hermite Normal

Form matrices. Building a matrix row by column in this manner has revealed that,

if the determinant of a principal sub-matrix is prime, then the determinant of the

next (or consecutive) principal sub-matrix is also likely to be prime. Since the de-

terminant of a matrix need not be prime in order for it to be optimal, this chapter

also looks at an alternative method of selecting optimal HNF matrices which does

not entail prime determinants.
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4.1 Constructing Matrices with Prime Determi-

nants

Combining the methods employed by Rose et al. with the method of searching for

large prime numbers (as described in Section 3.2), one could construct a matrix

whose determinants are prime or probable prime by multiplying the randomly cho-

sen coefficients by a fixed set of small prime factors, followed by the addition of a

unimodular matrix. For example, given the following randomly chosen matrix,

A =


−25 36 −44 20

15 −10 35 −12

−52 26 −66 72

16 −21 98 −30

 ,
multiply the following set of prime factors, {2, 3, 5, 7}, to give,

A′ = 2× 3× 5× 7× A =


−5250 7560 −9240 4200

3150 −2100 7350 −2520

−10920 5460 −13860 15120

3360 −4410 20580 −6300

 .
Next, add this to the following randomly chosen unimodular matrix,

U =


14 −15 14 14

7 13 −8 −7

−1 30 −21 13

−33 19 −20 8


to give,

U + A′ =


−5236 7545 −9226 4214

3157 −2087 7342 −2527

−10921 5490 −13881 15133

3327 −4391 20560 −6292

 .
Notice how the HNF of A is not in optimal form,

HNF(A) =


1 0 2 265248

0 1 1 11946

0 0 3 259964

0 0 0 303476

 .
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However, the HNF of U + A′ is in optimal form,

HNF(U + A′) =


1 0 0 795852267986782

0 1 0 1364900878811926

0 0 1 709409421401056

0 0 0 1784123562021361

 .
Note that any randomly chosen unimodular matrix may be used. Finally, to deter-

mine optimality, one would test whether or not the determinant of the matrix were

prime, or probable prime, prior to calculating its HNF.

Algorithm 7 ConstructOptimalHNF

Input: A dimension n ∈ N, a range of values r ∈ N, the number of prime factors

k ∈ N, the primes {p1, p2, . . . , pk}.
Data: A randomly chosen unimodular matrix U , and a variable Π to store the

product of primes.

Output: Two square matrices, A,H ∈ Zn×n such that H is the optimal Hermite

Normal Form of A.

Π0 = 1;

for i = 1 to k do

Πi ← Πi × pi;
end for

U ← unimodular matrix;

repeat

for i = 1 to n do

for j = 1 to n do

Ai,j ← Random(−r, r);
end for

end for

A← U + Πk × A;

until det(A) is prime (or probable prime);

H ← HNF(A, det(A));

The correlation between optimal HNF matrices produced by Algorithm 7, and

the determinants being co-prime to a set of small prime numbers, for example, is

illustrated in Figure 4.1. The results were obtained by measuring the number of

optimal HNF matrices whose determinants were co-prime to a set of small prime
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numbers. This was done 1000 times for each dimension between 1 and 300, using

coefficients ranging between -500 and 500. Notice that, as the number of prime

factors, k, increases, so too does the likelihood of the HNF matrix being optimal.
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Figure 4.1: Correlation between optimal HNF matrices produced by Algorithm 7,
and the determinants being co-prime to a set of small prime numbers.

In terms of efficiency, this method was compared to the method proposed by

Rose et al. As such, the test for optimality was to ensure that the determinant of

the constructed matrix was co-prime to a set of small prime values. The results

are illustrated in Figure 4.2. Notice that there is an asymptotic improvement in

performance as the dimension of the matrix increases. This is because the time of

finding a determinant of a randomly selected matrix that is co-prime to a set of

small prime values is reduced.

This method works since, like Rose et al. method, it forces the determinant

of a matrix to be co-prime to a set of small prime values, thereby increasing its

likelihood of being prime. This method is also practical since it leads more directly

to a probable solution than searching for a subset of possible solutions. This is ideal

for fully homomorphic encryption algorithms such as those noted by Gentry [GPV08]

who uses optimal HNF matrices with dimensions as large as 2048 × 2048 in size.

Unfortunately, the method does not guarantee a prime determinant which is required

for fully homomorphic encryption algorithms such as those noted by Smart [SV10].
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Figure 4.2: Comparison between Rose et al. and proposed method of computing an
optimal HNF matrix, in terms of dimension versus time.

4.2 Selecting Matrices with Prime Determinants

This section explores different methods of generating non-singular square matrices

whose HNFs are in optimal form. It explores ways of selecting matrices (a.k.a.

private keys) such that their determinants are prime (or probable prime). As noted

earlier, if the determinant of the matrix is prime, there is a more than likely chance

that its HNF will be in optimal form.

This section begins by describing the traditional method of selecting matrices

such that their HNF’s are in optimal form (Section 4.2.1). This is followed by the

proposed method of selecting such matrices row by column using Micciancio and

Warinschi’s algorithm to calculate Hermite Normal Forms (Section 4.2.2). The idea

behind this method is that by forcing all leading principal minors to being prime

during matrix selection will force the determinant of the target matrix to be prime.

4.2.1 Traditional Method of Selecting Matrices

In its most simplest form, the traditional (trial and error) method of selecting and

calculating an optimal HNF matrix is to randomly select an n×n matrix, calculate

its HNF, and then determine its optimality. If the HNF matrix is not optimal, the
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randomly chosen matrix is discarded, and the selection process started again. This

is illustrated in Algorithm 8.

Algorithm 8 TraditionalOptimalHNF

Input: A dimension n, and a range r.

Output: Two square matrices, A,H ∈ Zn×n such that H is the optimal Hermite

Normal Form of A.

repeat

for i← 1 to n do

for j ← 1 to n do

Ai,j ← Random Integer between − r and r;

end for

end for

H = HNF(A);

until det(H) is optimised;

Note that the test for optimality can be any one of the methods noted in section

3.1, although alternative tests that don’t involve prime determinants may be used

and are discussed in Section 4.3.

Assuming that the time for randomly choosing coefficients of a matrix A is

negligible, the time for selecting and computing an optimal HNF matrix, H, is

given by the following formula

T1 = a1 ×

(
n∑
i=1

(TAddRow(i) + TAddColumn(i)) + TPrimek(n)

)
where TAddRow and TAddColumn denote the times for executing AddRow and Ad-

dColumn, respectively, TPrimek denotes the time for testing a prime determinant

using the Miller-Rabin method with k witnesses, and a1 denotes the average number

of steps for selecting a matrix whose HNF is in optimal form.

The coefficient a1 is calculated by taking the average of probability, p1, of success-

fully finding a matrix whose HNF is in optimal form. This is given by the following

formula

a1 = 1× p1 + 2× (1− p1)p1 + 3× (1− p1)2p1 + · · ·

=
∞∑
i=1

i(1− p1)i−1p1 =
p1

p2
1

= p−1
1 (4.1)
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4.2.2 Selecting Matrices whose Leading Principal Minors

are Prime

A viable method of selecting a matrix, A, whose HNF is optimal is to construct it

row by column such that the leading principal minor of the matrix is prime. For

example, at the first iteration, the sub matrix A{1},{1} of A (that is, the first leading

principal minor) should be chosen to have a single prime number.

A{1},{1} = [7], HNF(A{1},{1}) = [7]

At the second iteration, three numbers should be chosen to form the outer row and

column of A{1},{1} such that the determinant of the resulting 2×2 matrix, A{1,2},{1,2},

(that is, the second leading principal minor) is prime.

A{1,2},{1,2} =

[
7 −5

−3 8

]
, HNF(A{1,2},{1,2}) =

[
1 11

0 41

]
.

At the third iteration, five numbers should be chosen to form the outer row and

column of A{1,2},{1,2} such that the determinant of the resulting 3 × 3 matrix,

A{1,2,3},{1,2,3}, (that is, the third leading principal minor) is prime.

A{1,2,3},{1,2,3} =


7 −5 2

−3 8 −9

1 −4 6

 , HNF(A{1,2,3},{1,2,3}) =


1 0 44

0 1 33

0 0 47

 .
And, so forth until the required matrix dimension of A is reached. This is illustrated

in Algorithm 9.
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Algorithm 9 CreatePrimeHNF

Input: A dimension n, and a range r.

Data: A vector â ∈ Zi−1 to store the column that will be added; a vector b̂ ∈ Zi to

store the row that will be added; and a vector x̂ ∈ Zi−1 to store the column that

has been added.

Output: Two square matrices, A,H ∈ Zn×n such that H is the optimal Hermite

Normal Form of A.

H1,1 ← A1,1 ← GenPrime();

for i = 2 to n do

repeat

for j = 1 to i− 1 do

âj ← Ai,j ← Random Integer between − r and r;

end for

x̂T (i− 1)← AddColumn(A(i− 1), H(i− 1), âT (i− 1));

for j = 1 to i do

b̂j ← Ai,j ← Random Integer between − r and r;

end for

Hi,i ← AddRow
([

H(i− 1) x̂T (i− 1)
]
,
(
b̂i,1, . . . , b̂i,i

))
;

until det(Hi,i) is prime;

end for

Note that the HNF of each (leading principal) sub-matrix is calculated at each

iteration. If the determinant of the resulting HNF matrix is not prime, the newly

added row and column are simply discarded, and numbers for those chosen again,

as opposed to discarding the whole matrix. Further note that the condition that

tests for a prime determinant could easily be replaced by a condition that tests for

a probable prime determinant.

Again, the test for optimality can be any of the methods noted in section 3.1.

Assuming that the time for randomly choosing coefficients of a row/column are

negligible, the time for selecting and computing an optimal HNF matrix, using this

method, is given by the following formula

T2 = a2 ×

(
n∑
i=2

TAddRow(i) + TAddColumn(i) + TPrimek(i)

)
where TAddRow and TAddColumn denote the times for executing AddRow and Add-

Column, respectively, TPrimek denotes the time for testing a prime leading principal
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minor using the Miller-Rabin method with k witnesses, and a2 denotes the average

number of steps for selecting a matrix whose HNF is in optimal form.

Similarly, a2 is calculated by taking the average of probability, p2, of successfully

finding a matrix whose HNF is in optimal form. This is given by the following

formula

a2 = 1× p2 + 2× (1− p2)p2 + 3× (1− p2)2p2 + · · ·

=
∞∑
i=1

i(1− p2)i−1p2 =
p2

p2
2

= p−1
2 (4.2)

4.2.3 Complexity Analysis between Traditional and Pro-

posed Methods

To analyse the complexity between the traditional and proposed methods of finding

matrices whose Hermite Normal Forms are in optimal form, one needs to compare

the average number of steps in terms of the probability of success. That is, a1 and

a2 in terms of p1 and p2. Note that, if TPrimek is negligible compared to TAddRow and

TAddColumn, then T2 < T1 if a2 < a1.

It is clear that if the average number of steps of using the proposed method is

superior to that of using the traditional approach, then a2 < a1. By equations (4.1)

and (4.2), this implies that p−1
2 < p−1

1 , which further implies that if p1 < p2, then

the proposed method is asymptotically faster than the traditional approach. This

is demonstrated in section 4.2.4, which analyses the probability of success between

the two methods of finding matrices whose Hermite Normal Forms are in optimal

form.

4.2.4 Empirical Analysis between Traditional and Proposed

Methods

It was observed that selecting a row/column pair whose leading principal minor

was prime increased the likelihood of the next leading principal minor being prime.

This is also true for leading principal minors that were probable prime. To verify

this behaviour, though, a number of tests were conducted independent of the above

algorithm. The purpose of these tests was to also confirm whether this behaviour

was limited to leading principal minors, or any minor of randomly chosen matrices.
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Testing for Prime Determinants

To demonstrate that the primality of leading principal minors influence the primality

of consecutive leading principal minors, the determinants of randomly chosen ma-

trices, along with their leading principal minors, were tested for primality. As such,

the test was constructed to count the number of consecutive prime minors, as well

as consecutive non-prime minors. If the leading principal minors of two consecutive

sub-matrices were prime, (that is, if the det(Ai,i) were prime, and the det(Ai+1,i+1)

were also prime), this would be added to a counter. Similarly, if the leading principal

minors of two consecutive sub-matrices were not prime, this result would be added

to yet another counter. Counters were also maintained for the cases where the ith

leading principal minors were prime, and the (i+1)th leading principal minors were

not, and vice-versa.

The dimension of the matrices concerned were 200 × 200, the leading principal

minors of which were all tested for primality, except for the first and last leading

principal minors since there was nothing to compare them against. The range of

values used for the coefficients was between -200 and 200; the dimension of the

matrices concerned. Finally, the experiments were repeated 1000 times for each

leading principal minor tested, and the results averaged. Table 4.1 illustrates the

results of this test.

% Prime Distribution Probability
P/P P/NP NP/P NP/NP p1 p2

Stricter Prime 0.0055 0.2075 0.2075 99.0795 0.00213 0.02582
Non-Deterministic 3.55 10.75 10.82 74.88 0.14370 0.24825

Table 4.1: Distribution of leading principal minors being prime compared to the
percentage of matrices having a prime determinant, using both non-deterministic
and stricter prime methods of determining primality (see explanation below).

Initially, the Rabin-Miller method with one witness was chosen to perform each

test, although this could have been replaced by trial divisions of a set of small prime

numbers. Unless otherwise specified, this is what is meant by employing a non-

deterministic or probable prime method. For more accurate results, the number of

witnesses would be increased to 10. Although more accurate, this is still considered

non-deterministic. For more definitive results, magma R© which provides a more

rigorous method for testing prime numbers was used. It accurately determines the

primality of any number n, unless n > 25 × 109 or the optional parameter ‘Proof ’
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is set to false, in which case the result indicates that n is probable prime using the

Rabin-Miller method with 20 witnesses. Because most of the determinants that are

calculated are greater than this specified bound of accuracy, most of the positive

results returned by magma R© will be probable prime at best. Unless otherwise

specified, this is what is meant by employing a stricter prime method.

The reader will note that, although the likelihood of two consecutive leading

principal minors being prime is low, and the likelihood of two consecutive leading

principal minors not being prime is high, the probability of success using the pro-

posed method is greater than that of using the traditional method (especially when

a stricter prime approach of identifying primary determinants is utilised). What this

implies is that the average number of steps required to successfully select a matrix

whose HNF is in optimal form is less using the proposed method than it is using

the traditional method, as illustrated in Table 4.2.

a1 a2 Ratio

Stricter Prime 469.4836 38.7273 12.1228
Non-Deterministic 6.9589 4.0282 1.7276

Table 4.2: Average number of steps of successfully selecting a matrix whose HNF is
in optimal form using both stricter prime and non-deterministic methods of deter-
mining primality.

What is even more interesting is the fact that this observation occurs for all

consecutive leading principal minors. That is, the likelihood of this occurring for

the (i − 1)th and ith leading principal minors is the same as it occurring for the

(n−1)th and nth leading principal minors, as illustrated in Figure 4.3 (not counting

the first and last measurements, since there is nothing to compare them against).

These measurements were taken by counting the number of leading principal mi-

nors that were prime, as well as those that were not prime. In particular, a counter

was maintained for two consecutive leading principal minors being prime, as well as

a counter for two consecutive principal minors not being prime. Similarly, counters

were maintained for two consecutive leading principal minors that complemented

each other in terms of primality (that is, prime to non-prime, and non-prime to

prime). Notice how the number of consecutive leading principal minors that are

prime remains constant, as do all those that are non-prime, as the dimension of the

matrix (leading principal minor) increases. Also notice how the number of consecu-

tive leading principal minors that complement each other in terms of primality also
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Figure 4.3: Distribution of Consecutive Leading Principal Minors being Prime using
Rabin-Miller method with one witness.

remains constant.

This observation warranted further investigation, since using the Rabin-Miller

method with one witness (a.k.a. non-deterministic methods) could bias the results.

As such, further tests were conducted by increasing the number of Miller witnesses

to 10. Sure enough, this provided a more accurate bound on the number of lead-

ing principal minors that were prime, that is consistent with the bound of prime

determinants on matrices noted by Maples [Map10].

As the Miller-Rabin test is probabilistic, there is a possibility that some minors

were mistaken to be prime, but in fact were not. Because of this, a stricter prime

method for predicting primality was employed. That is, the rigorous methods pro-

vided by magma R©. This had a negligible difference in results, as illustrated in

Table 4.3. Noticeably, there is still a pattern that holds true, although now there

are fewer consecutive leading principal minors that are both prime.

Nevertheless, it was observed that using a stricter prime approach of determin-

ing prime leading principal minors saw a significant improvement in performance.

Specifically, the average number of steps for selecting a matrix whose HNF is in

optimal form was reduced by a factor of 12 as illustrated in Table 4.4. This is unlike

the non-deterministic approach which only saw a reduction by a factor of 1.7. This

is because there is a notable improvement in applying non-deterministic methods to
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% Prime Distribution Probability
P/P P/NP NP/P NP/NP p1 p2

Non-Deterministic 3.5915 10.7580 10.7580 74.3925 0.1437 0.2483
Rabin-Miller (10 witnesses) 0.0055 0.2075 0.2075 99.0795 0.00213 0.0258
Stricter Prime 0.0055 0.2075 0.2075 99.0795 0.00213 0.0258

Table 4.3: Distribution of prime leading principal minors using non-deterministic,
Rabin-Miller with 10 witnesses, and stricter prime methods of determining primality.

traditional trial and error techniques as illustrated in Table 4.3.

a1 a2 Ratio

Non-Deterministic 6.9589 4.0282 1.7276
Rabin-Miller (10 witnesses) 469.4836 38.7273 12.1228
Stricter Prime 469.4836 38.7273 12.1228

Table 4.4: Average number of steps of successfully selecting a matrix whose HNF is
in optimal form using non-deterministic, Rabin-Miller with 10 witnesses, and stricter
prime methods of determining primality.

To determine whether or not any minors other than the leading principal mi-

nors affects or influences the primality of the determinant, the following test was

conducted. The determinants of randomly chosen matrices, along with a subset of

their minors, were tested for primality. As such, the test was constructed to count

the number of prime minors, as well as non-prime minors, for determinants that

were both prime and not prime. Since it is not practical to test all the minors of

any matrix, a subset of minors was chosen to perform this test. As such, matrices

of dimension 50× 50 were created, with coefficients ranging from −50 to 50. Their

minors were selected by successively deleting one row and one column, and then

calculating the determinant of the associated 49× 49 matrices. For example, on the

first loop, the first row and the first column of the 50× 50 matrix would be deleted,

and the determinant calculated; on the second loop, the first row and second column

of the same 50× 50 matrix would be deleted, and the determinant calculated; and

so forth. In total, 10,000 repetitions of each minor selected was tested for primality,

and the results averaged. Sure enough, the results revealed a correlation between

prime (or probable prime) minors and the determinants of the matrices, as depicted

in Table 4.5.

Notice how these results closely resemble those of p2 of Table 4.3. That is, the
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Determinant
Prime Non-Prime Ratio

Non-Deterministic 0.108647 0.044498 2.44162
Rabin-Miller (10 witnesses) 0.050000 0.001803 27.73160
Stricter Prime 0.050000 0.001803 27.73160

Table 4.5: Percentage of prime minors resulting in a prime determinant versus
the percentage of prime minors resulting in a non-prime determinant using trial
divisions, Rabin-Miller with 10 witnesses, and stricter prime methods of determining
primality.

probability of finding a prime determinant using arbitrary minors closely resem-

bles the probability of finding a prime determinant using leading principal minors.

Further notice that the probability of finding a prime determinant increases using

non-deterministic or probable prime methods as opposed to stricter prime methods.

Interestingly, the results obtained also indicated that if there were no prime

minors, then the determinant of matrix would not be prime either. This is not to

say that prime determinants of matrices could not exist in their own right without

any of their minors being prime. One such example is the following matrix,[
10 1

93 10

]
.

Note that the determinant of the matrix is 7, yet all of its minors (in this case,

the coefficients) are non-prime. This, however, is not a good example as it relies of

the fact that 1 is not a prime number by definition. The subset of results collected

thus far have failed to find combinations of non-prime minors whose determinants

are prime. The converse to this, however, is not true since there did exist some

minors that were prime, but the determinant of the matrix wasn’t.

Thus far, the range of randomly selected matrix coefficients used to test this

property lies between −r and r, where r = n, the dimension of the target matrix.

To demonstrate that this property behaves the same regardless of the range, the

above tests were repeated using the ranges {−1, 0, 1} and {−232 + 1, . . . , 232 − 1},
respectively. Furthermore, the Rabin-Miller method with one witness was employed

to demonstrate consistency between this and previous tests. Suffice it to say that

there was only a slight improvement in behaviour, as is illustrated in Table 4.6.
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% Prime Distribution Probability
P/P P/NP NP/P NP/NP p1 p2

{−1, 0, 1} 3.313 10.175 10.175 75.837 0.1356 0.2456
{−n, ..., n} 3.55 10.75 10.82 74.88 0.1437 0.2483
{−232 +1, . . . , 232−1} 3.659 10.8095 10.8095 74.222 0.1454 0.2529

Table 4.6: Distribution of prime determinants using different ranges, and the Rabin-
Miller method with one witness to determine primality of leading principal minors.
Note the consistency between this table and Table 4.1.

Timing

A comparison was made between adding a single row/column pair using Algorithm 9

and testing for a prime determinant. The aim was to see how expensive testing

for a prime determinant is compared to adding a single row/column pair, which

includes calculating its determinant. As such, both tests were repeated 1000 times

for each dimension, and the timings of each test recorded. For prime testing, the

ProbPrime(const ZZ& n, long NumTrials) function of the NTL class of functions

for large integers (i.e. ZZ) was employed, which performs up to NumTrials Miller

witness tests after some trial divisions. A parameter of NumTrials = 0 will therefore

only check that n (i.e. the determinant) is co-prime to a set of small prime numbers.

The cumulative timing results illustrated in Figure 4.4 were obtained on a quad core

Intel(R) Xeon(R) CPU X3360 running at 2.83GHz under the GNU/Linux operating

system with 8GB RAM.

It is clear that checking for a prime determinant is negligible as the dimension

of the matrix grows. Even checking that the determinant is co-prime to a set of

small prime numbers alone is negligible. For example, at dimension 250, the effort

of adding a single row/column pair, and computing the corresponding determinant

of the matrix, is far more expensive than testing for a prime determinant. Increas-

ing the number of witnesses and/or increasing the number of prime factors would,

therefore, have little impact on performance.

Adding a single row/column pair consistent with Algorithm 9, however, is an

expensive operation, especially as the dimension of the matrix grows. Limiting the

number of trial and error attempts in finding a matrix whose HNF is optimal would

therefore benefit the selection process.
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Figure 4.4: Cumulative time of adding row/column pair compared to prime testing
of determinants using Miller Witness. Note that the time for each was recorded
1000 times for each dimension of the matrix constructed.

4.3 Selecting Matrices whose HNF’s are Optimal

As noted earlier, a matrix need not have a prime determinant in order for its HNF

to be in optimal form. Hence, rather than checking for primality of the determinant

at each iteration of the algorithm, one could check for optimality of the HNF matrix.

Like checking for primality of the leading principal minor influences the primality

of the consecutive leading principal minors, so too does checking for optimality; in

fact, much better than randomly selecting a matrix such that its HNF is in optimal

form.

To demonstrate this, the HNF of a group of randomly selected matrices were

tested for optimality. They were built row by column using the above HNF algo-

rithm. Like before, the number of consecutive optimal matrices were counted, as

well as the number of consecutive non-optimal matrices. Similarly, the number of

consecutive matrices that complemented each other in terms of optimality were also

counted (that is, if Hi,i were optimal and Hi+1,i+1 were not, and vice-versa). The

results are illustrated in Table 4.7.

It is apparent that the chances of selecting a random matrix whose HNF is in

optimal form is far greater using this method than testing for primality. Although

the chances of selecting a random matrix whose HNF is non-optimal are greater, like

before, the probability of success using the proposed method is greater than that

of using the traditional method. What this implies is that the average number of
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% Optimal Distribution Probability
O/O O/NO NO/O NO/NO p1 p2

Optimal 26.24 17.14 17.95 38.67 0.4419 0.6049

Table 4.7: Distribution of consecutive optimal HNF matrices versus non-optimal
HNF matrices using a method other than prime determinants for determining ‘op-
timality’.

steps required to successfully select a matrix whose HNF is in optimal form is less

using the proposed method than it is using the traditional method, as illustrated in

Table 4.8. Note, however, that the result is not as significant as that of testing for

a prime leading principal minor using stricter prime methods. This is because there

is a notable improvement in applying optimal testing methods to traditional trial

and error techniques as illustrated in Table 4.7.

a1 a2 Ratio

Optimal 2.2630 1.6532 1.3688

Table 4.8: Average number of steps of successfully selecting a matrix whose HNF
is in optimal form using a method other than prime determinants for determining
‘optimality’.

Also, like before, this phenomenon occurs for all consecutive leading principal

matrices, as is illustrated in Figure 4.5 (again, not counting the first or last mea-

surements as there is nothing to compare them to).
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Figure 4.5: Distribution of Consecutive Optimal Submatrices.



Chapter 5

Conclusion and Future Work

Hermite Normal Form matrices are a standard form of integer matrices used in ap-

plications such as integer programming, loop optimisation, and for solving linear

Diophantine equations. They are also used for reducing the key length and cipher-

text size of lattice-based cryptosystems and trapdoor functions of the kind proposed

by Goldreich, Goldwasser and Halevi, without decreasing their security. Although

the techniques for constructing Hermite Normal Form matrices have improved, a

method of selecting a random matrix whose Hermite Normal Form is in optimal

form has not. It remains a trial and error process at best, with a 40% chance of

success.

The main objective of this thesis was to explore ways of reducing the trial and

error associated with this process. In particular, it studied a stochastic observation

that results in the determinants of randomly selected matrices being prime – a

further observation being that most Hermite Normal Forms of such matrices can

be expressed as a single column of values. Also studied was a sieve method that

also aided in reducing the time of the selection process. The determinants of the

resulting matrices using this method, however, were not guaranteed to be strictly

prime. Since the determinant of randomly selected matrices need not be prime in

order for their Hermite Normal Forms to be in optimal form, other methods of

selecting matrices were further studied with varying degrees of success.

5.1 Contribution

Testing revealed that if a leading principal minor of a matrix were prime, it increased

the likelihood of the next (or consecutive) leading principal minor being prime, as

illustrated in Tables 4.1, 4.2 and 4.3. Similarly so, if the Hermite Normal Form of a

leading principal sub-matrix were chosen to be optimal, as illustrated in Table 4.7.

86
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As such, tests were conducted to verify the phenomenon, with varying degrees of

success. Test results revealed that if a stricter prime approach of identifying prime

minors was employed (that is, increasing the number of Rabin-Miller witnesses to

20), it reduced the average number of steps of selecting a matrix whose determinant

is prime by a factor of 12. This was also true for increasing the number of Rabin-

Miller witnesses to 10.

Taking a non-deterministic (or probable prime) approach of determining prime

minors showed a better improvement in selecting optimal matrices, as did traditional

trial and error techniques employing non-determistic (or probable prime) methods

of identifying prime determinants. Because of this, the average number of steps of

selecting a matrix whose determinant was probable prime using the proposed method

was reduced only by a factor of 1.7 when compared to traditional trial and error

techniques. This was also true for selecting leading principal sub-matrices whose

Hermite Normal Forms were optimal, which showed an even better improvement in

performance, but only a reduction in the average number of steps by a factor of 1.3.

Testing for a prime determinant, on the other hand, had negligible impact on the

algorithm, meaning that one can increase the number of Rabin-Miller witnesses with

minimal impact on the overall performance. This is ideal for fully homomorphic

encryption algorithms noted by Smart [SV10], who relies on the determinant of

large HNF matrices being strictly prime. It further improves the security of the

cryptosystem and/or trap-door function.

Also studied was a sieve method that also reduced the time of selecting a matrix

whose Hermite Normal Form is in optimal form. This method employed probable

prime techniques of filtering prime determinants by ensuring they were co-prime

to a set of small prime numbers. The results revealed that increasing the number

of prime factors saw a remarkable correlation between optimal HNF matrices and

(probable) prime determinants. So much so that it led more directly to a probable

solution rather than searching for a possible subset of solutions. This is ideal for fully

homomorphic encryption algorithms such as those noted by Gentry et al. [GPV08],

who use optimal HNF matrices with dimensions as large as 2048× 2048 in size.

5.2 Future Work

With the subset of data collected, it was observed that if there were no prime

minors, the determinants of the matrices were not prime, either. A more exhaustive
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search of all non-zero minors, however, may prove otherwise. Nevertheless, the

equivalence partition of minors selected for testing is believed to be an adequate

representation of all the non-zero minors, including the leading principal minors,

that form the matrix. This is due to the uniformity and non-bias of the minors that

were selected for testing. As such, any observation made could be stated with a

certain degree of confidence. Even if this observation is refuted, it does not refute

the fact that a correlation between prime minors and prime determinants exists.

Therefore, one possible direction for further research is to establish a theoretical

proof of the phenomena observed in this thesis.

The decision to use Micciancio and Warinschi’s space saving algorithm is due to

its incremental nature of calculating HNF matrices row by column. It lends itself

more easily to determining optimality of HNF matrices constructed in this manner.

Since the sieve method of selecting matrices does not rely on this incremental nature,

it would be interesting to note whether or not using Micciancio and Warinschi’s

heuristic algorithm, or any other HNF algorithm for that matter, would make any

difference in performance. Also, as the cost of increasing the number of Rabin-

Miller witnesses is negligible in comparison to calculating HNF matrices, it would

further be interesting to note the differences of combining any of the techniques

discussed in this thesis with the sieve method. Another possible area of research,

for example, is to determine whether or not selecting only prime coefficients will

impact the performance and the security of the public key that is constructed using

the sieve method.

With respect to Algorithm 9, the process of discarding a new row and column

if the minor of the leading principal sub-matrix is not prime could be sped up

by just modifying a few coefficients, as opposed to selecting an entirely new row

and column, and also using the fact that the determinant of Hi,i can be calculated

using the previously calculated leading principal minors. Furthermore, it could

even be possible to fix the column, for example, and then introduce a series of

variables for the row, compute the determinant, and then substitute different values

in the variables till a prime determinant is found. This prevents recomputing the

determinant from scratch every time. The only drawback is that it will more than

likely be susceptible to cryptographic attacks due to the nature of the selection

process, as opposed to randomly selecting an entirely new row and column.

In terms of lattice based cryptosystems, it remains to see whether or not the

suggested methods produce public keys that are resistant to cryptographic attacks.
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It is anticipated that the matrices constructed in this manner are just as resilient

as those constructed using traditional methods. For security reasons, however, it is

recommended that the number of Rabin-Miller witnesses be increased. For other

applications that have no security requirement, relaxing the stricter rules of primality

may be adequate.
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