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Abstract

This thesis is a compilation of the main published works I did during my studies in

Australia. My research area was lattice-based cryptography, which focuses mainly

on a family of mathematical primitives that are supposed to be “quantum-resistant”.

The direction of my research was mostly targeted towards constructions that lie out-

side of the mainly researched lattice forms to provide an alternative direction in the

case common constructions were discovered to be insecure. We do have, however,

some work that makes use of common constructions in which we expand the design

space for better efficiency or security.

At PKC 2008, Plantard et al. published a theoretical framework for a lattice-based

signature scheme, namely Plantard-Susilo-Win (PSW). Recently, after ten years, we

proposed a new signature scheme dubbed the Diagonal Reduction Signature (DRS)

scheme was presented in the National Institute of Standards and Technology (NIST)

PQC Standardization as a concrete instantiation of the initial work. Unfortunately,

the initial submission was challenged by Yu and Ducas using the structure that is

present on the secret key noise. Thus, we also present a new method to generate

random noise in the Diagonal Reduction Signature (DRS) scheme to eliminate the

aforementioned attack, and all subsequent potential variants. This involves sam-

pling vectors from the 𝑛-dimensional ball with uniform distribution. We also give

insight on some underlying properties which affects both security and efficiency on

the Plantard-Susilo-Win (PSW) type schemes and beyond, and hopefully increase

the understanding on this family of lattices. This work was published in [SPS20].

In another work, we present a technique to enhance the security of Goldreich,

Goldwasser and Halevi (GGH) scheme. The security of GGH has practically been

broken by lattice reduction techniques. Those attacks are successful due to the

structure of the basis used in the secret key. In this work, we aim to present a

new technique to alleviate this problem by modifying the public key which hides

the structure of the corresponding private key. We intersect the initial lattice with

a random one while keeping the initial lattice as our secret key and use the corre-

sponding result of the intersection as the public key. We show sufficient evidence
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that this technique will make GGH implementations secure against the aforemen-

tioned attacks. This work was published in [SPS19a].

We also present a novel computational technique to check whether a matrix-vector

product is correct with a relatively high probability. While the idea could be re-

lated to verifiable delegated computations, most of the literature in this line of work

focuses on provably secure functional aspects and do not provide clear computa-

tional techniques to verify whether a product 𝑥𝐴 = 𝑦 is correct where 𝑥, 𝐴 and

𝑦 are not given nor computed by the party which requires validity checking: this

is typically the case for some cryptographic lattice-based signature schemes. This

paper focuses on the computational aspects and the improvement on both speed

and memory when implementing such a verifier, and use a practical example: the

Diagonal Reduction Signature (DRS) scheme as it was one of the candidates in the

recent National Institute of Standards and Technology Post-Quantum Cryptography

Standardization Calls for Proposals competition. We show that in the case of DRS,

we can gain a factor of 20 in verification speed. This work was published in [SPS19c].

NewHope Key Encapsulation Mechanism (KEM) has been presented at USENIX

2016 by Alkim et al. and is one of the remaining lattice-based candidates to the

post-quantum standardization initiated by the NIST. However, despite the rela-

tive simplicity of the protocol, the bound on the decapsulation failure probability

resulting from the original analysis is not tight. We refine this analysis to get a

tight upper-bound on this probability which happens to be much lower than what

was originally evaluated. As a consequence we propose a set of alternative param-

eters, increasing the security and the compactness of the scheme. However using a

smaller modulus prevent the use of a full NTT algorithm to perform multiplications

of elements in dimension 512 or 1024. Nonetheless, similarly to previous works,

we combine different multiplication algorithms and show that our new parameters

are competitive on a constant time vectorized implementation. Our most compact

parameters bring a speed-up of 17% (resp. 11%) in performance but allow to gain

more than 19% over the bandwidth requirements and to increase the security of 10%

(resp. 7%) in dimension 512 (resp. 1024). This work is available on [PSSZ19] and

is still in review.

Each of those works also lead to potential further research, leaving open new

challenges. Those will be listed in the last chapter.
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est toujours un plaisir: la présidence américaine en particulier nous aura bien fait

sourire.
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Chapter 1

Introduction

1.1 Cryptography and the context of this thesis

1.1.1 Early days of cryptography

In the history of humanity, cryptography has always been valued in conflicts. While

steganography, which consists of hiding secret messages in places where the general

population does not expect them, cryptography consists of hiding secret messages

by transforming them into something which look random in front of unauthorized

eyes. One of the oldest form of encryption was to swap each letter by another

symbol, namely the “Caesar cipher”, which Julius Caesar used to protect important

military messages. All variants of the Caesar cipher were supposedly broken by “fre-

quency analysis” in the 9th century by Al-Kindi. As mentioned in the introduction

of Yuanmi Chen’s PhD thesis [Che13], this idea was later used in a work of fiction,

namely “The adventure of the dancing men” from Arthur Conan Doyle where Sher-

lock Holmes successfully applied “frequency analysis” to substitute “dancing men

symbols” to letters of the english alphabet. A more complex cipher, the “Vigenére

cipher”, based on the original Caesar cipher was conceived by Giovan Battista Bel-

laso in the 16th century and stayed officially unbroken for at least 3 centuries until

Friedrich Kasiski published a general method to break the cipher.

1.1.2 Cryptography as an essential war tool

The real importance of cryptography was highlighted during World War 2 where

military tactics, logistics and communication methods reached a point where battles

could be arguably won or lost by every slight bit of information (or misinformation).

A well-known story, which inspired the historical background behind the movie “The

Imitation Game” from 2014, highlighted how British intelligence deployed various

assets to attempt a break of the Enigma code used by the Nazis. While Alan Turing

1



1.1. CRYPTOGRAPHY AND THE CONTEXT OF THIS THESIS 2

was a well-known member of the task force created by the British government to

tackle this issue, chess champions and crosswords experts were also part of that

effort: the importance of pure mathematics was not highlighted at that time as

there was no consensus on how to break a secret code. Nevertheless, the break of

the Enigma machine is often referred as a turning point in the war, and even by

some as essential to the conclusion of the war.

1.1.3 “Crypto Wars” and Modern Cryptography

In 2019, during the 24th Australasian Conference on Information Security and Pri-

vacy (ACISP), Jennifer Seberry gave a retrospective on the history of cryptography

during her 50 years in the area [Seb19]. She saw the advent of internet and online

trading, and thus the natural and inevitable rise of mathematical methods to con-

ceive cryptosystems and their cryptanalysis (i.e the evaluation of their security with

practical and theoretical attacks). The advent of modern cryptography was initi-

ated by Claude Shannon, who promoted the use of mathematics for the formalism of

cryptography in a paper he wrote in 1975, effectively transforming cryptography into

a science of its own. Back when Jennifer started, cryptography was not widespread.

During that period, the US government was investing millions of dollars to keep

the ability to break all existing codes, and wanted to make sure foreign agencies

would not be able to hide anything from them. The US government was also selling

security measures and tools in other countries, but made sure the level of security

sold was not secure enough to protect from their eyes, while obviously keeping the

higher level of security from themselves. When presenting algorithms and protocols,

american scientists were not even allowed to discuss anything beyond the simple

statement of the algorithms. Furthermore, when Phil Zimmermann released Pretty

Good Privacy (PGP) in 1991 to the world, he was immediately investigated by the

US department of justice. While this look like a thing of the past, those so called

“Crypto Wars” are still going on, and the message of professor Seberry was, if my

memory serves me well, a pledge for public research in cryptography. The well-

known leaks provided by Edward Snowden reminded us how the National Security

Agency (NSA) deliberately made the NIST promote the use of cryptography they

can break[BLN16].

With the advent of fast telecommunications, whether for trading or personal

use, cryptography is becoming more and more widespread as malicious attackers,

government-based or not, flourish. As Jennifer Seberry reminded us, “without secu-

rity there is no trust, and without trust there is no business”. The need for privacy

has also become increasingly important. To quote Edward Snowden, “Privacy is the
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right to a free mind. Without privacy, you can’t have anything for yourself. Saying

you don’t care about privacy because you have nothing to hide is like saying you

don’t care about free speech because you have nothing to say.” In 2015, both US

president Barack Obama and UK prime minister David Cameron wanted to outlaw

backdoor-less cryptography. Thankfully, this did not lead to any change in the leg-

islation.

However, as described by professors Tanja Lange and Daniel Bernstein during

a talk at Macquarie University in 2018, a new “nightmare” is coming: quantum

computers [BL18].

1.1.4 Post-Quantum Cryptography

The mathematical primitives we use today in cryptography, relying on elliptic curves

and number factorization, are mostly broken by quantum computers using Shor’s

algorithm [Sho97]. On top of that, several theoretical algorithms using quantum al-

gorithms bring significant improvements in the conception of cryptographic attacks

as Grover’s algorithm for exhaustive search [Gro96]. Both algorithms do require a

powerful enough quantum computer which currently does not exist, even though

many claim those are coming “soon”, especially considering the achievements from

the last decade. Nevertheless, research on post-quantum cryptography, i.e the art

of conceiving quantum-safe encryption and its analysis, developed as a result of this

and is flourishing. In a certain way, the research on post-quantum cryptography is

currently peaking with the involvement of the US government.

The NIST has launched a standardization process in order to prepare the world

for the next generation of quantum-safe communications, and has encouraged all

research institutes to cooperate and focus on this sole objective. Several families

of mathematical quantum-safe primitives have been proposed, and three currently

stands out: error-correcting codes, multivariate polynomials systems, and integer

lattices. Those three families are based on a category of problems that we deem

safe for now, i.e the NP-hard problems. While it is not sure if those are really

quantum safe, we know they are highly likely to be safer than using co-NP problems

(like the integer factorization) as QP=co-NP. Furthermore, if P=NP under quantum

reductions, then my next job will probably be inside a fast-food restaurant.

1.1.5 This Thesis

While the work mentioned in this thesis has some involvement with the NIST stan-

dardization process for post-quantum cryptography, the work in this thesis is not
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limited with the involvement of the NIST on academic research. Regardless of the

NIST’s initiative, public research on post-quantum cryptography still exists and this

thesis is part of it. More specifically, this thesis focuses on lattice-based cryptogra-

phy. While the work described here does not make use on the most popular tools of

lattice-based crypto, it is nevertheless a humble contribution.

One part of the work is linked to our recent work on our NIST submission:

[PSDS18, SPS19b, SPS20]. Those publications are a description of the work we

submitted and a deeper study of the underlying structure following an attack of the

initial scheme by Yu and Ducas [YD18a].

Another part of our work is related to the study and usage of unused mathemat-

ical primitives to expand the available options for the conception of lattice-based

cryptosystems: [SPS19a, SPS19c]. One of them is a framework to enhance the

heuristic security of some lattice-based encryption schemes, and the other work is

a framework to conditionally enhance the efficiency of some lattice-based signatures.

The last work we present is based on another NIST candidate (NewHope [ERJ+18]):

which is still in review after our initial submission to TCHES, then to IEEE TC

on 2019-10-05 at IEEE TC and more recently to TETC [PSSZ19]. It is mostly an

expansion of the possibilities of NewHope and a test of their efficiency.

Other submissions do exist ([DFK+20, DRS+20] and others offline) but will not

appear on this thesis (out of scope).

1.2 Thesis plan

This thesis will be organized in 5 parts. The first part will provide some necessary

background on the work presented in this thesis. The next three parts will present

some research results, and the last part is a small abstract of the research done and

indicates some future research directions.

As someone who studied alongside software engineers, I am fully aware that most

of the knowledge online, and by extension most if not all “entry-point” surveys into

the state-of-the-art cryptography does not help at all the average implementer into

understanding the mathematical properties that are involved. This thesis is written

with the hopes that the average reader with a background on basic mathematics

such as linear algebra (vector spaces, matrices, rank...) and algebraic structures

(groups, rings, polynomials...) should be able to navigate through this thesis just
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fine. Hopefully, this should avoid many potential footguns.



Chapter 2

Background

2.1 Preliminaries

Before we go deeper into cryptography, we need to give a reminder of the math-

ematical structures we use and the underlying “hard” problems related to them.

Indeed, modern cryptography relies on computational problems to ensure the safety

of the secret it aims to protect. We also present in this chapter some of the known

techniques to solve those problems.

While this thesis focuses on lattice-based cryptography, I believe mentioning knap-

sack problems first might be a good idea to remind the historical links between

knapsacks cryptosystems and lattices. First as we believe the problems are ac-

tually very similar in nature and second, to deal with the apparent inequality of

reputation between those two families. Knapsack cryptosystems currently have a

bad reputation, enough to be mentioned in the crypto-related card game “Cards

Against Cryptography” where one joke card was literally “Knapsack cryptosystems,

revisited” [Ano19]. Lattice-based cryptosystems, however, enjoy a remarkable rep-

utation: 28 out of the 82a initial submissions for the NIST standardization process

were lattice-based. This directly contrasts with the recommendation that Vadim

Lyubashevsky gave during his talk in PKC 2016 [Lyu16]:

To build practical schemes, it is not enough to just work on “provably-secure”

constructions - one needs to understand the underlying knapsack problems

Granted, our research findings do not base themselves over provably-secure as-

sumptions. Nevertheless, the hardness of lattice problems lie in the construction of

hard instances of knapsack, which is where our overall research is building forwards.

acount reported in slide 31 of [BL18]

6
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2.2 Knapsack

While the original knapsack problem (which is sometimes called the “0/1 Knapsack

Problem”) was basically how to carry the most valuable items with a limited storage

capacity, several versions of the knapsack problem exists.

Definition 1 (Knapsack Problem(s)).

Let us consider a finite set of tuples 𝑆 = {(𝑤𝑖, 𝑣𝑖)𝑖∈[1,𝑛]} (i.e (weights,values)) where

𝑆 ⊂ N2 and 𝑊𝑚𝑎𝑥 ∈ N. The three following versions are called Knapsack Problem

(KP).

Maximize the value
∑𝑛
𝑖=1 𝑥𝑖𝑣𝑖 such that

∑𝑛
𝑖=1 𝑥𝑖𝑤𝑖 ≤ 𝑊𝑚𝑎𝑥 and ∀𝑖 ∈ [1, 𝑛]:

0/1 KP 𝑥𝑖 ∈ {0, 1}
𝐵-Bounded KP 𝑥𝑖 ∈ [0, 𝐵], 𝐵 ∈ N∗

Unbounded KP 𝑥𝑖 ∈ N

Usually when KP is mentioned, it is usually the 0/1 version. There is nothing

much we will say here about the general knapsack problem as it is a very simple

one, aside from it being NP-complete [GJ02]. The knapsack problem we are defining

here is the modular knapsack problem, which is actually closer to the knapsack

problem as defined by Karp [Kar72], and subsequently the subset-sum problem.

Relaxing the problem by adding a value 𝑀 > 𝑊𝑚𝑎𝑥 and requiring
∑
𝑥∈𝑠 𝑥𝑖𝑤𝑖 = 𝑊𝑚𝑎𝑥

mod 𝑀 essentially gives the modular knapsack problem. The following definition of

the modular knapsack problem can be found in [PSZ12] which links the knapsack

problem to the subset sum of [LO85].

Definition 2 (Subset-Sum problem).

Given a set of positive integers 𝑆 and an integer 𝑊, is there any non-empty subset

𝑠 ⊂ 𝑆 such that
∑
𝑥∈𝑠 𝑥 = 𝑊?

Definition 3 (Modular Knapsack problem).

Let {𝑋0, ..., 𝑋𝑑} be a set of positive integers. Let 𝑐 =
∑𝑑

1 𝑠𝑖𝑋𝑖 mod 𝑋0, where 𝑠𝑖 ∈
{0, 1}. A modular knapsack problem is given {𝑋𝑖} and 𝑐, find each 𝑠𝑖.

Modular knapsacks are also NP-complete, even by adding multiple instances such

that 𝑛 knapsacks of size 2𝑛 share a common solution [Nie90]. Note that the knapsack

problem doesn’t have to rely exclusively on integers: all it needs is a group (and its

associated operator) and multiplicative knapsacks do exist [CR88].

Another parameter for knapsacks instances is the density:

Definition 4 (Knapsack density).

We say a knapsack on a set of integers 𝑆 has density 𝑑 = |𝑆 |/max({log2(𝑥) | 𝑥 ∈ 𝑆}).
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This is the most basic definition of the knapsack density, which can be found in

[LO85]. The literature sometimes uses different definitions such as in [NS05] and

there has been an attempt to unify the different density definitions with the help of

a Hamming weight [Kun08]. When the density 𝑑 > 1 there is in general multiple

solutions to the same instance. This definition is mostly relevant in the field of

cryptography for 𝑑 ≤ 1 to encode an unique solution and we will leave this as it

is for now. We will mention a bit the history of knapsack cryptosystems and how

lattices are involved in the next section.

2.3 Lattice Basics

Lattices are a popular object used for non-cryptographic problems especially for

the representation of natural physics as for sphere packing, quantum theory, crys-

tallography, kissing numbers, etc. Nebe and Sloane made a list of famous lattices

(mostly non-crypto related) available online at http://www.math.rwth-aachen.

de/~Gabriele.Nebe/LATTICES/: its huge size is a testimony of the popularity of

lattices. The first book that comes to mind when mentioning the origins of lattice

studies is the book of Minkowski [Min96]. We only provide in this section the basic

knowledge needed to understand the next chapters (focusing on cryptography and

number theory). Note that Micciancio is providing a free small course online at

https://cseweb.ucsd.edu/classes/sp14/cse206A-a/index.html which is more

“complete” than this chapter.

2.3.1 Lattice, volume and dual

Definition 5 (Lattice).

We call lattice a discrete subgroup of R𝑛 where 𝑛 is a positive integer. We say a

lattice is an integral lattice when it is a subgroup of Z𝑛. A basis of the lattice is a

basis as a Z − 𝑚𝑜𝑑𝑢𝑙𝑒. If 𝑀 is a matrix, we define L(𝑀) the lattice generated by

the rows of 𝑀.

The 𝑖-th row of a matrix 𝑀 will be denoted 𝑀𝑖, and the element at the 𝑖-th row

and 𝑗-th column 𝑀𝑖, 𝑗 . We can also see a lattice by the set of integral combinations

of a set of vectors 𝑣1, ...𝑣𝑛. In that case the lattice generated is noted < 𝑣1, .., 𝑣𝑛 >Z.

This notation is useful when specific vectors from different sets are chosen rather

than a single matrix. Note that we consider row vectors in this thesis, just like in

coding theory.

In our work we only consider full-rank integral lattices (unless specified otherwise),

i.e such that their basis can be represented by a 𝑛 × 𝑛 non-singular integral matrix.

http://www.math.rwth-aachen.de/~Gabriele.Nebe/LATTICES/
http://www.math.rwth-aachen.de/~Gabriele.Nebe/LATTICES/
https://cseweb.ucsd.edu/classes/sp14/cse206A-a/index.html
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It is important to note that just like in classical linear algebra, a lattice has an

infinity of basis (assuming 𝑛 ≥ 2). In fact, if 𝐵 if a basis of L, then so is 𝑈𝐵 for any

unimodular matrix 𝑈 (𝑈 can be seen as the set of linear operations over Z𝑛 on the

rows of 𝐵 that do not affect the determinant). Figure 2.1 and 2.2 shows an example

of two different basis of the same lattice. We distinguish them with the adjectives

“good” and “bad” for now, referring to the “capacity” a basis has to solve certain

computational problems we will define later. Note that one basis is intuitively easier

to use to determine all lattice points.

𝑣1

𝑣2

𝑣3
𝑣4

Figure 2.1: Two basis. Same lattices?

𝑣1

𝑣2

𝑣3
𝑣4

Figure 2.2: ”Good” basis on left, “Bad” basis on right

Definition 6 (Inner Product).

Given a field K, we say a bilinear application 〈K𝑛,K𝑛〉 → R is a inner product,

which is conjugate symmetric and positive-definite.

The “usual” inner product over R𝑛 is the operation 〈𝑥, 𝑦〉 = ∑𝑛
𝑖=1 𝑥𝑖𝑦𝑖. It is some-

times called dot product and is written 𝑥 · 𝑦.

Definition 7 (Orthogonality).

Given a ring R, we say 𝑥, 𝑦 ∈ R𝑛 are orthogonal when 〈𝑥, 𝑦〉 = 0.

Definition 8 (Dual lattice).

Let L be an integral lattice. The dual lattice L is noted L∗ and is defined as
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L∗ = {𝑥 ∈ spanR(L) : ∀𝑦 ∈ L, 〈𝑥, 𝑦〉 ∈ Z}

If 𝐵 is a basis of L, then a basis of L∗ is given by (𝐵𝐵>)−1𝐵 and (L∗)∗ = L (where

𝐵> is the transpose of 𝐵).

Note that L∗ is in general not integral, and because we work with full-rank integral

lattices only, we have (𝐵>)−1 = (𝐵−1)>.

Theorem 1 (Determinant).

For any lattice L, there exists a real value we call determinant, denoted det(L),
such that for any basis 𝐵, det(L) =

√︁
det(𝐵𝐵>).

While we mention a “real value”, the determinant of a full-rank matrix is within

the same ring of the matrix elements, i.e, if we have a full-rank integral matrix, its

determinant will necessary also be an integer. The literature sometimes call 𝑑𝑒𝑡 (L)
the volume of L [Min96].

2.3.2 Hermite Normal Form and sublattices

We mentioned earlier that we have an infinite amount of basis, and in figure 2.2

both surfaces occupies the same amount of space. For any basis 𝐵 of L, we have

det ≤ ∏𝑛
1 𝐵𝑖 where the equality holds if and only if all 𝐵𝑖 are orthogonal with each

other. One of the basis form we commonly use is the Hermite Normal Form (HNF),

which showcases its determinant as the product of its diagonal elements (on the full-

rank case).

Definition 9 (HNF).

Let L be an integral lattice of dimension 𝑑 and 𝐻 ∈ Z𝑑,𝑛 a basis of L. 𝐻 is said to

be of HNF if and only if

∀1 ≤ 𝑖, 𝑗 ≤ 𝑑, 𝐻𝑖, 𝑗


= 0 𝑖 𝑓 𝑖 > 𝑗

≥ 0 𝑖 𝑓 𝑖 ≤ 𝑗

< 𝐻 𝑗 , 𝑗 𝑖 𝑓 𝑖 < 𝑗

The HNF can be computed from any basis in polynomial time [KB79], is unique

[Coh93] per lattice and has a very compressed form, and thus is an ideal form for

public keys [Mic01]. We denote HNF(𝑀) the HNF of a matrix 𝑀. As the HNF

form is unique per lattice, we can write HNF(𝑀) = HNF(L).
One of the easiest form to work with when the HNF is computed is when we obtain

a “perfect” HNF. Note that for the formal calculus software MAGMA [BCP97], the

HNF have the index 𝑖, 𝑗 reversed, leading to a triangular superior matrix instead of

a triangular inferior matrix in the full-rank case. A small trick for users of MAGMA

wanting a triangular inferior form is to use a central symmetry on the coefficients

once before and once after the computation.
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Definition 10 (Perfect HNF).

We say HNF(L) has pseudo-perfect form when only one column differs from 𝐼𝑑𝑛

and perfect when only the first column differs.

Example 1. 𝐴 has perfect form, 𝐵 pseudo-perfect, and 𝐶 neither of them.

𝐴 =


34 0 0 0

27 1 0 0

32 0 1 0

13 0 0 1


, 𝐵 =


1 0 0 0

0 34 0 0

0 25 1 0

0 18 0 1


, 𝐶 =


17 0 0 0

10 2 0 0

15 1 1 0

13 0 0 1


Note that Goldstein and Mayer proved that the largest part of all lattices given a

fixed dimension and determinant admits a perfect form [GM03] (for a large enough

dimension and determinant). This form is also ideal for evaluating densities of cer-

tain lattice types assuming their HNF is known [BL09]. For consistency in the rest

of the paper, we assume 𝐼𝑑𝑛 is a perfect form HNF.

This form is also probably the best form to use if we want to test the membership

of a vector 𝑥 inside a lattice L, as any 𝑥 ∈ L reduce to 0 via Gaussian Elimination

(or Gauss-Jordan) [Coh93]. This property was used by Micciancio for lattice-based

cryptography in [Mic01].

Example 2. Is 𝑣 = [1 − 1 1 1] ∈ L(𝐶)?

17 0 0 0

10 2 0 0

15 1 1 0

13 0 0 1

1 −1 1 1


→



17 0 0 0

10 2 0 0

15 1 1 0

13 0 0 1

−12 −1 1 0


→



17 0 0 0

10 2 0 0

15 1 1 0

13 0 0 1

−27 −2 0 0


→



17 0 0 0

10 2 0 0

15 1 1 0

13 0 0 1

−17 0 0 0


The final step is easy to guess (reduce to 0) so the answer is yes.

Note that this reduction technique also allows to state some basic properties. For

example, we can easily observe that for any 𝑣 ∈ Z𝑛, (det(L) × 𝑣) ∈ L. This property
is extensively used in Chapter 3. A MAGMA code for this lattice membership test

can be found in the appendix in figure A.1.

Definition 11 (Overlattice and sublattice).

We say a lattice L1 is an overlattice of L2 and L2 is a sublattice of L1 when

L2 ⊆ L1.

Figure 2.3 shows an example of an overlattice and a sublattice. Note that the

lattice covering the bigger volume has actually less points, and is the sublattice. In

particular, all full-rank integral lattices of dimension 𝑛 are sublattices of Z𝑛 (which
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𝑣1

𝑣2

𝑣3

𝑣4

Figure 2.3: Overlattice L1 on left, Sublattice L2 on right, L2 ⊂ L1

has the identity matrix as a basis).

Note that this relationship is not limited to lattices of the same rank. It is very

easy to compute sublattices of a lower rank (not full rank) as figure 2.4 show two

sublattices of the lattices of figure 2.3.

𝑣3

𝑣4

Figure 2.4: Two sublattices of L1 and L2 from figure 2.3

In any case, note that given a full-rank lattice, a full-rank sublattice has the bigger

determinant and a full-rank overlattice has the smaller determinant. It is not nec-

essarily true in other cases but as we stated earlier, we mostly work in the full-rank

case.

2.3.3 Norms, lattice constants and heuristics

As many problems arising in lattice theory are about distances, and we define the

distance of two points as the norm (or length) of their difference.
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Definition 12 (Norms).

We say a function 𝑁 : R𝑛 → R is a norm on R𝑛 when

� 𝑁 (𝑥) > 0 for all non-zero 𝑥 ∈ R𝑛, and 𝑁 (0) = 0.

� 𝑁 (𝑐 · 𝑥) = |𝑐 | · 𝑁 (𝑥) for all 𝑐 ∈ R𝑛, 𝑥 ∈ R𝑛.

� 𝑁 (𝑥 + 𝑦) ≤ 𝑁 (𝑥) + 𝑁 (𝑦) for all 𝑥, 𝑦 ∈ R𝑛.

Given an implicit norm we tend to note ‖𝑥‖ the value 𝑁 (𝑥). The most popular

norms in lattice theory are the max norm ‖(𝑥1, ..., 𝑥𝑛)‖∞ = 𝑚𝑎𝑥𝑖 𝑥𝑖 and the 𝑙𝑝

norm ‖(𝑥1, ..., 𝑥𝑛)‖𝑝 = (∑𝑛
𝑖=1 |𝑥𝑖 |𝑝)1/𝑝 for 𝑝 ≥ 1. The norm we use the most, the

Euclidean norm, is the 𝑙2 norm. See Figure 2.5 for examples. As we sometimes

have to switch norms in order to solve equations involving multiple norms, it must

be noted that for any couple of norms (‖ · ‖𝛼, ‖ · ‖𝛽), there exists a constant 𝐾𝛼,𝛽

such that ‖ · ‖𝛼 ≤ 𝐾𝛼,𝛽‖ · ‖𝛽 (this is true for any finite-dimensional complex vector

space). Those constants usually depends of the dimension, for example 𝐾2,∞ =
√
𝑛

and 𝐾∞,2 = 1.

‖𝑣‖1 = 3

‖𝑣‖∞ = 3

‖𝑣‖2 = 3

Figure 2.5: Points for ‖𝑣‖1 = 3, ‖𝑣‖2 = 3 and ‖𝑣‖∞ = 3

Now we will define important constants that are often repeatedly used in the field.

Definition 13 (Minima).

We note 𝜆𝑖 (L) the 𝑖−th minimum of a lattice L. It is the radius of the smallest

zero-centered ball containing at least 𝑖 linearly independant elements of L.

Note that usually the norm is known from context. In most cases, 𝑙2 is implicit

but if the minima is defined for another norm, let’s say 𝑙∞, the notation becomes

more precise as 𝜆∞
𝑖
(L) or 𝜆𝑖,∞(L).
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Definition 14 (Hermite Constant).

The Hermite Constant 𝛾𝑛 is defined as the biggest value attainable by 𝜆1(L)2 for

any given full-rank lattice L of dimension 𝑛.

The reason for the square is because Charles Hermite used to study quadratic

forms. Therefore we are mostly interested in
√
𝛾𝑛. It is known that for all dimensions

𝑛 > 2, we have 𝛾𝑛 ≤ ( 43 )
𝑑−1
2 . The exact value of the Hermite Constant is known only

for dimensions 1 to 8 and 24, and is an open problem for other values.

Definition 15 (Lattice gap).

We note 𝛿𝑖 (L) the ratio 𝜆𝑖+1 (L)
𝜆𝑖 (L) and call that a lattice gap. When mentioned without

index and called “the” gap, the index is implied to be 𝑖 = 1.

We also define the “root lattice gap”, i.e elevated to the power 1
𝑛
where 𝑛 is the

dimension of the lattice. Note that, unlike the Hermite Constant, the lattice gap

can have any value within [1, det(L)].

Next, we present Minkowski’s theorems which give bounds in order to find lattice

vectors.

Theorem 2 (Minkowski’s Convex Body Theorem [Min96]).

Given a full rank lattice L ⊂ R𝑛, and a convex 𝑆 ⊂ R𝑛 that is symmetric with

respect to the origin, then if 𝑣𝑜𝑙 (𝑆) > 2𝑛𝑑𝑒𝑡 (L), then there exists 𝑥 ≠ 0𝑛, such that

𝑥 ∈ 𝑆 ∩ L.

One typically used volume is the ball centered in the origin for 𝑆. Or one can

directly use the bound from Blichfeldt 𝛾𝑛 ≤ 1 + 𝑛
4 [Bli14].

Theorem 3 (Minkowsi’s second theorem [Min96]).

Let L be a full-rank lattice of dimension 𝑛, then(∏𝑛
𝑖=1 𝜆𝑛 (L)

)1/𝑛 ≤ √𝑛𝑑𝑒𝑡 (L)1/𝑛
Property 1 (Gaussian Heuristic (GH)).

Let L ⊂ Z𝑛 be a lattice and let 𝐾 ⊂ R𝑛 be a measurable subset of the real space.

Then |L ∩ 𝐾 | ≈ 𝑣𝑜𝑙 (𝐾)
𝑣𝑜𝑙 (L) .

This allows us to approximate 𝜆1(L) using a 𝑛-dimensional ball whose volume is

approximately 𝑑𝑒𝑡 (L). Knowing that the volume of a n-dimensional ball of radius

𝑟 is 𝑉𝑛 (𝑟) ≈ 1√
𝑛𝜋
( 2𝜋𝑒
𝑛
)𝑛/2𝑟𝑛, the end result is the following:

Property 2 (Second GH).

For a random lattice L of dimension 𝑛, 𝜆1(L) ≈ 𝐷𝑒𝑡 (L)1/𝑛
√︁

𝑛
2𝜋𝑒
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The heuristic has been tested experimentally [GNR10], as well as in the con-

text of lattice reduction [CN11][GN08] and has been found to be quite accurate

starting from dimension 𝑛 > 45 as far as random lattices are concerned. We can

also note that if we use the Minkowski’s first theorem, we can get an upper bound

𝜆1(L) ≤ 𝐷𝑒𝑡 (L)1/𝑛
√︃

2𝑛
𝜋𝑒

which is only twice as large as the approximation obtained

by the Gaussian Heuristic. We note that other competitive approximations for ran-

dom lattices [Söd11, Kim16] do exist.

The next property is a work of [NS15].

Definition 16 (Density of lattices families).

As the dimension 𝑛 grows, the number of co-cyclic lattices (i.e such that Z𝑛/L is

cyclic) converge to 85% and lattices with square-free determinant to 71.7%.

Given the HNF of L, representing the group Z𝑛/L is trivial. As a matter of fact,

basic results can be easily deduced as the following two: “If 𝐵 is a full-rank perfect

HNF, then Z𝑛/L(𝐵) is co-cyclic” and “If det(𝐵) is square-free then Z𝑛/L(𝐵) is
co-cyclic” however both converse are false.

2.4 Computationally hard lattice problems

2.4.1 Shortest Vector Problem and variants

As we gave some of definitions and properties related to the length of the vectors,

one of the most obvious problems is to find the shortest vector of a lattice.

Definition 17 (Shortest Vector Problem (SVP)).

Given a basis 𝐵 of a lattice L of dimension 𝑛, find 𝑣 ∈ L such that ‖𝑣‖ = 𝜆1(𝐵).

The problem was shown to be NP-hard for infinity norm in 1981 by Emde-Boas

[vEB81] and then for 𝑙2 under randomized reductions in 1998 by Ajtai [Ajt98]. As

far as we know there is always a gap between random instances of NP-hard problems

and specialized instances used in cryptography, and that gap is usually due to what

we use as a trapdoor. Usually in cryptography, one does not need to find the shortest

vector (actually it might not be unique, but a vector whose norm is the smallest)

but a close approximation. How close that approximation can be in practice is one

of the central points of research in lattice-based cryptanalysis. Hence the following

definition of the problem’s approximation:
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Definition 18 (𝛾-approximate Shortest Vector Problem (SVP𝛾)).

Given a basis 𝐵 of a lattice L of dimension 𝑛 and an approximation factor 𝛾, find

𝑦 ∈ L such that ‖𝑦‖ ≤ 𝛾𝜆1(𝐵).

Figure 2.6 illustrates the difference between SVP and SVP𝛾 in the lattice L =

L({𝑎, 𝑏}), i.e finding 𝑦 ∈ L s.t ‖𝑦‖ = 𝜆1 or ‖𝑦‖ ≤ 𝛾𝜆1. The green zones show the

area of the valid solutions and the red dots the actual solutions.

𝜆1

𝑎

𝑏

𝑎

𝑏

𝛾 × 𝜆1

Figure 2.6: SVP on the left, SVP1.3 on the right

Note that in 𝑙2 under randomized reduction, the problem is NP-hard for any

constant approximation factor [Kho05]. In 𝑙∞, the problem is still NP-hard under

deterministic reductions for quasi-polynomial approximation factors [Din00]. On

the other hand, the problem is known to be in co-NP for an approximation factor

of
√
𝑛 and in co-AM for

√︁
𝑛/log 𝑛 [AR05, GG00].

However,it is still unknown if the problem is hard when 𝛾 is within polynomial

factors, which is the case in almost all cryptographic applications. Furthermore,

we tend to use specific lattices in cryptography, as we want to have a trapdoor for

decryption, therefore proving that “breaking” a cryptosystem is as hard as solving

SVP𝛾 within polynomial factors is far stretched. And as far as decoding goes, it

is often the case that we only want a ciphertext to have one unique meaning when

deciphered and not multiple ones, which give use us the following problem:

Definition 19 (𝛾-unique Shortest Vector Problem (uSVP𝛾)).

Given a basis of a lattice L with its lattice gap 𝛿 > 1, solve SVP.

The condition 𝛿 > 1 forces the shortest vector to be unique (with respect to the

sign), which is not the case for the lattice showed in figure 2.10 which showcase an

example with orthogonal basis vectors. Some cryptosystems are based on worst-case
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hardness on uSVP𝛾 with polynomial gap as [AD97] and [Reg04]. There exists also

attacks that was specifically built to exploit high gaps [LWXZ11].

One of the main issues of all those SVP based problems is that given a ran-

domly selected lattice L, the value 𝜆1(L) is hard to determine. Hence the following

problem:

Definition 20 (𝛾-approximate Shortest Length Problem (SLP𝛾)).

Given a basis 𝐵 of L and an approximation factor 𝛾, find 𝜆 such that 𝜆1(𝐵) ≤ 𝜆 ≤
𝛾𝜆1(𝐵).

And the following decision problem:

Definition 21 (Decision Shortest Vector Problem (DSVP)).

Given a basis 𝐵 of L of dimension 𝑛, and a real number 𝑟 > 0, decide if 𝜆1(L) ≤ 𝑟.

Figure 2.7 shows the valid 𝜆 for SLP𝛾 and the correct “no” answers to DSVP.

𝜆1

𝑎

𝑏

𝑎

𝑏

𝜆1

Figure 2.7: SLP1.3 on the left, dSVP on the right

Another close problem is the following

Definition 22 (𝛾-Gap Shortest Vector Problem (GapSVP𝛾)).

Given a basis 𝐵 of a lattice L of dimension 𝑛, an approximation factor 𝛾 and 𝑟 > 0,

decide whether 𝜆1(L) ≤ 𝑟 or 𝜆1(L) ≥ 𝛾𝑟.

This problem is NP-hard for constant 𝛿 [Kho05]. Since 𝜆1(L) is basically unknown
to us in general, it is very tricky to measure the efficiency of an algorithm. Therefore,

to measure algorithm efficiency we must be able to define a problem which variables

can be easily computed:
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Definition 23 (𝛾-Hermite Shortest Vector Problem (HSVP𝛾)).

Given a basis 𝐵 of a lattice L of dimension 𝑛 and a factor 𝛾 we call Hermite Factor,

find 𝑦 ∈ L such that ‖𝑦‖ ≤ 𝛾𝑑𝑒𝑡 (L)1/𝑛.

The definition of the Hermite Factor is obviously linked to the Hermite Constant,

as the solution’s existence is guaranteed as soon as 𝛾 ≥ √𝛾𝑛 where 𝛾𝑛 is the Hermite

Constant for full rank lattices of dimension 𝑛. We can also see that an algorithm

that solves SVP𝛾 solves HSVP𝛾
√
𝛾𝑛 since 𝛾𝜆1(L) ≤ 𝛾

√
𝛾𝑛𝑑𝑒𝑡 (L)1/𝑛.

2.4.2 Closest Vector Problem and variants

The other famous problem on lattices is the Closest Vector Problem (CVP).

Definition 24 (CVP).

Given a basis 𝐵 of a lattice L of dimension 𝑛 and 𝑡 ∈ R𝑛, find 𝑦 ∈ L such that

∀𝑦2 ∈ L, ‖𝑡 − 𝑦‖ ≤ ‖𝑡 − 𝑦2‖.

CVP is also known to be NP-hard [vEB81]. As there exists subproblems for

SVP, the same exists for CVP:

Definition 25 (𝛾-Approximate Closest Vector Problem (CVP𝛾)).

Given a basis 𝐵 of a lattice L of dimension 𝑛, an approximation factor 𝛾 and 𝑡 ∈ R𝑛,
find 𝑦 ∈ L such that ∀𝑦2 ∈ L, ‖𝑡 − 𝑦‖ ≤ 𝛾‖𝑡 − 𝑦2‖.

CVP𝛾 is known to be NP-hard for any constant 𝛾, and even for sub-polynomial

and quasi-linear 𝛾 (in the dimension) [ABSS93]. Furthermore, CVP𝛾 is at least as

hard as SVP𝛾 [GMSS99]. Similar to the previous figure for SVP, figure 2.8 shows

examples solutions for CVP and CVP𝛾: the first one has one solution (no point

can be closer) and the second has two (two points verify other points cannot be

much closer). From a certain point of view, solving CVP can be seen as solving

SVP with a lattice L translated by the target vector 𝑡 ∉ L (which would then not

be a lattice anymore).

A close problem to the CVP is the Bounded Distance Decoding (BDD).

Definition 26 (𝛾-Bounded Distance Decoding (BDD𝛾)).

Given a basis 𝐵 of a lattice L, a point 𝑥 and a approximation factor 𝛾 ensuring

𝑑 (𝑥,L) < 𝛾𝜆1(𝐵) find the lattice vector 𝑣 ∈ L closest to 𝑥. When 𝛾 = 1/2, we can

omit 𝛾 and note the problem BDD.

The main difference between BDD𝛾 and CVP𝛾 is on the the comparisons with

other points: BDD𝛾’s solutions only need to be close enough to the target point
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𝑎

𝑏

𝑎

𝑏

𝑡

𝑠1

𝑠2

Figure 2.8: CVP on left, CVP1.5 on right: ‖𝑡 − 𝑠2‖ ≤ 1.5 × ‖𝑡 − 𝑠1‖

regardless of the other points, while in CVP𝛾 the solutions need to be closer than

the other points up to a factor 𝛾. As pointed out in [LM09], this definition of the

BDD𝛾 is actually harder as 𝛾 grows. It is also proved in the same paper that

BDD1/(2𝛾) reduces itself to uSVP𝛾 in polynomial time and the same goes from

uSVP𝛾 to BDD1/𝛾 when 𝛾 is polynomially bounded by 𝑛, which is typically the

case in cryptography thus solving one or the other is of equal interest to us. There-

fore, it is common to see BDD referenced rather than uSVP𝛾 as BDD is a problem

that is being well-studied in coding theory. It is known that BDD𝛾 is NP-hard for

𝛾 >
𝑝
√
2
−1

when using the 𝑙𝑝 norm [LLM06].

Yet another close problem is the following:

Definition 27 (𝛾-Guaranteed Distance Decoding (GDD𝛾)).

Given a basis 𝐵 of a lattice L, and a bound 𝛾 > 𝜆1(L), for any point 𝑥 find a lattice

vector 𝑣 ∈ L such that ‖𝑥 − 𝑣‖ < 𝛾.

The GDD𝛾 problem is simpler to state and less restrictive than the BDD𝛾: it

is also easier to verify than the BDD𝛾 especially when the lattice minima 𝜆1 is un-

known. See figure 2.9 which shows the decoding distance in green from each point:

a point in an overlapping green area has multiple solutions. Note that points in

white spaces have no solution whereas they would have a solution in CVP.

2.4.3 Shortest Basis Problem and variants

In lattice-based cryptography, some schemes relies on having a good basis as a se-

cret key, and a bad basis as a public key (see Goldreich-Goldwasser-Halevi (GGH)
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𝜆1/2 𝛾

Figure 2.9: BDD1/2 on left, GDD𝛾 on right

[GGH97] for example) in order to solve the previously stated problems. By gener-

alizing the notion of solving SVP, i.e finding the first minima, one can define the

problem of finding successive minimas, which lead to finding “good” basis or at least

independent vectors.

Definition 28 (Successive Minima Problem (SMP)).

Given a basis 𝐵 of a lattice L of dimension 𝑛, find a set of linearly independant

vectors 𝑦1, ..., 𝑦𝑛 ∈ L such that ‖𝑦𝑖‖ = 𝜆𝑖 (𝐵) for 1 ≤ 𝑖 ≤ 𝑛.

The problem is obviously at least as hard as SVP and can also be relaxed by an

approximation factor:

Definition 29 (𝛾-Approximate Successive Minima Problem (SMP𝛾)).

Given a basis 𝐵 of a lattice L of dimension 𝑛 and an approximation factor 𝛾, find

a set of linearly independant vectors 𝑦1, ..., 𝑦𝑛 ∈ L such that ‖𝑦𝑖‖ ≤ 𝛾𝜆𝑖 (𝐵).

The basis version:

Definition 30 (Shortest Basis Problem (SBP)).

Given a basis of a lattice L of rank 𝑛, find a basis 𝑦1, ..., 𝑦𝑛 ∈ L such that

𝑚𝑎𝑥𝑖‖𝑦𝑖‖ ≤ 𝑚𝑖𝑛{𝑚𝑎𝑥 𝑗 ‖𝑎 𝑗 ‖ |{𝑎1, ..., 𝑎𝑛} is a basis of L}.

and its relaxation:

Definition 31 (𝛾-Approximate Shortest Basis Problem (SBP𝛾)).

Given a basis of a lattice L of rank 𝑛, find a basis 𝑦1, ..., 𝑦𝑛 ∈ L such that 𝑚𝑎𝑥𝑖‖𝑦𝑖‖ ≤
𝑚𝑖𝑛{𝑚𝑎𝑥 𝑗 ‖𝑎 𝑗 ‖ |{𝑎1, ..., 𝑎𝑛} is a basis of L}.

Note that the basis version SBP and the vector version SMP are different: at

dimension 𝑛 ≥ 5, a solution to SMP is not necessarily even a solution to SBP. The
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best way to illustrate this phenomenon is by using an example, which we will take

from Antoine Joux’s PhD thesis [Jou93] in fig 2.10.

SBP solution:
must form a basis of L

𝐵 =


2 0 0 0 0
0 2 0 0 0
0 0 2 0 0
0 0 0 2 0
1 1 1 1 1



� 𝜆1 = 2

� 𝜆2 = 2

� 𝜆3 = 2

� 𝜆4 = 2

� 𝜆5 = 2

SMP solution:
forms a sublattice basis.
2 0 0 0 0
0 2 0 0 0
0 0 2 0 0
0 0 0 2 0
0 0 0 0 2


Figure 2.10: An example of SBP ≠ SMP for L = L(𝐵)

And another problem that is close to SBP𝛾 is the following:

Definition 32 (Shortest Independent Vector Problem (SIVP)).

Given a basis 𝐵 of a lattice L of dimension 𝑛, find a set of linearly independant

vectors 𝑦1, ..., 𝑦𝑛 ∈ L such that 𝑚𝑎𝑥𝑖‖𝑦𝑖‖ ≤ 𝜆𝑛 (L).

Definition 33 (𝛾-Approximate Shortest Independent Vector Problem (SIVP𝛾)).

Given a basis 𝐵 of a lattice L of dimension 𝑛 and an approximation factor 𝛾, find

a set of linearly independant vectors 𝑦1, ..., 𝑦𝑛 ∈ L such that 𝑚𝑎𝑥𝑖‖𝑦𝑖‖ ≤ 𝛾𝜆𝑛 (L).

This problem is NP-hard whenever 𝛾 ≤ 𝑛1/log log 𝑛. [BS99]. SBP𝛾 and SIVP𝛾 are

“close” in the sense that they reduce to each other within an approximation factor
√
𝑛/2 [Mic08], and in the same work it is shown that both of them reduce themselves

to SVP𝛾 within an approximation factor
√
𝑛. Furthermore, any solution to SMP

is a solution to SIVP [Mic08].

2.5 Algorithms to solve lattice problems

2.5.1 Gram-Schmidt Orthogonalization algorithm

Before we go on presenting some lattice reduction algorithms we must present the

Gram-Schmidt Orthogonalization (GSO) algorithm (Alg 1). GSO applications

are not limited to lattices. Given an integral basis, the algorithm outputs a fully-

orthogonal matrix over the rational field Q. However, GSO is a key tool in con-

structing lattice reduction algorithms.

Note that the result of the GSO will depend of the first vector 𝑏1. Intuitively,

the shorter 𝑏1 is, the most likely the final basis will have short vectors although this

is not guaranteed. Denoting
〈𝑏∗

𝑖
,𝑏∗

𝑗
〉

‖𝑏∗
𝑗
‖2 = 𝑔𝑖, 𝑗 , notice how all operations are represented

in figure 2.11, giving us a relationship between the entry of the GSO process and
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Algorithm 1 GSO algorithm

Require: a basis 𝐵 = {𝑏1, .., 𝑏𝑛} of L
Ensure: a set of vectors 𝑆∗ = {𝑏∗1, .., 𝑏

∗
𝑛} with 𝑏∗1 = 𝑏1 and 〈𝑏∗

𝑖
, 𝑏∗

𝑗
〉 = 0 for 𝑖 ≠ 𝑗

1: 𝑆∗ ← 𝑆

2: for 𝑖 = 1 to 𝑛 do 𝑏∗
𝑖
← 𝑏𝑖

3: for 𝑗 = 1 to 𝑖 − 1 do

4: 𝑏∗
𝑖
← 𝑏∗

𝑖
− 〈𝑏

∗
𝑖
,𝑏∗

𝑗
〉

‖𝑏∗
𝑗
‖2 𝑏

∗
𝑗

⊲ Making 𝑏∗
𝑖
orthogonal to 𝑏∗

𝑗

5: return 𝑆∗

its output 𝐺 × 𝐵∗ = 𝐵 where 𝐺 is called the Gram-Schmidt transformation matrix.

Interesting point following is given 𝐵∗ = {𝑏∗1, ..., 𝑏
∗
𝑛} the result of the GSO on 𝐵,

𝑑𝑒𝑡 (L(𝐵)) = ∏𝑛
𝑖=1 ‖𝑏∗𝑖 ‖.

The GSO algorithm
𝑏∗1 = 𝑏1
𝑏∗2 = 𝑏2 − 𝑔2,1𝑏

∗
1

𝑏∗3 = 𝑏3 − 𝑔3,1𝑏
∗
1 − 𝑔3,2𝑏

∗
2

𝑏∗4 = 𝑏4 − 𝑔4,1𝑏
∗
1 − 𝑔4,2𝑏

∗
2 − 𝑔4,3𝑏

∗
3

...

𝑏∗𝑛 = 𝑏𝑛 −
∑𝑛−1
𝑖=1 𝑔𝑛,𝑖𝑏

∗
𝑖

The reverse operation
𝑏1 = 𝑏∗1
𝑏2 = 𝑔2,1𝑏

∗
1 + 𝑏∗2

𝑏3 = 𝑔3,1𝑏
∗
1 + 𝑔3,2𝑏

∗
2 + 𝑏∗3

𝑏4 = 𝑔4,1𝑏
∗
1 + 𝑔4,2𝑏

∗
2 + 𝑔4,3𝑏

∗
3 + 𝑏

∗
4

...

𝑏𝑛 =
∑𝑛−1
𝑖=1 𝑔𝑛,𝑖𝑏

∗
𝑖
+ 𝑏∗𝑛

𝐵 =



1 0 0 . . . 0
𝑔2,1 1 0 . . . 0
𝑔3,1 𝑔3,2 1 . . . 0
...

...
...

. . .
...

𝑔𝑛,1 𝑔𝑛,2 𝑔𝑛,3 . . . 1


× 𝐵∗

Figure 2.11: General Gram-Schmidt process

2.5.2 Babai’s algorithms

To solve lattice problems, we noticed earlier the better the basis the easier it becomes

(see figure 2.2). Using a “good” basis (preferably with “short” and “relatively”

orthogonal vectors), Babai’s introduced two methods [Bab86] to solve CVP. The

first is the rounding-off algorithm (Alg 2).

Algorithm 2 Babai’s Rounding Off Algorithm

Require: 𝑣 ∈ Z𝑛, 𝐵 ∈ Z𝑛×𝑛 a basis of L
Ensure: 𝑤 ∈ L a close vector of 𝑣
1: return b𝑣 × 𝐵−1e × 𝐵

The second one is the nearest-plane algorithm (Alg 3). Let us denote 𝐵∗ =

𝑏∗1, ..., 𝑏
∗
𝑘
the result of the GSO algorithm on 𝐵 = 𝑏1, ..., 𝑏𝑘 .
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Algorithm 3 Babai’s Nearest Plane Algorithm

Require: 𝑣 ∈ Z𝑛, 𝐵 ∈ Z𝑚×𝑛 a basis of L, 𝑏∗
𝑖
GSO coefficients of 𝐵

Ensure: 𝑤 ∈ L a close vector of 𝑣
1: 𝑡 ← 𝑣

2: for 𝑖 = 𝑚 down to 1 do
3: 𝑡 ← 𝑡 − b 〈𝑡,𝑏

∗
𝑖
〉

〈𝑏∗
𝑖
,𝑏∗

𝑖
〉 e𝑏𝑖 ⊲ Make 𝑡 more orthogonal to 𝑏𝑖

4: return 𝑣 − 𝑡

Babai’s nearest plane algorithm solve CVP𝛾 in polynomial time for 𝛾 = 2( 43 )
𝑛/2.

Both algorithms output quality depends of the basis given as input. Given a very

“good” basis (let’s say a secret key), those algorithms can serve as a decryption

method. However there is a crucial problem: how do we obtain a good basis? We

present below lattice reduction algorithms to obtain “good” basis from “bad” ones,

which makes use of the GSO algorithm.

2.5.3 Size-Reduction

The GSO transformation does not give a basis of a lattice. To keep the transformed

basis, we need to perform integral transformations. Therefore the first idea is to ap-

ply the same operations as the GSO algorithm, but by rounding 𝑔𝑖, 𝑗 by its closest

value. By doing so, we can also ensure the basis is “close” to a regular rational

GSO output and hoping the coefficients of the GSO transformation matrix will be

close as close to possible to 0. Basically, we want to transform 𝐵 to 𝐵′ such that the

equality 𝐵 = 𝐺 × 𝐵∗ becomes 𝐵′ = 𝐺′ × 𝐵∗ and |𝑔′
𝑖, 𝑗
| ≤ 1/2.

However there is slight problem: everytime we update a vector of 𝐵 (and so 𝐺),

we also potentially change 𝐵∗. Therefore we need to proceed in a way that leaves 𝐵∗

unchanged. Algorithm 4 does exactly what we want. Note that the input/output

of 𝐺/𝐺′ is optional, as they can be recomputed.

2.5.4 Gauss’s algorithm, the case of dimension 2

Before we describe the first relevant lattice reduction algorithm, we first give here a

description of its ancestor. Gauss algorithm (alg 5) solve the SVP (and the SIVP,

SBP, ...) in dimension 2.

Note that the basic idea is the same as the size-reduction (Alg 4): orthogonalize

but using only integral linear combinations. The novelty here is that vectors are

swapped after orthogonalization, unlike previous algorithms where the first vector

was left untouched, and the algorithm is rerun until the first vector cannot be short-
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Algorithm 4 Size-reduce

Require: a basis 𝐵 = {𝑏1, .., 𝑏𝑛} of L, the matrix 𝐺 containg all 𝑔𝑖, 𝑗
Ensure: a basis 𝐵′ = {𝑏′1, .., 𝑏

′
𝑛} of L with 𝑏′1 = 𝑏1 and |𝑔′

𝑖, 𝑗
| ≤ 1/2 for 𝑖 ≠ 𝑗

1: 𝐵′← 𝐵

2: 𝐺′← 𝐺

3: for 𝑖 = 2 to 𝑛 do
4: for 𝑗 = 𝑖 − 1 down to 1 do
5: 𝑏′

𝑖
← 𝑏′

𝑖
− b𝑔′

𝑖, 𝑗
e𝑏′

𝑗
⊲ Backwards orthogonalization of 𝑏𝑖 from 𝑏𝑖−1 to 𝑏1

6: for 𝑘 = 1 to 𝑗 do
7: 𝑔′

𝑖,𝑘
← 𝑔′

𝑖,𝑘
− b𝑔′

𝑖, 𝑗
e𝑔′

𝑗 ,𝑘
⊲ Update 𝐺′’s 𝑘-th column

8: return 𝐵′,𝐺′

Algorithm 5 Gauss Reduction Algorithm

Require: 𝑣, 𝑤 ∈ Z𝑛 where 𝑣, 𝑤 is a basis of L
Ensure: 𝑣, 𝑤 is a short basis of L
1: if ‖𝑤‖ < ‖𝑣‖ then Swap 𝑣, 𝑤

2: while ‖𝑣‖ < ‖𝑤‖ do
3: 𝑤 ← 𝑤 − b 〈𝑤,𝑣〉‖𝑣‖2 e × 𝑣
4: Swap 𝑣, 𝑤

5: return 𝑣, 𝑤

ened. This ensured that the first vector was effectively the shortest one. For more

general results on Gauss’ algorithm, we refer the readers to the work of Daudé, Fla-

jolet and Vallée [DFV97] and subsequent works. In a sense, the Greatest Common

Divisor (GCD) algorithm is solving the problem in dimension 1 and Gauss is an

extension to dimension 2. Generalizing in higher dimensions however, is not trivial,

and the next algorithm is probably its most famous attempt.

2.5.5 Lenstra-Lenstra-Lovász basis reduction algorithm

This algorithm due to Lenstra, Lenstra and Lovász [LLL82] was the first major

lattice reduction algorithm for generic dimensions: it can be considered as a gen-

eralization of Gauss’ algorithm for non-2 dimensions, Lenstra-Lenstra-Lovász basis

reduction algorithm (LLL) uses the GSO, and swaps vectors to make shorter vec-

tors at the top and retry. LLL is, however, much more tricky to understand, and

was initially proposed to factorize polynomials over Q before its usage in cryptog-

raphy. First of all, we need another testing condition to do better than size-reduce.

Such a condition can is provided by the Lovász condition. Using the same notations

as before, let us denote 𝐺 such that 𝐺 × 𝐵∗ = 𝐵 (see figure 2.11). Before we present

the algorithm we define the Lovász condition for a given 𝛿 and 𝑖 ∈ [2, 𝑛] and a basis

𝐵 of rank 𝑛:

‖𝑏∗
𝑖
‖2

‖𝑏∗
𝑖−1‖2

≥ 𝛿 − 𝑔2
𝑖,𝑖−1
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Note that by fixing 𝛿 = 1, we can find back Gauss’ algorithm for dimension 2.

Everytime 𝐵 is changed in the following algorithm (Alg 6), so is 𝐵∗ and 𝐺 to make

the equality remain true. Every change is computed in polynomial time, therefore

we will not write them explicitly in the algorithm description:

Algorithm 6 LLL

Require: 𝐵 a basis of L of dimension 𝑛, and a constant 𝛿 ∈ [ 14 , 1]
Ensure: 𝐵 a reduced basis of L satisfying the Lovász condition
1: 𝑖 ← 2
2: while 𝑖 ≤ 𝑛 do
3: 𝑏𝑖 ← 𝑏𝑖 −

∑𝑖−1
𝑗=1b𝑔 𝑗 ,𝑖e𝑏 𝑗 ⊲ (update the GSO)

4: if Lovász condition is respected for 𝛿, 𝑖 then
5: 𝑖 ← 𝑖 + 1
6: else
7: 𝑠𝑤𝑎𝑝(𝑏𝑖, 𝑏𝑖−1)
8: 𝑖 ← 𝑚𝑎𝑥{2, 𝑖 − 1}
9: return 𝐵

Subsequent works modifying the original LLL have existed for various purposes.

One is a blockwise generalization we will present later in this section, others modify

the algorithm’s swaps [FSW14, YY19], others focuses on data structures implemen-

tation to accelerate computation time [EJ16], find surprising links to other algo-

rithms [LMHG13], or modify the conditions to achieve different reductions criteria

[HMM98]. To summarize, the popularity of LLL goes way beyond cryptography.

A first entry read to know more about the algorithm itself would be [NV10] or [NS09].

Like the the GCD algorithm or Gauss, LLL runs in polynomial time. Unlike the

GCD algorithm or Gauss, LLL does not solve exactly SVP or SBP. However,

given a full rank lattice of “large” dimension 𝑛, it does seem to solve the HSVP𝛾

with a Hermite factor of approximately 1.02𝑛 [GN08], while the best proven upper

bound is around 1.07𝑛.

For now, we will focus on the algorithms that are the most popular for cryptana-

lytic usages.

2.5.6 Enumeration techniques

Sometimes an approximate solution for a polynomial cost is not good enough. It is

probable that some parties want to actually compute a correct solution at an expo-

nential cost. Exhaustive search should do the job, but since there is an infinity of

basis (therefore an infinity of vectors), we need to do exhaustive search in a proper
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way. The solution we present here is an exhaustive search, but an intelligent one:

“enumerations”.

Enumeration techniques trace back to as early as 1981 [Poh81], [Kan83] and

[FP85]. The concept is to try every combination of basis vectors until we find

the shortest vector, but by bounding the complexity by limiting the number of com-

binations in our exhaustive search. We also need to ensure that the correct result

lies within the set bounds. Therefore one “easy” bound to limit is the size of the

vectors we are searching into. Such a bound do exist according to Minkowski’s Con-

vex Body theorem (Theorem 2) and we can use the GH (Prop 1) to determine a

bound 𝑅 such that 𝜆1(L) ≤ 𝑅. Given a basis 𝐵 = (𝑏1, ..., 𝑏𝑛) of L such that vectors

are sorted as ‖𝑏𝑖‖ ≤ ‖𝑏𝑖+1‖, we initially fix 𝑅 = ‖𝑏1‖.
The enumeration technique, like lattice reduction techniques, makes use of the

GSO. Let 𝐵∗ = (𝑏∗1, ..., 𝑏
∗
𝑛) the result of the GSO algorithm applied to 𝐵 (and

note 𝐺 × 𝐵∗ = 𝐵). Remember figure 2.11, and see that every basis vector can be

represented by a sum of GSO vectors. If every basis vector can be represented by a

set ofGSO vectors, then so are the vectors themselves. Let us denote a vector 𝑣 ∈ L.
Using figure 2.11 to obtain figure 2.12, we can write 𝑣 =

∑𝑛
𝑖=1(𝑣𝑖 +

∑𝑛
𝑗=𝑖+1 𝑣 𝑗𝑔 𝑗 ,𝑖)𝑏∗𝑖 ,

and the projection over the 𝑘 last GSO vectors:

𝑃𝑘 (𝑣) =
∑𝑛
𝑖=𝑘 (𝑣𝑖 +

∑𝑛
𝑗=𝑖+1 𝑣 𝑗𝑔 𝑗 ,𝑖)𝑏∗𝑖

And by orthogonality of the GSO vectors:

‖𝑃𝑘 (𝑣)‖ =
∑𝑛
𝑖=𝑘 ‖(𝑣𝑖 +

∑𝑛
𝑗=𝑖+1 𝑣 𝑗𝑔 𝑗 ,𝑖)𝑏∗𝑖 ‖

And it naturally follows that for any vector 𝑣 ∈ L

‖𝑃𝑛 (𝑣)‖ ≤ ‖𝑃𝑛−1(𝑣)‖ ≤ · · · ≤ ‖𝑃1(𝑣)‖ = ‖𝑣‖

So, the enumeration technique consists in a bounded search within each projection

level: first in 𝑃𝑛 (L), then in 𝑃𝑛−1(L), etc. Searching in 𝑃𝑘 (L) given 𝑘 consists of

using all combinations possible of 𝑣 ∈ L such that 𝑃𝑛 (L) ≤ 𝑅. However this is going
back to the initial problem: we need to determine how to choose 𝑣𝑖 in 𝑣 = (𝑣1, ..., 𝑣𝑛).
We have bounds on the values 𝑣𝑖 depending of the values obtained in 𝑣 𝑗 for 𝑗 > 𝑖,

therefore we must start from the first value 𝑣𝑛, and ‖𝑣𝑛𝑏∗𝑛‖ ≤ 𝑅. Once we have a

candidate for 𝑣𝑛, we must continue with 𝑣𝑛−1 such that ‖𝑣𝑛𝑏∗𝑛‖ + ‖𝑣𝑛−1𝑏∗𝑛−1‖ ≤ 𝑅,

then 𝑣𝑛−2, etc. The bounds are not trivial, but every bounds for 𝑣𝑖 given all 𝑣 𝑗 for

𝑗 > 𝑖 depends uniquely of the values chosen for 𝑣 𝑗 in previous iterations, the GSO

vectors and the coefficients of 𝐺, and the initially fixed radius 𝑅, i.e

𝐹−((𝑣𝑖+1, ..., 𝑣𝑛), 𝑅, 𝐵∗, 𝐺) < 𝑣𝑖 < 𝐹+((𝑣𝑖+1, ..., 𝑣𝑛), 𝑅, 𝐵∗, 𝐺)
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𝑣 =



𝑣1
𝑣2
𝑣3
...

𝑣𝑛



𝑇

×



𝑏1
𝑏2
𝑏3
...

𝑏𝑛


=



𝑣1
𝑣2
𝑣3
...

𝑣𝑛



𝑇

×



1 0 0 . . . 0
𝑔2,1 1 0 . . . 0
𝑔3,1 𝑔3,2 1 . . . 0
...

...
...

. . .
...

𝑔𝑛,1 𝑔𝑛,2 𝑔𝑛,3 . . . 1


×



𝑏∗1
𝑏∗2
𝑏∗3
...

𝑏∗𝑛


𝑃𝑘 (𝑣) =



𝑣1
...

𝑣𝑘−1
𝑣𝑘
...

𝑣𝑛



𝑇

×



1 . . . 0 0 . . . 0
...

. . . 0 0 . . . 0
𝑔𝑘−1,1 . . . 1 0 . . . 0

𝑔𝑘,1 . . . 𝑔𝑘,𝑘−1 1
. . . 0

...
...

...
...

. . .
...

𝑔𝑛,1 . . . 𝑔𝑛,𝑘−1 𝑔𝑛,𝑘 . . . 1


×



0
...

0
𝑏∗
𝑘
...

𝑏∗𝑛


𝑃𝑘 (𝑣) =


𝑣𝑘
...

𝑣𝑛


𝑇

×


1 0 . . . 0

𝑔𝑘+1,𝑘 1 . . . 0
...

...
. . .

...

𝑔𝑛,𝑘 . . . 𝑔𝑛,𝑛−1 1


×


𝑏∗
𝑘
...

𝑏∗𝑛


Figure 2.12: Projection of a vector 𝑣 ∈ L(𝐵) over 〈𝐵∗〉

Therefore we can see the enumeration algorithm as a search in a tree with 𝑛 levels,

each level becoming more restrictive in available branches depending on the parent

branch. With that in mind, the algorithm can be written as described in Alg 7.

Algorithm 7 The Enumeration Algorithm for SVP

Require: 𝐵 a basis of L of dimension 𝑛
Ensure: 𝑣 =

∑
𝑖 𝑣𝑖𝑏𝑖 such that 𝑣 = 𝜆1(L(𝐵))

1: while There is still unexplored nodes do
2: if current node has ‖(0, ..., 0, 𝑣𝑖, .., 𝑣𝑛)‖ < 𝑅 then
3: Go down in the tree, explore all possibilities for 𝑣𝑖−1
4: else
5: Remove the node, go up a level, search another node

6: return 𝐵

One can see that the size of the search tree grows exponentially depending on

the bounds. Therefore, the lower is 𝑅 and the better is the initial basis 𝐵, the bet-

ter the the enumeration algorithm behave. Upgraded techniques for enumerations

exists, such as pruning [GNR10], and alternative ways to solve SVP exists such

as sieving [AKS01], using voronoi cells [MV13]... The point here is mostly to show

solvers exists, and those are exploited as building blocks for further lattice reduction

algorithms.
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2.5.7 Hermite-Korkine-Zolotarev

Sometimes we do not only want the shortest vector, but we also want to have a

very good basis along with it. Using an oracle O which solves SVP for up to 𝑘

dimensions (examples have been provided in the previous subsection), we can try to

achieve better.

First of all, we need a better condition than the Lovász condition. We present one

here: the Korkine-Zolotarev (KZ) reduction criteria [KZ73], giving us the Hermite-

Korkine-Zolotarev (HKZ) reduction algorithm. In a certain sense, aKZ reduced ba-

sis is the optimal reduction we can hope from a basis, as its first vector is equal to the

shortest vector of the lattice. Noting 𝜋𝑖 (L) the projection of L over 〈𝑏1, ..., 𝑏𝑖−1〉⊥,
we say a basis 𝐵 = 𝑏1, ..., 𝑏𝑘 is KZ reduced if the following hold:

∀𝑖 ∈ [1, 𝑑], ‖𝑏∗
𝑖
‖ = 𝜆1(𝜋𝑖 (L))

and this implies (without explaining the details):

‖𝑏1‖
𝜆1 (L) = 1, ‖𝑏2‖

2

𝜆22 (L)
≤ 4

3 ,
‖𝑏3‖2
𝜆23 (L)

≤ 6
4

∀𝑖 ≥ 4, ‖𝑏𝑖 ‖
2

𝜆2
𝑖
(L) ≤

𝑖+3
4

The HKZ basis reduction algorithm is then described in algorithm 8.

Algorithm 8 HKZ reduction algorithm

Require: 𝐵 = {𝑏1, ...𝑏𝑛} a basis of L of dimension 𝑛
Ensure: 𝐵 a reduced basis of such that ‖𝑏∗

𝑖
‖ = 𝜆1(𝜋𝑖 (L))

1: Call O to find 𝑏′1 of length 𝜆1(L)
2: Construct 𝐵′ = {𝑏′2, ..., 𝑏

′
𝑛} where L(𝐵′) ≠ L but L({𝑏′1} ∪ 𝐵

′) = L
3: 𝐵′← HKZ(𝐵′)
4: 𝐵← {𝑏′1} ∪ 𝐵

′

5: Call Size-reduce on 𝐵.
6: return 𝐵

Note that HKZ is sometimes abbreviated KZ (for the reduction criteria). It is

unusable for high dimensions, but is however another building block for the next

basis reduction algorithm.

2.5.8 Block Korkine-Zolotarev Reduction algorithm

Block Korkine-Zolotarev (BKZ) was first proposed by Schnorr and Euchner [SE94].

As the name implies, it uses the HKZ reduction algorithm as a subroutine in blocks.

Suppose the oracle runs up to dimension 𝑘, and our basis has dimension 𝑛 > 𝑘, then

the BKZ algorithm is described in 9.
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Algorithm 9 BKZ basis reduction algorithm

Require: 𝐵 = {𝑏1, ...𝑏𝑛} a basis of L, and a SVP-oracle up to dim 𝑘 < 𝑛

Ensure: 𝐵 a reduced basis of such that ‖𝑏∗
𝑖
‖ = 𝜆1(𝜋𝑖 (L))

1: while changes occurs do
2: for 𝑖 = 1 to 𝑛 − 𝑘 + 1 do
3: KZ-reduce the block 𝜋𝑖 ({𝑏𝑖, ..., 𝑏𝑖+𝑘−1}) then lift it in 𝐵
4: Use LLL on 𝐵 = {𝑏1, ..., 𝑏𝑛}
5: return 𝐵

The literature will often mention the BKZ algorithm followed by a number, i.e

BKZ-20, BKZ-30, BKZ-40... The number actually just represents the size 𝑘 of the

block where the KZ reduction is actually applied. In fact, we can see BKZ-2 as

nothing more than LLL. Complexity estimations are given in [CN11]. Just like

LLL, the efficiency in practice is not well understood: like LLL it behaves much

better than the proven upper bounds. It does however improve the Hermite Factor

given by LLL: in [GN08], the Hermite Factor of BKZ-20 is given as 1.0128, BKZ-

28 gives 1.0109. It does seem hard to lower the Hermite Factor below 1.009 in

reasonable time and it was claimed in the same paper that 1.005 for dimension 500

seems unreachable for random lattices. While lattice reduction techniques and their

predictions had improved over the years (see [MW16, YD17, BSW18] and subsequent

works), this claim does not seem to have been challenged so far.

2.5.9 Kannan’s extension technique

We present here a technique that allows to transform instances of CVP to SVP or

to solve SVP by expanding a lattice. Heuristically solving SVP in the expanded

lattice solves approximatively CVP in the original lattice. While this is a heuris-

tic technique, the inexplicably good results of lattice reduction algorithms make it

interesting. To the best of our knowledge, the technique was first suggested by Kan-

nan [Kan83] although the technique itself is nowadays considered part of academic

folklore.

Suppose we have a basis 𝐵 and L = L(𝐵) and some vector 𝑣 ∉ L for which

we want to solve CVP. Then we can try solving it by using a lattice reduction

technique on
1 𝑣

0 𝐵


, which “should” output


1 𝑣′

0 𝐵′


where L(𝐵) = L(𝐵′) and ‖𝑣‖ ≥ ‖𝑣′‖ and (𝑣 − 𝑣′) ∈ L. Therefore the approximate
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answer toCVP would be the vector 𝑤 = 𝑣−𝑣′. Now suppose you want to solve SVP,

but you actually have knowledge on the exact value of some non-zero coefficients,

i,e you can construct 𝑣 such that for a solution 𝑠 for SVP you have 𝑤 = 𝑠 − 𝑣 and

‖𝑤‖ < 𝑚𝑖𝑛(‖𝑠‖, ‖𝑣‖). In that case the transformation is as follows:
1 𝑣

0 𝐵


, which “should” output


1 𝑤

0 𝐵′


and thus you can reconstruct the SVP solution 𝑠 = 𝑣 + 𝑤.

2.6 Applications to public-key cryptography

Now that we presented the general problems and algorithms to solve lattice prob-

lems we give in this chapter a peek on how those problems are used in cryptography,

in particular public-key cryptosystems.

The point of most public-key cryptosystems is to have a public key, which can

generate some hard problems, that is available to more parties than the key gener-

ator, but that only a few selected parties can make use of the key, i.e a trapdoor,

to solve the associated hard problems. In public-key cryptography, we often assume

anybody aside from the key owner is a eavesdropper, and no eavesdropper should

have any capacity to recover a secret.

We say a cryptosystem is “broken” when a security assumption no longer holds.

Of course this definition is very vague: some people would claim that recovering

𝑆𝑘 (the secret key, or trapdoor) from 𝑃𝑘 (the public key, the “lock”) in 45 years

instead of an expected 50 years can be considered as “breaking” a system but some

others may not see it as a “break”, but recovering a secret in 2 months instead of 50

years would be reasonably and unanimously called a “break”. There is no proper

definition of what it exactly means to “break” a cryptosystem, and we will leave

that aside from now on and just describe overall frameworks.

Let us define here 𝑃 as the set of problems that can be solved in polynomial time

with a classical computer, 𝑄𝑃 the set of problems that can be solved in polynomial

time given a quantum computer, and 𝑁𝑃 the set of problems which valid solutions

can be checked in polynomial time. Overall, public-key cryptography relies on as-

sumptions we do not know proven:

� Is there one-way functions, i.e easy to compute but hard to invert? Is 𝑃 ≠ 𝑁𝑃?
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� If yes to the previous question, do we have one-way functions with trapdoors,

i.e are one-way except in the presence of a constant hint independent of the

input?

� If yes to the previous question, do they still exist in the quantum setting? Is

𝑄𝑃 ≠ 𝑁𝑃?

Any proven no to those previous questions basically means the end of public-key

cryptography, if one forges a counterexample. For the rest of the thesis, we have to

assume those answers are yes. The question is often to determine if the functions we

use are actually one-way functions with trapdoors. Note that a problem does not

have to be 𝑁𝑃-hard to be used in cryptography. The most blatant example is the

Rivest-Shamir-Adleman (RSA) cryptosystem [RSA78]. Its hardness was initially

based on the factorization of numbers, and we know it is not a 𝑁𝑃-hard problem

(unless P=NP): it is actually in a class we call 𝑁𝑃-intermediate. Yet, we still use it

nowadaysb: asymptotical complexity aside there is no “practical” attacks to break

keys or recover messages as of “right now”. It is likely that even if the post-quantum

cryptosystems were to be proven not to be 𝑁𝑃, they would still be usable as long as

no “quasi-polynomial” time quantum algorithm is known to “break” the cryptosys-

tems.

Thus, the goal of post-quantum cryptography is to conceive cryptographic tools

that are usable right now, or at least in the very near future, but would remain

safely usable in decades if quantum computers become physically available to any

entity.

2.6.1 Encryption and Key Encapsulation Mechanism

Public-key encryption schemes are used to encode a message such that the only

person who can learn about the content is the sender and the key owner. Here we

describe what we call KEM. In a sense, it’s like sending a paper mail and ensuring

the postman (let us call her Eve) cannot learn anything about the content of the

mail even if he wishes to. It is usually made of three primitives functions:

1. KeyGen(𝑠)→ (𝑆𝑘 , 𝑃𝑘 ) creates a secret key 𝑆𝑘 and a public key 𝑃𝑘 from a

seed 𝑠.

2. Enc(𝑃𝑘 ,𝑝)→ 𝑐 uses a key 𝑃𝑘 and a plaintext 𝑝 output a ciphertext 𝑐.

3. Dec(𝑆𝑘 ,𝑐)→ 𝑝 uses a key 𝑆𝑘 and a ciphertext 𝑐 output a plaintext 𝑝.

bwhether we should actually use it today is another problem we leave aside for the sake of the
example
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Supposing (𝑆𝑘 , 𝑃𝑘 ) were created by the same function call to KeyGen(𝑠), the

condition Dec(𝑆𝑘 ,Enc(𝑃𝑘 ,𝑝))=𝑝 must always be verified for any valid 𝑝. The set

of valid 𝑝 is usually called the “message space”. Therefore, if Alice wants to send a

secret message 𝑝 to Bob, the usage of a KEM scheme is as follows:

1. Bob generates a pair of keys (𝑆𝑘 , 𝑃𝑘) from KeyGen.

2. Bob sends 𝑃𝑘 to Alice, keeps 𝑆𝑘 for himself.

Postwoman Eve can see 𝑃𝑘 .

3. Alice sends 𝑐 to Bob, created using Enc(𝑃𝑘 ,𝑝) and keeps 𝑝 for herself.

Postwoman Eve can see 𝑐.

4. Bob recovers 𝑝, created using Dec(𝑆𝑘 ,𝑐).

There are several ways to attack this pattern. What if Alice is malicious and

wants to recover 𝑆𝑘? What can Eve learn about the secrets 𝑝/𝑆𝑘 if she modifies

𝑐/𝑃𝑘? Answering those questions in the general sense is hard, but ultimately a

“secure” KEM should deal with those issues.

2.6.2 Public-Key Digital Signature Schemes

Public-key signature schemes are used to sign a message such that everybody can

verify that this signature was produced by a public key knowing the original message.

In a sense, it is maybe safer than a classic paper and pen signature: we do not need

a previous signature to ascertain the key owner is actually the signatory, and in

some cases seeing the signature once is not enough to replicate a valid signature for

a different document. It is usually made of three primitives functions:

1. KeyGen(𝑠)→ (𝑆𝑘 , 𝑃𝑘 ) creates a secret key 𝑆𝑘 and a public key 𝑃𝑘 from a

seed 𝑠.

2. Sign(𝑆𝑘 ,𝑑)→ 𝑠 uses a key 𝑆𝑘 and a document 𝑑 to output a signature 𝑠.

3. Verif(𝑃𝑘 ,𝑑,𝑠)→ BOOL uses a key 𝑃𝑘 , a document 𝑑, a signature 𝑠,

and output TRUE if the signature is valid or FALSE otherwise.

Supposing (𝑆𝑘 , 𝑃𝑘 ) were created by the same function call to KeyGen(𝑠), the

condition Verif(𝑃𝑘 ,𝑑,Sign(𝑆𝑘 ,𝑑))=True must always be verified for any valid 𝑑.

Therefore, if Bob wants to certify his identity to Alice, the usage of the signature

scheme is as follows:

1. Bob generates a pair of keys (𝑆𝑘 , 𝑃𝑘) from KeyGen.

2. Bob sends 𝑃𝑘 to Alice, keeps 𝑆𝑘 for himself.
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3. Alice sends a document 𝑑 for Bob to sign.

4. Bob signs 𝑑 and sends 𝑠 to Alice created using Sign(𝑆𝑘 ,𝑑).

5. Alice verifies if Verif(𝑃𝑘 ,𝑑,𝑠) is TRUE.

Ensuring a signature scheme is secure follows the same philosophy as described

in the previous sections.

2.6.3 Knapsack cryptosystems

We earlier mentioned how knapsack cryptosystems are related to lattices. Let us

give an example of a knapsack system. Typically, knapsack cryptosystems are used

for encryption and not for signatures and used to be very popular for their simplic-

ity both in concept and in computational complexity. A short introduction can be

found in [Odl90].

Typically, given a “dimension” 𝑛, a classical additive knapsack cryptosystem

would be based around the 0-1 knapsack and look like the following:

1. KeyGen()→ (𝑇, 𝑘) creates a trapdoor 𝑇 and a public vector 𝑘 ∈ N𝑛.

2. Enc(𝑘,𝑠)→ 𝑒 output 𝑒 = 〈𝑘, 𝑠〉 where 𝑠 ∈ {0, 1}𝑛

3. Dec(𝑇 ,𝑒)→ 𝑝 solves the knapsack problem on the set 𝑠 and target 𝑒 and

recover 𝑠.

The most famous example of knapsack cryptosystems is the famously broken

Merkle-Hellman cryptosystem [MH78]. See Alg 10 for KeyGen() and Alg 11 for

Dec(). We assume Enc() is just an inner product and does not need a description.

Algorithm 10 Merkle-Hellman Key Generation

Require: A dimension 𝑛, and initialized random number generators
Ensure: A trapdoor 𝑇 and its related public vector key 𝑘
1: Randomly pick 𝑣 ← (𝑣1, ..., 𝑣𝑛) such that 𝑣𝑖 >

∑𝑖−1
𝑗=1 𝑣 𝑗 ⊲ Superincreasing

sequence
2: Randomly pick 𝑀 > ‖𝑣‖1
3: Randomly pick 𝑅 such that GCD(𝑅, 𝑀) = 1 ⊲ Pick invertible modulo 𝑀
4: 𝑇 ← (𝑣, 𝑀, 𝑅)
5: 𝑘 ← 𝑅−1 × 𝑣 mod 𝑀 ⊲ Multiply 𝑣 by modular inverse
6: return (𝑇, 𝑘)

The Merkle-Hellmann cryptosystem is quite simple to implement and its high pop-

ularity was also due to its small arithmetical cost: linear in both the size of the mod-

uli and the dimension. However it have been broken in several ways [Bri83, Sha82]
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Algorithm 11 Merkle-Hellman Key Decryption

Require: A trapdoor 𝑇 = (𝑣, 𝑀, 𝑅) and an integer 𝑒.
Ensure: A vector 𝑠 such that 𝑅−1 × 〈𝑣, 𝑠〉 mod 𝑀 = 𝑒 ⊲ i.e Enc(𝑘,𝑠)= 𝑒
1: 𝑒 ← 𝑅 × 𝑒 mod 𝑀 ⊲ Transform 〈𝑘, 𝑠〉 to 〈𝑣, 𝑠〉
2: 𝑠← (0, ..., 0)
3: for 𝑖 = 𝑛 down to 1 do
4: if 𝑒 ≤ 𝑣𝑖 then 𝑠𝑖 = 1, 𝑒 ← 𝑒 − 𝑣𝑖 ⊲ Make use of 𝑣𝑖 >

∑𝑖−1
𝑗=1 𝑠 𝑗𝑣 𝑗

5: return 𝑠

Solve SVP on L = L(𝐵) such that

𝐵 =



235 0 0 0 0 0
78 1 0 0 0 0
54 0 1 0 0 0
65 0 0 1 0 0
85 0 0 0 1 0
92 0 0 0 0 1



Consider 𝑆 = {1, 78, 54, 65, 85, 92}

Let 𝑣 ∈ {0, 1}𝑛, such that 235 =
∑𝑛
𝑖=1 𝑣𝑖𝑆𝑖.

Find 𝑣, i.e solve the 0-1 KP.

Both answers are 𝑣 = [0, 1, 0, 1, 0, 1].

Figure 2.13: Lattice on left, knapsack on right

and even some extensions [VAN94] have been broken by lattice reduction techniques

[NS97]. Even multiplicative knapsacks (using a “non-additive” group [CR88]) have

been broken also with lattice reduction techniques [SH95, Vau98]. As a side note,

it seems like even outside the field of cryptography knowing where the hardness of

knapsacks lie was problematic [Pis05]. It seems like density of the knapsack was

one of the keys to understand the hardness of knapsacks: if density was low then

it could be broken easily [LO85, CJL+92], and if it was close to 1 then the problem

is harder to tackle on [HGJ10, BCJ11]. Betting on high-density to create secure

knapsack cryptosystems was considered [WWH07, WH10] but often quickly shot

down [You09, Lee11].

Without going to the specifics, we show a graphical example on how those two

relates in figure 2.13. While it is a bit of an exaggeration, further graphical repre-

sentations can be found in [SE94, PSZ12].

Historically, lattice-based cryptography is actually the continuation of knapsack-

based cryptography. The instances are just slightly different: we consider the mod-

ular knapsack and the message spaces are extended to small negative integers rather

than just positive ones. Some papers in lattice-based cryptography actually describe

the construction of their lattices as knapsack instances [Mic07], and the other way

around also happens: any lattice-based scheme using a tiny set 𝑠 as the base of a

message space 𝑠𝑛 is nothing more than a particular knapsack.
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2.6.4 Specific lattices in crypto

Cryptography set aside, if we wish to study random lattices it would make more sense

to rely on the distribution given by Goldstein and Mayer [GM03], which mostly gives

perfect HNF (even though experimentally this seems true only after permutation,

but that would be a point of another chapter). However in cryptography we aim to

have low data sizes for our instances, an extremely costly computational problem

for an attacker to solve (i.e unfeasible) and a trapdoor to make the problem compu-

tationally easy (i.e instantaneous) for the person who generated the instances. This

have led to various studies on what makes a lattice problem hard and what types

of lattice can we use for both security and efficiency. The most famous structured

lattices are described in the following, and we only give the necessary background

for the work we present (in particular, chapter 6).

Definition 34 (𝑞-ary lattices).

We call a lattice L ⊂ Z𝑛 a modular lattice if there exists an integer 𝑞 < 𝑣𝑜𝑙 (L) such
that 𝑞Z𝑛 ⊆ L. To precise the value 𝑞 we say L is a 𝑞-ary lattice.

The precision 𝑞 < det(L) is important since otherwise every full-rank lattice is

a modular lattice as det(L)Z𝑛 ⊂ L. To convince yourself, take any vector of Z𝑛,

multiply it by det(L) and apply the reduction from the example 2. As a matter

of fact, if both the top-upper part and the bottom-right part of the HNF of L
is diagonal and every diagonal coefficient divides 𝑞 then L is a 𝑞-ary lattice. The

reverse is not necessarily true: given a HNF 𝐻, if for all 𝑖, 𝐻𝑖,𝑖 = 𝑑 and 𝑑𝑖 | 𝑞, then
for example 𝐻𝑖, 𝑗 = 𝑘𝑑 < 𝐻 𝑗 , 𝑗 for 𝑘 ∈ Z and 𝑗 < 𝑖 is sufficient.

Example 3. Examples of HNF basis of 𝑞-ary lattices when 𝑞 = 26:

13 0 0 0 0 0

0 13 0 0 0 0

0 0 13 0 0 0

12 4 8 1 0 0

3 7 6 0 1 0

11 9 10 0 0 1


,



2 0 0 0 0 0

0 2 0 0 0 0

0 0 2 0 0 0

0 0 0 2 0 0

0 0 1 1 1 0

1 1 0 1 0 1


,



26 0 0 0 0 0

0 13 0 0 0 0

0 0 2 0 0 0

19 4 1 1 0 0

8 7 1 0 1 0

4 5 0 0 0 1


,



26 0 0 0 0 0

0 26 0 0 0 0

0 0 1 0 0 0

19 4 0 1 0 0

9 17 0 0 1 0

2 9 0 0 0 1


,



26 0 0 0 0 0

0 26 0 0 0 0

4 12 2 0 0 0

19 14 0 1 0 0

23 7 0 0 1 0

21 19 0 0 0 1


,



13 0 0 0 0 0

0 13 0 0 0 0

8 4 2 0 0 0

0 0 0 13 0 0

3 7 4 2 1 0

2 9 3 12 0 1


In cryptography however, there is usually only one HNF representation of 𝑞-ary

lattices people consider for dimension 𝑛 > 𝑚 > 1: upper-right is 𝑞× 𝐼𝑑𝑚, bottom-left
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𝐼𝑑𝑛−𝑚. Of course, that is assuming we consider row vectors and the HNF definition

is set as bottom triangular. Those lattices hold the property that their basis do not

change by the following transformation L ← L∪𝑞Z𝑛, which led us to often consider

computations over Z𝑞 rather than Z.

Definition 35 (Principal Ideal lattices).

Let 𝑅 𝑓 = Z[𝑋]/〈 𝑓 〉 a ring of polynomials over integers where 𝑓 is a monic polynomial

of degree 𝑛, and consider the map Φ 𝑓 : 𝑋
(𝑖−1) → 𝑣𝑖 where 𝑣𝑖 is the 𝑖−th vector of the

identity basis in Z𝑛 and 𝑋 𝑖 the monomial of degree 𝑖 over 𝑅 𝑓 . We can then define

a non-trivial ring structure over a particular set of sublattices of Z𝑛 by mapping 𝑅 𝑓

to Z𝑛 via Φ. Suppose we take an ideal of 𝑅 𝑓 , namely 𝑅 𝑓 (𝑔) = 〈𝑔〉 with 𝑔 ∈ 𝑅 𝑓 . We

denote L(𝑔, 𝑓 ) the lattice 𝐼𝑚Φ 𝑓
(𝑅 𝑓 (𝑔)).

For any lattice L, if there exists 𝑔, 𝑓 such that L = L(𝑔, 𝑓 ), we say L is a principal

ideal lattice.

Note that if 𝑔 is replaced by a set of polynomials < 𝑔1, ..., 𝑔𝑘 > to generate an

ideal lattice, then it is unclear if the resulting lattice is still a principal ideal (i.e the

existence of a single tuple 𝑔, 𝑓 ), but is an ideal lattice neverthelessc. For the rest of

this thesis however, whether an ideal lattice is principal or not does not have much

of an impact. After all, none of our published works are specifically about ideal

lattices but could eventually apply to them after further studies.

Ideal lattices have another structure where efficiency is greatly improved, although

there is no improvement on the security (it is up to debate if the security is actually

downgraded). The morphism Φ is applied as the following:

Φ(∑𝑛−1
𝑖=0 𝑎𝑖𝑥

𝑖) = [𝑎0, 𝑎1, ..., 𝑎𝑛−1].

Suppose now the we are given an ideal lattice L of determinant 𝑃 and admits a

perfect HNF as a basis, thus ensuring [𝑃, 0, ..., 0] ∈ L. Then if we know another

vector 𝑣 = [−𝛾, 1, 0, ...., 0] ∈ L, then we can write a basis in the form

𝑃 →
𝑣 →

𝑣 × 𝑋 →
𝑣 × 𝑋2 →
𝑣 × 𝑋3 →
𝑣 × 𝑋4 →



𝑃 0 0 0 0 0

−𝛾 1 0 0 0 0

0 −𝛾 1 0 0 0

0 0 −𝛾 1 0 0

0 0 0 −𝛾 1 0

0 0 0 0 −𝛾 1


, reduces to



𝑃 0 0 0 0 0

−𝛾 1 0 0 0 0

−𝛾2 0 1 0 0 0

−𝛾3 0 0 1 0 0

−𝛾4 0 0 0 1 0

−𝛾5 0 0 0 0 1


cDetermining whether an ideal is principal or not does not seem to be easy for any general

ideal: it is one of the main problems of algebraic number theory [Coh93]. It is nevertheless doable
and MAGMA provide a function for that: http://magma.maths.usyd.edu.au/magma/handbook/
text/394#4026. It is probably simpler for the ideals used in cryptography when using norm
arguments.

http://magma.maths.usyd.edu.au/magma/handbook/text/394#4026
http://magma.maths.usyd.edu.au/magma/handbook/text/394#4026
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i.e we can get a HNF for almost free where (−𝛾, 𝑃) are enough to define the whole

lattice. Note that given such a form, we can always extract an ideal lattice: let

𝑔 = 𝑋 − 𝛾 and 𝑓 = 𝑋𝑛 − 𝛾𝑋𝑛−1 − 𝑃 , then L(𝑔, 𝑓 ) generates the lattice we described.
However such forms are currently not used in cryptography.

Property 3. Let L be a lattice such that L = L(𝑔, 𝑓 ). There exists an infinite

amount of tuples (𝑔′, 𝑓 ′) such that L = L(𝑔′, 𝑓 ′).

In cryptography they tend to use cyclic lattices ( 𝑓 = 𝑋𝑛 − 1) with prime 𝑛 or

anti-cyclic ( 𝑓 = 𝑋𝑛 + 1 first used in [Mic07]) where 𝑛 is a power of two. Cyclotomic

polynomials are used and discussed in [LPR10]. While changing the quotient have no

influence on the compression method we just showcased, quotients are either kept

for security assumptions (lack of a “weak” Chinese Remainder Theorem (CRT)

decomposition) or for faster ring-specific operations (usage of Number Theoretic

Transform (NTT) for example). While it is unclear if the “ring” version of all the

problems we defined in section 2.4 are actually hard, it reminds an open problem.

The density of such lattices that are chosen for cryptography is exponentially van-

ishing unlike co-cyclic lattices [BL09]. So far, it does not seem to be a worry for

the security. To compromise between efficiency and potential security, a “module”

version that is less compact that the “ring” version has been proposed [BGV14]:

in a sense, instead of one single large “ring” basis, we concatenate multiple smaller

“ring” basis to create one large basis of a new lattice. This multi-block structure

is assumed to be safer than the single-block version. The block decomposition ap-

proach can probably be applied in other ways than in the ideal case: as far as we

know we have not seen any proposition (aside maybe with the tensorial product

[FS99]).

What we present now is one of the oldest structured lattices, if not the oldest,

that we found in the cryptographic academic literature:

Definition 36 (Diagonal Dominant Lattices).

We say a lattice is a diagonally dominant type lattice (of dimension 𝑛) if it admits

a diagonal dominant matrix as a basis 𝐵 as in [BR91], i.e.,

∀𝑖 ∈ [1, 𝑛], 𝐵𝑖,𝑖 ≥
∑𝑛
𝑗=1,𝑖≠ 𝑗 |𝐵𝑖, 𝑗 |

We can also see a diagonally dominant matrix 𝐵 as a sum 𝐵 = 𝐷 + 𝑅 where 𝐷

is diagonal and 𝐷𝑖,𝑖 > ‖𝑅𝑖‖1. To avoid conflicting notations between the diagonal

matrix and the diagonal coefficient, we will denote from now on 𝐷 𝐼𝑑 the product of

the integer 𝐷 by the canonical basis 𝐼𝑑. We might also denote 𝐷𝑔 a diagonal matrix

which diagonal coefficients might not all be equals.
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However sometimes we need a definition for lattices with a stronger weight on the

diagonal while not being diagonal dominant in the mathematical sense:

Definition 37 (“Weakly” Diagonal Dominant Lattices).

We say a lattice is a “weakly diagonally dominant lattice” of dimension 𝑛 if it admits

a basis of the form 𝐷 𝐼𝑑 + 𝑁 where 𝐷 ∈ Z, and 𝑁 ∈ [−𝜇, 𝜇]𝑛×𝑛 a noise matrix. 𝜇 is

called the bound of the noise and 𝐷 is considered much “larger” than 𝜇.

This basis structure have vectors that are closely orthogonal: the difference be-

tween a diagonal dominant basis and its GSO is “geometrically low”. Therefore

it can guarantee long GSO vectors that have roughly the same norm and provides

a high-decryption capacity via Babai’s reduction algorithms. Unfortunately, the

computation of the HNF is expensive, and key sizes are not trivially compressible

(unless combined with the previously mentioned structures).

2.6.5 Other structures and our research direction

Those structures led to cryptographic constructions where the security is based on

lattices while not being a pure lattice problem, like Number Theory is Really Use-

ful (NTRU), Learning With Errors (LWE) and their variants which we will not

define in this thesis as we do not make use of them. As far as we know HIMMO also

fall under that category [GMRS+15, GMGPG+14], and we do not at the moment

have an exhaustive list of all existing structures.

Module and ring structures are currently the most popular structure used in

lattice-based cryptography, and its study is still going on actively [LPMSW19].

While most lattice-based submissions accepted on the round 2 of NIST PQC stan-

dardization process rely on a module or ideal structure, its recency does not give a

lot confidence. To the best of our knowledge, no cryptosystem are proven to be NP-

hard, which is not a claim of insecurity by itself but should encourage innovations

in the constructions of new mathematical primitives even without any “security

proofs”. Leaving “security proofs” aside, it does seem that finding generators on

some ideal lattices we often use in cryptographyd, i.e the cyclotomic case, is not a

hard problem in the quantum case [CDPR16].

The problem is still the minimization of the generator, however as nobody cur-

rently has access to a quantum computer, it is unclear if we are facing a case where

dwhich admit a trapdoor, so usually a short generator vector. In the general case, it is possible
that the shortest vector is not a generator.
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there is a noticeable gap between the upper bound estimated for an algorithm out-

put, and its average output. Experiments have been done with classical computers

on more general cases [LPS19, BBdV+17], but those might not be sufficient and

the computational effort required in this particular topic seems to be a hindrance

for further work. On the other hand, theoretical estimations results are flourishing

[PMHS19]. History could show a repeat of LLL and BKZ where the experimental

results behave much better in practice than in theory [GN08]. To learn more about

the current state-of-the-art knowledge about the ideal structure, a good entry point

would be the survey from Ducas [Duc17].

The rest of this thesis will mostly be focused on structures which are neither

ring-based or 𝑞-ary based, whether for efficiency or securitye. We want to stress we

do not claim the work we present produces more secure cryptosystems compared to

the popular tools of lattice-based crypto: a longer and deeper study from external

contributors is at least required to give a closer level of confidence.

Nevertheless, we believe exploring unpopular research avenues should be welcomed

and our work is a start, if it ever has to lead somewhere. Also, it could provide some

basis for alternative backups if other structure breaksf.

eThe last chapter is an outlier.
fLet’s be honest I am doing this for fun



Chapter 3

Hiding Lattices within Sublattices

This chapter is a rewritten version of the paper published in the Journal of Math-

ematical Cryptology [SPS19a], which we originally submitted in 2016 first in ASI-

ACRYPT and then to DCC. While the published paper essentially did not change

much since the initial version submitted to ASIACRYPT, the successive reviews we

received made it clear our writing was unclear. Thus, the redaction of this chapter is

very different from the initial paper, and we hope the reader will not have difficulties

understanding its content.

The aim of this paper was to present a technique to hide the structural weakness

of a lattice, with the example of the Goldreich-Goldwasser-Halevi scheme (GGH)

as a direct application. We do so with the help of an intersection between the weak

lattice used for decryption and a random lattice. This method gives us a new lattice

we can provide as a public key, different from the secret key.

But are intersecting lattices a secure structure? While it seems hard to answer the

question, an intuition is needed to understand the problem. Therefore, before we

describe the patch, we will give some reminders about lattice intersection properties:

intersections of lattices in the literature are scarce, at least in cryptography. To the

best of our knowledge the few references includes a theorem in Micciancio and Gold-

wasser’s book [MG12], and one paper about a broadcast attack [PS09]. Please note,

that every proof that is given might not be new, or might be documented elsewhere

in an improved version. However, as we could not find any prior reference, I made

proofs myself whenever I could not find previous documentation.

Experts on the field and people who work with Gröbner Basis (seeing intersections

of ideals) might want to skip most of the next two sections: while we believe this

was previously undocumented, except of course in the work we published, expert

readers might intuitively know most of the properties with another point of view.

40
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Let us first introduce some formulas from [MG12]:

Property 4 (Determinant of sub-lattices).

Let L1,L2 be two lattices. L1 ⊂ L2, then det(L2) | det(L1).

From this property, basic arithmetic shows that for any integral lattices L1,L2

we have det(L1) ≤ det(L1 ∩ L2) ≤ det(L1) × det(L2).

Property 5 (Lattice intersection (for full-rank lattices)).

Let L1,L2 be two full-rank lattices. Then L1 ∩ L2 = (L×1 ∪ L
×
2 )
×.

The computation of the dual, while doable in polynomial time, can be expensive

for practical applications. Which is why we explicit here a way to compute inter-

sections given the Hermite Normal Form (HNF see definition 9 in background) of

lattices. Computing a HNF might be worse than computing duals if you are given

a reduced basis, however in cryptographic applications a HNF is preferred as a

public key. The other motivation is the fact that generation of random HNF with

a chosen determinant is trivial (following the distribution of [GM03]). This gives

enough motivation to see intersections from HNF.

3.1 A HNF vision of lattice intersections

Supposing we are working on a full-rank square Hermite Normal Form (HNF) ma-

trix 𝑀 ∈ N𝑛×𝑛. To consider all vectors of L(𝑀) of the form (𝑣1, ..., 𝑣𝑖−1, 𝑣𝑖, 0, ..., 0) ∈
Z𝑛, is to consider instead of < 𝑀𝑖 >Z the 𝑖-dimensional lattice < 𝑀1, ..., 𝑀𝑖 >Z.

Those trivial facts are going to provide the necessary arguments for all following

properties. The following property uses the uniqueness of the HNF for vectors

(𝑣1, ..., 𝑣𝑖−1, 𝑣𝑖 ≠ 0, 0, ..., 0) ∈ Z𝑛.

Property 6 (Unique positive coefficients property).

Let 𝑀 ∈ N𝑛×𝑛 be a full-rank square HNF matrix and 𝑖 ∈ [1, 𝑛]. 𝑀𝑖 represents the

unique vector with the smallest coefficients 0 < 𝑀 𝑗 ,𝑖 < 𝑀 𝑗 , 𝑗 for 𝑗 < 𝑖 and 𝑀𝑖,𝑖 > 0

such that < 𝑀𝑖 >Z is an one-dimensional lattice containing vectors of L(𝑀) of
the form (𝑣1, ..., 𝑣𝑖−1, 𝑣𝑖 ≠ 0, 0, ..., 0) ∈ Z𝑛 (and the all-zero vector). Therefore, if

𝑣 ∈ L(𝑀) and 𝑣 = (𝑣1, ..., 𝑣𝑖−1, 𝑣𝑖 ≠ 0, 0, ..., 0), then 𝑀𝑖,𝑖 | 𝑣𝑖.

Proof. To prove the divisibility by the head coefficient, we can make a proof by ab-

surd. Suppose there is another vector 𝑣 ∈ L(𝑀) that is of the form (𝑣1, ..., 𝑣𝑖−1, 𝑣𝑖 >
0, 0, ..., 0) ∈ Z𝑛, such that 𝑣𝑖,𝑖 < 𝑀𝑖,𝑖. Then the Gauss-Jordan reduction with the
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HNF cannot reduce 𝑣𝑖,𝑖 to 0, thus 𝑣 ∉ L(𝑀), which is absurd. Now for the unic-

ity. If there is another different vector 𝑎 ∈ L(𝑀1, ..., 𝑀𝑖) such that 𝑎𝑖 = 𝑀𝑖,𝑖 and

0 < 𝑎 𝑗 < 𝑀 𝑗 , 𝑗 for 𝑗 < 𝑖, then for some 𝑗 there must be 0 < |𝑎 𝑗 ± 𝑀𝑖, 𝑗 | < 𝑀 𝑗 , 𝑗 , thus

not reducible to 0 via < 𝑀1, ..., 𝑀𝑖 >Z. However both of them are supposed to be in

< 𝑀1, ..., 𝑀𝑖 >Z, which is a group, thus this is absurd. �

This is due to the uniqueness of the HNF and basic linear algebra, and we have

not yet talked about intersections, which we will do now. The first property on in-

tersections we are going to present was not on the original paper: however as we had

comments on the matter during oral presentations (special thanks to Pr Jean-Claude

Bajard), we decided therefore to mention the property in this thesis. An existence

of the HNF of the intersection is always guaranteed. What is less obvious is the

guarantee that the intersection of two integer lattices with square and full-rank basis

also have a basis that is full-rank. After all, the intersection of two discrete sets do

not need to exist: it can be empty. In the lattice case, the intersection is at least the

all-zero vector. However in does not have to be full-rank for the non-integral case:

Z𝑛 ∩ (
√
2Z𝑛) =< 0 >Z. And even in the integral case, the intersection can be < 0 >Z

if they are not full rank, like the direct sum case: < (0, 1) >Z ∩ < (1, 0) >Z=< 0 >Z.

Full-rank integral lattices however, are a particular case.

Property 7 (Full-rank of the intersection of full-rank integer lattices).

Let 𝐴, 𝐵 ∈ Z𝑛×𝑛 be full rank. Then dim(L(𝐴) ∩ L(𝐵)) = 𝑛, thus the intersection

admits a full-rank basis.

Proof. We just have to prove that there exists a full-rank sublattice. In that regard,

we want to show it admits a triangular basis. The simplest lattice can come to

mind. Since 𝐴, 𝐵 are non-singular integral matrices, det(𝐴), det(𝐵) are non-zero

integers. Therefore consider the matrix 𝐶 = det(𝐴) × det(𝐵) × 𝐼𝑑𝑛. 𝐶 has trivially

full-rank, and for all 𝑖 ∈ [1, 𝑛], 𝐶𝑖 ∈ L(𝐴) ∩ L(𝐵). L(𝐶) is then full-rank and part

of L(𝐴) ∩ L(𝐵), which is sufficient. �

Now that we know its existence, we need to find methods to compute them effi-

ciently. To warm up, we start first with the most trivial property:

Property 8 (Conservation of Row Linearity).

Let 𝐴, 𝐵 ∈ Z𝑛×𝑛 in HNF form. If for some 𝑖 ∈ [1, 𝑛] and 𝛼 ∈ N∗, 𝛼𝐴𝑖 = 𝐵𝑖 then

the HNF basis 𝐶 of L(𝐴) ∩ L(𝐵) verifies 𝐶𝑖 = 𝐵𝑖.

Proof. If < 𝐴𝑖 >Z⊇< 𝐵𝑖 >Z, then their intersection is < 𝐵𝑖 >Z. Therefore the unique

one-dimensional lattice we pointed out previously < 𝐶𝑖 >Z for L(𝐴) ∩ L(𝐵) must

also be < 𝐵𝑖 >Z. �
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Every computation of two HNF intersection can then be simplified by remov-

ing each common 𝑖-th row when their other non-diagonal coefficient are 0 and the

resulting zero columns, and reinserting them later. This always apply when the

diagonal coefficient is 1 and there is zero values below, however it is unlikely that

two random lattices of non-small determinants would share similar rows and have

zeroes above. A natural question would be why do we not make a generalization

for 𝐶𝑖 = 𝛼𝐴𝑖 + 𝛽𝐵𝑖: this is because it is not true for 𝑖 > 1. This is trivially true

thanks to the “cascading” property that a HNF gives: for a matrix in HNF form

𝐴 and 𝑖 < 𝑗 < 𝑘, changes on 𝐴𝑖 can have repercussions on 𝐴 𝑗 if 𝐴 is to be kept a

HNF, but modifications 𝐴𝑘 will have no effect on 𝐴𝑖. This also trivially influences

the intersection:

Property 9 (“Cascading” influence on the intersection).

Let 𝐴, 𝐴′, 𝐵, 𝐵′ ∈ Z𝑛×𝑛, all non-singular in lower triangular form. If for some

𝑖 ∈ [1, 𝑛],

< 𝐴1, ..., 𝐴𝑖 >Z=< 𝐴′1, ..., 𝐴
′
𝑖
>Z and < 𝐵1, ..., 𝐵𝑖 >Z=< 𝐵

′
1, ..., 𝐵

′
𝑖
>Z

then for 𝐶 the HNF basis of L(𝐴) ∩L(𝐵) and 𝐶′ the HNF basis of L(𝐴′) ∩L(𝐵′),

∀ 𝑗 ∈ [1, 𝑖], 𝐶𝑖 = 𝐶′𝑖

We do not think a proof is needed, but it is a property that must be kept in mind

to make further proofs easier.

However, we can deduce other properties. The following is another consequence

of the previous observations:

Property 10 (Row coefficient head divisibility).

Let 𝑖 ∈ [1, 𝑛] and 𝐴, 𝐵, 𝐶 ∈ Z𝑛×𝑛 are full-rank in HNF such that L(𝐶) = L(𝐴) ∩
L(𝐵).

Then lcm(𝐴𝑖,𝑖, 𝐵𝑖,𝑖) | 𝐶𝑖,𝑖 | lcm(
∏𝑖
𝑘=1 𝐴𝑘,𝑘 ,

∏
𝑘=1 𝐵𝑘,𝑘 ))

Proof. The left part is easy and follows from the previous properties. The right

part follows from det(< 𝐴1, .., 𝐴𝑖 >Z) =
∏𝑖
𝑘=1 𝐴𝑘,𝑘 , det(< 𝐵1, .., 𝐵𝑖 >Z) =

∏𝑖
𝑘=1 𝐵𝑘,𝑘

as they are triangular. Let 𝑣 be the 𝑖-th row of lcm(∏𝑖
𝑘=1 𝐴𝑘,𝑘 ,

∏
𝑘=1 𝐵𝑘,𝑘 ) × 𝐼𝑑𝑛.

𝑣 ∈ L(𝐴) ∩ L(𝐵), thus 𝐶𝑖,𝑖 must divide 𝑣𝑖 = lcm(∏𝑖
𝑘=1 𝐴𝑘,𝑘 ,

∏
𝑘=1 𝐵𝑘,𝑘 ). �

Note like unlike the previous case, this property does not allow to remove rows.

Then another special case, by specialized application of the previous property:

Property 11 (Diagonal of Intersection of Successive Coprime Diagonals).

Let 𝐴, 𝐵 ∈ Z𝑛×𝑛 be two full-rank integer matrices in HNF, such that we have for

𝑘 ≤ 𝑛
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∀𝑖 ∈ [1, 𝑘], GCD(𝐴𝑖,𝑖, 𝐵𝑖,𝑖) = 1

Then L(𝐴) ∩ L(𝐵) admits as a HNF basis the matrix 𝐶 such that

∀𝑖 ∈ [1, 𝑘], 𝐶𝑖,𝑖 = 𝐴𝑖,𝑖 × 𝐵𝑖,𝑖

Proof. 𝐴𝑖,𝑖 × 𝐵𝑖,𝑖 | 𝐶𝑖,𝑖 by the previous property. What remains to be proven is the

other way around. By successive iterations from 𝑖 = 1 to 𝑖 = 𝑘 for 𝐶𝑖,𝑖 over the lattice

< 𝐴1, .., 𝐴𝑖 >Z ∩ < 𝐵1, .., 𝐵𝑖 >Z, one can see that applying the previous inequality

and the fact that for any lattices L1,L2, det(L1 ∩ L2) ≤ det(L1) × det(L2) i.e∏𝑖
𝑘=1𝐶𝑘,𝑘 ≤ (

∏𝑖
𝑘=1 𝐴𝑘,𝑘 ) × (

∏𝑖
𝑘=1 𝐵𝑘,𝑘 ), 𝐶𝑖,𝑖’s has only one possibility. �

To simplify notations, we denote 𝐴 ∩ 𝐵 = 𝐶 as “𝐶 is a (HNF) basis of L(𝐴) ∩
L(𝐵)”.

Example 4. 𝐴, 𝐵, 𝐶 three HNF and 𝐴 ∩ 𝐵 = 𝐶

𝐴 :



𝐴1,1 0 0 0 0

𝐴2,1 1 0 0 0

𝐴3,1 0 𝐴3,3 0 0

𝐴4,1 0 𝐴4,3 1 0

𝐴5,1 0 𝐴5,3 0 1


, 𝐵 :



1 0 0 0 0

0 𝐵2,2 0 0 0

0 𝐵3,2 1 0 0

0 𝐵4,2 0 𝐵4,4 0

0 𝐵5,2 0 𝐵5,4 1


, 𝐶 :



𝐴1,1 0 0 0 0

− 𝐵2,2 0 0 0

− − 𝐴3,3 0 0

− − − 𝐵4,4 0

− − − 𝐵5,4 1


We stress that this property is only true when the successive first diagonal ele-

ments are actually coprime. If there is one diagonal coefficient in the middle which

does not respect coprimality, the GCD factor “moves down” in most cases. We will

explain this phenomena later.

For now, we will first focus on the case of perfect HNF. The following is, albeit

trivial, the building block of our intersection computations and a direct result of our

previous property:

Property 12 (CRT decomposition of perfect HNF).

Let 𝐴, 𝐵 ∈ Z𝑛×𝑛 be full-rank in perfect HNF. If GCD(𝐴1,1, 𝐵1,1) = 1, then

𝐶1,1 = 𝐴1,1 × 𝐵1,1
∀𝑖 ∈ [2, 𝑛], 𝐶𝑖,1 = 𝐴𝑖,1 mod 𝐴1,1

∀𝑖 ∈ [2, 𝑛], 𝐶𝑖,1 = 𝐵𝑖,1 mod 𝐵1,1

where 𝐶 is the HNF basis of L(𝐴) ∩ L(𝐵).

Proof. There is an unique solution for the diagonal coefficients by the previous

property, and the solution for the coefficients below the diagonal can be trivially

checked to be unique. �

Example 5. Intersections of perfect HNF of co-prime determinants
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

5 0 0 0 0

4 1 0 0 0

1 0 1 0 0

3 0 0 1 0

2 0 0 0 1


∩



4 0 0 0 0

3 1 0 0 0

3 0 1 0 0

1 0 0 1 0

1 0 0 0 1


=



20 0 0 0 0

19 1 0 0 0

11 0 1 0 0

13 0 0 1 0

17 0 0 0 1


This property basically states that the intersection of two perfect HNF basis

of coprime determinants is then computed from 1 integer product and 𝑛 − 1 CRT

recompositions from the same ring. The other consequence of this property is also

to consider that any perfect HNF can be decomposed into a product of “prime”

overlattice, i.e overlattice of same rank with prime power determinant. From now

on, we can generalize all next results on diagonal coefficients being prime numbers 𝑝

by looking at a CRT decomposition of the elements below the diagonal (modulo the

prime powers factors of the diagonal elements). Now that we know what happens

with coprime determinants, the natural question is to determine what happens when

two determinants are prime and equals considering perfect HNF. This is where the

previous mention about the gcd factor “moving down” makes sense. Which gives us

the following property:

Property 13 (GCD descent in the intersection).

Let 𝑝 be a prime number, 𝐴, 𝐵 ∈ Z𝑛×𝑛 are full-rank and in HNF, such that det(𝐴) =
𝑝 and det(𝐵) = 𝑝𝑘 for 0 < 𝑘 < 𝑛, and 𝐶 the HNF basis of L(𝐴) ∩L(𝐵). If 𝐴1,1 = 𝑝
and < 𝐵1, ..., 𝐵𝑘 >Z= L([𝑝 × 𝐼𝑑𝑘 | 0]), then < 𝐶1, ..., 𝐶𝑘 >Z= L([𝑝 × 𝐼𝑑𝑘 | 0]), and

If 𝐵𝑘+1 ∉ L(𝐴), then < 𝐶1, ..., 𝐶𝑘+1 >Z= L([𝑝 × 𝐼𝑑𝑘+1 | 0]).
If 𝐵𝑘+1 ∈ L(𝐴), then 𝐶𝑘+1 = 𝐵𝑘+1.

Proof. < 𝐶1, ..., 𝐶𝑘 >Z= L([𝑝 × 𝐼𝑑𝑘 | 0]) is easy to see as < 𝐴1, ..., 𝐴𝑘 >Z⊇ L([𝑝 ×
𝐼𝑑𝑘 | 0]).
Any 𝐶𝑘+1 represents the unique solution 𝐶𝑘+1 = 𝛼1𝐴1 + ... + 𝛼𝑘+1𝐴𝑘+1 = 𝛽1𝐵1 + ... +
𝛽𝑘+1𝐵𝑘+1, where 𝛽𝑘+1, 𝛼𝑘+1 are both minimized and strictly positive.

Since < 𝐵1, ..., 𝐵𝑘 >Z⊂< 𝐴1, ..., 𝐴𝑘 >Z, we now have 𝐶𝑘+1 = 𝛼1𝐴1 + ... + 𝛼𝑘+1𝐴𝑘+1 =

𝛽𝐵𝑘+1.

“If 𝐵𝑘+1 ∈ L(𝐴), then 𝐶𝑘+1 = 𝐵𝑘+1.” is thus trivial by setting 𝛽 = 1.

The other implication is left to prove when 𝐵𝑘+1 ∉ L(𝐴).
det(𝐴) = 𝑝, 𝐴1,1 = 𝑝, det(𝐵) = 𝑝𝑘 and

∏𝑘
𝑖=1 𝐵𝑖,𝑖 = 𝑝

𝑘 implies 𝐴𝑘+1,𝑘+1 = 𝐵𝑘+1,𝑘+1 = 1.

Thus 𝐶𝑘+1,𝑘+1 = 𝛽 = 𝛼𝑘+1 from the HNF’s triangular form, and must divide 𝑝 by a

previous property, therefore is either 1 or 𝑝.

𝐶𝑘+1,𝑘+1 = 1 implies 𝛼𝑘+1 = 𝛽𝑘+1 = 1 but contradicts 𝐵𝑘+1 ∉ L(𝐴). Thus 𝐶𝑘+1,𝑘+1 = 𝑝.
From there we know every other non-zero coefficient of 𝑝𝐵𝑘+1 is reducible to the zero

vector in < 𝐶1, ..., 𝐶𝑘 >Z, giving finally < 𝐶1, ..., 𝐶𝑘+1 >Z= L([𝑝 × 𝐼𝑑𝑘+1 | 0]). �
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This property basically explains that intersecting randomly 𝑘 random lattices

admitting perfect HNF of prime determinant 𝑞 as basis will give something eerily

familiar to a 𝑞-ary lattice with very high probability. The GCD 𝑞 “flows down”

the diagonal, “cleaning” the non-zero coefficients on each row. For 𝑞 >> 𝑛, 𝑛

intersections of random lattices of determinant 𝑞 will highly likely give 𝑞 × 𝐼𝑑𝑛 as a
result.

Example 6. Successive intersections. Note how we only change a row each time.

Changing multiple rows lead to the same phenomena, except for the bottom columns

having different coefficients below the diagonal.

2 lattices:



5 0 0 0 0

3 1 0 0 0

2 0 1 0 0

1 0 0 1 0

3 0 0 0 1


∩



5 0 0 0 0

4 1 0 0 0

2 0 1 0 0

1 0 0 1 0

3 0 0 0 1


=



5 0 0 0 0

0 5 0 0 0

2 0 1 0 0

1 0 0 1 0

3 0 0 0 1


3 lattices:



5 0 0 0 0

3 1 0 0 0

4 0 1 0 0

1 0 0 1 0

3 0 0 0 1


∩



5 0 0 0 0

0 5 0 0 0

2 0 1 0 0

1 0 0 1 0

3 0 0 0 1


=



5 0 0 0 0

0 5 0 0 0

0 0 5 0 0

1 0 0 1 0

3 0 0 0 1


4 lattices:



5 0 0 0 0

3 1 0 0 0

4 0 1 0 0

2 0 0 1 0

3 0 0 0 1


∩



5 0 0 0 0

0 5 0 0 0

0 0 5 0 0

1 0 0 1 0

3 0 0 0 1


=



5 0 0 0 0

0 5 0 0 0

0 0 5 0 0

0 0 0 5 0

3 0 0 0 1


5 lattices:



5 0 0 0 0

3 1 0 0 0

4 0 1 0 0

2 0 0 1 0

2 0 0 0 1


∩



5 0 0 0 0

0 5 0 0 0

0 0 5 0 0

0 0 0 5 0

3 0 0 0 1


=



5 0 0 0 0

0 5 0 0 0

0 0 5 0 0

0 0 0 5 0

0 0 0 0 5


Note that what the proof essentially gives is the multiplication by 𝑝 of the diagonal

coefficient. It can therefore be generalized to transform cases where a diagonal term

𝑝 transforms into 𝑝2 when the coefficients on the same row were non-zero. However

for the rest of the work, we do not need such generalizations. Now the question is

the following: is it hard to actually compute such intersections when more than one

successive row differ? Since the point of this section was to show the computational

advantages of strictly using the HNF when available for free, we will now give an

example of formulas for fast computation:
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Property 14 (Intersection of “equal prime determinants” perfect HNF).

Let 𝐴, 𝐵 ∈ Z𝑛×𝑛 be full-rank perfect HNF, with no equal rows except for 𝐴1,1 = 𝐵1,1.

Let 𝐴1,1, 𝐵1,1 be a prime number 𝑝. Then det(L(𝐴) ∩ L(𝐵)) = 𝑝2 and 𝐶 its HNF

is

𝐶1,1 = 𝐶2,2 = 𝑝, 𝐶2,1 = 0

∀𝑖 ∈ [3, 𝑛], 𝐶𝑖,2 = (𝐵𝑖,1 − 𝐴𝑖,1) × (𝐴2,1 − 𝐵2,1)−1 mod 𝑝

∀𝑖 ∈ [3, 𝑛], 𝐶𝑖,1 = 𝐶𝑖,2𝐴2,1 + 𝐴𝑖,1 = 𝐶𝑖,2𝐵2,1 + 𝐵𝑖,1 mod 𝑝

Proof. The first two vectors result from the GCD descent property. Now we only

have to determine all the rest. From the “Cascading” influence we know we can

generalize a formula on a row to all others, as they don’t influence each other and

share the same non-zero coefficient (namely 3) and the same relationship with the

first two vectors. Given 𝑖 > 3, we must have some linear combination:

𝐶𝑖 = 𝛼1𝐴1 + 𝛼2𝐴2 + 𝛼𝑖𝐴𝑖 = 𝛽1𝐵1 + 𝛽2𝐵2 + 𝛽𝑖𝐵𝑖

Note that since the upper part is 𝑝 × 𝐼𝑑2, we can essentially work modulo 𝑝, thus

giving

𝐶𝑖 = 𝛼2𝐴2 + 𝛼𝑖𝐴𝑖 = 𝛽2𝐵2 + 𝛽𝑖𝐵𝑖 mod 𝑝

From the previous property 𝐶𝑖,𝑖 = 1, we can already set 𝛼𝑖 = 𝛽𝑖 = 1. Thus

𝐶𝑖 = 𝛼2𝐴2 + 𝐴𝑖 = 𝛽2𝐵2 + 𝐵𝑖 mod 𝑝

The HNF form then gives us

𝐶𝑖,2 = 𝛼2 = 𝛽2 and 𝐶𝑖,1 = 𝛼2𝐴𝑖,1 + 𝐴2,1 = 𝛽2𝐵𝑖,1 + 𝐵2,1 mod 𝑝

which simplifies to

𝐶𝑖,2 = 𝛼2 and 𝐶𝑖,1 = 𝛼2𝐴𝑖,1 + 𝐴2,1 = 𝛼2𝐵𝑖,1 + 𝐵2,1 mod 𝑝

the solution for 𝛼2 is trivially unique (mod 𝑝) and gives the result. �

Note that given such an intersection result, i.e of determinant 𝑝2 and the upper-

left corner is essentially 𝑝𝐼𝑑2, there is at least 𝑝(𝑝 − 1)/2 possible combinations of

perfect HNF of determinant 𝑝 lattices to obtain the given intersection. The next

property we will express will deal with lattices that are not perfect but still has an

unique non-zero column, i.e “pseudo-perfect”.

Property 15 (Intersection with a single non-zero column).

Let 𝐴, 𝐵 ∈ Z𝑛×𝑛 be full-rank matrices in HNF form, and 𝐶 the HNF basis of

L(𝐴) ∩ L(𝐵). Let 𝑛 > 𝑗 > 1 such that 𝐵 𝑗 , 𝑗 > 1, and

∀𝑖 < 𝑗 , 𝐴𝑖,𝑖 > 1 = 𝐵𝑖,𝑖

∀𝑖 > 𝑗 , 𝐴𝑖,𝑖 = 1 = 𝐵𝑖,𝑖



3.1. A HNF VISION OF LATTICE INTERSECTIONS 48

Then for 𝑖 < 𝑗 , we have 𝐶𝑖 = 𝐴𝑖, and thus L′ =< 𝐴1, ..., 𝐴 𝑗−1 >Z=< 𝐶1, ..., 𝐶 𝑗−1 >Z.

𝐶 𝑗 = 𝐵 𝑗 , 𝑗 × 𝐴 𝑗 mod L′

For 𝑘 > 𝑗 , 𝐶𝑘 = 𝐵𝑘, 𝑗 × 𝐴 𝑗 + 𝐴𝑘 mod L′

Proof. The first rows staying identical to 𝐴’s and the head coefficients’ values are

direct consequences from the previous properties.

We know for a fact that any coefficient before the 𝑗-th column is reduced to 0 mod

L(𝐵) as < 𝐵1, ..., 𝐵 𝑗−1 >Z is L([𝐼𝑑 𝑗−1 | 0]). Therefore for 𝑘 ≤ 𝑗 we only need to

make the columns of 𝐶𝑘 reducible to 0 mod L(𝐴).
Let 𝑣 = 𝐵 𝑗 , 𝑗 × 𝐴 𝑗 . 𝑣 is trivially reducible to 0 in L(𝐴) and L(𝐵), thus L(𝐴) ∩L(𝐵).
If we reduce 𝑣’s coefficients modulo L′, we obtain the shortest all-positive vector

belonging to a HNF thus 𝐶 𝑗 = 𝑣 mod L′. Same for 𝐶𝑘 = 𝐵 𝑗 ,𝑘 × 𝐴 𝑗 + 𝐴𝑘 mod L′. �

While exhibiting a reduction by a lower-rank sublattice can seem expensive, using

the HNF form to apply a Gauss-Jordan reduction make it inexpensive:

Example 7. 𝐴, 𝐵, 𝐶 three HNF and L(𝐶) = L(𝐴) ∩ L(𝐵), 𝑗 = 3.

5 0 0 0 0

4 7 0 0 0

1 6 1 0 0

3 5 0 1 0

2 3 0 0 1


∩



1 0 0 0 0

0 1 0 0 0

0 0 5 0 0

0 0 1 1 0

0 0 3 0 1


=



5 0 0 0 0

4 7 0 0 0

4 2 5 0 0

0 4 1 1 0

3 0 3 0 1


Here L′ =< 𝐴1 = 𝐶1 = [5, 0, 0, 0, 0], 𝐴2 = 𝐶2 = [4, 7, 0, 0, 0] >Z.
Third vector:

𝑣3 = 𝐵3,3 × 𝐴3 = [5, 30, 5, 0, 0], 𝐶3 = 𝑣3 mod L′.
𝐶3 = [5, 30, 5, 0, 0] −4× [4, 7, 0, 0, 0] = [−11, 2, 5, 0, 0] +3× [5, 0, 0, 0, 0] = [4, 2, 5, 0, 0]
mod L′.
Fourth vector:

𝑣4 = 𝐵4,3 × 𝐴3 + 𝐴4 = [1, 6, 1, 0, 0] + [3, 5, 0, 1, 0] = [4, 11, 1, 1, 0], 𝐶4 = 𝑣4 mod L′.
𝐶4 = [4, 11, 1, 1, 0] − [4, 7, 0, 0, 0] = [0, 4, 1, 1, 0] mod L′.

So far we have only spoke of computing intersections, but decompositions are also

a key argument we will use later so we propose here a simple one based on the

property we just described.

Property 16 (Trivial Decomposition of crypto-type 𝑞-ary lattices).

Let 𝐴 ∈ Z𝑛×𝑛 be in HNF, 𝑚 < 𝑛 and < 𝐴1, ..., 𝐴𝑚 >Z= L([𝑞 × 𝐼𝑑𝑚 | 0]), and

< 𝐴𝑚+1, ..., 𝐴𝑛 >Z= L([𝐵 | 𝐼𝑑]) for some 𝐵 ∈ [0, 𝑞 − 1] (𝑛−𝑚)×𝑚. Then:

𝐴 =
⋂𝑚
𝑖=1 𝐴

(𝑖) where

For diagonal coefficients, ∀ 𝑗 ≠ 𝑖, 𝐴(𝑖)
𝑗 , 𝑗

= 1 and 𝐴(𝑖)
𝑖,𝑖

= 𝑞

For the lower triangle, ∀ 𝑗 ≠ 𝑖, 𝐴( 𝑗)
𝑗 ,𝑖

= 0 and 𝐴(𝑖)
𝑗 ,𝑖

= 𝐴 𝑗 ,𝑖
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Proof. Just apply recursively the previous formula for this special case. This special

case has L′ = [𝑞 × 𝐼𝑑 | 0], which transforms “mod L′” into “mod 𝑞” to make it

easier. �

The next example shows how in those cases the decomposition is trivial.

Example 8. Here 𝑚 = 4, 𝑛 = 6.

𝐴 =



5 0 0 0 0 0

0 5 0 0 0 0

0 0 5 0 0 0

0 0 0 5 0 0

1 2 3 4 1 0

1 2 3 4 0 1


= 𝐴(1) ∩ 𝐴(2) ∩ 𝐴(3) ∩ 𝐴(4) where

𝐴(1), 𝐴(2), 𝐴(3) and 𝐴(4) are successively

5 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

1 0 0 0 1 0

1 0 0 0 0 1


,



1 0 0 0 0 0

0 5 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 2 0 0 1 0

0 2 0 0 0 1


,



1 0 0 0 0 0

0 1 0 0 0 0

0 0 5 0 0 0

0 0 0 1 0 0

0 0 3 0 1 0

0 0 3 0 0 1


,



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 5 0 0

0 0 0 4 1 0

0 0 0 4 0 1


We can push a bit further to obtain even more general formulas for every property

in both intersection and decomposition, but the resulting computation complexities

will probably increase. At some point, it is possible that the standard way to com-

pute HNF intersections of full-rank lattices from [MG12] is actually more efficient

than classical modular arithmetic. However for the usage we are going to explicit, in

our opinion we gave enough properties to justify our future cryptographic choices.

There is however the question of how to deal with non-successive different/linearly

dependent rows, i.e when the diagonal elements are not in the right place. The next

section is an heuristically efficient way to deal with those issues.

3.2 A HNF vision of column permutations

The title of this section is an explicit answer to the interrogation raised by the

previous section. A permutation of the problematic rows and columns can solve

most issues. First and foremost, we need to recall a trivial but undocumented

property.

Property 17 (Transitivity of HNF “perfectness” by non-1𝑠𝑡 row conjugate by 𝑆𝑛).
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Let 𝑆𝑛,[𝑎,𝑏] be the set of matrix representing permutations over all rows of indexes

within [𝑎, 𝑏] on square matrices of size 𝑛 × 𝑛. Then for any 𝑃 ∈ 𝑆𝑛,[2,𝑛], and

𝑀 ∈ Z𝑛×𝑛, the conjugate of 𝑀 by 𝑃 i.e 𝑃𝑀𝑃−1 is a perfect HNF if and only if 𝑀

is.

Proof. The first row and first columns are left untouched. 𝑃 = 𝑃−1 for any permu-

tation matrix. Thus, if 𝑀 ∈ Z𝑛×𝑛 is a perfect HNF, 𝑀 stripped of its first column

and row becomes 𝑀′ = 𝐼𝑑𝑛−1. 𝑃 stripped of its first row and first column essen-

tially is the same permutation as it was already leaving the first row and column

untouched. Let us call this this “new” permutation 𝑃′. 𝑃′𝑀′𝑃′−1 = 𝐼𝑑𝑛−1 if and

only if 𝑀′ = 𝐼𝑑𝑛−1 thus giving the trivial result. �

While the property applies for all conjugations as long as the first “cross” (i.e

row and column of the same index) is left untouched, we precise permutations as

operations are trivial.

Example 9. Conjugating by (2 4): central symmetry of crosses 2,4 (middle [(2, 2), (4, 4)]).

row 2→

row 4→



20 0 0 0 0

19 1 0 0 0

11 0 1 0 0

13 0 0 1 0

17 0 0 0 1


conjugate by (2 4)
−−−−−−−−−−−−−−−→



20 0 0 0 0

13 1 0 0 0

11 0 1 0 0

19 0 0 1 0

17 0 0 0 1


Therefore, the technique to compute HNF intersections regardless of perfectness

is to generate successive rows per permutation conjugation where the previous prop-

erties apply, then compute theHNF, and reapply the exact same conjugation. Since

in general the biggest entries of the HNF are left in the first row, the arithmetical

cost of performing operations in the non-first column should be very small, and the

coefficients in the first column are reduced by a simple integral modular reduction

by the first row.

If we already have the intersection and we wish to obtain a perfect HNF of

a lattice that is equivalent (in the sense that its geometrical properties are left

untouched), then a permutation with a column is worth a try. This gives us the

following property, where only a single permutation is needed:

Property 18 (Existence of a transposition for perfect HNF).

Let 𝐴 ∈ Z𝑛×𝑛 in HNF. If there exists 𝜎 ∈ 𝑆𝑛 a permutation of columns such that

𝜎(𝐴) admits a perfect HNF, then there exists 𝑖 ∈ [1, 𝑛] such that 𝜎′ = (1 𝑖) is
sufficient for 𝜎′(𝐴) to have a perfect HNF.
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Proof. Let 𝜎 be such a permutation. Then there must exist a permutation 𝜎′ such

that 𝜎′ ◦ (1 𝑖) = 𝜎 where 𝜎′ leaves the first column untouched (note that 𝑖 = 1 is

valid). If 𝜎′ does not touch the first column, then so does 𝜎′−1, as 𝜎′, 𝜎′−1 should

be both in the group 𝑆𝑛,[2,𝑛] (subgroup of 𝑆𝑛). By the previous property, if 𝜎(𝐴) =
𝜎′ ◦ (1 𝑖) (𝐴) admits a perfect HNF, then so does 𝜎′−1 ◦𝜎′ ◦ (1 𝑖) (𝐴) = (1 𝑖) (𝐴). �

Now we just need to pick which value 𝑖 in (1 𝑖) to choose. The trivial property

below solves the problem.

Property 19 (Stability of the lower-left corner by permutation).

Let 𝐴 ∈ Z𝑛×𝑛 in HNF. For all 𝑛 ≥ 𝑗 > 𝑖 ≥ 1, 𝐴′ the HNF of (1 𝑖) (𝐴) admits

𝐴 𝑗 , 𝑗 = 𝐴
′
𝑗 , 𝑗
.

Proof. The columns 𝑘 ≥ 𝑗 are already reduced, therefore do not change. �

Thus, the unique permutation we can try universally is (1 𝑛). If 𝐴 does not admit

a perfectHNF but neither does (1 𝑛) (𝐴), then no permutation will work. Of course,

to reduce complexity cost, we can also choose to pick (1 𝑘) where 𝑘 is the biggest

integer where 𝐴𝑘,𝑘 ≠ 1.

Example 10. Swap and recompute.

33 0 0 0 0 0

32 5 0 0 0 0

12 4 1 0 0 0

31 2 0 1 0 0

19 1 0 0 1 0

27 3 0 0 0 1


Permute−−−−−−−→



0 33 0 0 0 0

5 32 0 0 0 0

4 12 1 0 0 0

2 31 0 1 0 0

1 19 0 0 1 0

3 27 0 0 0 1


Recompute
−−−−−−−−−→



165 0 0 0 0 0

160 1 0 0 0 0

64 0 1 0 0 0

157 0 0 1 0 0

96 0 0 0 1 0

138 0 0 0 0 1


We know that if a HNF is perfect, then its associated lattice is co-cyclic and thus

lies within the class of lattices in which the average-case to worst-case reduction from

[GINX16] applies. The first question that comes to mind is, can we actually generate

all the co-cyclic lattices this way? The answer is obviously no, as the cryptographic

𝑞-ary lattices with prime 𝑞 are obviously not co-cyclic under any permutation. To

test the efficiency of our conversion rate, we tried to apply the permutation to a set

of random elements of [−7, 7]𝑛×𝑛 which did not have a HNF. The success rate is

presented in table 3.1

Dimension 50 80 100 120 150 180 200 300

Sucess rate 0.756 0.726 0.741 0.748 0.744 0.749 0.728 0.737

Table 3.1: Conversion success rate of imperfect into perfect form

Let us recall that [NS15] reported an asymptotic proportion of 85% of co-cyclic

lattices as determinant grows. As we discarded all perfect form HNF, for our ex-

perimentations, we are actually close to sampling most of them.
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Now that we know how to compute intersections and attempt to generate perfect

HNF, we present the overall idea of our work.

3.3 Structure of lattice intersections

The two previous sections showed we can easily compute intersections, and we can

easily factorize a lattice into an intersection of co-prime lattices, i.e lattices with co-

prime determinants. The natural question that follows is a question that is central

to the security patch we aim to apply: if we know the shortest vectors of several

prime lattices, can we easily guess the shortest vector of their intersection? The

answer is again no, and to explain why, we showcase in the next example a direct

consequence of the properties we have previously proven in the case of cryptographic

𝑞-ary lattices:

Example 11. Shortest vectors of intersections in the case of cryptographic 𝑞-ary

lattices:

𝐴 =



23 0 0 0 0 0

0 23 0 0 0 0

0 0 23 0 0 0

17 16 12 1 0 0

12 8 22 0 1 0

19 21 13 0 0 1


= 𝐴(1) ∩ 𝐴(2) ∩ 𝐴(3)

Shortest vector :
[
2 −1 1 1 1 1

]
𝐴(1)

23 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

17 0 0 1 0 0

12 0 0 0 1 0

19 0 0 0 0 1


Shortest vectors:[
0 1 0 0 0 0

][
0 0 1 0 0 0

]

𝐴(2)

1 0 0 0 0 0

0 23 0 0 0 0

0 0 1 0 0 0

0 26 0 1 0 0

0 8 0 0 1 0

0 21 0 0 0 1


Shortest vectors:[
1 0 0 0 0 0

][
0 0 1 0 0 0

]

𝐴(3)

1 0 0 0 0 0

0 1 0 0 0 0

0 0 23 0 0 0

0 0 12 1 0 0

0 0 22 0 1 0

0 0 13 0 0 1


Shortest vectors:[
1 0 0 0 0 0

][
0 1 0 0 0 0

]
Intuitively, we know problems on 𝑞-ary lattices are hard thanks to Ajtai’s work

[Ajt96]. But the problem is trivially easy on its overlattice decomposition elements.

Therefore, let us define a “new” problem:

Definition 38 (Shortest vector in an intersection).

Let L1,L2 two lattices with determinant 𝑑1, 𝑑2, which shortest vectors are known.

Find the shortest vectors in L1 ∩ L2.
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Note that we call it here “new” as, to the best of our knowledge, it wasn’t ex-

plicitely stated in the literature. However the problem was probably known to be

hard in academic folklore: it is possible that nobody thought it could be worth

publishing before. To the best of our knowledge, the only study on the matter was

[PS09]: the problem is seemingly hard when relatively short vectors were completely

disjoint, but is definitely easier when they had relatively short common vectors.

Which gives us the two following problems:

Definition 39 (Common Shortest Vector Problem (CSVP)).

Let L1, ...,L𝑘 a set of 𝑘 lattices with determinant 𝑑1, ..., 𝑑𝑘 , which share at least a

common shortest vector 𝑣. Find 𝑣.

Definition 40 (Shortest Disjoint Vector Problem (SDVP)).

Let L1, ...,L𝑘 a set of 𝑘 lattices with determinant 𝑑1, ..., 𝑑𝑘 , such that

∀𝑖 ∈ [1, 𝑘], ∃ 𝑗 ≠ 𝑖, ∀𝑣 ∈ L𝑖, ‖𝑣‖2 < 𝑛
√︁
𝑑 𝑗 =⇒ 𝑣 ∉ L 𝑗

find the shortest vectors of L1 ∩ ... ∩ L𝑘 .

CSVP is the problem tackled in [PS09], while SDVP seems to be relatively

hard. The conclusion of [PS09] was basically to advocate the use of paddings to

avoid CSVP and have specific instances of SDVP instead (adding random noise

to common vectors). As far as SDVP is concerned, it is unclear where it was previ-

ously tackled on in the literature. Clearly the hardness of the latter depends on the

number on multiple factors, and heuristically the problem can be seen hard on cryp-

tographic 𝑞-ary lattices: for those lattices most SVP instances can be converted into

a SDVP instance as shown in the previous example. This definition of the problem

does not apply when a lattice has a prime determinant, but as primes numbers have

a vanishing densitya we do not consider this argument as making SDVP necessarily

simpler than SVP.

For now we are consider the problem for 𝑘 = 2, i.e for the intersection of only

two lattices. Another “simpler” problem then, would be given an intersection of

two lattices, which one is the “easy” one. In a sense, it could be seen as another

“easier” related problem of Decision Learning With Errors (DLWE), depending on

the instances considered. Here the problem is voluntarily defined in a general sense,

to fit as many instances as possible:

Definition 41 (Decision Lattice Family Problem (DLFP)).

Let 𝑆1, 𝑆2 be two lattice families. Given any number of random HNF basis of

aThe Prime Number Theorem was allegedly demonstrated independently by both Jacques
Hadamard [Had96] and Charles-Jean de la Vallée Poussin [DlVP97]. Note that the references
does not reflect the date of the findings (1986).
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lattices sampled with chance 1/2 from either 𝑆1 or 𝑆2, decide if L ∈ 𝑆1 or L ∈ 𝑆2,
or both.

Clearly, the hardness of the problem depends on the families 𝑆1, 𝑆2 chosen. For

example, given the set 𝑆1 of cryptographic 𝑞-ary lattices and the set 𝑆2 of co-cyclic

lattices, the answers would be trivial. The same can be heuristically said about the

set of ideal lattices and the set of non-ideal lattices. However, seemingly non-trivial

examples can be constructed. Let 𝑆1 be the set of HNF of diagonal dominant ma-

trices, and 𝑆2 the set of random HNF with similar determinants according to the

distribution of [GM03] but in which we excludes 𝑆1, can we distinguish in polyno-

mial time whether any lattice L is in 𝑆1 or 𝑆2? The problem seems to be an open

question: unlike DLWE the problem which compares two specific distributions, to

the best of our knowledge DLFP is not proven to be NP-hard for any particular

dilemma (obviously not counting the Gaussian vs uniform distribution).

3.4 Example application: reinforcing GGH

We now present our application of the previously described theoretical tools to con-

struct a security patch to structural weakness. Here, we fix the structural weakness

of GGHEncrypt (note this does not concern GGHSign) present in the public key.

3.4.1 Modification of GGH using an intersecting lattice

If we denote 𝑃𝑘 the public key and 𝑆𝑘 our private key, our modification is to go from

L(𝑃𝑘 ) = L(𝑆𝑘 ) to L(𝑃𝑘 ) = L(𝑆𝑘 ) ∩L(𝑅) where 𝑅 is a random non-singular integer

matrix of dimension 𝑛. The modified GGH scheme, informally, is:

� 𝐾𝑒𝑦𝐺𝑒𝑛2(𝑛). Take a “good” basis 𝑆𝑘 = (𝐷 𝐼𝑑) + ([−𝜇, 𝜇]𝑛∗𝑛) of dimension 𝑛,

compute the HNF basis 𝑃𝑘 of L(𝑆𝑘 ) ∩ L(𝑅) where 𝑅 is a random integral

matrix of dimension 𝑛 with a perfect HNF with a determinant co-prime to 𝑆𝑘

and provide 𝑃𝑘 as the public key and keep 𝑆𝑘 as the secret key.

� 𝐸𝑛𝑐𝑟𝑦𝑝𝑡2(𝑃𝑘 , 𝑚). Use 𝑃𝑘 to encrypt a message 𝑚 encoded in a small vector,

by adding a random vector 𝑣 of L(𝑃𝑘 ). Outputs 𝑐 = 𝑚 + 𝑣.

� 𝐷𝑒𝑐𝑟𝑦𝑝𝑡2(𝑆𝑘 , 𝑐). Use 𝑆𝑘 to decrypt a message the same way as in a classical

GGH, separating 𝑚 from 𝑣 by solving the corresponding BDD instance and

thus recovering 𝑚.

The secret key in our experiments used a diagonal coefficient was 𝐷 =
√
𝑛 and a

low noise of random values in 𝜇 = 1 and our security analysis will be based on those
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parameters. However, we do not see a problem with taking a noise within 𝜇 = 4 in

the original GGH proposal in [GGH97] or when as it was the case when Micciancio

applied the use of a HNF [Mic01]. Following the work in [Mic01] and [GGH97], we

can also choose our messages such that ‖𝑚‖2 ≤ 1
2 min ‖𝑠∗

𝑖
‖2 where 𝑠∗

𝑖
is the 𝑖-th vec-

tor of the orthogonalized basis obtained from the secret key using the Gram-Schmidt

orthogonialization process, or simply encode it as a vector in [1 − 𝜇, 𝜇 − 1]𝑛.

However, the message space we actually used in the original paper was differ-

ent as we resorted to a padding technique to attempt to reach IND-CCA security.

Note that the main contribution of the paper was not to propose a “new” practical

scheme, but to use lattice intersections as a mean to hide the exploitable mathe-

matical structure of secret keys, and in this example case, the GGH keys. Thus,

we will not mention padding techniques in this thesis: those can always be added

on top of the underlying hard mathematical problem.

The decryption works as 𝑣 ∈ L(𝑃𝑘 ) ⊂ L(𝑆𝑘 ), thus separating 𝑚 from 𝑣 as before.

We will discuss security concerns related to this scheme in a next subsection, espe-

cially why det(𝑅) have to be co-prime to 𝑆𝑘 and have a perfect HNF. In particular,

we will show that structural attacks are no longer effective when 𝑅 is sufficiently

large. L(𝑃𝑘 ) no longer admits a diagonally dominant basis 𝐷 + 𝑅 therefore the

BDD𝛾 key recovery attack on vectors of 𝐷 𝐼𝑑 is no longer applicable.

Nevertheless, the ratio between the size of the messages we can decrypt and the

size of the public key will decrease. We will explicitly express the factor later.

3.4.2 Modified attack on the intersected GGH key

As stated earlier, the structural key recovery attack usingBDD𝛾 on vectors of 𝐷 𝐼𝑑 in

L(𝑃𝑘 ) does not work since L(𝐷 𝐼𝑑 + 𝑅) ≠ L(𝑃𝑘 ), but L(𝐷 𝐼𝑑 + 𝑅) = L(𝑆𝑘 ) ⊂ L(𝑃𝑘 ).
Adapting this attack to L(𝑃𝑘 ) requires finding L(𝑆𝑘 ) in L(𝑃𝑘 ), and then using the

structural key recovery attack. We assume the existence of a function Δ which finds

the “optimal” overlattice L(𝑆𝑘 ) given L(𝑃𝑘 ) (the overlattice that admits a diagonal

basis, experimental data suggests it is indeed the “weakest” integral overlattice).

To the best of our knowledge, the difficulty of recovering L(𝑆𝑘 ) in L(𝑃𝑘 ) is mostly

dependent on the values of det(𝑃𝑘 ) and det(𝑆𝑘 ). The efficiency of the modified at-

tack is dependent of the efficiency of the overlattice recovery function Δ.

In this case, we will consider 𝑃𝑘 and 𝑅 to have a perfect HNF and 𝑆𝑘 to be able

to be reduced to a perfect HNF as we believe it offers the best security assumptions:
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Algorithm 12 Modified Diagonal Dominant Key recovery attack

Require: 𝑃𝑘 , 𝐷, 𝜙 a BDD𝛾 solver, Δ an “optimal” overlattice
Ensure: 𝑆𝑘 the secret key
1: L ← Δ(L(𝑃𝑘 )) ⊲ Find L = L(𝑆𝑘 ) among all integer overlattices of L(𝑃𝑘 )
2: 𝑆𝑘 ← 𝐷 𝐼𝑑

3: for {𝑖 ∈ [1..𝑛]} do ⊲ Loop on every position of the diagonal
4: 𝑟 ← 𝜙(L, 𝑆𝑘 [𝑖]) ⊲ Find 𝑟 the difference between (0, ..., 𝑑𝑖, ..., 0) and L
5: 𝑆𝑘 [𝑖] ← 𝑆𝑘 [𝑖] + 𝑟

return 𝑆𝑘

a perfect HNF gives a co-cyclic lattice, which is within the family of hard lattices

shown in [GINX16]. It also allows us to make heuristic tests to compare with other

co-cyclic lattices of the same determinant using directly the distribution given by

[GM03].

If we intersect two lattices whoseHNF basis are not perfect or whose determinant

are not coprime, the result will not be perfect (property 15) or common factors will

appear (properties 14,13).

In our case, considering 𝐶 = 𝑃𝑘 , 𝐴 = 𝑆𝑘 and 𝐵 = 𝑅, we have to avoid L(𝑆𝑘 ) to be

easily recovered. Property 12 is also interesting for an attacker as it reveals one of

the main issue of our approach which we discuss in the next subsection. Let 𝜔(𝑀)
be the number of prime factors counted without multiplicity in the decomposition

of det(𝑀). Then

det(𝐶) =
𝜔(𝐴)∏
𝑖=1

𝑝𝑖 , det(𝐵) =
𝜔(𝐵)∏
𝑖=0

𝑞𝑖 , det(𝐶) = (
𝜔(𝐴)∏
𝑖=1

𝑝𝑖) (
𝜔(𝐵)∏
𝑖=1

𝑞𝑖) (3.1)

which means 𝜔(𝐶) = 𝜔(𝐴) + 𝜔(𝐵) and very easily lead to the following property:

Property 20 (Number of possible decompositions for a perfect HNF).

Let 𝐶 be a perfect HNF square matrix of dimension 𝑛. The couples (L(𝐴),L(𝐵))
where 𝐴 and 𝐵 are in perfect HNF of the same dimension with det(𝐴) and det(𝐵)
co-prime such that L(𝐶) = L(𝐴) ∩ L(𝐵) and det(𝐴)det(𝐵) = det(𝐶) corresponds
exactly to the couples (𝑎 > 0, 𝑏 > 0) where 𝑎 and 𝑏 are co-primes such that 𝑎𝑏 =

det(𝐶): there is exactly 2𝜔(𝐶) possibilities. Each possible solution (L(𝐴),L(𝐵))
corresponds exactly to (det(𝐴), det(𝐵)).

Proof. Trivial using property 12 �

Therefore recovering L(𝐴) from L(𝐶), i.e., the complexity of the overlattice dis-

tinguisher Δ, is assumed to be at least polynomially equivalent to distinguishing 𝑝𝑖

from 𝑞𝑖 in equations 3.1. As we work in post-quantum cryptography we assume
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that factorization problem can be solved in polynomial time [Sho97]. As we explain

later, we will purposely choose keys with very smooth determinants, which make

factorization easy even on the non-quantum case.

As 𝜔(𝐶) is lower-bounded by 𝜔(𝐴) and have no upper bound limit (as we have

complete control over det(𝐵)), one might first think that the number of combina-

tions to search is 2𝜔(𝐶). However, if we assume an oracle that knows what type

of lattice to search for, then it is unsafe to assume the attacker has no knowledge

of 𝜔(𝐴). We then assume an attacker have possession of exactly 𝜔(𝐴) and 𝜔(𝐵),
the number of combinations he has to try is then

(𝜔(𝐶)
𝜔(𝐴)

)
=

(𝜔(𝐶)
𝜔(𝐵)

)
b. In practice, the

attacker will probably only have an approximation which grows the number of com-

binations by quite a lot which is a much bigger number depending on how precise

the approximation is, but for simplicity we assume he has the exact value.

Hence, if 𝜔(𝐶) is small or if 𝜔(𝐴) or 𝜔(𝐵) is too small relative to the number of

possibilities, it might be too easy to recover L(𝐴), which would nullify the point of

our modification. In practice, if we let the scheme untouched as it is, then 𝜔(𝐴) will
most often be very low, as illustrated by the following theorem:

Theorem 4 (Erdös - Kac Theorem [EK40]).

Let 𝜌(𝑛) the number of prime factors of the integer 𝑛, then the probability distribu-

tion of 𝜌(𝑛)−log log 𝑛√
log log 𝑛

is the standard normal distribution.

Experimental data on low dimensions suggest that 𝜔(𝑃𝑘 ) is indeed too low to

ensure a reasonable number of combinations. To deal with that problem, we first

optimistically assume that without the knowledge of det(𝑆𝑘 ), an attacker will have

no choice rather than trying every possible combination stated by the property

20. Our proposed solution to this apparent weakness is to ensure the number of

combinations is sufficiently large to make sure it is not feasible to recover L(𝑆𝑘 ).
Therefore our target public key should have this form:

𝑃𝑘 =


det(𝑃𝑘 ) 0 ... 0

𝑃𝑘 [2, 1]
... 𝐼𝑑𝑛−1

𝑃𝑘 [𝑛, 1]


, det(𝑃𝑘 ) =

∏𝜔(𝑃𝑘 )
𝑖=1 𝑝𝑖

∀𝑖 ≠ 𝑗 , 𝑔𝑐𝑑 (𝑝𝑖, 𝑝 𝑗 ) = 1

where 𝜔(𝑆𝑘 )+𝜔(𝑅) = 𝜔(𝑃𝑘 ) is large enough to allow a large number of combinations.

To achieve this, we must generate 𝑆𝑘 and 𝑅 such that HNF(𝑆𝑘 ) and 𝑅 have the

same form as 𝑃𝑘 (Properties 12,20) while controlling 𝜔(𝑆𝑘 ) and 𝜔(𝑅).
bWe note the notation 𝐶𝑛

𝑟 is often used instead of
(𝑛
𝑟

)
. They mean “𝑛 choose 𝑟” and equal

𝑛!
𝑟 !(𝑛−𝑟 )!
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3.4.3 Countermeasure by controlling 𝜔(𝑆𝑘) and 𝜔(𝑅)

From the last subsection two properties must arise from our keys if we want our

modification to be effective: one is the perfectness of our HNF basis, the other the

smoothness of our keys’ determinants.

First of all, we begin by showing the generation algorithm of the random matrix

𝑅. We first choose the determinant det(𝑅) we want to obtain, and create

𝑅 =


det(𝑅) 0 ... 0

𝑅[2, 1]
... 𝐼𝑑𝑛−1

𝑅[𝑛, 1]


such that ∀𝑖 ∈ [2, 𝑛], 𝑅[𝑖, 1] are random integer values in [0, det(𝑅) − 1].

With the knowledge of how to generate 𝑅, one simple way to maximize 𝜔(𝑃𝑘 )
and thus the number of possibilities is to increase 𝜔(𝑅) until we reach the num-

ber of required combinations without caring about 𝜔(𝑆𝑘 ). However, this is not

wise: we mentioned before that the ratio size of the message over size of the public

key is lower in our modified GGH than in the original GGH. As in both schemes

we use the same private key the size of the message 𝑚 we decrypt remain unchanged.

Let 𝑃𝑘 𝑜𝑟𝑖 be the public key of the original GGH scheme (i.e 𝐻𝑁𝐹 (𝑆𝑘 )). Noting
that 𝑆𝑖𝑧𝑒(𝑃𝑘 ) ≈ 𝑆𝑖𝑧𝑒(𝐻𝑁𝐹 (𝑆𝑘 )) + 𝑆𝑖𝑧𝑒(𝑅) = 𝑆𝑖𝑧𝑒(𝑃𝑘 𝑜𝑟𝑖) + 𝑆𝑖𝑧𝑒(𝑅) ≈ 𝑆𝑖𝑧𝑒(𝑃𝑘 𝑜𝑟𝑖) +
𝑛 log(det(𝑅)). Let 𝑐 be the factor determining the ratio decrease. Then we have:

𝑐 ≈ 𝑆𝑖𝑧𝑒(𝑃𝑘 𝑜𝑟𝑖)
𝑆𝑖𝑧𝑒(𝑃𝑘 𝑜𝑟𝑖) + 𝑛 log(det(𝑅))

=
𝑆𝑖𝑧𝑒(𝐻𝑁𝐹 (𝑆𝑘 ))

𝑆𝑖𝑧𝑒(𝐻𝑁𝐹 (𝑆𝑘 )) + 𝑛 log(det(𝑅))
(3.2)

Therefore compared to the original GGH the size increase of the public key is

solely determined by det(𝑅). Thus, for the benefit of key size, we choose to have

𝜔(𝑅) < 𝜔(𝑆𝑘 ). We will discuss later what this implies at the end of this subsection.

We know have to generate 𝑆𝑘 . It is a bit harder to obtain a perfect HNF of a

diagonal dominant matrix with a chosen determinant det(𝑆𝑘 ), but the permutation

technique described previously help tackling the issue. Our targeted end result is

𝐻𝑁𝐹 (𝑆𝑘 ) =


det(𝑆𝑘 ) 0 ... 0

𝐻𝑁𝐹 (𝑆𝑘 ) [2, 1]
... 𝐼𝑑𝑛−1

𝐻𝑁𝐹 (𝑆𝑘 ) [𝑛, 1]


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such that ∀𝑖 ∈ [2, 𝑛], HNF(𝑆𝑘 ) [𝑖, 1] are integer values in [0, det(𝑆𝑘 ) − 1] and

det(𝑆𝑘 ) =
∏𝜔(𝑆𝑘 )
𝑖=1 𝑝𝑖 and ∀𝑖 ≠ 𝑗 , 𝑔𝑐𝑑 (𝑝𝑖, 𝑝 𝑗 ) = 1.

In the following, we will illustrate and then explain the way to achieve this: let

𝑆′
𝑘
∈ Z(𝑛−1)×(𝑛−1) be a diagonal dominant matrix with diagonal coefficient 𝐷 whose

HNF is perfect, and 𝑐 ∈ [−𝜇, 𝜇] (𝑛−1)×1 where 𝜇 is also the bound of the noise of 𝑆′
𝑘
.

We concatenate 𝑐 on the left of 𝑆′
𝑘
and compute the HNF of the result to obtain

𝑆′′
𝑘
.

𝑆′′
𝑘
= 𝐻𝑁𝐹

©­­«
 𝑐 𝑆′

𝑘


ª®®®¬ =


𝑎 𝑏 0 ... 0

...
... 𝐼𝑑𝑛−2


If 𝑎 = 𝑆′′

𝑘
[1, 1] and 𝑏 = 𝑆′′

𝑘
[1, 2] are not co-prime we retry with a different column

𝑐 until those two values are co-primes. Once they are co-prime we compute 𝑢, 𝑣

such that |𝑢𝑎 − 𝑏𝑣 | = det(𝑆𝑘 ), ensuring det(𝑆𝑘 ) is co-prime with either 𝑎 or 𝑏 (for

simplicity we assume 𝑏 is co-prime with 𝑢) , such that

2𝑑 × det(𝑆′𝑘 ) > det(𝑆𝑘 ) > 𝑑 × det(𝑆′𝑘 ) and det(𝑆𝑘 ) - det(𝑆′𝑘 ) (3.3)

The probability of having 𝑆′
𝑘
being perfect and 𝑎, 𝑏 being co-prime is experimen-

tally 1/2. This goes in line with the numbers of table 3.1 to obtain a perfect HNF,

and the chance of two random integers being coprime according to [HW38]c are

around 6/𝜋2 ≈ 61% (0.8 × 0.6 = 0.48).

We create a line 𝑙 of 𝑛 entries with 𝑙 [1] = 𝑣 and 𝑙 [2] = 𝑢, reduce 𝑙 with Babai’s

nearest plane algorithm and concatenate the result 𝑙′ to 𝑐 and 𝑆′
𝑘
as shown below to

obtain 𝑆𝑘 as we wanted, which is still a diagonal dominant matrix relatively close

of parameters 𝑑 and 𝜇 and possess a perfect HNF.

𝑙 = [𝑣, 𝑢, 0, ..., 0], 𝑙′ = 𝑁𝑒𝑎𝑟𝑒𝑠𝑡𝑃𝑙𝑎𝑛𝑒(𝑙, 𝑆′′
𝑘
)

𝑆𝑘 =


𝑙′[1] 𝑙′[2] ... 𝑙′[𝑛]

𝑐 𝑆′
𝑘


And the HNF of 𝑆𝑘 is perfect, since:

cThe result is attributed to Euler in 1735 but we lack a reference. Nevertheless, the one we are
giving contains a proof: the theorem is numbered 332 at the 269-th page of the 4th edition
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𝐻𝑁𝐹 (𝑆𝑘 ) = 𝐻𝑁𝐹

©­­­­­«

𝑙′[1] 𝑙′[2] ... 𝑙′[𝑛]

𝑐 𝑆′
𝑘


ª®®®®®¬
= 𝐻𝑁𝐹

©­­­­­­­­«



𝑣 𝑢 0 ... 0

𝑎 𝑏 0 ... 0

...
... 𝐼𝑑𝑛−2



ª®®®®®®®®¬
and because we ensured 𝑎 and 𝑏 co-prime, |𝑢𝑎−𝑏𝑣 | = det(𝑆𝑘 ) and 𝑢 and 𝑏 co-primes:

𝐻𝑁𝐹 (𝑆𝑘 ) =


det(𝑆𝑘 ) 0 ... 0

... 𝐼𝑑𝑛−1


Now that we know how to create 𝑆𝑘 and 𝑅 with chosen determinants, we must de-

cide how to choose det(𝑆𝑘 ) and det(𝑅) to obtain secure values of 𝜔(𝑆𝑘 ) and 𝜔(𝑃𝑘 ).
This is how we suggest to do it and use in most experimentations. We first generate

𝐷𝑑 as we see fit (the same matrix used when generating 𝑆𝑘), and we fix a prime

we call a “scaling factor” that must be prime to det(𝑆′
𝑘
), then enumerate all primes

from a certain point (at least strictly greater than the “scaling factor”) and choose

to pick them randomly until their product is bigger than 𝑆′
𝑘
(and prime to det(𝑆′

𝑘
)).

We denote that set of primes 𝑆𝑝. We then take as much factors of 𝑆𝑝 as we see fit to

construct det(𝑅), and keep the rest and multiply the remaining product by a power

of the scaling factor to respect the bound given by equation 3.3. Suppose that the

scaling factor is given away for free, the number of combinations an attacker has to

search is indeed
( |𝑆𝑝 |
𝜔(𝑅)

)
.

Overall, the generation of keys is done in polynomial time: the computations of

the HNF and Babai’s Nearest Plane algorithm are the most time consuming oper-

ations and they both run in polynomial time.

We present in table 3.2 the minimum ratio 𝜔(𝑅)/𝜔(𝑃𝑘 ) required to go over some 2𝜆

combinations in total using the algorithm we just described, and to ensure 𝜔𝑅 < 𝜔𝑆𝑘

we use a scaling factor of 2, enumerating and choosing all primes from 3 until the

product 𝑆𝑝 is bigger than det(𝑆′
𝑘
)𝐷, assuming a diagonal coefficient of 𝐷 =

√
𝑛 where

𝑛 is the dimension and getting an average determinant of 𝑛𝑛/2 for 𝑆𝑘 . When 𝑆𝑝 is

not sufficiently large, then we put the symbol -.

Table 3.3 shows the different results obtained when enumerating from 2741 which

is the 400𝑡ℎ prime and then his successive primes.

We put a blank entry at 𝜆 = 160 for dimension 𝑛 = 800, but we are actually very
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𝜆 300 400 500 600 700 800

80 34/87 24/115 21/142 19/168 18/195 17/222
100 - 37/115 29/142 26/168 24/195 23/222
120 - - 42/142 35/168 32/195 29/222
140 - - - 48/168 41/195 37/222
160 - - - 69/168 53/195 47/222

Table 3.2: Number of primes required to achieve 2𝜆, starting from 3

𝜆 200 300 400 500 600 700 800

80 - - - 28/96 23/119 21/141 19/164
100 - - - - 35/119 30/141 27/164
120 - - - - - 42/141 36/164
140 - - - - - - 49/164
160 - - - - - - -

Table 3.3: Number of primes required to achieve 2𝜆, starting from 2741

close with log2(
(164
82

)
) > 159.99. If we want to enforce 𝜔(𝑅) < 𝜔(𝑆𝑘 ) while using

the same algorithm, we only need to increase 𝑑 to a bigger value, increasing det(𝑆𝑘 )
and thus 𝜔(𝑃𝑘 ). The table 3.4 shows the minimum amount of primes to put in 𝑆𝑝,

which means the minimum value of 𝜔(𝑃𝑘 ) (+1 if we count the scaling factor) to

achieve a number of combinations strictly superior to 2𝜆.

𝜆 80 100 120 140 160 180 200 220 240

𝜔(𝑃𝑘 ) 84 104 124 144 165 185 205 225 245

Table 3.4: Number of primes 𝜔(𝑃𝑘) required to achieve 2𝜆

As a “rule of thumb”, to achieve a number of combinations of 2𝜆 we require

|𝑆𝑝 | = 𝜔(𝑃𝑘 ) + 1 > 𝜆 + 4 for 𝜆 ∈ [1, 250]. We can deduce that in practice the number

of combinations will always be as high as we need it to be, either by increasing 𝑑 the

diagonal coefficient of our secret key 𝑆𝑘 or by adding factors to 𝑅. Therefore security

concerns do not lie in the number of combinations (L(𝑆𝑘 ),L(𝑅)) any longer.

3.4.4 Key sizes comparisons and perfect HNF

First of all, we would like to stress that the following comparison only aims to show

that our obfuscation technique applied to GGH is not impractical as far as storage

is concerned. LWE-based cryptosystems usually rely on stronger security assump-

tions than our proposal and other cryptosystems like NTRU have been studied for

a much longer time: the lack of literature on lattice intersections do not let us claim

the same level of confidence in security assumptions.
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Dimension q Public Key size per User

128 2053 1.8 × 105
192 4093 2.9 × 105
256 4093 4.0 × 105
320 4093 4.9 × 105

𝑠

𝑛
125 150 175 200 225 250

20 6.1 × 104 8.8 × 104 1.2 × 105 1.6 × 105 2.1 × 105 2.6 × 105
40 6.5 × 104 9.4 × 104 1.3 × 105 1.7 × 105 2.2 × 105 2.7 × 105
60 7.7 × 104 1.0 × 105 1.4 × 105 1.8 × 105 2.3 × 105 2.8 × 105
80 - - 1.6 × 105 2.0 × 105 2.4 × 105 2.9 × 105
100 - - - 2.2 × 105 2.6 × 105 3.1 × 105

𝑠

𝑛
275 300 325 350 375 400

20 3.2 × 105 3.9 × 105 4.6 × 105 5.3 × 105 6.2 × 105 7.1 × 105
40 3.3 × 105 4.0 × 105 4.7 × 105 5.5 × 105 6.3 × 105 7.3 × 105
60 3.4 × 105 4.1 × 105 4.9 × 105 5.6 × 105 6.5 × 105 7.5 × 105
80 3.6 × 105 4.3 × 105 5.0 × 105 5.8 × 105 6.7 × 105 7.6 × 105
100 3.8 × 105 4.4 × 105 5.2 × 105 6.0 × 105 6.9 × 105 7.8 × 105

Table 3.5: LWE key sizes from Lindner and Peikert on top, key sizes from
perfect HNF and intersections at the bottom (𝑛 = 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛, 𝑠 = log2

(𝜔 (𝑃𝑘 )
𝜔 (𝑆𝑘 )

)
)

Here we compare in table 3.5 our public key sizes to to the public key sizes (in bits)

presented in Lindner and Peikert’s work for LWE-based encryption [LP11] and the

key sizes we obtain with intersections (in average). We only compare with the size

of their keys per user, and not their full key which is already much bigger. Note that

unlike 𝑞−ary lattices the value of the determinant is not set at the key generation,

but usually do not stray away from each other by too much bits. To compute the

key size of a perfect HNF, one just have to compute look at the number of bits of

the determinant, and multiply it by the lattice dimension. For dimension 𝑛, we use
√
𝑛 as the diagonal coefficient and [−1, 1] as noise interval.

As we see, their partial public key is only smaller than our full public keys for

higher dimensions. Furthermore, the techique used in their scheme is a very clever

way to delegate part of the key to a trusted source or to the user that is an in-

stance from an abstract system presented by Micciancio [Mic10], while he scheme

we present uses the basic setup from the GGHEncrypt cryptosystem [GGH97] with

almost no modification. It might be possible that in the future that such techniques

become available for classical random lattices (and most of them admitting a perfect

HNF), leading to better key sizes per user for higher dimensions.
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Perfect HNF also allows us to improve the encryption scheme over the original

GGH as explained in [Mic01]. Instead of sending a vector 𝑐 = 𝑚 + 𝑣 where 𝑣 ∈ L
is random, we can choose 𝑣 such as 𝑣 = (𝑐1, 0, ..., 0) i.e., only a single integer of

size det(L) in average will be sent. This is done by reducing the message 𝑚 by

the Gauss-Jordan method (see example 2) using the public key, which is a perfect

HNF. Furthermore, the security is not affected. Since the transformation will give

the same result as 𝑚 for any 𝑚′ = 𝑚 + 𝑣′ with any 𝑣′ ∈ L, breaking this transfor-

mation will break all schemes which use BDD𝛾 as a security assumption, assuming

of course our new keys are secure. The decryption is left unchanged, since the only

difference is that 𝑐 = 𝑚 + 𝑣′ where 𝑣′ ∈ L is not random anymore. Lindner and Peik-

ert also presented in their paper their different ciphertext size for messages of 128

bits. The smallest ciphertext size they presented was for 𝑛 = 128 and 𝑞 = 2053, and

it has the same size of our average determinant size (hence, in our case, cipertext

size) for a lattice of dimension 𝑛 = 475 and combinations security 𝑠 = 100.

Generating public keys, however, is slow, as it involves computing HNF. How-

ever, research to compute HNF nowadays are mostly done for random matrices

[PS10, PS13] and not targeted at structured matrices, especially ones that arise in

cryptography. A rebound of interest towards HNF in the community might lead to

similar improvements in the future.

On a side note, the fact that we control the determinant of our key also allows us

to use modular inverse for GGH. To the best of our knowledge, modular inverses

are usable and we conducted small experiments that seemed to verify that claim.

3.5 Security of the reinforced GGH

The security assumptions relies on two important points:

� Assumption 1: Recovering the “optimal” integer overlattice is hard. (Δ is

polynomial on the number of combinations).

� Assumption 2: The underlyingBDD𝛾 problem is hard (on our specific keys).

� Assumption 3: The underlying modular knapsack problem is hard (on our

specific keys and messages).

Like every cryptosystem, even when based on a hard problem, what we use is

specific instances of a hard problem, which might not be as hard as the original

problem. Therefore we discuss in the following the special structure which arise

from our scheme. Note that because the main idea is to change the public key
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without changing the secret key while keeping the encryption/decryption process

unchanged, the message space is left unchanged along with the BDD𝛾 problem

from the previous iteration from Micciancio [Mic01], except the lattice has a slightly

bigger determinant.

Furthermore, our first assumption is actually very pessimistic. Micciancio’s scheme

has not been broken asymptotically, and up to this day basis reductions techniques

are still not well understood enough to predict given a HNF how easy it would

be to reduce the corresponding lattice. It is therefore possible that in the future

further theorical studies will allow us to strongly reinforce our first assumption.

Our particular structure (perfect HNF) also allows to convert our instance of the

BDD𝛾 problem to an instance of a single general modular knapsack problem with

very smooth moduli, therefore our third assumption is that our instances of mod-

ular knapsack with smooth determinant are hard, which can be seen as a multiple

modular knapsack with coprime modulis.

3.5.1 Smoothness of determinant

To discuss the problem of the smoothness of the determinant, we assume the exis-

tence of a polynomial time solving oracle which can determine if a combination of

primes lattice is the correct and output a weak basis out of it if yes. In other words,

we assume an attacker can solve the DLFP we defined previously (see definition 41)

in constant time given a combination of primes, and also recover the secret key of

a GGH in constant time given a HNF of the lattice, which is clearly an exaggera-

tion of an attacker’s capacity considering the current state of the art. Nevertheless,

assuming the “weak integer overlattice” detection oracle runs in constant time, the

latter security is bounded by
( 𝜔(𝑃𝑘 )
d𝜔(𝑃𝑘 )/2e

)
, which as we discussed on the previous sec-

tion is not a problem in high dimensions as 𝜔(𝑃𝑘 ) grow big, as in our tests we never

reach that bound (table 3.4).

In a less exaggerated assumption, we also assume that the attacker does not have

an algorithm that permits to eliminate prime overlattices one by one until only fac-

tors of 𝑆𝑘 remains, or something easy to decipher with which would lead to an easier

solution that searching through every possibility, which we think is reasonable as

our experimentations could not distinguish any overlattice from random lattices. If

there was such an algorithm, then this might apply to any random lattice and lowers

the overall security of all lattice problems. However, it is possible that the problem

is much easier depending of the kind of secret keys we actually use and what we

intersect it with, as we previously mentioned when defining DLFP.
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The only attacks based on overlattices according to the best of our knowledge

were one from Becker, Gama and Joux [BGJ13] and one from Gama, Izabachene,

Nguyen and Xie [GINX16] even then the way their overlattices are generated is very

different and does not search for integer overlattices specifically. Aside from the

overlattices consideration, there is also no attack in the best of our knowledge that

makes use of a smooth determinant on random lattices, and other popular schemes

such as NTRU [HPS98] and Ring-Learning With Errors (RLWE) [LPR10] also rely

on lattices with smooth determinants (𝑞−ary lattices have naturally smooth deter-

minants, but again their factorization differ and they are not co-cyclic).

Under all of those assumptions, the total security provided by our enhancement

is either solving the problem directly on the public key, either finding the right com-

bination multiplied by the time of running a detection oracle (find which integer

overlattice is weak), or working in a properly chosen non-integer overlattice of a

large enough volume. The latter possibility, which could seem the most efficient, is

in our opinion not-effective: to the best of our knowledge our system do not hold a

particular weakness towards this approach compared to any other random lattice as

our public key seem to hold the same structure as far as our heuristic experimenta-

tions on HKZ-reduced basis are concerned (see next subsection).

We stress that finding the shortest vector for a small prime overlattice does not

help solving the problem in the ring product in general as shown in the example

11. It is in fact still a research problem to be able to compare two numbers given

their decompositions over a ring product without computing them back, as it is the

main issue with Residue Number System (RNS) (RNS for cryptography is an old

and still active research topic [BP04, GLP+12, BI04, BEM16]). This is even more

problematic when comparing vectors.

3.5.2 Perfectness of basis and primality between factors

Due to Goldstein and Mayer’s work [GM03], taking a perfect hermite normal form

matrix with a random prime determinant can be considered as taking random lat-

tice. As we are intersecting a lot of lattices of this type, with different prime deter-

minants which result in a perfect HNF, we are comparing our results with other

perfect HNF bases with the same determinant and random entries. Since our ex-

perimental results show that 80% of basis generated with coefficients from bounded

entries admits a perfect HNF or are equivalent to one by permutation of columns

(see table 3.1), we believe the comparison to be fair.
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This is further reinforced due to recent works from Nguyen and al [NS15], used

shortly after by Gama and al [GINX16] to make their generalized worst-case to

average-case reduction which allows us to use a much more general lattice form,

namely the co-cyclic lattices, and therefore very different from those 𝑞-ary lattices

first introduced by Ajtai [Ajt96]. And in practice, Chen and Nguyen’s work [CN11]

on Darmstadt’s lattice challenges lead us to think it is easier to solve SVP in a

𝑞-ary lattice than in a random lattice of large volume, therefore in term of basis

recovery attacks the perfect HNF could be actually more desirable.

Furthermore, given a finite set of prime factors on the diagonal, the perfect form

gives the hardest challenge, as it is harder to guess a large number of factors in a

single position rather than a small fixed amount in multiple positions (given the

same total amount of primes), provided we could make sure it wouldn’t be able to

transform into a perfect HNF by permutation (if having a perfect HNF becomes

a weakness, which again is unlikely given the work in [GINX16]).

Having factors prime to each other not only ensures an easier perfect HNF, but

also avoid giving information beneficial to the attacker (as stated previously, using

property 13). As stated before, having a perfect HNF is also desirable for when

managing keys.

3.5.3 Shortest Vector and Basis Structure

Now the problem is to determine whether or not our approximate instances of SDVP

(see definition 40) are hard. We present the result of experimentations for intersect-

ing diagonal dominant type matrices with a random one with a perfect HNF form

below. We chose 3 as our scaling factor, allowing our perturbation matrix to have

a measurable determinant as a power of 2. To determine the impact of the ran-

dom intersection L(𝑅) over 𝑃𝑘 ’s resistance against enumeration and classical lattice

reduction techniques compared to random lattices [Sch10], we also observe the dis-

tribution of coefficients by solving SVP on small dimension (40), comparing them

to the random case (every public key sample is tested with another random lattice

with the same determinant and dimension). It seems like after reaching a size of 32

bits for det(𝑅) there is almost no difference between 𝑃𝑘 or random lattices of the

same determinant, and as the difference tends to decrease very rapidly when det(𝑅)
increases, we scale the graphs to the extremas (Figure 3.1).
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Figure 3.1: Shortest vector’s coefficients distribution. det(𝑅) = 1, 28, 216, 232

However, the obfuscation of L(𝑆𝑘 )’s structure is not exclusive to L(𝑆𝑘 )’ shortest
vectors. We show with the measures of the condition number (table 3.6,3.7,3.8)

that the obfuscation work on whole HKZ-reduced basis of L(𝑃𝑘 ). In that regard,

we compare condition numbers (CN) with the max norm. The test is done in di-

mension 30, 40 and 50 with over 20 matrices per dimension and 20 witnesses per

new determinant, the diagonal dominant type being having noise in [−1, 1] with the

diagonal being d
√
𝑑𝑖𝑚e. We only choose matrices with a perfect form. Every matrix

computed has been HKZ reduced.

det(𝑅) 1 24 28 212 216

Avg CN (inter) 55.33 158.48 199.38 234.25 260.06
Avg CN (rdm) 269.41 273.39 272.88 273.99 273.74

det(𝑅) 220 224 228 232

Avg CN (inter) 263.49 262.40 268.40 263.10
Avg CN (rdm) 267.13 267.31 271.71 272.65

Table 3.6: Condition number of HKZ(𝑃𝑘). Dimension 30, log2(det(𝑆𝑘)) u 79

According to our experimental results there is little influence on increasing the

size of the perturbation over 32 bits, as we get very close to the same condition num-
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det(𝑅) 1 24 28 212 216

Avg CN (inter) 69.52 304.18 400.67 529.02 620.70
Avg CN (rdm) 755.89 760.90 805.09 755.15 789.46

det(𝑅) 220 224 228 232

Avg CN (inter) 691.42 709.63 748.11 769.18
Avg CN (rdm) 786.06 770.28 760.09 786.72

Table 3.7: Condition number of HKZ(𝑃𝑘). Dimension 40, log2(det(𝑆𝑘)) u 113

det(𝑅) 1 24 28 212 216 220

Avg CN (inter) 78.98 524.19 636.06 837.49 1087.47 1426.19
Avg CN (rdm) 2038.68 1976.51 1993.44 1952.17 1944.57 2021.48

det(𝑅) 224 228 232 236 240 244

Avg CN (inter) 1616.31 1682.42 1795.90 1830.14 1870.03 1871.08
Avg CN (rdm) 2074.12 1991.93 1964.16 1979.45 2000.98 1998.67

Table 3.8: Condition number of HKZ(𝑃𝑘). Dimension 50, log2(det(𝑆𝑘)) u 151

ber as a random HKZ reduced matrix with the same determinant. This reflects

the results we have when measuring the distribution of shortest vectors’ coefficients

values. This means that obtaining a good basis of of the public key will allow to

decrypt nearly as well as with a good basis of a random matrix, being very sensitive

to noise. Therefore the only factor to consider is the number of primes, and as we

grow larger in dimension, we will obviously take much bigger primes, ending up in

a noise with a determinant size of over 32 bits. We can then take small primes to

minimize the lattice gap (as we will measure below).

What we need to consider is the possibility to distinguish the different overlattices

very easily (which would nullify our improvement of GGH), or possible to know if

by intersecting different overlattices we could determine if we are getting closer to

the right combination or not. Therefore, we compare condition numbers of 𝑆𝑘 and

𝑅’s overlattices, the intersection of 𝑆𝑘 ’s overlattices and 𝑅’s overlattices separately

or mixed together (with all matrices being HKZ reduced) to HKZ reduced basis

of random lattices of the same respective determinant for every test. The result is

that the overlattices themselves seem to be indistinguishable from random cases.

Since removing several factors of 𝑆𝑘 randomly does seem to make the problem

harder (in the sense that the resulting lattice looks more random than keeping all

factors), this observation should also hold for non-integer overlattices. For now, it

does not seem that an attack on a random overlattice would be more effective.
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3.5.4 Message Recovery Attacks

We now measure the influence of 𝑅 on 𝑃𝑘 against message recovery attacks, and we

will use the lattice gap in that regard. We assume the attack used is the popular

heuristic transformation from CVP to SVP by attacking an extended basis 𝐵 (see

2.5.9). What we need then is closely enough approximate values of 𝜆1(𝐵) and
𝜆2(𝐵). In that regard, we consider 𝜆1(𝐵) the size of our message 𝑚. With maximum

decryption capacity, we have:

| |𝑚 𝑆−1
𝑘
| |∞ ≤ ||𝑚 | |∞ | |𝑆−1𝑘 | |∞ ≤

1
2

As we take the best value possible:

| |𝑚 | |∞ = 1
2| |𝑆−1

𝑘
| |∞

𝜆1(𝐵) = | |𝑚 | |2 ≈
√
𝑛

2| |𝑆−1
𝑘
| |∞

and we assume 𝜆2(𝐵) ≈
√︁

𝑛
2𝜋𝑒𝐷𝑒𝑡 (𝑃𝑘 )

1/𝑛 with the Gaussian Heuristic. It is the best

approximation we can use, as we do not know the length of the shortest vector in

the public key. Therefore the lattice gap is

𝛿(𝑃𝑘, 𝑆𝑘 ) = ( 𝐷𝑒𝑡 (𝑃𝑘 )1/𝑛×2| |𝑆𝑘−1 | |∞√
2𝜋𝑒

)

It is a bit different than most schemes, as our public key does not represent the same

lattice than our private key. The first remark we do when looking at the formula

is that the gap increase as det(𝑅) increase, which might give us a good reason to

carefully manage 𝑆𝑖𝑧𝑒(det(𝑅)) besides key size considerations.

Here, we present our experimental results for the simulations on computing the

root lattice gap (with primes starting from 3, scaling factor 2). From the earlier

work from Gama and Nguyen [GN08], the problem is solvable as soon as the lattice

gap is lower than a fraction of the Hermite factor. We observe the evolution of

the lattice gap for different number of combinations over increasing dimensions, and

it appears that increasing the number of combinations have a lower impact as we

increase dimensions, thus a high value for det(𝑅) is not a problem as dimensions

increase.

As the constants mentioned in Gama and Nguyen’s work [GN08] depends of the

algorithm used and the lattice structure, we scale the curve with factors 0.50 and

0.20. We can observe that, in the pessimistic assumption of a constant of 0.20

(which is not the worst since [GN08] mentions a factor of 0.18 for BKZ-20), we do

not reach the optimal factor of 1.005 (considered by many to be impossible to reach

without proper structure in dimension 500 [GN08]) even past dimension 𝑛 = 850

(figure 3.2).
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Figure 3.2: Root Lattice Gap Evolution from dim 225 to 850, 𝐶 = 1/2 on the
left and 𝐶 = 1/5 on the right

3.6 Open questions and related work

3.6.1 On Ideal Lattices

While we did not experiment much on ideal lattices, we can still assert some (trivial)

results:

Property 21 (Intersection of two ideal lattices contains an ideal lattice).

For two ideal lattices L(𝑝, 𝑓 ),L(𝑞, 𝑓 ), L(lcm(𝑝, 𝑓 ), 𝑞) ⊆ L(𝑝, 𝑓 ) ∩ L(𝑞, 𝑓 )

Proof. lcm(𝑝, 𝑞) ∈ L(𝑝, 𝑓 ) ∩ L(𝑞, 𝑓 ) and the quotient operations still hold. �

Experimentally speaking the equality is often met. Results are unknown to us so

far when intersecting two ideal lattices of different quotients.

Property 22 (Ideal perfect HNF intersections are only made of Ideal perfect

HNF).

Let L1,L2 be two lattices admitting perfect HNF as basis. Then L1∩L2 is an ideal

lattice admitting perfect HNF as a basis if and only if L1,L2 are both ideal lattices.

Proof. Combination of the facts given by the property of the intersection of perfect

HNF and the fact that for a perfect HNF of an ideal lattice, the compressed

representation always work. The compressed representation is also always a basis

of an ideal lattice. �

We would note that the intersection of an ideal lattice to a random lattice is thus

not an ideal lattice. The same with applying a permutation to an ideal lattice as it

destroys the root structure.
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Property 23 (Permutation of the ideal lattice structure).

Let 𝑆𝑛 be the set of permutations of 𝑛 columns. In general, if 𝐻 is the HNF basis

of an ideal lattice and 𝜎 ∈ 𝑆𝑛, L(𝜎(𝐻)) is usually not an ideal lattice.

Proof. The result of the permutation loses the root structure in the general case. �

Using an intersection of permuted ideal lattices could have some cryptographic

uses. The potentially interesting follow-up however is how to exploit this as a crypt-

analytic tool: intersections were used previously for cryptanalysis [PS09] and it is

unknown if new attacks could arise when using specifically crafted intersections. In

particular, most cryptosystems relying on ideal lattices (and module lattices) rely

on consistently using the same quotient polynomial, and it is unclear if that fact is

exploitable.

3.6.2 Recovering a vanishing structure

As a rule of thumb, we usually say that the more “zeroes” a key has, the more

decryption capacity it can offers, and the more computation efficiency too. But this

goes both ways: cryptanalytically, the more “zeroes” a key has, the easier it is to

attack and lattice-based crypto is not an exception [Alb17]. A question is thus how

efficiently can specific combinations of intersections and permutations of lattices can

hide “zeroes”, and if identifiable prime lattices overlattices can be detected by their

sparsity.

This remark however is unknown given several other structures: we know that

ideal lattices are hard to hide, as their HNF is too structured and the same can

be said about module lattices to a certain extent. But the answer could change

depending of the structure considered: tensor-products [FS99], rotations [Slo83],

etc...

3.6.3 Group representation of Gama-Izabachene-Nguyen-Xie

In this chapter we shown that intersections of lattices can be used not only as a

cryptanalysis tool as in [PS09] but also as a cryptographic construction. Intuitively,

we can easily see the parallel between our work and [GINX16, BGJ13]: intersecting

two lattices of co-prime determinant is a construction of two groups to another. If

we intersect two full-rank lattices L1,L2 of dimension 𝑛 of co-prime determinant

𝑝, 𝑞 respectively, then using the same notation as in [GINX16], the intersection is

an application Φ𝑝,𝑞 such that

Φ𝑝,𝑞 : Z𝑛/L1 × Z𝑛/L2 → Z𝑛/(L1 ∩ L2)
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And in the case of perfect HNF lattices given GCD(𝑝, 𝑞) = 1, Φ𝑝,𝑞 is a bijection

Φ𝑝,𝑞 : Z𝑛𝑝 × Z𝑛𝑞 → Z𝑛𝑝𝑞

Not all lattices L such that Z𝑛/L ' Z𝑛𝑝 have hard problems, but in average they

should have. For L2 ⊂ L1, does a weak instance in Z𝑛/L1 ' Z𝑛𝑝 necessarily produces

weaker instances in Z𝑛/L2 ' Z𝑛𝑝𝑞?

From a cryptanalytic point of view, we experimentally showed some weak in-

stances (i.e GGH) can trigger weaker instances, however the weakness is less ap-

parent, and it is still unclear if structural lattice reduction can be tweaked to exploit

it or even find more apparent weaknesses.

From a cryptographic point of view is there any provable injection from weak

instances into Z𝑛/L ' Z𝑛𝑝 to a provably hard or truly random instance of 𝐺 '∏𝑘
𝑖=0(Z𝑛𝑝𝑖 )

𝑚𝑖? We saw on the 𝑞-ary case this is doable, but however the surjection

was trivial and we would need one-way functions with trapdoor. The GCD descent

property showed us 𝑞-ary lattices could be of use, but for key sizes purposes other

families would be more profitable to study.

Summary and conclusion

We presented a previously unused structure of lattice-based cryptography and ap-

plied it to the reinforcement of GGH. As the arising problems are relatively un-

documented, further work would be necessary to either exploit that new structure

for enhancing other schemes, or extend the existing knowledge in cryptanalysis.



Chapter 4

Diagonal-Dominant Lattice-Based

Signatures

We submitted to the NIST PQC Standardization process a lattice-based signature-

scheme based on an old idea of [PSW08], namely the Diagonal Reduction Signature

digital signature scheme DRS. This chapter is mainly a paraphrasing of the work

we have published on this subject, in particular [SPS20]. Before we present our

contributions, we must present the context that led to it.

The theoretical framework of [PSW08], which we will denote PSW as per its

authors Plantard-Susilo-Win, seemed to have been unchallenged for more than 10

years. Personal feedback was that various people tried to break it but failed. Sadly,

there was no paper mentioning trying and failing. The academic silence on the

matter could mean several things:

� The problem is so trivial to break commenting on it is “a waste of time”.

� The problem is hard to break but so unusable building on it is “a waste of

time”.

� Trivial and unusable. The worst of both worlds and we were blind to it.

� The paper was not well-explained, so nobody understood and moved on.

� Influential committee members have beef with the original authors of the pa-

per.

We hopefully believed it was none of the above (but had some doubts with the

last one). Instead, we believed PKC, i.e The International Conference on Practice

and Theory in Public Key Cryptography (and not the more famous Protein kinase

C ), had good reviewers and an internationally well-known program committee of

73
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excellent quality in exactly 2008 (we say nothing of other years).

Thus, the decision was made to present an instantiation of the PSW-signature

framework as a Round 1 Candidate for the NIST PQC Standardization process.

(PSW stands for Plantard-Susilo-Win, as the authors of the original paper [PSW08],

while DRS stands for Diagonal Reduction Signature, a signature scheme based on

the PSW framework and proposed to the NIST.)

4.1 The theoretical framework of Plantard-Susilo-

Win

4.1.1 Before PSW: lattices for number representation

Before we present PSW, we will briefly give some hindsight about “number sys-

tems”, i.e ways to represent a number. The reason might not be apparent, but we

hope a few examples will actually help understand the core ideas behind PSW and

DRS. We are not going to talk about RNS or the CRT which are famous number

systems, but clearly irrelevant for what we present in this chapter. Instead, we are

going to talk about the very basic representations of numbers.

Suppose we want to represent a number 𝑥 in base 𝑘, such that 𝑥 < 𝑘𝑛. Then the

number has the unique following representation:

𝑥 = 𝑥0 + 𝑥1𝑘 + 𝑥2𝑘2 + ... + 𝑥𝑛𝑘𝑛 such that ∀𝑖, 𝑥𝑖 ∈ [0, 𝑘 − 1]

Basically, the role of 𝑘 is mostly to determine the number of symbols used, and the

positions 1, 𝑘, 𝑘2, ..., 𝑘𝑛 are written from increasing power from left to right for a

simple representation when writing the number

𝑥 = “𝑥0𝑥1𝑘𝑥2...𝑥𝑛”

Using 𝑘 = 10 gives us the arabic numerotation most of us use today in science. but

then, what if we decide to strip the condition “∀𝑖, 𝑥𝑖 ∈ [0, 𝑘−1]”? The representation

is then obviously not unique anymore:

𝑥 = (𝑥 − b𝑥/𝑘c) + b𝑥/𝑘c𝑘 =

(𝑥 − (b(𝑥 − b𝑥/𝑘2c)/𝑘c + b𝑥/𝑘2c𝑘2)) + b(𝑥 − b𝑥/𝑘2c)/𝑘c + b𝑥/𝑘2c𝑘2 = ...

Most informed people would see here a reversing of the table euclidean division.

However we are choosing another representation: we can also represent this phe-

nomena by a vector. In the following example we reverse the order, putting the

highest degree on the left:
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1851 ' [1, 8, 5, 1]
1851 = 1 × 103 + 0 × 102 + 85 × 101 + 1 × 100 ' [1, 0, 85, 1]
1851 = 0 × 103 + 18 × 102 + 0 × 101 + 51 × 100 ' [0, 18, 0, 51]

We can see here, that all numbers are obtained by linear combinations by the vectors

of the following matrices:

𝐵10 =


−1 10 0 0

0 −1 10 0

0 0 −1 10

 and in base 𝑘 would give 𝐵𝑘 =


−1 𝑘 0 0

0 −1 𝑘 0

0 0 −1 𝑘


[1, 8, 5, 1] ≡ [1, 0, 85, 1] ≡ [0, 18, 0, 51] mod L(𝐵10)

To decompose vectors in the unique representation we use in “everyday-life”, we

would reduce successively the 𝑖-th coefficient to the maximum with the 𝑖-th vector,

from the first to the last. Which, is rightfully so, the equivalent of an euclidean divi-

sion. Here the reduction works intuitively as we are subtracting some large multiple

of 𝑘 in a position to add a small multiple of 1 in another. What now if we decide

to use number systems that are not the “number-system” lattice we showcased?

Instead of classical euclidean division we could some form of approximation Babai’s

Rounding-Off algorithm (see algorithm 2). Such was the idea of Bajard, Imbert

and Plantard [BIP04]: numbers would be represented by vectors, which grows as

computations are done but can be reduced by lattice reduction. Thus, the main idea

behind PSW is there as quoted initially [PSW08]. To know more about lattices

used as number systems, we refer to [Pla05] as an entry point. For now, we will

continue with the description of the PSW-framework.

4.1.2 Spectral Radius and Eigenvalues

While the following mathematical concepts are not needed to understand DRS,

those are essential to understand the original framework of PSW. Those are the

exact same definitions given in [PSW08] which itself quotes various books. In all

following definitions, 𝑛 ∈ N.

Definition 42 (Polytope Norm).

We denote ‖.‖𝑃 as the matrix norm consistent to the vector norm ‖.‖𝑃 defined as

∀𝑣 ∈ C𝑛, ‖𝑣‖𝑃 = ‖𝑣𝑃−1‖∞ where 𝑃 is invertible.

To compute the polytope norm ‖.‖𝑃 of a matrix, we have ∀𝐴 ∈ C𝑛,𝑛, ‖𝐴‖𝑃 =

‖𝑃𝐴𝑃−1‖∞.

Definition 43 (Eigenvalue).

Let 𝐴 be a square matrix in C𝑛,𝑛, a complex number 𝜆 is called a eigenvalue of 𝐴 if

there exists a column-vector ℎ ≠ 0 such that 𝐴ℎ = 𝜆ℎ. The column-vector ℎ is called

an eigenvector of 𝐴.
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Note that 𝜆 is the typical symbol for eigenvalues, but is also the typical symbol for

a lattice minima (see definition 13). This is not unusual when we work in-between

different fields of mathematics (and/or computer science). While we do use the

same symbol here, we will make it clear context-wise when the symbol represents a

lattice minima or an eigenvalue. Typically, if we are writing about the convergence

of a reduction, the spectral radius or a diagonalization, then we mean an eigenvalue.

If we are discussing about the complexity of a lattice problem or the security of a

cryptosystem, we mean a lattice minima.

Definition 44 (Spectral Radius).

Let 𝐴 be a square matrix in C𝑛,𝑛. We denote 𝜌(𝐴) as the spectral radius of 𝐴 defined

as the maximum of the absolute value of the eigenvalues of 𝐴: 𝜌(𝐴) = max{|𝜆 |, 𝐴𝑥 =
𝜆𝑥}.

The spectral radius we just defined is essentially the cornerstone of all analysis

provided in [PSW08], which is linked to but not mentioned in the original DRS

description [PSDS18].

Theorem 5 (Gelfand’s spectral radius formula).

𝜌(𝑀) = lim𝑘→∞ ‖𝑀 𝑘 ‖1/𝑘

Gelfand’s formula basically states that all norms converges to the spectral radius.

4.1.3 The original PSW framework

While GGH and other lattice-based cryptosystems relied on having a “Good” basis

as a secret key, the definition of “Good” was dependent often relative to the cryp-

tosystem chosen and an arbitrary intuition. In that sense, [PSW08] gives a specific

definition of a good basis.

Definition 45 (A PSW-good basis).

Let 𝐷𝑔, 𝑀 be two matrices and a lattice L such that L = L(𝐷𝑔 − 𝑀). We say

𝐷𝑔 − 𝑀 is PSW-good if and only 𝜌(𝑀𝐷−1𝑔 ) < 1.

Note here that 𝐷𝑔 does not have to be a diagonal matrix. For efficiency and

implementation simplicity however, we usually pick 𝐷𝑔 = 𝐷 𝐼𝑑. This definition of

a “good” basis is born from an approximation of Babai’s Rounding-Off algorithm

[Bab86] for CVP in maximum norm. With that in mind, we present in Alg 13

the reduction algorithm (which is the signing algorithm) born of this approximated

Babai for a lattice L.

However, using a diagonal dominant basis (“weakly” or not), the algorithm can

be simplified to what we will call the PSW-reduction algorithm (see Algorithm 14).
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Algorithm 13 Approximate vector reduction algorithm

Require: A vector 𝑣 ∈, two matrices 𝐷𝑔, 𝑀 such that L = L(𝐷𝑔 − 𝑀) and 𝐷𝑔 is
diagonal invertible.

Ensure: 𝑤 ∈ Z𝑛 such that 𝑤 ≡ 𝑣 ( mod L) and ‖𝑤‖𝐷𝑔
< 1.

1: 𝑤 ← 𝑣

2: while ‖𝑤‖𝐷𝑔
≥ 1 do

3: 𝑞 ← d𝑤𝐷−1𝑔 c
4: 𝑤 ← 𝑤 − 𝑞(𝐷𝑔 − 𝑀)
5: return 𝑤

Algorithm 14 PSW vector reduction algorithm

Require: 𝑣 ∈ Z𝑛, 𝐷𝑔, 𝑀 ∈ Z𝑛×𝑛 such that L = L(𝐷𝑔 − 𝑀) and 𝐷𝑔 is diagonal
invertible.

Ensure: 𝑤 ∈ Z𝑛 such that 𝑤 ≡ 𝑣 mod L and ‖𝑤‖𝐷𝑔
< 1.

1: 𝑤 ← 𝑣

2: 𝑖 ← 0
3: while 𝑘 ≥ 𝑛 do
4: 𝑘 ← 𝑛

5: 𝑞 ← b𝑤𝑖/𝐷𝑖,𝑖c
6: 𝑤𝑖 ← 𝑤𝑖 − 𝑞𝐷𝑖,𝑖
7: for 𝑗 = 0 to 𝑛 − 1 do
8: 𝑤𝑖+ 𝑗 mod 𝑛 ← 𝑤𝑖+ 𝑗 mod 𝑛 + 𝑞𝑀𝑖, 𝑗

9: if |𝑤𝑖+ 𝑗 mod 𝑛 | < 𝐷𝑖+ 𝑗 mod 𝑛, 𝑖+ 𝑗 mod 𝑛 then 𝑘 ← 𝑘 + 1
10: 𝑖 ← 𝑖 + 1
11: return 𝑤

A small MAGMA code can be found in the appendix for diagonal dominant lat-

tices(see code A.3). The PSW vector reduction algorithm however is not proven

to always terminate, and an experimental conjecture was provided to ensure its

termination to a solution.

Conjecture 1 (The PSW conjecture).

If 𝜌(𝑀𝐷−1𝑔 ) < 1/2, then the PSW vector reduction algorithm converges.

Note that the PSW vector reduction algorithm iterates each position successively.

It does not have to be the case. Not only there is often more than one valid ap-

proximation, but its ordering does not matter much as long as there is no infinite

loop: those points can be important for future work in one wishes to pick specific

solutions with respect to statistical properties or other conditions.

Example 12. Example of the reduction with 𝑣 =
[
32 45 37 23

]
and 𝐷 = 10.

𝑀 =


10 −2 3 1

1 10 3 5

2 −4 10 3

−2 5 2 10


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𝑣 ← 𝑣 − 3𝑀1 =

[
32 45 37 23

]
−

[
30 −6 9 3

]
=

[
2 51 28 20

]
𝑣 ← 𝑣 − 5𝑀2 =

[
2 51 28 20

]
−

[
5 50 15 25

]
=

[
−3 1 13 −5

]
𝑣 ← 𝑣 − 1𝑀3 =

[
−3 1 13 −5

]
−

[
2 −4 10 3

]
=

[
−5 5 3 −8

]
Final result: [

32 45 37 23
]
≡

[
−5 5 3 −8

]
mod L(𝑀)[

37 40 34 31
]
≡

[
0 0 0 0

]
mod L(𝑀)

Check equivalency with the HNF(𝑀):

HNF(𝑀) =


7799 0 0 0

3359 1 0 0

1053 0 1 0

3569 0 0 1



Start :
[
37 40 34 31

]
4th coefficient:[

−110602 40 34 0
]

3rd coefficient:[
−146404 40 0 0

]
2nd coefficient:[
−280764 0 0 0

]
1st coefficient:

[
0 0 0 0

]
But note how the reduced solution is not unique and[

−5 5 3 −8
]
≡

[
5 3 6 −7

]
mod L(𝑀)

Given 𝑛 fixed, the initial first instantation of PSW then works as follows:

Setup

� Pick a random matrix 𝑀 ∈ Z𝑛 with “low” values.

� Compute 𝐷 = b2𝜌(𝑀) + 1c

� Compute 𝐻 be the HNF of L(𝐷 𝐼𝑑 − 𝑀).

The public key is given as (𝐷 𝐼𝑑 , 𝐻) and the secret key 𝑀 is kept. Note that 𝑀

was initially set within {−1, 0, 1}𝑛 but that was not made mandatory to function,

neither was the condition 𝐷 = b2𝜌(𝑀) + 1c.

Sign

Given a message 𝑚:

� Hash a message 𝑚 into a random vector ℎ(𝑚) = 𝑥 ∈ Z𝑛 such that ‖𝑥‖𝐷2
𝐼 𝑑
< 1

� Apply the PSW-vector reduction into 𝑥 and save its output 𝑤.

The signature is given as 𝑤. Note ‖𝑥‖𝐷2
𝐼 𝑑
< 1 was also facultative.
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Verify

Given a public key (𝐷, 𝐻) and a signature 𝑤 for a message 𝑚:

� Check if ‖𝑤‖𝐷 𝐼 𝑑
< 1.

� Check if ℎ(𝑤) − 𝑚 ∈ L(𝐻).

Checking the second step here is fast given a HNF as showed in [Mic01].

Now that we reintroduced the PSW signature scheme, note that constructing

instances of PSW in a fast manner is not trivial: one would need to be able to

ensure that the PSW conjecture is respected.

Claimed structural security

The main selling point of the PSW approach is to be a “cheap” alternative security

patch to GGHSign against [NR09, DN12] aside from the one proposed in [GPV08]

which was secure but slow.

Figure 4.1: Signatures over 𝑙2 and 𝑙∞

The hopes were for the 𝑙∞ norm to be more secure than the 𝑙2 norm, by revealing

less structure about the key. Figure 4.1 is taken straight from [PSW08].

4.2 The original DRS scheme

The original definition of the DRS scheme can be considered another fork of the

PSW framework. The lattice admits a diagonal dominant basis, and the signature

process uses the PSW vector reduction algorithm. Their secret key is a diagonal

dominant basis, which is different from the original theoretical PSW proposition

(although their practical proposition is heuristically a diagonal dominant basis).

The coefficient 𝑛 will denote the dimension unless mentioned otherwise. The initial
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DRS scheme requires multiple other parameters to be preset (see the file 𝑎𝑝𝑖.ℎ in

the NIST submission).

Our unwillingness to use multiprecision arithmetic also restricts DRS to use a

HNF as a public key, and enforces the choice of multiple algorithms and parameters

in order to fit every computations within 64-bits. This is mostly due to the licensing

and the coding restrictions the NIST enforced for their submissions: without them,

the difference between DRS and the first proposition for a practical PSW would be

minimal. We will describe the algorithm and refer to the appendix for a MAGMA

implementation. Note that a C implementation of most relevant algorithms should

be available on the NIST website [PSDS18].

4.2.1 Setup

Using the same notation as the report given in [PSDS18], we briefly restate all initial

algorithms.

Secret key generation

The secret key is a 𝑛 × 𝑛 matrix that contains vectors of equal norm, all generated

by an absolute circulant structure. Only 4 coefficients, given publicly, compose each

vector: 𝐷, 𝐵, 1 and 0.

� 𝐷, the large diagonal coefficient. This is a basic component in the PSW-

framework. However, 𝐷 is fixed equal to 𝑛 before key generation and not

ad-hoc.

� 𝑁𝐵, the number of occurences per vector of the “big” noise {−𝐵, 𝐵}, and is

the lowest positive number such that 2𝑁𝐵
( 𝑛
𝑁𝑏

)
≥ 2𝜆. The reasoning behind

this parameter is to thwart combinatorial attacks which relies on finding the

position of the values 𝐵.

� 𝐵, the value of the “big” noise, and is equal to 𝐷/(2𝑁𝐵). It is a coefficient that

is chosen large to increase the size of the shortest vector in the norm 𝑙2. The

purpose of this coefficient was to increase the security of the scheme against

pure lattice reduction attacks.

� 𝑁1, the number of values {−1, 1} per vector, is equal to 𝐷 − (𝑁𝐵𝐵) − Δ. Δ is

a constant that will be defined later. The role of those small 1 is to increase

the perturbation within each coefficient position per vector when applying the

PSW vector reduction algorithm.

Those parameters are chosen such that the secret key matrix stays diagonal domi-

nant as per the definition written previously. Algorithm 15 is the original secret key
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computation. The only difference between the secret key of the first PSW instan-

tiation and DRS is the noise. As explained in both original works, their estimated

security is based on the noise.

Example 13. Secret key generation. 𝐷 = 6, 𝑁𝐵 = 2, 𝐵 = 2, 𝑁1 = 1.

Step 1:
[
6 2 2 1 0 0

]
Random Permutation−−−−−−−−−−−−−−−−−−→

[
6 0 2 0 1 2

]

Step 2:
[
6 0 2 0 1 2

]
Circulant Matrix−−−−−−−−−−−−−−→



6 0 2 0 1 2

2 6 0 2 0 1

1 2 6 0 2 0

0 1 2 6 0 2

2 0 1 2 6 0

0 2 0 1 2 6


Step 3:



6 0 2 0 1 2

2 6 0 2 0 1

1 2 6 0 2 0

0 1 2 6 0 2

2 0 1 2 6 0

0 2 0 1 2 6


Random Signs
−−−−−−−−−−−−→



6 0 −2 0 −1 2

2 6 0 −2 0 −1
1 −2 6 0 2 0

0 −1 2 6 0 2

−2 0 1 −2 6 0

0 −2 0 1 2 6


Algorithm 15 Secret key generation

Require: A random seed 𝑥
Ensure: A secret key 𝑥, 𝑆 = 𝐷 𝐼𝑑 − 𝑀
1: 𝑆 ← 0
2: 𝑡 ∈ Z𝑛
3: 𝐼𝑛𝑖𝑡𝑖𝑎𝑡𝑒𝑅𝑑𝑚𝑆𝑒𝑒𝑑 (𝑥) ⊲ Sets the randomness via 𝑥
4: 𝑡 ← [𝐷,𝐵, ..., 𝐵︸  ︷︷  ︸

𝑁𝐵

,1, ..., 1︸ ︷︷ ︸
𝑁1

,0,...,0] ⊲ Sets initial rotating vector

5: 𝑡 ← RdmPmtn(𝑡) ⊲ Shuffle non-𝐷 positions randomly
6: for 𝑖 = 1 ; 𝑖 ≤ 𝑛 ; 𝑖 = 𝑖 + 1 do
7: 𝑆[𝑖] [𝑖] ← 𝑡 [1] ⊲ Set diagonals coefficient 𝐷
8: for 𝑗 = 2 ; 𝑗 ≤ 𝑛 ; 𝑗 = 𝑗 + 1 do
9: 𝑐 ← 𝑡 [ 𝑗] ∗RdnSgn() ⊲ Set others with random signs
10: 𝑆[𝑖] [((𝑖 + 𝑗) mod 𝑛) + 1] ← 𝑐

11: return 𝑥, 𝑆

Public key generation

The lattice of the public key 𝑃𝑘 is the same lattice as the secret key 𝑆𝑘 . However,

we provide a different basis, which is more in tune with a classical GGH approach

of “good” and “bad” basis. Roughly speaking, we need to provide an unimodular

transformation matrix 𝑇 such that 𝑃𝑘 = 𝑇𝑆𝑘 . We have three objectives:
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� Construct 𝑇 in a fast manner, from a large combinatorial set.

� Bound the coefficients of 𝑃𝑘 , making sure computations do not overflow.

� Make sure 𝑇−1 is hard to reconstruct.

The third objective will rely on assumptions, as we cannot prove it at this point

for any 𝑇 (except specific unique forms like the HNF). The first two objectives,

however, are reasonably achievable. First of all, we can easily to include permutation

matrices to construct 𝑇 : They respect the first two objectives. However, in the case

of diagonal matrices, it is easy to see the third point is discarded with just permuta-

tions: A diagonal dominant structure is easy to “permute” back. The problem then

will be to intermingle row vectors and control their growth without changing the

lattice generated. We here choose the intermingling of 2 vectors to be equivalent to

a multiplication of random pairs of vectors (a 2× 𝑛 matrix) by a square unimodular

matrix of dimension 2 and maximum norm of 2.

The set 𝑈{+,−} of the unimodular matrices we use for the purpose of intermingling

vectors is very particular:

𝑈{+,−} =

{
𝑈+ =

[
1 1

1 2

]
,𝑈− =

[
1 −1
−1 2

]}
and let us define the set 𝑈′{+,−} constructed from 𝑈{+,−}:

𝑈′{+,−} =


∀𝑖 ∈ [1, 𝑛/2], 𝑈𝑖 ∈ 𝑈{+,−} :



𝑈0 0 . . . 0

0 𝑈1
. . .

... 0
. . .

. . .
...

. . . 𝑈𝑛/2−1 0

0 . . . 0 𝑈𝑛/2




Let 𝑃 ∈ 𝑆𝑛 a permutation matrix and 𝑈 ∈ 𝑈′{+,−}, and 𝑀 a structured matrix we

want to make hard to recover. We can conceive a “round” of scrambling to be the

transformation 𝑀 ← 𝑈𝑃𝑀. In our case one single round of scrambling is obviously

not enough. Therefore, we need to scramble multiple times, each new round being

applied with a new randomly selected tuple (𝑈, 𝑃). Let 𝑅 be the number of such

rounds. Our choice for 𝑇 such that 𝑃𝑘 = 𝑇𝑆𝑘 is thus:

𝑈 = 𝑃𝑅+1
∏𝑅
𝑖=1𝑈𝑖𝑃𝑖

i.e., a combination of 𝑅 + 1 permutations and 𝑅 intermingling of vectors.

The number of rounds 𝑅 is decided upon security consideration but also efficiency

reasons as we wanted to fit every computation within 64-bits. Each round multiplies

the maximum size of the coefficients (we will denote 𝛿) by a factor at most 3. Note
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that the case 3 is rare. The number 𝑅 is dependent of other parameters we will

explain later.

The public key is thus by successive additions/substractions of pair of vectors (see

Algorithm 16). Note that the only difference with the original scheme [PSDS18] is

that we do not store the log2 of the maximum norm. We estimate this information

to be easily computed at negligeable time. A MAGMA code can be found in the

appendix (see code Figure A.4).

Algorithm 16 Public key generation

Require: 𝑆 = 𝐷 𝐼𝑑 − 𝑀 the reduction matrix, a random seed 𝑥
Ensure: 𝑃 such that L(𝑃) = L(𝑆) and ‖𝑆‖∞ << ‖𝑃‖∞ ≤ 3𝑅‖𝑆‖∞
1: 𝑃← 𝑆

2: 𝐼𝑛𝑖𝑡𝑖𝑎𝑡𝑒𝑅𝑑𝑚𝑆𝑒𝑒𝑑 (𝑥) ⊲ Sets the randomness via 𝑥
3: for 𝑖 = 1 ; 𝑖 < 𝑅 ; 𝑖 = 𝑖 + 1 do
4: 𝑃← RdmPmtn(𝑃) ⊲ Shuffle the rows of 𝑃
5: for 𝑗 = 1 ; 𝑗 ≤ 𝑛 − 1 ; 𝑗 = 𝑗 + 2 do
6: 𝑡 ← RdmSgn()
7: 𝑃[ 𝑗] = 𝑃[ 𝑗] + 𝑡 ∗ 𝑃[ 𝑗 + 1] ⊲ “Random” linear combinations
8: 𝑃[ 𝑗 + 1] = 𝑃[ 𝑗 + 1] + 𝑡 ∗ 𝑃[ 𝑗]
9: 𝑃← RdmPmtn(𝑃)

10: return 𝑃

The power of 2 𝑝2 we removed from the descrition has no security impact, and

is used mostly for the verification process to make sure intermediate computa-

tion results stay within 64-bits. This type of public key is very different from

the HNF [PSW08] suggested to use, however the computation time of a HNF

is non-negligible. As we will see later this directly impact the signature.

4.2.2 Signature

Rather than checking if the successive approximation of Babai’s algorithm on a

vector 𝑚 of converges [PSW08], DRS checks if the successive approximation on a

vector 𝑚 can reach a point where ‖𝑚‖1 < 𝑛𝐷, and if ∃𝑖, |𝑚𝑖 | > 𝐷, reduce 𝑚 further

without increasing ‖𝑚‖1.

Given the fact that the secret key is a diagonally dominant matrix, Alg 17 is

guaranteed to complete: forcing 𝑡𝑟 (𝑀) = 0 on the noise, we presented a proof

that ignored the convergence of the reduction steps but showed the existence of a

reachable valid solution for ‖𝑚‖∞ < 𝐷. A MAGMA code of the signing algorithm

can be found in the appendix (see the code Figure A.5). In a certain sense, it uses

the fact that the PSW vector reduction algorithm (Algorithm 14) does not need to
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converge to find a solution. The original proof can be seen in [PSDS18]; however, we

are not going to mention it here since a better proof will be shown after modification.

Algorithm 17 Sign: Coefficient reduction first, validity vector then

Require: 𝑣 ∈ Z𝑛, (𝑥, 𝑆) the secret seed and diagonal dominant matrix
Ensure: 𝑤 with 𝑣 ≡ 𝑤 [L(𝑆)], ‖𝑤‖∞ < 𝐷 and 𝑘 with 𝑘𝑃 = 𝑣 − 𝑤
1: 𝑤 ← 𝑣, 𝑖 ← 0, 𝑘 ← [0, ..., 0]
2: while ‖𝑤‖∞ < 𝐷 do ⊲ Apply the PSW vector reduction
3: 𝑞 ← 𝑤𝑖/𝐷
4: 𝑘𝑖 ← 𝑘𝑖 + 𝑞 ⊲ Ensure 𝑘𝑆 = 𝑣 − 𝑤
5: 𝑤 ← 𝑤 − 𝑞𝑆[𝑖]
6: 𝑖 ← 𝑖 + 1 mod 𝑛
7: 𝐼𝑛𝑖𝑡𝑖𝑎𝑡𝑒𝑅𝑑𝑚𝑆𝑒𝑒𝑑 (𝑥) ⊲ Set randomness identical to Setup
8: for 𝑖 = 1 ; 𝑖 ≤ 𝑅 ; 𝑖 = 𝑖 + 1 do ⊲ Transform 𝑘𝑆 = 𝑣 − 𝑤 into 𝑘𝑃 = 𝑣 − 𝑤
9: 𝑘 ← RdmPmtn(𝑘)
10: for 𝑗 = 1 ; 𝑗 ≤ 𝑛 − 1 ; 𝑗 = 𝑗 + 2 do
11: 𝑡 ← RdmSgn()
12: 𝑘 [ 𝑗 + 1] = 𝑘 [ 𝑗 + 1] − 𝑡 ∗ 𝑘 [ 𝑗]
13: 𝑘 [ 𝑗] = 𝑘 [ 𝑗] − 𝑡 ∗ 𝑘 [ 𝑗 + 1]
14: 𝑘 ← RdmPmtn(𝑘)
15: return 𝑘, 𝑣, 𝑤

Another difference with the original PSW is the fact that it did not have a second

vector 𝑘 to output in their initial scheme and thus only had to deal with the reduction

part [PSW08]. The vector 𝑘 is needed to ensure 𝑣 − 𝑤 ∈ L(𝑃𝑘 ), which in the case

of a HNF was not needed as the triangular form allowed an easy verification.

Note that if we wish to fit every computation within 64-bits, then we need to

enforce log2 ‖𝑘 ‖ < 63. Thus we need to bound it with previous parameters, i.e.,

𝑘′(𝐷 − 𝑀) = 𝑣 − 𝑤

‖𝑘′‖ ≤ ‖𝑣 − 𝑤‖‖(𝐷 − 𝑀)−1‖

‖𝑘′‖ ≤ ‖𝑣 − 𝑤‖‖𝐷−1 1
1−𝑀

𝐷

‖

‖𝑘′‖ ≤ ‖𝑣 − 𝑤‖‖𝐷−1‖‖ 1
1−𝑀

𝐷

‖

‖𝑘′‖ ≤ ‖𝑣 − 𝑤‖‖𝐷−1‖‖‖1 + 𝑀
𝐷
+ (𝑀

𝐷
)2 + ...‖

‖𝑘′‖ ≤ ‖𝑣 − 𝑤‖‖𝐷−1‖(‖1‖ + ‖ 𝑀
𝐷
‖ + ‖ 𝑀

𝐷
‖2 + ...)

‖𝑘′‖ ≤ ‖𝑣 − 𝑤‖‖𝐷−1‖‖ 1
1−‖ 𝑀

𝐷
‖ ‖

‖𝑘′‖ ≤ ‖𝑣 − 𝑤‖‖ 1
𝐷−‖𝑀 ‖ ‖

‖𝑘′‖ ≤ ‖𝑣 − 𝑤‖ 1
Δ

‖𝑘′‖ ≤ (𝛿 + 1) 1
Δ
= 𝛿+1

Δ

therefore:
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𝑘 = 𝑘′𝑈−1

‖𝑘 ‖ ≤ ‖𝑘′‖‖𝑈−1‖

‖𝑘 ‖ ≤ ‖ 𝛿 + 1
Δ
‖‖𝑈−1‖

‖𝑘 ‖ ≤ (𝛿 + 1)3
𝑅

Δ

thus giving us the means to fix Δ, 𝛿, 𝑅 to fit every coefficients within 64-bits.

4.2.3 Verification

Given a hashed message vector 𝑣, the signature (𝑘, 𝑤), the verification is reduced to

the equality test 𝑘𝑃𝑘 = (𝑣 − 𝑤). However, as the computation 𝑘𝑃𝑘 might overflow

(the maximum size of 𝑘 depends of 𝛿,Δ, 𝑅, and 𝑃𝑘 ’s ones from 𝐷, 𝑅). In the following

verification algorithm we recursively cut 𝑘 into two parts 𝑘 = 𝑟 + 𝑝2𝑞 where 𝑝2 is a

power of 2 that is lower than 263/‖𝑃𝑘 ‖, which ensures 𝑟𝑃𝑘 is not overflowing.

Given 𝑃𝑘 , 2
𝑘 , 𝑡 = 𝑣 − 𝑤 and 𝑘 = 𝑟 + 𝑝2𝑞 with ‖𝑟 ‖ < 𝑝2, we have 𝑘𝑃𝑘 − 𝑡 = 𝑐 with

𝑐 = 0 if and only if 𝑘𝑃𝑘 = 𝑣 − 𝑤. Therefore

𝑞𝑝2𝑃𝑘 + 𝑟𝑃𝑘 − 𝑡 = 𝑐 → 𝑞𝑃𝑘 =
𝑐+𝑡−𝑟𝑃𝑘

𝑝2

and thus 𝑝2 should divide 𝑡−𝑟𝑃𝑘 if 𝑐 = 0: if not, that means 𝑐 ≠ 0 and the verification

returns FALSE. Otherwise, we set 𝑘′← 𝑞 and 𝑡′← 𝑡 − 𝑟𝑃𝑘 and repeat

(𝑞𝑃𝑘 − 𝑡−𝑟𝑃𝑘

𝑝2
= 𝑐

𝑝2
) → (𝑘′𝑃𝑘 − 𝑡′ = 𝑐′)

where 𝑐′ becomes exactly the integer 𝑐/𝑝2 regardless of its value (if it didn’t fail

before). The verification stops when both 𝑡′ = 0 and 𝑘′ = 0. Note that both need to

be 0 at the same time, if only one of them is 0 then the verification fails.

The verification, given 𝑘, 𝑣, 𝑤, 𝑃𝑘 is then as follow in algorithm 18. Note that the

core algorithm could be optimized but we just give here the overall idea. A MAGMA

code is provided in the appendix (see code Figure A.7) for testing purposes.
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Algorithm 18 Verify

Require: 𝑣, 𝑤, 𝑘 ∈ Z𝑛, 𝑃 the public key
Ensure: Checks 𝑣 ≡ 𝑤 [L(𝑃)] and ‖𝑤‖∞ < 𝐷
1: if ‖𝑤‖∞ >= 𝐷 then ⊲ Checks ‖𝑤‖∞ < 𝐷
2: return FALSE
3: 𝑞 ← 𝑘

4: 𝑡 ← 𝑣 − 𝑤
5: 𝑝2 ← log2 ‖𝑃‖∞
6: while 𝑞 ≠ 0 ∧ 𝑡 ≠ 0 do ⊲ Verification per block of size 𝑝2
7: 𝑟 ← 𝑞 − (𝑝2 × d𝑞/𝑝2c) ⊲ Get the smallest sized remainder
8: 𝑡 ← 𝑡 − (𝑟 ∗ 𝑃)
9: if 𝑡 ≠ 0 mod 𝑝2 then ⊲ Check block

10: return FALSE
11: 𝑡 ← 𝑡/𝑝2 ⊲ Update values for next iteration
12: 𝑞 ← (𝑞 − 𝑟)/𝑝2
13: if (𝑡 = 0) Y (𝑞 = 0) then
14: return FALSE
15: return TRUE

If multiprecision integers were to be used (as using GNU Multiple Precision Arith-

metic Library (GMP)), it would not take a while loop with multiple rounds to check.

Whether this is more efficient or not remains to be tested.

Example 14. Verification example for 𝑝2 = 10000:

𝑃 =



−1840 2471 −382 −820 710 3048

1966 −1378 1486 1721 1430 −4090
−1998 4317 994 271 3660 2211

2729 −3460 746 1375 −680 −4662
2784 −6566 −1866 −801 −6100 −2700
3679 −3323 2144 2716 1380 −7160


𝑘 =

[
−54029 −77227 6908 −38654 −4594 50148

]
𝑣 =

[
924 232 131 692 439 694

]
𝑤 =

[
0 9 −9 −1 −1 0

]
Goal: verify 𝑘𝑃 = 𝑣 − 𝑤 =

[
924 223 140 693 440 694

]
with low size compu-

tations.

Set 𝑞 = 𝑘 and 𝑡 = 𝑣 − 𝑤.

First pass:

𝑟 ← 𝑞 mod 𝑝2 =
[
−4029 2773 −3092 1346 −4594 148

]



4.3. ON THE SECURITY OF THE PUBLIC KEY 87

𝑡 ← 𝑡 − 𝑟 × 𝑃 =[
−10470000 2110000 −12480000 −13170000 −17100000 25390000

]
𝑡 is clearly divisible by 𝑝2, update 𝑞, 𝑡

𝑞 ← (𝑞 − 𝑟)/𝑝2 =
[
−5 −8 1 −4 0 5

]
𝑡 ← 𝑡/𝑝2 =

[
−1047 211 −1248 −1317 −1710 2539

]
Both are non-zero. Repeat.

Second pass:

𝑟 ← 𝑘 mod 𝑝2 =
[
−5 −8 1 −4 0 5

]
𝑡 ← 𝑡 − 𝑟 × 𝑃 =

[
0 0 0 0 0 0

]
𝑡 is clearly divisible by 𝑝2, update 𝑞, 𝑡 and continue

𝑞 ← (𝑞 − 𝑟)/𝑝2 =
[
0 0 0 0 0 0

]
𝑡 ← 𝑡/𝑝2 =

[
0 0 0 0 0 0

]
Both are zero. End with true.

4.3 On the Security of the Public Key

Note that the public key of DRS relies on successive multiplication of heavily struc-

tured 2 × 2 matrices. There is no concrete security reduction or previous examples

in the literature to assert the security of this type of public key. However, the main

objective of the public key setup of DRS was to “evenly distribute” the coefficients

around all positions while ensuring the setup could never overflow (on 64-bits pro-

cessors). If this specific method ever finds a weakness, we could either use a HNF

which can be computed in polynomial time [PS10], or use other types of unimodular

matrices. GGH for example used triangular matrices to generate their keys. Other

methods of sampling are welcomed; however, to the best of our knowledge the HNF

still provides optimal safety as it is unique per lattice and an attack on the structure

of the HNF is therefore, an attack on all possible basis [Mic01].

The problem with a HNF is its computation time and the objects we need to

manipulate: Multiprecision library are often needed and computation time for cryp-

tographically secure sizes goes well over a dozen of seconds even on high-end com-

puters, which is a severe flaw for a lot of applications. While speeding up the

computations for this particular type of keys might be possible, it was; however, not

the point of our work so far. We here focus on patching the structure of the secret

key, as this is the only angle where flaws were discovered in the literature.
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4.3.1 Li, Liu, Nitaj and Pan’s Attack

In ACISP 2018, Li, Liu, Nitaj and Pan [LLNP18] presented an attack that makes

use of short signatures to recover the secret key. Their observation is that two

different signatures from the same message is also a short vector of the lattice. Then,

gathering sufficient number of short vectors enable easier recovery of the secret key

using lattice reduction algorithms with the vectors generated. Their suggestion to

fix this issue is to either store previous signed messages to avoid having different

signatures, or padding a random noise in the hash function. We should note that

the initial DRS scheme is not randomized as the algorithm is deterministic and

produce a unique signature per vector.

We do note that the authors of DRS suggested in their report [PSDS18] to use

a random permutation to decide the order of the coefficent reduction, and thus

Li, Liu, Nitaj and Pan’s attack might apply to their suggestion. However, the

order of the coefficient reduction could also be decided deterministically by the

hashed message itself, and therefore, Li, Liu, Nitaj and Pan’s attack is not fully

applicable, as this method would produce an unique signature per message. They

can still generate a set of relatively short vectors (𝑟1, . . . , 𝑟2) ∈ L𝑛 of the lattice L;
however, it is unclear whether the specialized version of their attack using vectors

𝑠,(𝑣1, . . . , 𝑣𝑛) where 𝑠 − 𝑣𝑖 ∈ L is still applicable. It seems to be easier to recover

the key when using multiple signatures from the same message as a lattice basis

when using lattice reduction algorithms rather than using random small vectors of

the lattice: This could imply that diagonal dominant basis have inner weaknesses

beyond the simple instantiation of DRS. From our understanding, the secret key

matrices they generated for their tests used a noise matrix 𝑀 ∈ {−1, 0, 1}𝑛×𝑛, which
could have had an impact in their experimentations. It is still unknown if other

noise types such as the ones in DRS or the type of noise we are about to propose

are affected: To the best of our knowledge, DRS was not quoted in their work.

We stress that we do not claim the new setup to be perfectly secure against Li,

Liu, Nitaj and Pan’s attack, we merely claim more experimentations would need to

be done as of now. Furthermore, the countermeasures proposed by Li, Liu, Nitaj

and Pan also apply to those new keys, and should be applied if one wishes for

a more concrete security. The next attack, however, does not have clear known

countermeasures as of now and is the main focus of this paper.

4.3.2 Yu and Ducas’s Attack

We explained in the previous section about the security of DRS against Li, Liu,

Nitaj and Pan’s attack. On the other hand, it is unclear if such a modification would

add an extra weakness against Yu and Ducas’s heuristic attack. Their attack work
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in two steps. The first one is based on recovering certain coefficients of a secret

key vector using machine learning and statistical analysis. The second is classical

lattice-reduction attack to recover the rest of the secret key.

For the first step, Yu and Ducas noticed that the coefficients 𝐵 of the secret key and

the 1 could be distinguished via machine learning techniques [YD18a], noticing for

one part that the non-diagonal coefficients follow an “absolute-circulant” structure,

and the fact that only two types of non-zero values exist. Based on this information,

a surprisingly small amount of selected “features” to specialize a “least-square fit”

method allowed them to recover both positions and signs of all if not most coefficients

𝐵 of a secret vector. We note they did not conduct a exhaustive search on all possible

methods according to their paper thus stressing that their method might not be the

best. We did not conduct much research on the related machine learning techniques;

therefore, we cannot comment much on this part as of now.

A few points were presented to explain why their technique works. One point

is the difference between the noise coefficients: It was either close to non-existant

or very large, causing wave-shaped reductions that could be detected given enough

samples. The other point is that this wave-shaped reduction is absolute-circulant,

which makes the structure more obvious as this wave-shaped perturbation trans-

lates in incremental order. Figure 4.2 is a visual representation of the cascading

phenomenon, taken directly from [YD18a] (𝑆 is a secret key vector and 𝑤 a vector

to reduce).

Figure 4.2: Figures in the second row show the regions to which (𝑤𝑖 , 𝑤 𝑗) in two
cap regions will be moved by reduction at index 𝑖 when 𝑆𝑖, 𝑗 = −𝑏, 0, 𝑏, respectively,
from left to right.

On the second step, the recovered coefficients and their positions and signs allowed

them to apply the Kannan embedding attack on a lattice with the exact same
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volume as the original public key but of a much lower dimension than the original

authors ofDRS based their security on, by scrapping the known 𝐵 noise coefficients.

Strictly speaking, using the same notation as in the previous description of DRS and

assuming the diagonal coefficient is equal to the dimension, the initial search of a

shortest vector of length
√︁
𝐵2𝑁𝑏 + 𝑁1 + 1 in a lattice of dimension 𝑛 of determinant

𝑛𝑛 becomes a search of a shortest vector of length
√
𝑁1 + 1 in a lattice of dimension

𝑛−𝑁𝑏 of determinant 𝑛𝑛. A visual representation on the effect of this attack can be

seen in the next section or in Example 13 where all big red coefficients are replaced

by 0 in one basis vector. The efficiency of lattice reduction techniques then affects

the evaluation of the security strength of the original DRS scheme.

Yu and Ducas conducted experiments and validated their claims using only a

few dozens of thousands of signatures per key, reducing the security of the initial

submission of DRS from 128-bits to maybe at most 80-bits, using BKZ-138. The

original concept (not the instantiation) from [PSW08], however, still seems to be

safe for now: While it has no security proof, to the best of our knowledge, no

severe weaknesses have been found so far. Furthermore, Yu and Ducas advised

of some potential countermeasures to fix DRS, i.e., breaking the structure of the

particular instance that was submitted: The deterministic approach of the number

of 𝐵, 1, being limited to those two values (5 if we consider zeroes and signs), and

the “absolute-circulant” structure. They also pointed that a lack of security proof

could be problematic and gave some opinions about how one can potentially find

provable security for the DRS scheme.

We invite readers to read their work: It is possible that new techniques relying

on machine learning could apply to all lattice-based cryptosystems beyond DRS by

tweaking their process for each specific structure.

In the following section, we provide a countermeasure which follows some of the

recommendations given by Yu and Ducas as breaking the secret key noise structure

and giving some statistical heuristic, while still preserving the original idea given in

PKC 2008 [PSW08].

4.4 New Setup

We do not change any algorithm here aside the setup of the secret key: the public

key generation method is left unchanged, along with the signature and verification.

Compared to the old scheme, this new version is now determined by less parameters,

which leave 6 of them using the previousDRS: the dimension 𝑛, a random generator

seed 𝑠, a signature bound 𝐷, a max norm for hashed messages 𝛿, a sparsity parameter

Δ that we always set to one, and 𝑅 a security parameter determining the number of

multiplication rounds to generate the public key.



4.4. NEW SETUP 91

We choose random noise among all the possible noises vectors which would still

respect the diagonal dominant property of the secret key. This choice is following

Yu and Ducas’s suggestions on breaking the set of secret coefficients, the “absolute-

circulant” structure of the secret key, and allowing us to provide statistical evidence.

Roughly speaking, we aimed to transform the following structure of

15 0 0 0 0 0

0 15 0 0 0 0

0 0 15 0 0 0

0 0 0 15 0 0

0 0 0 0 15 0

0 0 0 0 0 15


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ZZ



0 5 1 0 −1 1

−1 0 −5 1 0 −1
−1 1 0 5 1 0

0 1 1 0 5 −1
1 0 −1 1 0 −5
5 −1 0 1 −1 0


to something “less-structured”, more “random” but still diagonal dominant like

15 0 0 0 0 0

0 15 0 0 0 0

0 0 15 0 0 0

0 0 0 15 0 0

0 0 0 0 15 0

0 0 0 0 0 15


+



4 −2 0 3 −1 4 = 14

−2 3 −1 0 −8 0 = 14

6 1 2 −1 1 3 = 14

0 0 −4 3 2 3 = 12

−3 2 −1 −3 −1 3 = 13

1 −1 2 −4 −4 2 = 14


While we want to have random noise, we must ensure we can still sign every mes-

sage and thus guarantee the diagonal dominant structure of our secret key. Hence,

the set of noise vectors we need to keep are all the vectors 𝑣 ∈ Z𝑛 that have a taxicab

norm of ‖𝑣‖1 ≤ 𝐷 − 1. Let us call that set 𝑉𝑛.
Sampling from 𝑉𝑛, however, is no trivial task. However, preceding work in the

academic literature allows us to:

1. Count all points of Z𝑛 inside a 𝑛-ball for the 𝑙1-norm, i.e., |𝑉𝑛 |. [SS00]

2. Know how many of them have a fixed amount of zeroes. [SS00]

3. Sample uniformly from the 𝑛-simplex, fixing a certain amount of zeroes. [ST04]

Therefore, the plan is the following:

1. Creates a cumulative frequency distribution table from [SS00].

2. Use the table to sample uniformly a number of zeroes.

3. Sampling uniformly within the 𝑛-ball of with a fixed number of zeroes.

This new setup will also change the bounds used for the public key, as the original

DRS authors linked several parameters together to ensure computations stay within

64 bits. However, our paper has a more theoretical approach and we do not focus

on the technical implementations.
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4.4.1 Picking the Random vectors

We are aiming to build the new noise matrix 𝑀, which is a 𝑛 × 𝑛 matrix such that

𝑀 ∈ 𝑉𝑛𝑛 . In that regard, we construct a table we will call 𝑇 with 𝐷 entries such that

𝑇 [𝑖] = #vectors 𝑣 ∈ 𝑉𝑛 with 𝑖 zeroes.

This table is relatively easy to build and does not take much time, one can for

example use the formulas derivated from [SS00, KGP+89].

From this table, we construct another table 𝑇𝑆 such that 𝑇𝑆 [𝑘] =
∑𝑘
𝑖=0 𝑇 [𝑖].

The generation algorithm of the table 𝑇𝑆, which we will use as a precomputation

for our new setup algorithm can be seen in Algorithm 19.

Algorithm 19 Secret key table precomputation

Require: all initial parameters
Ensure: 𝑇𝑆 the table sum
1: 𝑚 ←min(𝑛, 𝐷)
2: 𝑇 ← {1}𝑚+1
3: 𝑇𝑆 ← {1}𝑚+1
4: for 𝑗 = 2 ; 𝑗 ≤ 𝐷 ; 𝑗 = 𝑗 + 1 do ⊲ Loop over the norm
5: for 𝑖 = 2 ; 𝑖 ≤ 𝑚 + 1 ; 𝑖 = 𝑖 + 1 do ⊲ Loop over possible non-zeroes
6: 𝑥 ← 2𝑖−1

( 𝑛
𝑖−1

) ( 𝑗−1
𝑖−2

)
7: 𝑇 [𝑚 + 1 − 𝑖] ← 𝑇 [𝑚 + 1 − 𝑖] + 𝑥
8: for 𝑖 = 1 ; 𝑖 ≤ 𝑚 ; 𝑖 = 𝑖 + 1 do ⊲ Construct array 𝑇𝑆 from 𝑇

9: 𝑇 [𝑖 + 1] ← 𝑇 [𝑖 + 1] + 𝑇 [𝑖]
10: 𝑇𝑆 ← 𝑇

11: return 𝑇𝑆

Let us denote the function 𝑍 (𝑥) → 𝑦 such that 𝑇𝑆 [𝑦 − 1] < 𝑥 ≤ 𝑇𝑆 [𝑦]. Since 𝑇𝑆

is trivially sorted in increasing order 𝑍 (𝑥) is nothing more than a dichotomy search

inside an ordered table. If we pick randomly 𝑥 from [0;𝑇𝑆 [𝐷 − 1]] from a generator

with uniform distribution 𝑔() → 𝑥 then we got 𝑍𝑒𝑟𝑜() → 𝑍 (𝑔(𝑥)) a function that

selects uniformly an amount of zeroes amount all vectors of the set 𝑉𝑛, i.e.,

𝑍𝑒𝑟𝑜() → #zeroes in a random 𝑣 ∈ 𝑉𝑛

Now that we can generate uniformly the number of zeroes we have to determine

the coefficients of the non-zero values randomly, while making sure the final noise

vector is still part of 𝑉𝑛. A method to give such a vector with chosen taxicab norm

is given in [ST04] as a correction of the Kraemer algorithm. As we do not want

to choose the taxicab norm 𝑀 directly but rather wants to have any random norm

available, we add a slight modification: The method in [ST04] takes 𝑘 non-zero

elements 𝑥1, . . . , 𝑥𝑘 such that 𝑥𝑖 ≤ 𝑥𝑖+1 and forces the last coefficient to be equal

to the taxicab norm chosen, i.e., 𝑥𝑘 = 𝑀. By removing the restriction and using
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𝑥𝑘 ≤ 𝐷, giving the amount of non-zero values, we modify the method to be able to

take over any vector values in 𝑉𝑛 with the help of a function we will call

KraemerBis(𝑧) → random 𝑣 ∈ 𝑉𝑛

such that 𝑣 has 𝑧 zeroes which is described in Algorithm 20

Algorithm 20 KraemerBis

Require: all initial parameters and a number of zeroes 𝑧
Ensure: a vector 𝑣 with 𝑧 zeroes and a random norm inferior or equal to 𝐷
1: 𝑣 ∈ N𝑛
2: 0 ≤ 𝑥0 < 𝑥1 < . . . < 𝑥𝑛−𝑧 ≤ 𝐷 ⊲ Pick randomly 𝑛 − 𝑧 + 1 elements
3: for 𝑖 = 1 ; 𝑖 ≤ 𝑛 − 𝑧 ; 𝑖 = 𝑖 + 1 do
4: 𝑣 [𝑖] ← 𝑥𝑖 − 𝑥𝑖−1
5: for 𝑖 = 𝑛 − 𝑧 + 1 ; 𝑖 ≤ 𝑛 ; 𝑖 = 𝑖 + 1 do
6: 𝑣 [𝑖] ← 0

return 𝑣

With both those new parts, the new setup algorithm we construct is presented

in Algorithm 21 using Kraemer bis. We note that in our algorithm, the diagonal

coefficient in the secret key is not guaranteed to be equal to the bound used for the

maximum norm of the signatures. Nevertheless, we will show that the termination

is still ensured in Section 4.4.2. This heavy setup naturally affects the speed of the

DRS setup, as we noticed in our experiments as shown in Section 4.4.5.

Algorithm 21 New secret key generation

Ensure: all initial parameters and another extra random seed 𝑥
Require: 𝑥, 𝑆 the secret key
1: 𝑆 ← 𝐷 𝐼𝑑

2: 𝑡 ∈ Z𝑛
3: 𝐼𝑛𝑖𝑡𝑖𝑎𝑡𝑒𝑅𝑑𝑚𝑆𝑒𝑒𝑑 (𝑥) ⊲ Set randomness
4: for 𝑖 = 1 ; 𝑖 ≤ 𝑛 ; 𝑖 = 𝑖 + 1 do
5: 𝑍 ← 𝑍𝑒𝑟𝑜() ⊲ Get the number of zeroes
6: 𝑡 ← KraemerBis(𝑍)
7: for 𝑗 = 1 ; 𝑗 ≤ 𝑛 − 𝑍 ; 𝑗 = 𝑗 + 1 do ⊲ Randomly switch signs
8: 𝑡 [ 𝑗] ← 𝑡 [ 𝑗] ×RdmSgn()
9: 𝑡 ← RdmPmtn(𝑡) ⊲ Permutes everything
10: 𝑆[𝑖] ← 𝑆[𝑖] + 𝑡
11: return 𝑥, 𝑆

4.4.2 A Slightly More General Termination Proof

The proof stated in the DRS report on the NIST website [PSDS18] was considering

that the diagonal coefficient of 𝑆 = 𝐷 𝐼𝑑 + 𝑀 stayed equal to the signature bound

(i.e., 𝑡𝑟 (𝑀) = 0), which is not this case. We show here that the reduction is still
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guaranteed nevertheless. Suppose that some coefficients of the noise matrix 𝑀 are

non-zero on the diagonal. Re-using for the most part notations of the original report,

where:

� 𝑚 is the message we want to reduce, which we update step by step

� 𝑀 is the noise matrix (so 𝑀𝑖 is the 𝑖-th noise row vector).

� 𝐷 is the signature bound for which the condition ‖𝑚‖∞ < 𝐷 has to be verified.

We note 𝑑𝑖 the 𝑖-th diagonal coefficient of the secret key 𝑆.

Obviously, the matrix will still be diagonal dominant in any case. Let us denote

𝑑𝑖 the diagonal coefficient 𝑆𝑖,𝑖 of 𝑆 = 𝐷 𝐼𝑑 − 𝑀.

If 𝐷 > 𝑑𝑖 we can use the previous reasoning and reduce ‖𝑚𝑖‖1 to ‖𝑚𝑖‖1 < 𝑑𝑖 < 𝐷,
but keep in mind we stop the reduction at ‖𝑚𝑖‖1 < 𝐷 to ensure we do not leak

information about the noise distribution.

Now 𝑑𝑖 > 𝐷 for some 𝑖: reducing to |𝑚𝑖 | < 𝑑𝑖 is guaranteed but not sufficient

anymore as we can reach 𝑑 < |𝑚𝑖 | < 𝑑𝑖 ≤ 𝐷 + Δ < 2𝑑. Let us remind that Δ =

𝐷 − ∑𝑛
𝑗=1 |𝑀𝑖, 𝑗 |, where Δ is strictly positive as an initial condition of the DRS

signature scheme (both on the original submission and this paper), 𝑑𝑖 = 𝐷 + 𝑐 where
𝑐 = |𝑀𝑖,𝑖 |.
Without loss of generality as we can flip signs, let us set 𝑚𝑖 = 𝐷 + 𝑘 < 𝑑𝑖 = 𝐷 + 𝑐

with 𝑘 ≥ 0 the coefficient to reduce. Substracting by 𝑆𝑖 transforms

𝑚𝑖 ← (𝐷 + 𝑘) − 𝑑𝑖 = (𝐷 + 𝑘) − (𝐷 + 𝑐) = 𝑘 − 𝑐 < 0

with 𝐷 > 𝑐 > 𝑘 ≥ 0. Therefore the reduction of ‖𝑚‖1 without the noise is

‖𝑚‖1 ← ‖𝑚‖1 − (𝐷 + 𝑘) + (𝑐 − 𝑘) = ‖𝑚‖1 − (𝐷 − 𝑐) − 2𝑘.

but the noise contribution on other coefficients is at worst (𝐷 − Δ) − 𝑐 thus

‖𝑚‖1 ← ‖𝑚‖1− (𝐷 − 𝑐) − 2𝑘 + (𝐷 − 𝑐−Δ). ‖𝑚‖1 ← ‖𝑚‖1− 2𝑘 −Δ = ‖𝑚‖1− (2𝑘 +Δ).

where 2𝑘 + Δ > 0. Therefore the reduction is also ensured in the case 𝑑𝑖 > 𝐷.

4.4.3 On Exploiting the Reduction Capacity for Further Se-

curity

Remark that the proof hints at the fact we can actually lower the norm ‖𝑚‖1 of

some vector 𝑚 to some value lower than 𝐷. It is easy to see that when 𝑀 = 0 and

𝑆 = 𝐷 𝐼𝑑, every coefficient of 𝑚 can be reduced to ‖𝑚‖1 < 𝐷/2 in exactly 𝑛 iterations

of the PSW vector reduction algorithm. Clearly, there should be some gap between
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the bound 𝐷 and the amount of noise in 𝑀 that can be filled. If we do fill that gap,

we can extend the number of available keys to use by extending the set of applicable

noise and hopefully making cryptanalysis harder. While it is hard to find examples

in a “printable” size where the PSW Conjecture (Conjecture 1 in Section 4.1.2)

applies while the DRS reduction proof does not, it becomes easier as the dimension

grows. Using the code in Figure A.8 gives us an example on the gap between the

PSW conjecture and the DRS proof. The output is shown in Figure 4.3

1 Random Seed is 1515430315

2 Diagonal Value D is 51

3 Dimension N is 51

4

5 Spectral Radius

6 0.491115563770558861830554360652

7 Minimum/Maximum l1 norm of noise vectors

8 59 94

9 Average l1 norm of noise vectors

10 76

Figure 4.3: Example output where the DRS bound fails but the PSW bound
passes

We can see in Figure 4.3 that every noise vector comfortably goes over the DRS

bound (here 𝐷 = 51) while 𝜌(𝑀𝐷−1) ≈ 0.49 < 0.5. Note that the opposite is also

true: By changing the noise to enforce the respect of the DRS bound (commenting

line 14 and uncommenting line 16 of code in Figure A.8), we can obtain the inverted

result as seen in Figure 4.4.

1 Random Seed is 1515430315

2 Diagonal Value D is 51

3 Dimension N is 51

4

5 Spectral Radius

6 0.510708190604545795839616917492

7 Minimum/Maximum l1 norm of noise vectors

8 17 32

9 Average l1 norm of noise vectors

10 25

Figure 4.4: Example output where the PSW bound fails but the DRS bound
passes

One part of an explanation to this phenomenon is that the sign does not affect

the DRS bound while it does heavily affect the PSW bound. If weakness appears

on this new DRS instantiation due to the noise being too low, intuitively we think
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increasing the bound of the 𝑛-dimensional ball from which we uniformly sample

the noise should still lead to most keys being usable w.r.t the PSW-conjecture.

However, we discuss in the following part methods to efficiently generate keys for

PSW that are proven to respect the PSW conjecture. While they do seem to be

relatively simple, establishing instances of a general PSW scheme beyond a noise

𝑀 ∈ {−1, 0, 1}𝑛,𝑛 seems to have been lacking in the literature. We hope this can help

close the gap between the conclusions of DRS and PSW.

4.4.4 Ensuring the termination of PSW

In this subsection we present simple ways for the PSW approach to be more prac-

tical. A first example can be found as early as in 1965 [DP65]. Let us rephrase the

(among others) theorem given by Derzko and Pfeffer:

Theorem 6 (The 4th Derzko-Pfeffer theorem).

Let 𝑀, 𝑆 ∈ C𝑛,𝑛 where 𝑆 is invertible. Then the following is always true:

𝜌(𝑀) ≤ (1 − 1/𝑛)1/2{(𝜖 (𝑆𝑀𝑆−1))2 − |𝑡𝑟 (𝑀) |2/𝑛} + |𝑡𝑟 (𝑀) |/𝑛

where 𝜖 (𝐴) =
√︃∑𝑛

𝑖, 𝑗=1 |𝑀𝑖, 𝑗 |2 is the Froebenius norm.

Now, using this theorem, let us attempt at constructing a noise matrix 𝑀. Setting

𝑡𝑟 (𝑀) = 0 on the noise, and fixing 𝑆 as the canonical basis we obtain:

𝜌(𝑀) ≤ (1 − 1/𝑛)1/2 ∑𝑛
𝑖, 𝑗=1 |𝑀𝑖, 𝑗 |2

Now, we can rely on PSW conjecture forcing 𝜌(𝑀𝐷−1
𝐼𝑑
) < 1/2 using a diagonal

matrix 𝐷 𝐼𝑑:

2(1 − 1/𝑛)1/2 ∑𝑛
𝑖, 𝑗=1 |𝑀𝑖, 𝑗 |2 ≤ 𝐷

i.e, given a fixed dimension 𝑛 and a fixed value 𝐷, we can properly bound the

values of the noise matrix 𝑀 such that the PSW Conjecture is respected. This can

be done by carefully distributing the coefficients outside the diagonal.

However, the first thing to notice is that the bound is worse than the one given

in DRS in most cases: the DRS bound is per vector, and this one is per matrix.

Quick comparisons between the total sum of matrix coefficients will show the DRS

bound is almost always superior.

Another theorem we could use on spectral radius is Gelfand’s formula, which was

also used in [PSW08]:
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Theorem 7 (Gelfand’s spectral radius formula).

𝜌(𝑀) = lim𝑘→∞ ‖𝑀 𝑘 ‖1/𝑘

An extreme case would then to fix the limit to 0. This then warrants the uses of

nilpotent matrices, i.e, matrices 𝑀 ∈ Z𝑛×𝑛 such that ∃𝑘 > 0, 𝑀 𝑘 = 0. We then need

to have some form of generation for nilpotent matrices. One easy group of nilpotent

matrices is the following:

For 𝑀 =



𝑀1 . . . 𝑀1

𝑀2 . . . 𝑀2
... . . .

...

𝑀𝑛−1 . . . 𝑀𝑛−1

−∑𝑛−1
𝑖=1 𝑀𝑖 . . . −∑𝑛−1

𝑖=1 𝑀𝑖


, 𝑀2 = 0.

As the values 𝑀𝑖 can be as large as wanted in this particular family, the DRS

bound can be rapidly overblown, especially by the last row. We could also use other

families of nilpotent matrices and combine them: The sum of nilpotent matrices

being nilpotent, the space of possible noise could be large enough to ensure the

security of cryptographic applications. However, it is unclear if using such matrices

will allow efficient reductions: Large coefficients might hinder the convergence, and

reaching a valid signature (if possible) might take unacceptable times for real-life

cryptography. Furthermore, let us stress that the PSW-vector reduction is an

approximation of Babai’s rounding off algorithm: Thus, if the initial basis is “bad”,

then so could be the set of possible reduction results, i.e., having a noise with a

zero-valued spectral radius is not enough. Therefore, a basis that is not diagonal

dominant and have poor geometrical properties might not be suitable either.

Other approaches would be to remember that the spectral radius is the biggest

eigenvalue (see Definition 44). Then we can attempt to use simple properties of the

eigenvalues and control them to fix the exact value of the spectral value rather than

bounding them. Let us look at the following: If 𝑀 is a noise matrix, then 𝜌(𝑀) is
the biggest value (in norm) that cancel the polynomial in 𝑃(𝑋) = det(𝑀−𝑋𝐼𝑑). The
literature on eigenvalues and their computations is extremely large [Wil65]: Bartel–

Stewart [BS72], Hessenberg-Schur [GNVL79], Householder [Hou64], etc. It might

be possible to reverse those methods and their subsequent works to construct a

class of noise matrices respecting the PSW-conjecture. We also leave those studies

for further work, as it likely requires much more studies. Overall, merging those

approaches and the DRS approach into a uniform set of usable keys seems to be

a widely open research question, let alone the computational practicability of those

lattice classes (or subclasses).

For now, however, we provide practical efficiency tests on our new patch in the

next subsection.
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4.4.5 Setup Performance

Compared to the initial NIST submission where the code was seemingly made for

clarity and not so much for performance, we wrote a modified version of DRS using

NIST specifications and managed to have much higher performance. However, most

of the performance upgrade from the initial code have nothing much to do with the

algorithms of the DRS scheme: we did notice that most of the time taken by the

DRS initial code was used for the conversion from the character arrays to integer

matrices and vice-versa, which they had to do to respect the NIST specifications:

the algebraic computations themselves were actually reasonably fast, considering

the size of the objects manipulated.

This is the reason why we decided to isolate the secret matrix generation code

from the rest of the initial original DRS code, in order to have a fair comparison

between our own secret key generation algorithm to theirs. In that regard we choose

to compare similar matrix sizes instead of similar security, as initial security esti-

mates for the DRS submission were severely undermined by Yu and Ducas’s recent

discoveries and thus would lead to comparing efficiency on matrices with massively

different sizes. Therefore we are making tests on the initial parameters of the DRS

scheme. Looking purely at the secret key generation, we are indeed much slower, as

shown in Table 4.1.

Table 4.1: Secret key generation time in milliseconds (average for 104 keys).

𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 912 1160 1518

𝑂𝑙𝑑DRS 2.871 4.415 7.957

𝑁𝑒𝑤DRS 31.745 63.189 99.392

Note that we use the options −𝑚𝑎𝑟𝑐ℎ = 𝑛𝑎𝑡𝑖𝑣𝑒 and −𝑂 𝑓 𝑎𝑠𝑡 which led us to use

𝐴𝑉𝑋512 instructions and other 𝑔𝑐𝑐 optimization tweaks. The new setup is barely

parallelizable as there is almost no code that can be vectorized which also explains

the huge difference. While we wish to make a comparative performance to all other

similar approaches, it seems the initial approach of PSW did not trigger further

research and it remains an open topic, leaving DRS the only known fork of PSW to

the best of our knowledge. Furthermore, timings were not provided in the original

paper [PSW08]: A figure illustrating the evolution of the number of reduction loops

was deemed sufficient to demonstrate its efficiency back in 2008.

Moreover, note that in theory, sampling randomly using our method should not

be a problem while growing the size of our keys if we only consider the time complex-

ity. The problem, however, concerns the amount of data to store (and the related
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memory accesses). The size of 𝑉𝑛 grow more than exponentially and thus storing all

related exact sizes could pose a problem for larger dimensions. A solution to drasti-

cally reduce the memory requirements would be to crop the extremely unlikely cases

and round the remaining results, but so far this does not seem to be necessary for

our largest parameters.

4.5 Security estimates

The goal of this section is to evaluate the security of the scheme. First computa-

tionally by measuring the effectiveness of heuristic key-recovery attacks, and then

by discussing the potential structural weakness of choosing diagonally dominant

matrices as our key structure.

4.5.1 𝐵𝐷𝐷-Based Attack

Currently, the most efficient way to perform this attack will be, first, to transform a

BDD problem into a uSVP𝛾 (Kannan’s Embedding Technique [Kan87], assuming

𝑣 = (0, . . . , 0, 𝑑, 0, . . . , 0), and use lattice reduction techniques on the lattice spanned

by [𝑣 |1] and the rows of [𝐵|0]. By using this method, we obtain a 𝑢𝑆𝑉𝑃 with a gap(
𝑣 1

𝐵 0

)
and second to solve this new uSVP𝛾 using lattice reduction algorithm. By using

this method, we obtain a uSVP𝛾 with a gap

𝛾 ≈
Γ

(
𝑛+3
2

) 1
𝑛+1 𝐷𝑒𝑡 (L)

1
𝑛+1

√
𝜋‖𝑀1‖2

≈
Γ

(
𝑛+3
2

) 1
𝑛+1 𝑑𝑛

1
𝑛+1

√
𝜋‖𝑀1‖2

. (4.1)

Lattice reduction methods are well studied and their strength are evaluated using

the Hermite factor. Let L a 𝑑−dimensional lattice, the Hermite factor of a basis

𝐵 of L is given by ‖𝐵[1] ‖2/𝑑𝑒𝑡 (L)
1
𝑛 . Consequently, lattice reduction algorithms

strengths are given by the Hermite factor of their expected output basis. In [GN08],

it was estimated that lattice reduction methods solve uSVP𝛾 with 𝛾 a fraction of

the Hermite factor. We will use a conservative bound of 1
4 for the ratio of the uSVP𝛾

gap to the Hermite factor. As we do not have a fixed euclidean norm for our secret

vectors we have to rely on the approximates given to us by our new random method

in sampling noise vectors 𝑀𝑖. In our case, we know that for any vector 𝑣 ∈ Z𝑛 we

have ‖𝑣‖2 ≥ ‖𝑣‖1√
𝑛
, and our experiments (as seen below) allow us to use a higher

bound
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‖𝑣‖2 '
√
2 ‖𝑣‖1√

𝑛
.

4.5.2 Expected Heuristic Security Strength

Different papers are giving some relations between the Hermite factor and the secu-

rity parameter 𝜆 [vdPS13, HPS+17] often using BKZ simulation [CN11]. Aiming to

be conservative, we are to assume a security of 2128, 2192, 2256 for a Hermite factor of

1.006𝑑 , 1.005𝑑 , 1.004𝑑, respectively. We set 𝐷 = 𝑛, pick hashed messages ℎ(𝑚) such
that log2(‖ℎ(𝑚)‖∞) = 28, 𝑅 = 24 and Δ = 1.

Table 4.2: Parameter Sets.

Dimension Δ 𝑅 𝛿 𝛾 2𝜆

1108 1 24 28 < 1
4 (1.006)

𝑑+1 2128

1372 1 24 28 < 1
4 (1.005)

𝑑+1 2192

1779 1 24 28 < 1
4 (1.004)

𝑑+1 2256

Table 4.2 parameters have been choosen to obtain a uSVP𝛾 gap (Equation 4.1)

with 𝛾 < 𝛿𝑑+1

4 for 𝛿 = 1.006, 1.005, 1.004. Our experiments show us that the dis-

tribution of zeroes among sampled noise vectors form a Gaussian and so does the

euclidean norm of noise vectors when picking our random elements 𝑥, 𝑥𝑖 uniformly.

Here we include below the distribution of 106 randomly generated noise vectors 𝑣

with the x-axis representing 𝑓 (𝑣) = b100
√︃
‖𝑣‖22
𝐷
c where 𝐷 is the signature bound (see

Fig 4.5).

We can see that the generated noise vectors follow a Gaussian distribution as far

as their norms are concerned, and we believe it makes guessing values much harder

for an attacker should they choose to focus on finding specific values or vectors (as it

was the case in the original attack from Yu and Ducas [YD18a]). We also conducted

experiments, using BKZ20 from the fplll library [FPL] (see Fig 4.6). Without any

surprise we notice our new setup is seemingly resistant around dimension 400, where

conservative bounds led us to believe the break happen until approximately dimen-

sion 445. However the sample size is relatively small (yet computationally expensive

to obtain) and thus should not be taken as a proof value, but rather as a heuristic

support against heuristic attacks.
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Figure 4.5: 𝑓 (𝑣) distribution for 𝑛 = 1108, 1372, 1779 and 𝐷 = 𝑛 − 1 over 106

samples

4.5.3 A note on the structure of diagonally dominant lat-

tices

Since there has been a lot of discussion about provably secure schemes, especially

for lattice-based schemes, one of the raised “flaws” of the DRS scheme compared

to most of the other lattice-based submissions to the NIST PQC competition was

the lack of a security proof. This subsection does not provide a security proof for
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Figure 4.6: Percentage of key recoveries of BKZ20 (20 sample keys/dim)
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this particular instantiation of the DRS scheme, however it aims to increase the

confidence on the structure of diagonal dominant lattices. To do so, we are going to

define a “new” problem, based on a previously well-known problem.

Definition 46 (𝐷-Pertubated Shortest Basis Problem (PSBP𝐷)).

Let 𝑃 ∈ Z𝑛×𝑛 such that 𝑃 = {𝑃1, ..., 𝑃𝑛} is known and a solution of SBP on L(𝑃).
Given a known bound 𝐷 and an unknown matrix 𝑀 = {𝑀1, ..., 𝑀𝑛} ∈ Z𝑛×𝑛 s.t:

� ∀𝑖 ∈ [1, 𝑛], ‖𝑃𝑖‖ > 𝐷 ≥ ‖𝑀𝑖‖

� ∀𝑖 ∈ [1, 𝑛], ‖𝑃𝑖 + 𝑀𝑖‖ > ‖𝑃𝑖‖ + ‖𝑀𝑖‖

We set 𝑃𝑀 = {𝑃1 + 𝑀1, ..., 𝑃𝑛 + 𝑀𝑛}.
Solve SBP on L(𝑃𝑀) (from a HNF or a different basis).

The idea here is to determine whether it is hard or easy to recover some randomly

added noise on a basis that we know is the shortest basis, and even to recompute

a new shortest basis from a “close” one. It is clear that this problem is “easier” to

the original SBP problem. But how much easier is still a mystery: it is possible

they are actually equivalent but as far as we know we have not seen any evidence to

prove it. This problem is known in academic folklore, although in an informal way

and probably with slightly different statements. The inequalities we state specialize

in our “special” SBP problem allow us to exclude several problematic cases:

� ‖𝑃𝑖‖ > 𝐷 allow us to exclude 𝑃 = 0 where the problem is just equivalent to

SBP.

� 𝐷 ≥ ‖𝑀𝑖‖ prevents insanely large 𝑀 where 𝐷 does not matter.
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� ‖𝑃𝑖 + 𝑀𝑖‖ > ‖𝑃𝑖‖ + ‖𝑀𝑖‖ prevents heuristically easier cases.

The actual question here would be to determine whether the problem is easy or

hard for specific structures and distributions of 𝑃 and values of 𝐷, which we cur-

rently do not know and probably require a much deeper work. Heuristically, since 𝑃

is known and 𝑀 is bounded, the best way to recover 𝑀 is to use Kannan’s extension

technique and solve uSVP𝛾 where some coefficients are known, i.e the coefficients

of 𝑃a. To the best of our knowledge, there is however no guarantee that recovering

𝑀 would actually solve PSBP𝐷 : it just recovers a basis “close” to the solution as

𝑀 should be “shorter” than the known part 𝑃.

Note that if 𝐷 = 𝜆1/2b, then recovering 𝑀 can be heuristically reduced to solving

𝑛 successive instances of BDD, namely one per vector of 𝑃. We also stress that we

did not define a particular norm here. To the best of our knowdlege, there is no work

in the literature to determine if solving 𝑛 instances ofBDD with non-trivial relations

between those instances is actually as hard as than solving one instance of BDD

with no particular structure. It is unclear how many instantiations of lattice-based

cryptosystems are concerned by this problem. Historically, it seems that whenever

a structural weakness have been found, it was mostly due to the structure of the

variable part 𝑀 rather than the fixed part 𝑃. The first structural attack on GGH

seems to reflect that [Ngu99] and so does the recent attack on DRS [YD18a]: it

does not seem there was historically much concern on the public part 𝑃. This could

be either credited on the luck (or foresight) of cryptographers, or maybe there is an

underlying relation we have yet to see.

However, we stress again that there might be a significant difference between

a randomly sampled basis (under any distribution) and a basis constructed from

known coefficients and bounded noise. As far as DRS is concerned, recovering 𝑀

and solving PSBP𝐷 is considered to be the same problem. The way instantiations

ofDRS are created, recovering the secret key inDRS is actually solving very special

instantiations of PSBP𝐷 .

Property 24 (Hardness of DRS key recovery).

Recovering the secret key 𝑆 = 𝐷 𝐼𝑑 +𝑀 of a DRS lattice is heuristically the same as

solving PSBP𝐷 with 𝑃 = 𝐷 𝐼𝑑 on L(𝑆) for the norm 𝑙1.

Proof. Substitute 𝑃 by 𝐷 𝐼𝑑. As all vectors of 𝐷 𝐼𝑑 are trivially orthogonal it follows

that 𝐷 𝐼𝑑 is the SBP solution to L(𝐷 𝐼𝑑). All vectors of 𝑀 are lower than 𝐷 in 𝑙1-

aNote: this is exactly how the heuristic security of DRS was evaluated.
bWe can assume 𝜆1 = 𝑃1, however this is not always true: see example 2.10
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norm by construction (a DRS key is diagonal dominant). Heuristically, the secret

key is the shortest basis of the public key lattice, thus giving us the result. �

Let us stress again that DRS is not equivalent to the general PSBP𝐷 : DRS

instantiations are specific and could potentially be broken in polynomial time, but

even then it would not affect the hardness of PSBP𝐷 . The original GGH also uses

special instances of PSBP𝐷 : it uses keys 𝑆 = (
√
𝑛)𝐼𝑑 + 𝑀 where 𝑀 ∈ [−4, 4]𝑛×𝑛, i.e

PSBP𝐷 with norm 𝑙∞, 𝐷 = 4 and 𝑃 = (
√
𝑛)𝐼𝑑, and was yet to be “asymptotically”

broken as far as key-recovery attacks were concerned. To the best of our knowledge,

those attacks still run in exponential time. We would like to stress that this section

actually did not cover the message security as [PSW08] actually points out that a

full-key recovery is not necessary to forge signatures: as long as an attacker can find

a PSW-good basis then the PSW vector reduction algorithm could converge.

This trivial analysis however showed that the security of key recovery attacks is,

as expected, based on the noise and hopefully removes the concern about having

large diagonal coefficients in a basis. If further work show that a noise matrix 𝑀 is

provably hard to recover under certain assumptions for PSBP𝐷 , then constructing

DRS under those assumptions could make it provably secure (although this only

concerns “exact” key-recovery attacks).

Note that, just like the attacks on GGH, the key recovery attack of Yu and

Ducas is enabled by the recovery a large amount of tuples “messages-signatures”

from the same key. The problem we just defined does not thwart the attack, as this

is a problem related on a possible statistical leak given by specific noise coefficients,

all the while using a particular signing algorithm. In short, an interesting research

to thwart statistical heuristic attacks would be to find some form of pre-selection

or/and noise structure where statistical independency can be proven to hold for

each signature: from our understanding, this is actually a direction Yu and Ducas

suggested to pursue [YD18a]. It is possible that the leak found by Yu and Ducas

can be patched by modifying the signing algorithm without modifying the noise as

we did. As of November 2019, an extended version of [YD18a] available in [YD18b]

reduces the security of our original contribution [SPS19b]. While the updated attack

is clearly not as strong as the previous attack, it still provides further motivation to

deepen the research.

4.5.4 A small density comparison with ideal lattices

Using an ideal lattice as a noise reduce the available set of secret keys drastically.

The main point of ideal lattices is to reduce the size of the public key and the
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computation costs. In that regard, given a principal ideal lattice L(𝑔, 𝑓 ), 𝑓 should
be public for efficient computations to be available. 𝑔𝑖 mod 𝑓 by iterating over 𝑖

should give the rest of the noise beyond the first vector. Assuming 𝑓 is anti-cyclic,

or chosen in a way where 𝑔𝑖 mod 𝑓 has a taxicab norm lower than some constant

𝐷 for all 𝑖, then the noise structure is decided by the choice of the first vector 𝑔.

Basically, compared to an ideal lattice, we pick 𝑛 − 1 more vectors randomly.

Which means that while the choice for 𝑝 is at most ‖𝑉𝑛‖ possibilities, our noise

set has a factor ‖𝑉𝑛‖𝑛−1 over ideal lattices. 𝑉𝑛 being a set that grows more than

exponentially as 𝑛 increase, we can safely assume our noise set has a higher density

than ideal lattices. It is unclear however if the density is exponentially vanishing for

a fixed determinant as it is the case of ideal lattices: we do not know how to fix the

determinant of a newly sampled DRS lattice unlike the previous chapter.

Nevertheless, we believe it is safe to claim that the structure used here is safer

than the structure provided by ideal lattices which are currently quite popular. Our

reasoning should also apply for module lattices in a lesser extent (but with a similar

asymptotic scale).
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Summary and conclusion

we presented in this chapter the DRS scheme, and another method to generate

secret keys for providing experimental results on the statistical distribution of the

keys generated following Yu and Ducas’ attack. We demonstrate that our new

approach is sufficient to improve DRS to be secure against machine learning attacks

as reported earlier in the literature.



Chapter 5

Freivalds-accelerated Signature

Verification

This chapter is an extended version of the short paper we published in ISPEC 2019.

It is merely a consequence ofDRS (Diagonal Reduction Signature scheme) not using

a HNF (Hermite Normal Form), and could not be used for the NIST submission

because of their required procedure for signatures. Let us remind some downsides

about DRS:

� We do not have a HNF that can be computed in a fast manner as in less than

a second, even MAGMA can compute it in at best 15 seconds for the largest

parameters and we have yet to see an open-source code that performs faster

on our parameters.

� The lack of HNF enforces us to compute some vector 𝑘 to prove the member-

ship of 𝑣 in L(𝐵), as the is some 𝑘 s.t 𝑘𝐵 = 𝑣 if and only if 𝑣 ∈ L(𝐵).

� 𝑘 is easy to compute with a HNF 𝐵, and so is 𝑘𝐵. If 𝐵 is not a HNF then

even 𝑘𝐵 can be computationally expensive.

Dealing with the third point is the point of this chapter and the work we submit-

ted at ISPEC: we aim to accelerate the verification process. To do so, we rely on

the heuristic algorithm of Freivalds [Fre79]. Some reviewers commented that a key

should never be reused. There is some merit in that belief, and if the reader agrees

with that statement then the following chapter has very minor interest. Nevertheless

the paper has been accepted after some peer-reviewed process and thus should still

have some interest for some applications, especially if further work demonstrates a

larger gain of efficiency.

We would like to thank the reviewers of both ARITH and ISPEC. Initially we

submitted a draft to ARITH, which was maybe not clearly written and we would
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like to thank the reviewers for pointing out the lack of clarity. In this chapter, we

attempt to clarify multiple points and hopefully make the work more understand-

able.

5.1 Freivalds’ algorithm

Freivalds’ algorithm (algorithm 22) for verifying matrix products [Fre79] is one of the

first probabilistic algorithms to be introduced to show the efficiency and practicality

of non-deterministic programs to solve decision problems over deterministic ones.

Freivalds’ technique had a major impact on several research fields and is still an

active research topic to this date [DZ17, Dum18]. The decision problem solved by

Freivalds is the following: given 𝐴, 𝐵, 𝐶, three 𝑛 × 𝑛 matrices over an arbitrary ring

R,

can we verify that 𝐴 × 𝐵 = 𝐶 with a faster method than recomputing 𝐴 × 𝐵?

Freivalds brought a probabilistic solution, which rely on a simple statement:

to check 𝐴 × 𝐵 = 𝐶, we check instead 𝐴 × (𝐵 × 𝑣) = 𝐶 × 𝑣

where 𝑣 is a randomly sampled vector, and then it follows that the more we run this

test, the more we decrease the probability of obtaining a false-positive.

This leads to Freivalds’ algorithm 22 which is perfectly complete: it will always

output TRUE whenever 𝐴 × 𝐵 = 𝐶 is correct. It is also sound : the probability

of outputting TRUE for 𝐴 × 𝐵 ≠ 𝐶 is negligible (as much as we want). An

example MAGMA code can be found in the appendix (code of figure A.12). The

gain in efficiency compared to a deterministic method is quite impactful as this shifts

the arithmetical computations from a matrix-matrix product to a matrix-vector

multiplication. We are not recalling the proof on the error probability bound for

two reasons: the first reason is noticing it is actually an upper bound (independent

of the matrices dimension and the entries of 𝐴, 𝐵, 𝐶) and already documented in

[Fre79], and the second reason being the fact that we will later give a much tighter

upper bound which will be more adapted to our case.

Example 15. Testing 𝐴 × 𝐵 = 𝐶 with Freivalds’ algorithm.

𝐴 =



−2 −2 1 0 2

0 1 0 0 1

0 −1 2 0 1

2 −1 2 −1 −2
−2 2 −2 −1 0


, 𝐵 =



0 0 1 −2 1

0 1 0 −1 −1
0 1 0 2 0

2 2 0 0 −2
1 −1 −2 −1 2


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Algorithm 22 Freivalds’ algorithm

Require: 𝐴, 𝐵, 𝐶 ∈ R𝑛×𝑛, 𝑓 ∈ N a failure probability
Ensure: Check the validity of 𝐴 × 𝐵 = 𝐶 with a chance of false-positive under 2− 𝑓

1: 𝑖 ← 0
2: while 𝑖 < 𝑓 do
3: 𝑣 ← Randomly taken in {−1, 1}𝑛
4: 𝑥 ← 𝐶𝑣, 𝑦 ← 𝐵𝑣, 𝑦 ← 𝐴𝑦

5: if 𝑥 ≠ 𝑦 then return FALSE ⊲ check validity

6: 𝑖 ← 𝑖 + 1
7: return TRUE

Let 𝐶, 𝐷 two candidates for the product

𝐶 =



−7 −6 4 9 8

2 1 9 0 6

4 −3 −7 8 −9
8 −6 2 −4 6

7 −1 7 −8 7


, 𝐷 =



2 −3 −6 6 4

1 0 −2 −2 1

1 0 −2 4 3

−4 1 6 3 1

−2 −2 −2 −2 −2


Sample a random vector, here for example 𝑣 =

[
−1 1 1 1 −1

]
and compute

𝑣𝐴𝐵 ← 𝑣 × 𝐴 =

[
6 −1 5 0 −2

]
then

𝑣𝐴𝐵 ← 𝑣𝐴𝐵 × 𝐵 =

[
−2 6 10 1 3

]
Test now 𝑣 × 𝐶 and 𝑣 × 𝐷 with 𝑣𝐴𝐵:

𝑣𝐶 ← 𝑣 × 𝐶 =

[
14 −1 −7 3 −12

]
𝑣𝐷 ← 𝑣 × 𝐷 =

[
−2 6 10 1 3

]
Conclusion 𝐶 is wrong, 𝐷 might be correct but it is not yet guaranteed: for example

𝑀 =



2 0 0 0 0

0 6 0 0 0

0 0 10 0 0

0 0 0 1 0

0 0 0 0 −3


Also gives 𝑣 × 𝑀 = 𝑣𝐴𝐵 however it is clear 𝑀 ≠ 𝐴 × 𝐵.
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5.2 Modifiying Freivalds’ technique for lattice-based

signature verification

5.2.1 The first core idea: Modification of Freivalds’ algo-

rithm

In this work, we modify Frivalds’ technique to obtain a faster probabilistic veri-

fication algorithm. The vector pairs (𝑘, 𝑚) to check are not given by the person

who needs the verification but by the signatory, and so is 𝑃𝑘𝑒𝑦. In the case where

one public key is re-used over multiple message-signature exchanges, the equality

ℎ𝑃𝑘𝑒𝑦 = 𝑚 − 𝑠 = 𝑣 must stand true for all vector triplets (ℎ, 𝑠, 𝑚) provided. In that

case, we can introduce a random vector 𝑥> and 𝑋 = 𝑃𝑘𝑒𝑦 × 𝑥> such that

(ℎ𝑃𝑘𝑒𝑦 = 𝑚 − 𝑠) =⇒ (ℎ(𝑃𝑘𝑒𝑦 × 𝑥>) = 𝑣 × 𝑥>) =⇒ (ℎ × 𝑋 = 𝑣 × 𝑥>)

which reduce a matrix-vector multiplication check to the comparison of two scalar

products (vector-vector multiplications).

A difference with the original Frivalds’ algorithm is that we don’t use 𝑥 ∈ {−1, 1}𝑛

but rather, we will choose a prime 𝑝 such that 𝑥 ∈ F𝑛𝑝 is taken randomly, and project

the whole equation over the field F𝑝. For sufficiently many vectors 𝑥, 𝑋 and primes

𝑝, let’s say 𝑘 primes and 𝑘 vectors 𝑥, our new validity condition is then

ℎ × 𝑋1 = 𝑣 × 𝑥>1 mod 𝑝1
...

ℎ × 𝑋𝑘 = 𝑣 × 𝑥>𝑘 mod 𝑝𝑘

Note that projecting Freivalds’ algorithm over a finite field was proposed in [KS93]

for a non-cryptographic purpose, however to the best of our knowledge there is no

work that modify the algorithm in the manner we just described.

We justify the choice to use multiple different moduli as we are in a cryptographic

application and thus want to ward off potential attacks, this will be expanded in

section 5.3.

Let us compute the probability of failure of our verification algorithm. First of

all, the algorithm is perfectly complete, i.e it will never output a false negative. The

last thing to check is then the probability of a false positive. In that regard, rather

than thinking of probability of a false positive, let us first compute the proportion

of positive results over all possibilities given a prime 𝑝. Let us enumerate all pos-

sibilities. If 𝑣 is fixed, then 𝑣 ∗ 𝑥> = 𝑎𝑝 mod 𝑝 is also fixed. So the proportion of

couples (ℎ, 𝑚) giving a positive result is the probability of
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ℎ × 𝑋 = 𝑎𝑝 mod 𝑝∑𝑛
𝑖=1 ℎ[𝑖]𝑋 [𝑖] = 𝑎𝑝 mod 𝑝

Without losing generality, if we choose and index 𝑗 such that 𝑋 [ 𝑗] is non-zero

(𝑋 being obviously chosen non-zero) and fix every other coefficient ℎ𝑖 such that

𝑏𝑝 = 𝑎𝑝 (
∑
𝑖≠ 𝑗 ℎ[𝑖]𝑋 [𝑖])−1 mod 𝑝, we obtain the result of a positive output with the

same proportion as verifying

ℎ[𝑖] = 𝑐𝑝 mod 𝑝

which is 1/𝑝 for a given prime 𝑝. As this reasoning is sound for any 𝑣 = 𝑚 − 𝑠
and in any triplet (ℎ, 𝑚, 𝑠), we determine the quantity of false positives being the

difference between the amount of positive outcomes and the amount of valid positive

outcomes, which set a proportion of false positives of being strictly under 1/𝑝 (and

by extension its probability over all possible samples).

If we repeat this process over 𝑘 different vectors, the false positive probability low-

ers to below 𝑝−𝑘 . Generally speaking, if we try the test once per couple prime/vec-

tors over 𝑘 primes {𝑝𝑖, 𝑥𝑖}𝑖∈[1,𝑘] , then the probability of obtaining a false positive

becomes lower than
∏𝑘
𝑖=1 𝑝

−1
𝑖
. This is a tighter upper bound over Freivalds’ initial

upper bound, although our work only concerns our very specific case and does not

apply to the general scope of Freivalds’ technique.

Note that quite naturally, there are good reasons this modification have been

avoided in other applications: this modification makes the whole process overall

slower when verifying one signature. After all, we introduce a new scalar product

on the right-hand side 𝑚 − 𝑠 and a supplementary scalar product on the left-hand

side ℎ𝑃𝑘𝑒𝑦, with overall no gain in complexity aside from an equality test among

integers rather than vectors. We can safely assume that in general a multiplication

of scalars is more expensive than an equality test of vectors, thus this change is only

beneficial when 𝑃𝑘𝑒𝑦 × 𝑥> is computed once, which is the point of our new verifier

presented in the next subsection.

5.2.2 The second core idea: Changing the verifier

With our previous idea in mind, we need to explain what we aim to modify in the

previous DRS scheme. First let us briefly recall how the sender/verifier Alice and

the signatory Bob acts in 5 steps:

1. Bob generates a pair of keys {𝑃𝑘𝑒𝑦, 𝑆𝑘𝑒𝑦}.
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2. Bob keeps the secret key 𝑆𝑘𝑒𝑦, and sends the public key 𝑃𝑘𝑒𝑦 to Alice.

3. Alice sends a random vector 𝑚 with ”large” norm ‖𝑚‖∞ to Bob.

4. Bob uses 𝑆𝑘𝑒𝑦 to send the signature {ℎ, 𝑠} to Alice.

5. Alice verifies that ‖𝑠‖∞ is ”low” and ℎ𝑃𝑘𝑒𝑦 = 𝑣 = 𝑚 − 𝑠.

While we can consider the verification process to be entrusted to a third-party

like a certification authority, here we restrict ourselves on exclusively modifying the

computation of the verification which is step 5, and inserting a precomputation

which can be placed after or during step 2.

One important point to stress on is that Alice does not need to communicate to

Bob she is using a precomputation. The whole process is oblivious to Bob and his

role does not change at all compared with the existing DRS process. Hence, it

seems natural for us to assume Alice will keep her computations secret as there is

no apparent benefit in revealing them.

Precomputation

The precomputation construct the samples required to apply our modified Freivalds’

test and can be described in two halves as follows:

� Generate a family of tuples (𝑝𝑖, 𝑥𝑖)𝑖∈[1,𝑘]

� Compute 𝑇 = (𝑝𝑖, 𝑥𝑖, 𝑋𝑖)𝑖∈[1,𝑘] where 𝑋𝑖 = 𝑃𝑘𝑒𝑦𝑥𝑖 mod 𝑝𝑖 given 𝑃𝑘𝑒𝑦

The first half of the precomputation do not requires input from Bob as the di-

mension is supposed to be public, therefore those can even be precomputed before

Bob generating his keys in step 1. The choice of random generators for primes and

vectors are important for security and efficiency considerations, however those are

not the main point of the paper. As far as our experimental results are concerned,

we just used the basic random function ”rand()” of the library ”stdlib.h” in C

with the classical modulo operator % to generate our vectors, and our primes are

randomly taken in a set we will discuss in the security section of this paper, using

the MAGMA software [BCP97] to pick primes and write them into a header file used

by our code before the compilation. Its computation time is negligeable compared

to the second part of the precomputation which involves matrix-vectors modular

multiplications.

In the second half of the precomputation, Alice does not need to store 𝑃𝑘𝑒𝑦 at

the end, and furthermore she does not even need to store the whole public key
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while computing 𝑋𝑖. Since for each row 𝑗 of 𝑃𝑘𝑒𝑦 Alice can independently com-

pute 𝑃𝑘𝑒𝑦 [ 𝑗] ∗ 𝑥𝑖 = 𝑋𝑖 [ 𝑗] mod 𝑝𝑖, Alice can discard every row of 𝑃𝑘𝑒𝑦 where the

corresponding computation is finished and choose to only receive a certain amount

of rows at a time, which would reduce the amount of internal memory required for

the whole precomputation (and allow for further parallelism). The cost of the sec-

ond half of the precomputation is the main cost of the whole precomputation process.

Since we are talking about the possibility of delayed communication (i.e chunks

of data are not sent in one single time, we can think of a real-life slow WiFi), then

another possibility here arises as further precomputations. This is a precomputation

which can be done before or after the hashed vector to reduce/sign is provided to

Bob. Since we have to compute 𝑘 × 𝐵 × 𝑥> = (𝑚 − 𝑠) × 𝑥> = (𝑚 × 𝑥>) − (𝑠 × 𝑥>),
we can compute 𝑚 × 𝑥> before the signature of 𝑚 i.e (𝑘, 𝑠) is returned. While this

seems like we are multiplying the cost by 2 on the right hand side, note that in the

case of delayed communications we can afford this extra computation. Note that 𝑠

has low size, therefore upon receiving 𝑠 from Bob 𝑠 × 𝑥> should be much faster to

compute than (𝑚 − 𝑠) × 𝑥> whenever machine word sizes are low.

This latter technique is not used in our experiments nor was mentioned in our

original paper, but we believe it is another nice application. For now we will present

the basic idea of our new verification method.

New verification method

The new verification method will apply our modification on Freivalds’ algorithm

using our precomputation step. Alice, at step 5, previously discarded the public key

𝑃𝑘𝑒𝑦 and kept some small footprint in the form of a secret list 𝑇 of triplets and sent

a random message 𝑚. As she received in step 4 the signature (𝑘, 𝑠) from Bob, her

verification process is now described by algorithm 23.

This new verification algorithm is more compact than the original one and also

simpler to understand. The only remaining point to deal with is to choose how

large ℎ and the primes 𝑝𝑖 need to be. We will discuss that in the next section when

discussing security.

Example 16. Let us use the example of the previous chapter. Bob has a public key

𝑃.
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Algorithm 23 New Verification

Require:
a list of triplets 𝑇 = (𝑝𝑖, 𝑥𝑖, 𝑋𝑖)𝑖∈[1,𝑘] and a message 𝑚 from Alice
a signature (ℎ, 𝑠) from Bob
a public bound 𝐷 on the signature norm

Ensure:
a boolean 𝑅 stating whether (ℎ, 𝑠) is a valid signature for 𝑚 and 𝑃𝑘𝑒𝑦
𝑅 is a false-positive with probability strictly less than

∏𝑘
𝑖=1 𝑝

−1

1: 𝑅 ← {‖𝑠‖∞ < 𝐷} ⊲ Verifies the max norm of the signature
2: for 𝑖 ∈ [1, 𝑘] do
3: 𝑅 ← 𝑅 ∧ {ℎ𝑥𝑖 = (𝑚 − 𝑠)𝑥𝑖 mod 𝑝𝑖} ⊲ Verifies modular equalities

4: return 𝑅

𝑃 =



−1840 2471 −382 −820 710 3048

1966 −1378 1486 1721 1430 −4090
−1998 4317 994 271 3660 2211

2729 −3460 746 1375 −680 −4662
2784 −6566 −1866 −801 −6100 −2700
3679 −3323 2144 2716 1380 −7160


Alice does not store the whole public key, and instead sample 2 primes 𝑎 = 2, 𝑏 = 3

and random vectors 𝑥𝑎 ∈ Z𝑛𝑎 and 𝑥𝑏 ∈ Z𝑛𝑏.

𝑥𝑎 =

[
0 0 1 0 1 1

]
and 𝑥𝑏 =

[
2 2 1 0 2 2

]
We then compute 𝑋𝑎 = 𝑃 × 𝑥>𝑎 mod 𝑎, 𝑋𝑏 = 𝑃 × 𝑥>𝑏 mod 𝑏

𝑋>𝑎 =

[
0 0 1 0 0 0

]
and 𝑋>

𝑏
=

[
2 0 1 0 0 2

]
Alice sends a message which hash to a vector 𝑣 to reduce and Bob sends a signature

(𝑘, 𝑤).

𝑘 =

[
−54029 −77227 6908 −38654 −4594 50148

]
𝑣 =

[
924 232 131 692 439 694

]
𝑤 =

[
0 9 −9 −1 −1 0

]
Now Alice wants to verify with a certain probability that the signature is correct.

The first time is to check ‖𝑤‖ < 10. This is easily seen. The second is to test that

𝑘𝑃 = 𝑣 − 𝑤.

𝑘 × 𝑋>𝑎 mod 𝑎 = 6908 mod 2 = 0 and 𝑘 × 𝑋>
𝑏

mod 𝑏 = −854 mod 3 = 1

(𝑣 − 𝑤) × 𝑥>𝑎 mod 𝑎 = 1274 mod 2 = 0 and (𝑣 − 𝑤) × 𝑥>
𝑏

mod 𝑏 = 4702 mod 3 = 1
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Alice is now sure with an error probability lower than 1/(𝑎 × 𝑏) that Bob gave a

correct signature.

Note that the above example had lots of zeroes. This is due from us picking only

two primes 𝑎, 𝑏 of extremely small sizes for the sake of the example. By picking a

large number of large primes this phenomena is essentially discarded. A full work-

ing code of the previous example can be found in the appendix A.13, where primes

taken are a bit more random. As we will see later, it does not actually matter much

that 𝑎 and 𝑏 are prime. The main reason the original paper was focused solely

on using primes was the fact that is was the easiest option to explain in a small

amount of words and we found ourselves quite limited in the amount of information

we could fit. We just chose them prime for simplicity but as far as efficient results

are concerned, or even security, we will suggest other alternatives.

For now and consistency with the paper we published, we will focus on the heaviest

option, i.e considering a list of large prime numbers, and talk about more reasonable

alternatives later.

5.3 Security considerations

While the previous attacks on the old DRS are well-understood heuristics relying

either on machine learning [YD18a] or pure lattice reduction as with most other

lattice-based schemes (being signature-based or decryption-based), our modification

does not thwart previous attacks nor does it reinforce them and thus rely on the same

security assumptions.

However, this is only when considering the only secret was the diagonal dominant

matrix 𝑆𝑘𝑒𝑦. Here, we introduce a new secret, which is the list of triplets 𝑇 generated

by Alice. Thus, new attacks venues can be considered which, to the best of our

knowledge, were also not considered in others lattice schemes submitted to the

NIST. We will consider them in this section. We briefly present the two avenues

we found and explain our reasoning on why only the second can be considered, and

tackle this issue. Note that our reasoning discard all attack venues that can affect

the old DRS independently of our new method, as this would be out of this paper’

scope, and we stress it is hard to construct a security proof when an attack aside

from exhaustive search cannot be constructed.
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5.3.1 Attack models

A malicious Bob

One attack is to try to guess the triplets generated by Alice, as malicious Bob, by

sending carefully crafted keys and signatures. While it is definitively an interesting

idea, as long as Alice generates a different triplet for each public key (using a hash

of 𝑃𝑘𝑒𝑦 as a seed for example) and only answers 𝑇𝑟𝑢𝑒 or 𝐹𝑎𝑙𝑠𝑒 in the verification,

we do not see any gain malicious Bob could have over a honest Bob.

A honest Bob, and a ”fake Bob” Eve

To the best of our knowledge, the only other attack venue is having a honest Bob,

who is giving good signatures, and Eve, who has no knowledge of the secret key

𝑆𝑘𝑒𝑦, wanting to sign as well as Bob but could not in the existing DRS scheme. Let

us suppose Eve knows that Alice is using our technique for signature verification,

although assuming she has no knowledge of the triplets 𝑇 and knows as much as

Alice concerning Bob. Can Eve make Alice believe Eve is Bob?

To this purpose, we assume Eve has to generate a false-positive from Alice’s veri-

fication algorithm. As Alice can make the primes 𝑝𝑖 and their quantity 𝑘 as large as

she wants, it seems unreasonable to assume Eve can randomly fall into the
∏𝑘
𝑖=1 𝑝

−1
𝑖

false-positive probability. Eve cannot resort either to a lattice-reduction technique

on an easier lattice stemming from 𝑇 if she has no knowledge of 𝑇 . Furthermore,

building a false-positive for the modified Freivalds’ test is not enough: one has

to guarantee the vector-signature 𝑠 is short enough. It is then possible that the

number of false-positives drastically decreases, which reinforces the security of our

modification however counting the number of false-positives within a bound seems

non-trivial.

Therefore, we believe that for Eve to be successful she must at least recover 𝑇

fully. It is unclear if the knowledge of the primes 𝑝𝑖 is enough for Eve to recover

the associated vectors 𝑥𝑖. While this is a very obvious overexaggeration on Eve’s

attack capabilities, we will assume for a simpler analysis that guessing exactly all

𝑝𝑖 is sufficient to trigger a false-positive on Alice’s side. We will now discuss this

choice and explain in the next section how to alleviate this (potential) issue of Eve

recovering 𝑇 .
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Considerations behind our ”hidden moduli” choice

Very simplistically, when one crafts an algorithm on a particular mathematical struc-

ture, they usually know the result of an operation “+” as 𝑐 = 𝑎 + 𝑏 given 𝑎, 𝑏. Craft-

ing an algorithm when having little knowledge on the result of basic operations as

𝑐 = 𝑎 + 𝑏 is trivially more challenging and by hiding the moduli ring in which com-

putations are done is a way to achieve a certain sense of security. Note that even if

the moduli are known, the security is by no means compromised. Let us state the

ideas of the overall problem:

Definition 47 (Hidden Modular Vector Product).

Let 𝑥 be a unknown matrix 𝑥> ∈ R = Z𝑙1𝑚1
× ...×Z𝑙𝑛𝑚𝑛

and 𝑀 a known matrix 𝑀 ∈ Z𝑁×𝑁

such that 𝑁 =
∑𝑛
𝑖=1 𝑙𝑖.

Let Φ be an oracle that given two vectors (𝑘, 𝑣) outputs the result of the equality test

Φ𝑀,𝑥 (𝑘, 𝑣) → (𝑘 × 𝑀 × 𝑥> is equal to 𝑣 × 𝑥>).
Before each query to the oracle, you are given a single vector 𝑣′. The query must then

be of the form Φ𝑀,𝑥 (𝑘, 𝑣′′ − 𝑣′) where 𝑣′′ is small otherwise Φ defaults to FALSE.

The problems are the following:

� How many calls to Φ are necessary to forge a TRUE output with 𝑘 × 𝑀 ≠

𝑣′′ − 𝑣′?

� Related problem: How many queries to Φ is necessary to recover 𝑥?

Clearly, the difficulty depends of the number of numbers (𝑙𝑖, 𝑚𝑖) and the matrix

𝑀, but the problem might not actually be hard. Note that if you can solve GDD𝛾

on L(𝑀) for any given vector 𝑣′, then creating valid instances (𝑘, 𝑣′ − 𝑣′′) is trivial.
The problem can be hard in forging the first TRUE case. Our application, however,

obtain multiple TRUE cases.

In our work we solely focus on the simpler problem: obtaining an invalid TRUE

which does not solve the underlying GDD𝛾 problem on L(𝑀) once is enough to

break the scheme. This could happen if the keys 𝑥, 𝑀 are not refreshed often

“enough”. But how much is “enough”? Note that if some queries (𝑘1, 𝑣1), ..., (𝑘𝑛, 𝑣𝑛)
reveal themselves to be true (independently of whether 𝑘 × 𝑀 ≠ 𝑣′′ − 𝑣′ is verified),
then you could potentially construct other solutions from < (𝑘1, 𝑣1), ..., (𝑘𝑛, 𝑣𝑛) >Z.

Thus, once we obtain a TRUE output a polynomial amount of times, the “related

problem” reveals some structure by linear algebra by constructing invertible matrices

𝐾,𝑉 over R s.t

𝐾 × 𝑀 × 𝑥> = 𝑉 × 𝑥> i.e 𝑉−1 × 𝐾 × 𝑀 × 𝑥> = 𝑥>
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i.e gathering systems of equations of the form 𝐴 × 𝑥> = 𝑥> where multiple possible

matrices 𝐴 known. It is still unclear if this is sufficient to either guess 𝑥 or forge

invalid signatures 𝑘 × 𝑀 ≠ 𝑣′′ − 𝑣′ which gives Φ𝑀,𝑥 (𝑘, 𝑣′′ − 𝑣′) = TRUE, but it is a

structure to consider.

Our problem is a harder version of the previous problem: while 𝑙1, ..., 𝑙𝑛 can be

given as public, 𝑚1, ..., 𝑚𝑛 are hidden. This lead to the following problem:

Definition 48 (Hidden Modular Vector Product with hidden modulis).

Same as previously but the ring R = Z𝑙1𝑚1
× ... × Z𝑙𝑛𝑚𝑛

now have hidden moduli.

While in the first problem, if we could solve the first problem a sufficient amount

of times, the “related problem” might have been solvable in some way, this case

could be possibly much harder as a modular inverse is no longer easily available

(nor are any modular operations), although this requires verification.

Nevertheless, one fact remains true: if some queries (𝑘1, 𝑣1), ..., (𝑘𝑛, 𝑣𝑛) reveal
themselves to output TRUE, then you could use < (𝑘1, 𝑣1), ..., (𝑘𝑛, 𝑣𝑛) >Z to forge

solutions. And thus our aim is to base the hardness of our modification on the origi-

nal hardness of DRS or most lattice problems: our security assumption here is that

the latter problem is not easier than solving GDD𝛾 over L(𝑀) when the number

of queries is “reasonably” bounded. How we “bound” that number of queries can

be determined at the users’ discretion: we do not provide a security proof, nor did

we forge a heuristic attack to test its security. As long as a desired efficiency gain

is achieved, then keys can be regenerated. We will show from experimental results

on an inefficient assumption (picking random prime numbers as moduli, i.e 𝑚𝑖 are

prime and 𝑙𝑖 = 1) that not even 400 signatures are needed for an overall speed effi-

ciency gain on the largest parameters.

5.3.2 How to choose the primes

In order to dissuade Eve from trying to guess the correct set of primes 𝑇𝑝 = (𝑝𝑖)𝑖∈[1,𝑘] ,
we have to make sure the number of possibilities is large enough. In that regard, we

are considering two objectives: one is to reduce the complexity of arithmetical op-

erations used during the verification algorithm, and the other is to match a chosen

level of security.

Which naturally brings us to a natural question: is it easier to trigger a random

false-positive, i.e to try our luck with an attacker’s success of
∏𝑘
𝑖=1 𝑝

−1
𝑖
, or to guess

𝑇𝑝? As we will observe later, the set of combinations 𝑇𝑝 is picked from is actually
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far below
∏𝑘
𝑖=1 𝑝𝑖. We also choose primes to obtain efficient arithmetic. To deal

with the second objective, we will just fix the level of security to match the same

level of security the original DRS algorithm was aiming to achieve with lattices of

dimension {1108, 1372, 1779}: the NIST security levels {3, 4, 5} which is basically

requiring {128, 192, 256} bits of security.

To reach that number, let us present how we determine the number of combina-

tions available when choosing primes of a certain amount of bits. Suppose we have

a set 𝑆 of primes, and pick 𝑘 primes from it which gives
(𝑆
𝑘

)
combinations to choose

from. We now have to determine both 𝑆 and 𝑘. To give an idea of the numbers

required, we give table 5.1 and 5.2 and refer to a table available online [eS18] refer-

encing the number of primes.

Table 5.1: Number of primes per bit size

#Bits 20 21 22 23 24 25 26
#Primes 38,635 73,586 140,336 268,216 513,708 985,818 1,894,120

#Bits 27 28 29 30 31 32
#Primes 3,645,744 7,027,290 13,561,907 26,207,278 50,697,537 98,182,656

Table 5.2: Size of set 𝑆 necessary to achieve
(𝑆
𝑘

)
> 2𝑏

𝑏

𝑘
5 6 7 8 9 10

128 132,496,421 7,910,346 1,080,111 - - -
192 - - 610,573,333 63,155,327 10,957,838 2,727,426

𝑏

𝑘
11 12 13

256 49,751,158 13,974,454 4,801,557

While taking low-bits primes to minimize the amount of modular reductions al-

lows for more efficient arithmetic (see ”lazy reductions” in Seiler’s work for NewHope

[Sei18]), we will very soon show that we have to combine multiple sets of large sizes

of primes to achieve a reasonable amount of security. DRS fitted every computa-

tion within 64-bits for both speed and convenience, and ideally we should follow

that philosophy.

There are four simple reasoning steps to keep operations within 64-bits:

1. (𝑘 × 𝑋) and (𝑚 × 𝑥) must hold in 63-bits (unsigned)

2. ℎ, 𝑋, 𝑚, 𝑥 have a dimension of 11-bits (DRS dimensions requirement)
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3. ‖𝑘 ‖∞ × ‖𝑋 ‖∞ must be within 52-bits

4. ‖𝑘 ‖∞ must hold in 26-bits, and so does 𝑝.

Note that Barrett’s reduction [Bar86] is inapplicable here as it will overflow. Trying

to reduce the number of modular reductions by reducing at the critical worst-case

bound reached is a common technique used in some other cryptosystems and is

sometimes called ”lazy reduction” [Sei18]. Our operations can be represented as

simply as a scalar product. Therefore, if our integers are in 𝑏 bits, we need to

apply a modular reduction every minimal amount 𝑙 of multiply-and-add such that

63 = log2(𝑙) + 2𝑏. Using signed representation, we can also gain one bit but it could

increase the cost of the precomputation and we didn’t test it.

In order to approximate the efficiency gained, we assimilate the cost of a modular

reduction to one of a multiplication, which is roughly the same as a Barrett reduc-

tion. Keeping those in mind, we here present our choices of prime sets per NIST

security level:

3 : 128-bits security: 𝑘 = 6 with 𝑆 the set of 28-bits primes

4 : 192-bits security: 𝑘 = 9 with 𝑆 the set of 27 and 28-bits primes

5 : 256-bits security: 𝑘 = 12 with 𝑆 the set of 24 to 28-bits primes

How we default to those choices is explained below:

Security level 2128 and lattice dimension 1108

We note that even using 31-bit primes and below will not give us enough integers

in the pool 𝑋 if we hope to use 𝑘 = 5.

To achieve 𝑘 = 6, we would need to use primes of at least 28-bits. In that re-

gard, using 28-bits primes will force us to use modular reduction every 27 i.e 128

multiply-and-add operation or 256 using the trick described above, for a minimum

of 4 modular reduction per scalar product i.e 8 per moduli for a total of 48 modular

reductions.

On the other hand if we go for 𝑘 = 7 we can use 25-bits and 24-bits primes (their

combined sum is over the minimum value required) and verify that 24 ∗ 7 > 128 and

no modular reduction is actually needed except for the checking phase. However

one more moduli adds 1108 ∗ 2 = 2216 extra multiply-and-add operations and thus

we consider it more efficient to have 𝑘 = 6 with 28-bits primes.



5.4. IMPLEMENTATION RESULTS 120

Security level 2192 and lattice dimension 1372

We note that even using up to 32-bits primes in this case do not give us a big enough

pool to use 𝑘 = 7.

Using 𝑘 = 8 forces us to use the pool of 31-bits and 30-bits primes. Using 31-bits

primes force us to use a modular reduction at least every 4 multiply-and-add, which

leads to 343 modular reduction per vector for a total of 686 per prime for a total of

5488 modular reductions.

Using 𝑘 = 9, we have 90 modular reductions using the same reasoning on 28-bits

integers (added to the pool of 27-bits integers) at the cost of 2744 extra multiply-

and-add compared to 𝑘 = 8.

Using 𝑘 = 10 will lead to use 26 and 25-bits integers removing the need of modular

reductions during the computation of the scalar product, however adding another

extra 2744 operations does not seem to be an optimal choice.

Security level 2256 and lattice dimension 1779

Clearly 𝑘 = 10 is not possible considering our previous security assumptions.

𝑘 = 11 is not possible without using 31-bits integers and lead us to 888 modular

reduction per prime for a total of 9768 modular reductions.

𝑘 = 12 is possible when we use all primes ranging from 28-bits to 24-bits included:

that gives 14 modular reduction per prime i.e 168 in total, for 3558 extra multiply-

and-add.

5.4 Implementation results

5.4.1 Time results on a basic implementation

To make a fair comparison, we first give the time given by the original algorithm

(setup, sign and verify). Time is given as an average in milliseconds and compu-

tations were done using a Intel(R) Xeon(R) Gold 6128 CPU @ 3.40GHz processor

using a non-optimized C implementation and re-using the code provided by the our

own original submission on the NIST website (see table 5.3).

We then showcase the base case where we do not take account of the number of
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Table 5.3: Average time (in ms) for the existing DRS scheme

Security
Phase

Setup Signature Verification

128 67.5 1.495 0.89
192 102 2.46 1.68
256 162.9 3.82 3.50

combinations and use just enough 32-bit integers to reach the product size needed,

and compare them with our choices with smaller primes (28-bits or less) in a larger

amount to reach the combination size needed (see table 5.4). Note that the gener-

ation of primes is not included, as we used MAGMA [BCP97] to pick primes and

write them into a header file used by our code before the compilation. Picking

primes, however did not take any significant amount of time (almost always lower

than 10𝑚𝑠), and we used an external software (namely MAGMA) to select them.

Following this, we do not think reporting the time taken for the prime generation

is very relevant, as the literature also points out it is on a much lower scale than

a matrix-vector multiplication (for our sizes, see [Mau95] and subsequent work on

either heuristic or deterministic algorithms).

Table 5.4: Average time (in ms) for the precomputation/verification algorithms

Phase
Security

128 192 256

Precompute (32-bits) 100.16 223.9 646.69
Verify (32-bits) 0.1328 0.2515 0.4297

Precompute (28-bits) 153.21 363.1 1005.1
Verify (28-bits) 0.1048 0.2006 0.3429

We observe that the precomputation is heavier than the generation of the keys.

Which is expected as we are dealing with multiple modular matrix-vectors multipli-

cations, whereas the original DRS setup only had to deal with randomized vectors

additions. The number of signatures generated per key to break even in time (includ-

ing precomputation) compared with the old DRS is reached for 256-bits of security

with 319 signatures (28-bits case) and 211 (32-bits case), and even less signatures

for the lower levels of security. Table 5.5 shows the number of signatures to break

even for each parameter set.

5.4.2 Memory storage

As we mentioned previously, Alice does not need to store 𝑃𝑘 in our alternative

scheme. Memory-wise, this showcases an obvious advantage for the verifier to re-
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Table 5.5: Average number of signature verifications to break even in overall
time efficiency

Security 128 192 256
Signatures (28-bits) 196 246 319
Signatures (32-bits) 133 157 211

quire only a quasi-linear amount of memory in function of the dimension rather

than a quadratic amount (i.e full public key). Here in all 3 cases we store 𝑘 prime

integers of 28-bits, plus 2∗ 𝑘 vectors of dimension 𝑛 containing 28-bits integers, thus

the memory taken in bytes is d28(𝑘 + 2𝑘𝑛)/8e (see table 5.6).

Table 5.6: Memory storage in bytes for 𝑃𝑘𝑒𝑦 and its footprint 𝑇

Security 128 192 256
𝑃𝑘 the public key 7,672,900 11,764,900 19,780,257

𝑝𝑖, 𝑥𝑖, 𝑋𝑖 46,557 86,468 149,478

Another potential worry in term of memory in our modified scheme is that the

prime number generation might be taking a lot of memory for the verifier. However,

after decades of research on prime number generation we do not believe this is really

the case [JP06]. Furthermore, we do not actually need primes for this approach to

be usable: we just need the integers to be coprime, which brings a larger set of

available integers at a much lower size.

5.5 Beyond DRS and the usage of primes

5.5.1 Any random integer ring is fine

The first point we want to stress is that we do not need to actually generate primes.

We only need a large set of large factorizable integer rings. Basically speaking we

want a set 𝑆 of integer rings where the following hold:

For 𝜆-bits of security we need |𝑆 | > 2𝜆, and ∀R ∈ 𝑆, |R | > 2𝜆

However for both security and efficiency assumption, we need to assume on top

of the previous condition:

∃𝑘 ∈ N, such that ∀R ∈ 𝑆, R ≡ R1 × ... × R𝑘 where ∀𝑖 ∈ [1, 𝑘], |R𝑖 | < 232.

The lower 𝑘 and the |R𝑖 |, the more efficient it is. Such large groups exists by CRT

decompositions, and asking for such large sets also requires large sets where com-

putations are easy. The RNS easily come to mind as those, introduced by Garner
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[Gar59], already enjoy multiple applications in cryptography [BI04, BP04, BEM16,

BEHZ16].

RNS can work for computations over bounded integers of any size, as long as the

final result can be recovered and is guaranteed to exist within the bound. Therefore,

another alternative is the following:

� Use a public RNS basis commonly shared by all parties, or just by a single

signatory.

� Compute operations within a ring R hidden such that |R | is coprime with

every RNS component (known in advance).

While it might seem surprising for non-arithmeticians to use another ring RRNS to

do computations within a ring Rhidden, there have been previous cases where RNS

was used as a mean to accelerate computations within RSA [BI04]. It is clear us-

ing this technique drastically increases the set of available hidden rings at almost no

cost, however the reconstruction or basis change operations, if needed, can be costly.

At this point no experimentations were done, but intuitively it seems clear that

both approaches will lead to better results both in efficiency and security.

5.5.2 Other types of basis and lattice-based signature schemes

Remember that for any lattice, 𝑣 ∈ L(𝐵) if and only if there exists 𝑘 such that

𝑘𝐵 = 𝑣. In the case of DRS, both 𝑘 and 𝑣 are part of the signature, but for most

lattice signature schemes 𝑘 is not provided. The reason is simple: most lattice-based

schemes use a HNF, and 𝑘 can be computed in polynomial time if 𝐵 is a HNF,

and even in linear time when 𝐵 is a perfect HNF. Thus, 𝑘 is computed “on the fly”

during the verification process. We provide the two cases below

Perfect HNF basis 𝐵 ∈ Z𝑛×𝑛

𝑘𝐵 = 𝑣 gives “∀𝑖 > 1, 𝑘𝑖 = 𝑣𝑖”.

Cryptographic 𝑞-ary basis 𝐵 ∈ Z𝑛×𝑛

𝑘𝐵 = 𝑣 gives “∀𝑖, 𝐵𝑖,𝑖 = 1 =⇒ 𝑘𝑖 = 𝑣𝑖”

In both cases, when 𝑘𝑖 ≠ 𝑣𝑖, a modular reduction is applied to compute 𝑘𝑖.

If our modification is to be applied to another lattice-based scheme, then 𝑘 must

be included as a part of the signature. This will increase the size of the signature

significantly while also adding computational costs for the signatory. The gain is

therefore less obvious: the verifier does not need to store the public key, but might

need to deal with a vector 𝑘 which is potentially very large. While verification costs

can indeed be decreased, communication costs will increase as a result on top of the
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signature size and cost.

Furthermore, most recent lattice-based schemes do not have efficiency problems

as they rely on a ring structure. The security of schemes based on ring-based lattices

is maybe debatable but their efficiency is a strong selling point and might not need

further efficiency gains from this technique. Even without using the ring structure,

the case of 𝑞-ary lattices where 𝑞 is low or a power of 2 already enjoy fast arithmetic

that can be lost by applying our modification. In short, plugging our modification

into another existing cryptosystem requires a case-by-case analysis and efficiency

gain are not necessarily apparent.

However, there is also positive points to consider in our modification when applied

to HNF basis:

� Part of 𝑘 can be removed from communications as 𝑘𝑖 = 𝑣𝑖 for many positions.

� Precomputation of 𝐵 × 𝑥> when 𝐵 is in HNF is faster than with random

matrices.

The first point is straightforward to understand. The second point give some

relations in 𝐵 × 𝑥>:

� In the case of perfect HNF, 𝑋 = 𝐵 × 𝑥> gives 𝑋𝑖 = 𝐵𝑖,1 × 𝑥1 + 𝑥𝑖.

� In the case of cryptographic 𝑞-ary lattices, there is some integer 𝑚 such that

𝑖 ≤ 𝑚 =⇒ 𝑋𝑖 = 𝑞 × 𝑥𝑖 and 𝑖 > 𝑚 =⇒ 𝑋𝑖 = 𝑥𝑖 +
∏𝑚

𝑗=1 𝐵𝑖, 𝑗𝑥 𝑗

We can observe that the case of perfect HNF leads to an extremely fast precom-

putation phase. 𝑥1 can even be fixed to 0 to skip most of the precomputation. While

not being as efficient as the perfect HNF case, the 𝑞-ary case also gives a lot of easy

precomputations compared to the DRS case.

At this moment we did not conduct any experiments to test the efficiency of those

cases. As mentioned before, this is a case-by-case basis which requires much further

work.

Summary and conclusion

We introduced a modification of Freivalds’ algorithm to introduce a faster verifica-

tion method to DRS. This process is done while not modifying any information

given by the signatory, and we gain a factor of almost 20 for the verification part

while also heavily reducing its memory cost.



Chapter 6

Tighter Bounds: Accelerating

NewHope

The work here is the product of a short-term collaboration with Dr Vincent Zucca

when he visited us for a post-doc. The spirit of this work is very different from

the previous chapters where novel structures and “unpopular” algorithms (or ap-

proaches) were explored, however as it is also a contribution on post-quantum cryp-

tography we believe it should also be part of this thesis.

This work is a shorta study on the New Hope protocol which is one of the candi-

dates for the NIST PQC competition.

Initially, we submitted it for CHES 2019 but we had to modify our work to match

the most recent version of the specifications given in the NIST website which we

were unaware of: the specifications were updated few weeks before our submission

and to our regret, we lacked attention at that time. Furthermore, the work of

[ZXZ+18] came to our attention thanks to the reviewers comments, which we were

also unaware of but was clearly related to our work. Meanwhile, the work of [ZPL19]

appeared online after a few weeks and we also need to take their contribution into

consideration.

We would like to thank the reviewers for CHES 2019 as their comments were

overall very helpful.

All of this led to this present chapter, which is mostly a paraphrasing of the last

atime-consuming as implementation and testing were concerned, but short on what we could
write. Nevertheless, it allowed me to deepen my knowledge about AVX (Advanced Vector Ex-
tensions) implementations so it is not “wasted” time on a personal level. However, our sentiment
publication-wise was that the work produced was “not worth the effort”.

125
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version of the paper we submitted. At the moment of writing this work should still

be under review. However we expect it to be published eventually.

6.1 Introduction

The NewHope protocol [ADPS16b] is a KEM whose security is based on the RLWE

problem and has been reported by the NIST as competitive in term of bandwidth

and clock-cycles despite quite conservative parametersb.

It allows two users to exchange a common 256 bits key in order to secure their

future communications. However the small errors ensuring the security of the pro-

tocol can add together and make it fail, i.e. the two users will not have the same

key at the end. In order to ensure this only happens with very low probability,

the modulus 𝑞 must be chosen to be large enough in comparison to the size of the

errors. In [ADPS16b] the authors have shown that the modulus 𝑞 = 12289 was large

enough for this purpose. This modulus has not been chosen randomly since it is the

smallest one allowing to use the NTT algorithm in dimension 𝑛 = 512 or 𝑛 = 1024,

which permits to compute efficiently multiplications of elements. Considering that

the multiplication is the bottleneck of the arithmetic in this scheme, and that vec-

torized implementations of NTT are the most efficient way to perform this task on

these dimensions ([Sei18]), it is crucial to ensure good performance.

In this work, we review the probability error analysis made in [ADPS16b], also

used in the slightly different version [ADPS16a] submitted to the NIST, and show

that the actual bound is much lower than what was initially evaluated. This al-

lows to justify the use of a smaller modulus 𝑞 while maintaining a very low prob-

ability failure. Reducing the size of the modulus benefits directly to the band-

width requirements since elements will be represented on less bits, and to the se-

curity of the scheme which is increased. However, given that the original modulus

was the smallest one allowing the use of the NTT in dimensions 512 and 1024,

one needs to find an alternative strategy to compute the product of elements effi-

ciently. We propose different alternative moduli and, similarly to previous works

([Moe76, ZXZ+18, LS19, ZPL19]), we show that by combining NTTs of smaller di-

mensions with other multiplication algorithms we obtain competitive performance

with the state-of-the-art. More precisely, two of these moduli increase both the com-

pactness and the performance up to 15% without reducing significantly the level of

security (−1% in the worst-case). The detailed parameters can be found in Table

6.4. Note that our implementations, sequential and vectorized, work in constant

time and are based on Seiler’s work ([Sei18]) which is, to the best of our knowledge,

bhttps://nvlpubs.nist.gov/nistpubs/ir/2019/NIST.IR.8240.pdf
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the current state-of-the-art.

6.2 Related Art

Optimising the efficiency of the submissions to the NIST is a hot topic. In a cer-

tain sense, Kyber ([BDK+18]), which is essentially the adaptation of NewHope to

the Module-LWE setting, has been created to achieve the best possible performance

from NewHope. However the parameters of NewHope remain, even now, very con-

servative. It has been mentionned recently that one could reduce the modulus size

of NewHope to improve the compactness of the scheme ([ZXZ+18]) while performing

the arithmetic with a classical trick: combining a naive multiplication algorithm

with smaller NTTs ([Moe76]). This work has been recently improved by using a

Karatsuba pattern instead of the naive algorithm ([ZPL19]). However since the au-

thors use the same failure probability analysis than in [ADPS16b], the parameters

they have derived are far from optimal. Moreover the design of their arithmetic

techniques has lead to slightly worst performance than in the original setting.

In the case of [ZXZ+18], the design of their arithmetic technics has lead to slightly

worst performance than in the original setting. Moreover, since these works rely on

the same failure probability analysis than [ADPS16a], the parameters derived by

their authors are not optimal.

Using the idea of [ZXZ+18], Lyubaschevsky and Seiler have proposed a different

arithmetic design. The idea is to perform an uncomplete – i.e. when the defining

polynomial does not factorize in linear terms, NTT first and then perform the prod-

ucts modulo the small, not linear, factors ([LS19]). This has lead to significantly

better performance and has been included in Kyber’s implementation since then

([RJL+19]).

NewHope implementation of the NTT ([ADPS16b]) which smartly combines Mont-

gomery reductions ([Mon85]) and floating point operations, was considered, to the

best of our knowledge, as the reference implementation at the time and was also

used in Kyber. However in a remarkable work ([Sei18]), Seiler showed that by

using a slightly different Montgomery reduction algorithm, and vectorized integer

instructions for the NTT, one could gain a factor 4 (resp. 6) over the polynomial

multiplication of NewHope (resp. Kyber). His work has been included in Kyber’s

implementation recently ([RJL+19]).
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6.3 Notations for this chapter

Let 𝑚 be a power of two, and let 𝚽𝑚 (𝑋) = 𝑋𝑛 + 1 be the cyclotomic polynomial of

index 𝑚 with 𝑛 = 𝜑(𝑚) = 𝑚/2 with 𝜑 the Euler’s totient function. The associated

cyclotomic ring will be denoted R = Z[𝑋]/(𝑋𝑛 + 1) and for 𝑞 ≥ 1 we will denote

the quotient ring R𝑞 = R/𝑞R � (Z/𝑞Z) [𝑋]/(𝑋𝑛 + 1). Bold lower-case letters 𝒂 will

denote elements in R which can be seen as polynomials of degree strictly smaller

than 𝑛 with integer coefficients.

The notation [·]𝑞 will represent the centred reduction of an integer modulo 𝑞

in [−𝑞/2, 𝑞/2) and can be extended to polynomials by applying it coefficient-wise.

The flooring (resp. the rounding to the nearest integer) of a rational number will be

denoted b·c (resp. b·e) and these notations will be used for polynomials similarly.

𝜓𝑘 will denote a centered binomial distribution of parameter 𝑘 (elements sampled

in [−𝑘; 𝑘] ∩Z). Sampling from 𝜓𝑘 can be done by computing
∑𝑘
𝑖=1(𝑏𝑖 − 𝑏′𝑖) where 𝑏𝑖

and 𝑏′
𝑖
∈ {0, 1} are independent uniformly sampled bits. 𝜓𝑛

𝑘
will denote the distri-

bution over R where all the coefficients of a polynomial are sampled independently

from 𝜓𝑘 . Finally, for a distribution D (resp. a set I), 𝑎 $←− D (resp. 𝑎
$←− I) will

mean that 𝑎 is sampled randomly from D (resp. uniformly in I).

6.3.1 NewHope

For the sake of completeness, NewHope protocol is recalled in Figure 6.1. We also

present and discuss the main points of the protocol to ease our next analysis. For

further details concerning the protocol the interested reader can refer to [ADPS16b].
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Alice (server) Bob (client)

s
$←− {0, . . . , 255}32

𝒂
$←− Parse(SHAKE128(s))

𝒔1, 𝒆1
$←− 𝜓𝑛

𝑘

𝒃 ← [𝒂 · 𝒔1 + 𝒆1]𝑞 𝒔2, 𝒆2, 𝒆3
$←− 𝜓𝑛

𝑘

𝑚𝑎 ← encodeA(s, 𝒃) 𝑚𝑎−−−−−→ (s, 𝒃) ← decodeA(𝑚𝑎)
𝒂

$←− Parse(SHAKE128(s))
𝒖 ← [𝒂 · 𝒔2 + 𝒆2]𝑞

𝜈 ← {0, 1}256
𝜈′← SHA3-256(𝜈)

𝜿 ← NHSEncode(𝜈′)
𝒄 ← [𝒃 · 𝒔2 + 𝒆3 + 𝜿]𝑞
𝒄 ← NHSCompress(𝒄)

(𝒖, 𝒄) ← decodeB(𝑚𝑏)
𝑚𝑏←−−−−− 𝑚𝑏 ← encodeB(𝒖, 𝒄)

𝒄′← NHSDecompress(𝒄) 𝜇← SHA3-256(𝜈′)
𝜿′ = [𝒄′ − 𝒖 · 𝒔1]𝑞
𝜈′← NHSDecode(𝜿′)
𝜇← SHA3-256(𝜈′)

Figure 6.1: NewHope Protocol (without reconciliation) [ADPS16a]

Encoding and compression functions

As shown in Figure 6.1, the key 𝜈′ ∈ {0, 1}256 is encoded by Bob as an element 𝜿 ∈ R𝑞
through an encoding function NHSEncode and Alice recovers it through NHSDecode.

Additionally, a compression function NHSCompress is used in order to reduce the size

of the elements sent by Bob to Alice. The way these functions work is detailed below.

Let 𝒄 ∈ R𝑞 and 𝑡 � 𝑞 be the compression parameter, the compression function

consists in keeping only the log2 𝑡 most significant bits of each coefficient, thus:

NHSCompress(𝒄) = 𝒄 ∈ R𝑡

with 𝑐𝑖 = b𝑐𝑖 · 𝑡/𝑞e mod 𝑡 for 𝑖 ∈ {0, . . . , 𝑛 − 1}.

The decompression function consists in applying the reverse transformation:

NHSDecompress(𝒄) = 𝒄′ ∈ R𝑞

with 𝑐′𝑖 = b𝑐𝑖 · 𝑞/𝑡e for 𝑖 ∈ {0, . . . , 𝑛 − 1}

which allows to recover the original polynomial with an error 𝝐𝑐𝑜𝑚𝑝 ∈ R, such that

‖𝝐𝑐𝑜𝑚𝑝 ‖∞ < 𝑞/2𝑡 + 1/2, due to the successive roundings.
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The 256-bit key 𝜈′ is encoded in R𝑞 thanks to a repetition code which encodes

each bit of 𝜈′ in 𝑛/256 coefficients of 𝜿:

NHSEncode : {0; 1}256 → R𝑞

𝜈′ ↦→ 𝜿 =
𝑛−1∑
𝑖=0

𝜅𝑖 · 𝑋 𝑖

with 𝜅𝑖 = 𝜈
′
𝑖
· b𝑞/2c for 0 ≤ 𝑖 ≤ 256 and 𝜅𝑖+256· 𝑗 = 𝜅𝑖 for 0 ≤ 𝑗 < 𝑛/256.

Once the message decompressed, Alice has to extract the key 𝜈′ from 𝜿′ which is

equal to the following modulo 𝑞:

𝜿′ = 𝒄 + 𝝐𝑐𝑜𝑚𝑝 − (𝒂 · 𝒔2 + 𝒆2) · 𝒔1
= (𝒂 · 𝒔1 + 𝒆1) · 𝒔2 + 𝒆3 + 𝜿 + 𝝐𝑐𝑜𝑚𝑝 − (𝒂 · 𝒔2 + 𝒆2) · 𝒔1
= NHSEncode(𝜈′) + 𝒆1 · 𝒔2 − 𝒆2 · 𝒔1 + 𝒆3 + 𝝐𝑐𝑜𝑚𝑝

Thus 𝜿′ corresponds to the encoding of the original key 𝜈′ plus some error terms.

Therefore, if the error term is not too large, the key 𝜈′ can be extracted from 𝜿′

through the following decoding function:

NHSDecode : R𝑞 → {0; 1}256

𝜿′ ↦→ 𝜈′

where for each 0 ≤ 𝑖 < 256, 𝜈′
𝑖
is recovered by checking the size of the differ-

ence between the coefficients of 𝜿′ and b𝑞/2c, which is the value of the coefficients

encoding 𝜈′
𝑖
= 1. More precisely we check whether:

𝑛/256−1∑︁
𝑗=0

| [𝜅′𝑖+256· 𝑗 ]𝑞 − b𝑞/2c |

is smaller than (𝑛/256 · b𝑞/2c)/2 (𝜈′
𝑖
= 1) or not (𝜈′

𝑖
= 0). Indeed without the error

terms (i.e. if 𝜿′ = NHSEncode(𝜈′)) then when 𝜈′
𝑖
= 1 (resp. 0), the sum would be

equal to 0 (resp. 𝑛/256 · b𝑞/2c). Therefore to ensure the success of the decoding

we must ensure that the error remains smaller, in absolute value, than the median

value 𝐵dec = (𝑛/256 · b𝑞/2c)/2 with very high probability. This comes to ensure that

for any 0 ≤ 𝑖 < 256:

𝑛/256−1∑︁
𝑗=0

| (𝒆1 · 𝒔2 − 𝒆2 · 𝒔1 + 𝒆3 + 𝝐𝑐𝑜𝑚𝑝)𝑖+256· 𝑗 | < 𝐵dec (6.1)
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A word about the parameters

In order to be able to encode a 256 bits key, 𝑛 must be at least 256. In their sub-

mission packagec, the authors propose two instantiations with different dimensions:

𝑛 = 512 and 𝑛 = 1024 denoted as NewHope512 and NewHope1024, respectively. Even

though they recommend to use NewHope1024 for security reasons, they show that

NewHope512 still ensure a descent security while offering performance roughly twice

faster.

Because the bottleneck of the arithmetic in R𝑞 is by far the multiplication of

elements, the usage of the efficient NTT is essential to ensure good performance.

Hence, while the protocol can be formally defined for any cyclotomic ring R =

Z[𝑋]/(𝚽𝑚 (𝑋)), taking 𝑚 different from a power-of-two would prevent to use the

NTT and would complicate the generation of the error ([LPR13]). In order to en-

sure the existence of the roots of unity required for the NTT, 𝑞 must be congruent

to 1 modulo 2𝑛. Therefore it was set to the smallest prime satisfying this condition

which is 𝑞 = 12289 for both 𝑛 = 512 and 𝑛 = 1024.

Finally, for efficiency reasons, the error distribution has been chosen as a centered

binomial distribution, instead of a discrete Gaussian as it is usually the case for the

(Ring)-LWE problem. Both NewHope512 and NewHope1024, use 𝑘 = 8 as parameter

for the binomial distribution. Finally, the compression parameter is chosen as 𝑡 = 8

for both versions.

6.3.2 Number Theoretic Transform (NTT)

Choosing 𝑞 prime and such that 𝑞 ≡ 1 mod 2𝑛 ensures the existence of a primitive

2𝑛-th roots of unity modulo 𝑞 that we will denote 𝜁 . Since the odd powers 𝜁 , are

also the roots of 𝑋𝑛 + 1 modulo 𝑞, the polynomial factors in linear terms over Z𝑞.

Therefore the CRT gives us the ring isomorphism:

R𝑞 → Z𝑞 [𝑋]/(𝑋 − 𝜁) × · · ·Z𝑞 [𝑋]/(𝑋 − 𝜁2𝑛−1)
𝒂 ↦→ (𝒂(𝜁), 𝒂(𝜁3), . . . , 𝒂(𝜁2𝑛−1))

The NTT (resp. inverse NTT) allows to compute this morphism (resp. its in-

verse) in quasi-linear time, through an FFT algorithm. Once in NTT form ad-

ditions and multiplications can be performed coefficient-wise, and thus in linear

time. Therefore the product of elements 𝒂, 𝒃 ∈ R𝑞 can be performed by computing

𝒄 = invNTT(NTT(𝒂) �NTT(𝒂)), where � denotes the product coefficient-wise. Overall

a product can thus be computed in quasi-linear time (O(𝑛 log 𝑛)). Efficient ways of

chttps://newhopecrypto.org/resources.shtml
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implementating NTTs and its inverse on a vectorized implementation can be found

in [Sei18].

6.4 Analysis of the failure probability

In this section we review the failure probability made in [ADPS16b] and refine it. In

a nutshell, we will follow their proof but instead of bounding the probability twice

using the Chernoff-Cramer inequality and a lemma about subgaussian variables, we

will bound it only once through Chernoff-Cramer inequality and deduce the rest

from numerical simulations.

6.4.1 About key-encoding and multiplication

We consider the cyclotomic polynomials 𝒓 (𝑋) = 𝑋𝑛 + 1 and 𝒔(𝑋) = 𝑋𝑛/256 + 1, in
particular we have 𝒓 (𝑋) = 𝒔(𝑋256). The associated polynomial rings are denoted

R = Z[𝑋]/(𝒓) and S = Z[𝑋]/(𝒔).
For any 𝒂 = 𝑎0 +𝑎1 · 𝑋 · · · +𝑎𝑛−1 · 𝑋𝑛−1 ∈ R and 0 ≤ 𝑖 ≤ 255, 𝒂′

𝑖
(𝑋) ∈ S will denote:

𝑎𝑖 + 𝑎𝑖+256 · 𝑋 if 𝑛 = 512;

𝑎𝑖 + 𝑎𝑖+256 · 𝑋 + 𝑎𝑖+512 · 𝑋2 + 𝑎𝑖+768 · 𝑋3 if 𝑛 = 1024.

Hence, any 𝒂 ∈ R can be decomposed in the following way:

𝒂(𝑋) =
255∑︁
𝑖=0

𝒂′𝑖 (𝑋256) · 𝑋 𝑖 .

This decomposition is somehow preserved by the product in R, since for any 𝒂, 𝒃

in R and 0 ≤ 𝑖 < 256 we have:

(𝒂 · 𝒃)′𝑖 =
[
𝑖∑︁
𝑗=0

(𝒂′𝑗 · 𝒃′𝑖− 𝑗 ) +
255∑︁
𝑗=𝑖+1

𝜋S (𝒂′𝑗 · 𝒃′256+𝑖− 𝑗 )
]
∈ S

where 𝜋S denotes the cyclic shift over S given by the multiplication by 𝑋 corre-

sponding to:

𝜋S (𝒂′) = −𝑎′1 + 𝑎
′
0 · 𝑋 if 𝑛 = 512;

𝜋S (𝒂′) = −𝑎′3 + 𝑎
′
0 · 𝑋 + 𝑎

′
1 · 𝑋

2 + 𝑎′2 · 𝑋
3 if 𝑛 = 1024.

If we assume that the coefficients of 𝒂 and 𝒃 are sampled independently then for

each 𝑖, (𝒂 · 𝒃)′
𝑖
is a sum of 256 independent polynomials of S:

� the 𝑖 + 1 first polynomials follow the distribution of a polynomial product in

S;
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� the 255 − 𝑖 last follow the distribution of a shifted polynomial product in S,
through 𝜋(S).

6.4.2 Distribution of the key-encoding error

For any 𝒂′ and 𝒃′ in S we have:

if 𝑛 = 512

(𝒂′ · 𝒃′) (𝑋) = (𝑎′0𝑏
′
0 − 𝑎

′
1𝑏
′
1) + (𝑎

′
0𝑏
′
1 + 𝑎

′
1𝑏
′
0) · 𝑋

if 𝑛 = 1024

(𝒂′ · 𝒃′) (𝑋) = (𝑎′0𝑏
′
0 − 𝑎

′
1𝑏
′
3 − 𝑎

′
2𝑏
′
2 − 𝑎

′
3𝑏
′
1)

+ (𝑎′0𝑏
′
1 + 𝑎

′
1𝑏
′
0 − 𝑎

′
2𝑏
′
3 − 𝑎

′
3𝑏
′
2) · 𝑋

+ (𝑎′0𝑏
′
2 + 𝑎

′
1𝑏
′
1 + 𝑎

′
2𝑏
′
0 − 𝑎

′
3𝑏
′
3) · 𝑋

2

+ (𝑎′0𝑏
′
3 + 𝑎

′
1𝑏
′
2 + 𝑎

′
2𝑏
′
1 + 𝑎

′
3𝑏
′
0) · 𝑋

3

From now, we will denote 𝜒𝑘 the distribution of 𝒂′ · 𝒃′ ∈ S where 𝒂′ and 𝒃′ are

sampled from 𝜓
𝑛/256
𝑘

independently. From the above expression it is straightforward

to notice that 𝜒𝑘 is symmetric because 𝜓𝑛/256
𝑘

is. Moreover, since 𝜓𝑛/256
𝑘

is a centered

distribution it is invariant under 𝜋S and because 𝜋S (𝒂′ · 𝒃′) = 𝒂′ · 𝜋S (𝒃′), 𝜒𝑘 is also

invariant under 𝜋S. Therefore if 𝒂, 𝒃
$←− 𝜓𝑛

𝑘
then for any 0 ≤ 𝑖 < 256 (𝒂 · 𝒃)′

𝑖
can be

seen as a sum of 256 independent random variables following the distribution 𝜒𝑘 .

6.4.3 Estimation of the probability failure

In order to estimate the probability than the decryption fails we will need to have an

estimation on the tail concentration of a sum of independent identically distributed

(i.i.d.) random variables. Similarly to [ADPS16b] we use Chernoff bound for this:

Theorem 8 (Chernoff bound). Let D be a distribution over R and 𝑋 be a sum

of ℓ i.i.d. random variables 𝑋1, . . . , 𝑋ℓ of law D, then for any 𝑡 > 0 such that

E[𝑒𝑡 (𝑋𝑖)] < +∞ and for any 𝑎 ∈ R it holds that:

P(𝑋 ≥ 𝑎) ≤ exp(−𝑡𝑎 + ℓ ln(E[𝑒𝑡𝑋𝑖 ])).

Now, in order to ensure (6.1), and thus the success of the decapsulation, with a

certain probability we need to have:

‖(𝒆1 · 𝒔2 − 𝒆2 · 𝒔1)′𝑖 + (𝒆3)′𝑖 + (𝝐𝑐𝑜𝑚𝑝)′𝑖 ‖1 < 𝐵dec

for all 0 ≤ 𝑖 < 256. Since 𝒆3
$←− 𝜓𝑛

𝑘
and because each coefficients of 𝝐𝑐𝑜𝑚𝑝 follows a law

almost uniform over [−𝑞/2𝑡, 𝑞/2𝑡], the only difficulty comes from the the evaluation
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of (𝒆1 · 𝒔2− 𝒆2 · 𝒔1)′𝑖 . Similarly to [ADPS16b], we use the fact that for any real vector

𝒙 ∈ R𝑑 we have:

‖𝒙‖1 = max
𝒚∈{±1}𝑑

〈𝒙 , 𝒚〉 .

As explained in Section 6.4.1, for any (𝒂, 𝒃) ∈ R2 each (𝒂 · 𝒃)′
𝑖
is the sum of 256

products of elements 𝒂′
𝑗
· 𝒃′

𝑗
∈ S and thus (𝒆1 · 𝒔2 − 𝒆2 · 𝒔1)′𝑖 = (𝒆1 · 𝒔2)′𝑖 − (𝒆2 · 𝒔1)′𝑖 is

the sum of 512 such products. Seeing an element of S as a vector of Z𝑛/256 it holds

that:

‖(𝒆1 · 𝒔2 − 𝒆2 · 𝒔1)′𝑖 ‖1 = max
𝒚∈{±1}𝑛/256

〈
(𝒆1 · 𝒔2)′𝑖 − (𝒆2 · 𝒔1)′𝑖 , 𝒚

〉
(6.2)

where (𝒆1 · 𝒔2)′𝑖 and (𝒆2 · 𝒔1)′𝑖 can both be seen as a sum of 256 independent random

variables following the law 𝜒𝑘 (see Section 6.4.1). As a consequence, (𝒆1·𝒔2)′𝑖−(𝒆2·𝒔1)′𝑖
can be seen as a sum of 512 i.i.d. random variables. Moreover, remark that be-

cause of the different symmetries in 𝜒𝑘 , if 𝑋 is a random variable of law 𝜒𝑘 , and

𝒚 ∈ {±1}𝑛/256 then the distribution of 〈𝑋 , 𝒚〉 is independent of the choice of 𝒚.

Therefore, because of the linearity of the scalar product
〈
(𝒆1 · 𝒔2)′𝑖 − (𝒆2 · 𝒔1)′𝑖 , 𝒚

〉
can be seen as a sum of 512 independent random variables of the form: 〈𝑋 , 𝒚〉
where 𝑋

$←− 𝜒𝑘 .

We have simulated the law of such a scalar product in rational arithmetic using

the GMPd library ([Gt]) in a C++ script. Note that because of the size of the support

of this law ((2𝑘 + 1)𝑛/128), this takes quite a long time to simulate (around 70 min

on a laptop with an intel i7-4810MQ@2.80GHz for 𝑛 = 1024 and 𝑘 = 8). This is not

much of a problem since the law needs only to be computed once and can then be

saved.

Once this law and the law of 𝝐𝑐𝑜𝑚𝑝 simulated, we can use Chernoff bound to get:

P
(〈
(𝒆1 · 𝒔2 − 𝒆2 · 𝒔1)′𝑖 + (𝒆3)′𝑖 + (𝝐𝑐𝑜𝑚𝑝)′𝑖 , 𝒚

〉
≥ 𝐵dec

)
≤ exp

(
−𝑡𝑎 + 512 lnE(𝑒𝑡𝑋) + 𝑛

256

(
lnE(𝑒𝑡𝑌 ) + lnE(𝑒𝑡𝑍 )

))
where 𝑋

$←− 〈𝜒𝑘 , 𝑦〉, 𝑌
$←− 𝜓𝑘 and 𝑍 follow the law of 𝝐𝑐𝑜𝑚𝑝.

From there, similarly to [ADPS16b], we have deduced a bound on the probability

that the decapsulation fails by union-bounding over the 2𝑛/256 choices of 𝒚 and the

dhttps://gmplib.org/
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256 possible 𝑖. We have computed this bound on the probability using the MPFRe

library ([FHL+07]) for the floating point arithmetic with a precision set to 2048

bits. Our script for computing the probability is available at: https://gitlab.

com/zuccav/newhope-decryption-failure-probability.

Table 6.1 summarizes the results we have obtained and compare them to those of

NewHope as they are given in its specifications ([ERJ+18]). As one can see, the prob-

ability we obtain is way smaller than the original evaluation which means that one

can decrease the size of the modulus while keeping a very small probability of failure.

Decapsulation error probability
NewHope512 NewHope1024

Original analysis
2−213 2−216

([ERJ+18])
Our analysis

2−393 2−412
(using Chernoff bound)

Table 6.1: Decryption Failure Probability of New Hope with binomial parameter
𝑘 = 8 and 𝑞 = 12289.

As for NewHope and other related works such as [Saa17], our analysis makes im-

plicitly the assumption that each term are independents when union-bounding over

the 256 possibles 𝑖. This is clearly not true since they all depend on all the coeffi-

cients of the 𝒆𝑖s and the 𝒔 𝑗s. Therefore, while the distribution of each of the terms

is the same and precisely analysable, they are not fully independent. In [DVV19],

the authors show that this independency hypothesis leads to underestimations of

the failure probability when using an error correcting code, but seems to suit con-

structions not using one. Althouh NewHope uses a repetition code, in our case we

have simulated exactly the law involving the 𝑛/256 coefficents correlated via the

repetition code (law of 〈𝑋 , 𝒚〉 for 𝑋 $←− 𝜒𝑘), hence the hypothesis is only applied

on the 256 polynomials of S which do not interfer with each other via the code.

Therefore, according to [DVV19], we can expect our bounds to be tight.

Note that one could use (6.4.1) and completely simulate the final law by computing

256 convolutions instead of using Chernoff bound. This would give the exact failure

probability, like in Kyber, and not only an upper bound. However this method is not

as efficient in our case. Indeed since Kyber has a different reconciliation mechanism,

they only need to compute the convolutions of 256 random variables 𝑋𝑖 = 𝑒 · 𝑠, where
𝑒, 𝑠

$←− Ψ𝑘 , whose law support is of size 7 (𝑘 = 2 in their case). For NewHope we have

to compute the convolutions of 512 random variables following the law of 〈𝑋 , 𝒚〉
whose support is of size 65 for 𝑘 = 2 and 𝑛 = 1024. This takes around 1h20 in C++ on

ehttps://www.mpfr.org

https://gitlab.com/zuccav/newhope-decryption-failure-probability
https://gitlab.com/zuccav/newhope-decryption-failure-probability


6.5. MULTIPLICATION STRATEGIES FOR SMALLER MODULI 136

the aforementionned laptop against 0.5 seconds using Chernoff bound and against

a few seconds in python for Kyber. In our experiments we have only observed a

difference up to 5 bits between the two variants, hence we rather used Chernoff

bound when computing failure probabilities for 𝑘 ≥ 3.

6.5 Multiplication strategies for smaller moduli

The lower failure probability of NewHope leaves some extra-freedom to optimize

further the parameters of the scheme. There are essentially two options: either

increase the parameter 𝑘 and increase the security of the scheme, or reduce the size

of the modulus 𝑞 to make it more compact and, possibly, to improve its performance.

With the first option one can use up to 𝑘 = 12 and maintain the failure probability

lower than 2−190 and 2−200 for 𝑛 = 512 and 1024 respectively. In this case, the

security of the scheme is increased from 101 (resp. 233) to 107 (resp. 246) bits of

post-quantum securityf. We investigate the second option in the next sections.

6.5.1 Choose the moduli

Using a smaller modulus than 𝑞 = 12289 does not allow to use a full NTT for the

dimensions of NewHope. However one can still use a modulus allowing to use NTTs

of smaller sizes, for instance Kyber modulus 𝑞 = 7681 allows to perform NTTs of

size 256. Therefore the idea would be to mix small NTT’s with other multiplication

algorithms. Since NTT’s are the most efficient way to perform polynomial products

in high dimensions, one needs to choose moduli with as many NTT levels as possible

– i.e. the largest power-of-two 𝑛 such that 𝑞 ≡ 1 mod 2𝑛. Table 6.2 presents possible

moduli with the number of NTT levels they allow to perform.

𝑞 12289 7681 3329 2017 1601 1409 769

𝐿 10 8 7 4 5 6 7

Table 6.2: Possible moduli

The security of a RLWE instantiation essentially depends on the ratio between the

modulus 𝑞 and the standard deviation of the error distribution 𝜎err. Hence a small

modulus allows to increase the security and also to reduce the size of the elements

and thus the communication costs. However it will increase the failure probability,

so one might have to use a smaller 𝑘. Finally the efficiency of the implementation

fusing the script PQsecurity.py of the NIST submission package:
https://newhopecrypto.org/resources.shtml



6.5. MULTIPLICATION STRATEGIES FOR SMALLER MODULI 137

directly depends on the number of NTT levels available. Therefore one might con-

sider different moduli given the considered trade-off.

In [ZXZ+18] and [ZPL19] the authors proposed to use 𝑞 as small as 3329, however

since they relied on the original probability analysis they could hardly justify to use

smaller moduli. As a consequence the binomial and compression parameters they

proposed were not optimal.

6.5.2 Mutiplication strategies

The idea of mixing classical multiplication algorithms with FFT is well-known and

was already studied in [Moe76]. The idea is to split the polynomials 𝒂 and 𝒃 into

smaller ones and perform the product of the small polynomials with the small NTTs

before reconstructing the whole product. The splitting is done between the even and

the odd coefficients of our polynomials. More precisely we decompose 𝒂 as:

𝒂(𝑋) =
𝑛−1∑︁
𝑖=0

𝑎𝑖 · 𝑋 𝑖 =
𝑛/2−1∑︁
𝑖=0

𝑎2𝑖 · 𝑋2𝑖 +
𝑛/2−1∑︁
𝑖=0

𝑎2𝑖+1 · 𝑋2𝑖+1

=

𝑛/2−1∑︁
𝑖=0

𝑎2𝑖 · 𝑌 𝑖 + 𝑋
𝑛/2−1∑︁
𝑖=0

𝑎2𝑖+1 · 𝑌 𝑖

= 𝒂0(𝑌 ) + 𝒂1(𝑌 ) · 𝑋 with 𝑌 = 𝑋2

with 𝒂0(𝑌 ) and 𝒂1(𝑌 ) ∈ Z𝑞 [𝑌 ]/(𝑌 𝑛/2 + 1), and 𝒃 similarly. Thus we can write:

𝒄 = 𝒂 · 𝒃 = 𝒂0 · 𝒃0︸ ︷︷ ︸
𝒄0

+ (𝒂0 · 𝒃1 + 𝒂1 · 𝒃0)︸                 ︷︷                 ︸
𝒄1

𝑋 + 𝒂1 · 𝒃1︸ ︷︷ ︸
𝒄2

𝑋2.

where each product can be performed with NTTs of size 𝑛/2. Thus one can just

compute 𝒂𝑖 = NTT(𝒂𝑖) and 𝒃𝑖 for 𝑖 = 0, 1 requiring 4 NTTs of size 𝑛/2 (instead of

2 NTTs of size 𝑛 in the original case). Once in the NTT domain additions and

products can be computed coefficient-wise.

At this point we obtain 3 polynomials of degree 𝑛/2 in the NTT domain: 𝒄0, 𝒄1

and 𝒄2. Note that since 𝑋2 = 𝑌 one can precompute NTT(𝑌 ) (which corresponds

to the 𝑛/2-th primitive roots of unity) and multiply it to 𝒄2 and add the result to

𝒄1. Like this one has only to compute two inverse NTTs of size 𝑛/2 instead of 3 to

recover the coefficients of 𝒄 (instead of 1 inverse NTT of size 𝑛 in the original case).
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𝒄0 + 𝒄1 · 𝑋 + 𝒄2 · 𝑋2 = [𝒄0 + 𝒄2 � NTT(𝑌 )]︸                   ︷︷                   ︸
NTT(𝒄0)

+ 𝒄1︸︷︷︸
NTT(𝒄1)

·𝑋 (6.3)

Note that this also allows to send a polynomial in NTT representation, as done

in NewHope, without increasing the communication costs.

The complexity of this approach can be reduced in a straightforward-way by using

a subquadratic algorithm such as Karatsuba to reduce the number of multiplications

at the price of a few extra-additions [ZPL19]. Of course one can iterate this process

on several levels in order to use even smaller NTTs. Note that, although computing

2 NTTs of size 𝑛/2 is more efficient than computing 1 NTT of size 𝑛, the extra

operations required to expand and reconstruct the Karatsuba pattern tend to make

this approach more costly. As a direct consequence, the efficiency of the approach

will decrease with the number of Karatsuba levels used.

Overall this approach consists in using one or several levels of classical multi-

plications algorithms on the top and perform the small products with the NTTs

([ZXZ+18]). This can be done the other way around by performing big, but uncom-

plete NTTs on the top as in [LS19]:

R𝑞
�−→ Z𝑞 [𝑋]/(𝑋2 − 𝜁) × · · ·Z𝑞 [𝑋]/(𝑋2 − 𝜁2𝑛−1).

In this case, since 𝑋𝑛 + 1 does not factorize in linear terms, the product cannot

be performed coefficient wise but modulo the 𝑋2 − 𝜁 𝑖s instead. Once again this can

be iterated on ℓ levels so that one would have to perform product modulo 𝑋2ℓ − 𝜁 𝑖

on the bottom. It is shown in [RJL+19], that this approach can be more efficient

than a complete NTT for small values of ℓ (ℓ = 1 or ℓ = 2) if correctly implemented.

In particular the product modulo the 𝑋2 − 𝜁 𝑖s can be done very efficiently on a

vectorized implementation.

6.5.3 Mixing the strategies

As shown in Table 6.2, we need to perform between 2 (𝑞 = 7681) and 6 (𝑞 =

2017) levels of multiplications without NTTs. This means that we have to mutiply

polynomials of degree between 22−1 = 3 and 26−1 = 63 with classical algorithms. To

do so we are going to mix the two previous strategies by using ℓ1 levels of Karatsuba

on the top and ℓ2 levels of school-book multiplication on the bottom.

Determining the optimal values of ℓ1 and ℓ2 is not straightforward. Indeed, the

number of operations one can stack on a 16-bit word without performing modular
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reduction depends on the size of the modulus. Moreover the cost of the modular

reductions and their efficiency depend on the shape of the modulus (see [Sei18]).

Additionnally, on a vectorized implementation, the cost of an algorithm cannot be

restricted only to the number of operations to perform. One must rather consider

the number of registers available, of instructions and loadings to perform, etc. . . .

Therefore, the optimal values of ℓ1 and ℓ2 has been determinated experimentally for

every moduli by implementing every combination with 0 ≤ ℓ1 ≤ 4..

While theoretically more efficient, Karatsuba algorithm only becomes more effi-

cient than school-book multiplications from a certain point. Actually, in our exper-

iments, we have noticed that the cutoff point is around 4, 5 levels of multiplications

without NTTs. This means that introducing some level of Karatsuba – i.e. ℓ1 > 0

– on our parameters is not interesting when ℓ1 + ℓ2 ≤ 3.

6.6 Global parameters and experimental results

6.6.1 Security parameters

In practice, NewHope security is evaluated through the difficulty to recover the secret

𝒔 from a RLWE sample (𝒂, 𝒃) = (𝒂, 𝒂 · 𝒔 + 𝒆). The difficulty of this problem depends

on the ratio between the size of the modulus and the standard deviation of the error

distribution, in our case
√︁
𝑘/2, the smaller the ratio, the better the security. There-

fore by using a smaller modulus the difficulty of the problem is increased, however

not reducing the binomial parameter 𝑘 would quickly result in a failure probability

too large which could lead to serious attacks (see [DGJ+19]).

As a consequence, we have chosen a binomial parameter 𝑘 as large as possible

for the security of the scheme while keeping the failure probability of the protocol

around 2−200 thus similar to the evaluation of [ERJ+18] over the original parameters.

In order to increase the gain over the bandwidth requirement we have also reduced,

when possible, the compression parameter 𝑡.

Since the conservative analysis of NewHope ([ADPS16b]), is currently used in most

of the NIST submissions based on lattices. We have computed the evaluated post-

quantum bits of security using the same python scriptg than for the original protocol.

However the indicated failure probability has been computed with our analysis (see

Section 6.4).

gavailable in the NIST submission package: https://newhopecrypto.org/resources.shtml
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Eventually for 𝑞 = 769 we have to decrease the binomial parameter to 𝑘 = 1. For

such a small 𝑘, one must also consider the hybrid attack as presented in [BGPW16]

to estimate the complexity of the lattice reduction. We have estimated the cost

of this attack by using the Sage script available at https://github.com/lducas/

LatRedHybrid. In our case, these attacks do not seem to impact the global security.

6.6.2 The particular case of 𝑞 = 1601

The modulus 𝑞 = 2017 already fits on 11-bits but only offers 4 levels of NTT leading

to poor performance. Hence we have instead selected two other moduli: 𝑞 = 1601

and 𝑞 = 1409 allowing to perform 1 and 2 extra levels of NTT respectively. However

choosing 𝑞 = 1601 and 𝑘 = 2 would result in a probability of failure around 2−129,

which is far too large and choosing 𝑘 = 1 would have significantly lower the security.

Finally increasing the compression parameter 𝑡 would cancel the benefit over the

bandwidth requirement.

Since most of the error size comes from the products 𝒔1 · 𝒆2 − 𝒔2 · 𝒆1 and because

the RLWE security depends essentially on the size of the error rather than the size

of the secret. We have chosen in this cases to use different binomial parameters 𝑘𝑠

and 𝑘𝑒 for the secrets and the errors respectively. As a consequence, choosing a

binary secret – i.e. 𝑘𝑠 = 1 – and a larger error 𝑘𝑒 = 3 (resp. 𝑘𝑒 = 2) increases the

security of the scheme while reducing the error probability to 2−170 (resp. 2−197)

for 𝑞 = 1601 (resp. 𝑞 = 1409). Although for 𝑞 = 1601 this failure probability is

far above the 2−200 treshold, it is comparable to the failure probability of Kyber

[RJL+19]. Finally, note that when using a different size of errors and secrets, and

more particularly with sparse secrets, one needs to adapt the security evaluation by

including weights on the lattice to reduce ([BG14, Alb17]).

6.6.3 Experimental results

We have implemented the different multiplication strategies in C with, and with-

out, vectorized (AVX2) instructions. We will refer to these implementations as the

vectorized and the reference implementation respectively.

Table 6.3 details the impact of the choice of ℓ1 and ℓ2 on the performance of

the multiplication for four moduli 𝑞 = 3329, 1409, 769 and 1601. The first three

moduli are the most interesting ones when considering the gain on the three features:

security, compactness and performance. The last one, 1601, shows the impact of ℓ1

and ℓ2 when multiplying polynomials of relatively large degree 25 − 1 = 31 (ℓ1 + ℓ2 =
5).

Table 6.4 summarizes the different parameters, features and performance of the

original version of NewHope512 and NewHope1024 together with those of the alter-

https://github.com/lducas/LatRedHybrid
https://github.com/lducas/LatRedHybrid
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native versions we propose.

In order to estimate the efficiency of our multiplication strategy we have measured

the number of cycles required to compute a full product in our reference and vector-

ized implementations. The ℓ1 levels of Karatsuba have been implemented iteratively

so that we could track the size of the coefficients at any point and only perform the

modular reductions when needed.

The values presented in Table 6.3 and Table 6.4 were measured on an average

of 220 tests run on a laptop endowed with an Intel(R) Core(TM) i7-4810MQ CPU

@ 2.80GHz using AVX2 with Turbo Boost and Hyper-Threading turned-off. Our

code was compiled with gcc version 9.3.1 using the flags: -O3 -funroll-loops

-fomit-frame-pointer -march=native.

Our experiments confirm the observations of [LS19]: using smaller NTTs on the

top with a naive products on the bottom is more efficient than a full NTT with a

gain up to 15% (resp. (13%)) for 𝑛 = 512 (resp. 𝑛 = 1024). Because registers in

AVX2 are 256-bit long, they can only handle 16 coefficients on 16 bits words at a

time. In this case, having ℓ2 > 4 levels is not interesting since one would have to

multiply polynomials of degree 22
ℓ2
> 16. Hence it requires two registers to store

the coefficients of only one polynomial degrading considerably the performance.

We observe that the most efficient strategies on the reference implementation do

not use any level of Karatsuba. On the other hand, on the vectorized implementation

mixing a few levels of Karatsuba with the school-book algorithm – i.e. take ℓ1 > 0 –

can be more efficient when one has more than 4 levels of multiplications to perform

without NTTs (ℓ1 + ℓ2 ≥ 4). As one could expect the speed-ups are more important

for the reference implementation than for the vectorized one. This is due to the fact

that non-vectorized NTTs are, by far, the bottleneck of the arithmetic. Hence by

using several smaller NTTs one gains a lot in performance. However since NTTs

are much faster on the vectorized implementation, the gain coming from the use of

smaller NTTs is less important and the global speed-ups are thus reduced.

As expected, the modulus 𝑞 = 2017 does not give competitive performance +39%
(resp. +77%) for 𝑛 = 512 (resp. 𝑛 = 1024), and that the additional levels of NTT

available with 𝑞 = 1601 and 𝑞 = 1409 improves considerably the performance +6.5%
(resp. +35% ) for 𝑛 = 512 (resp. 𝑛 = 1024) for 𝑞 = 1601 and −9.4% (resp. +4% ) for

𝑛 = 512 (resp. 𝑛 = 1024) for 𝑞 = 1409.

Nonetheless most of our parameters allow to obtain competitive performance while

gaining around 19% over the bandwidth requirements and up to 10% in security.

Moreoever the two moduli 7681, 3329 and 769 do not have any drawback, except a

negligible 1% loss of security for 3329. Furthermore the gain of more than 10% on

performance comes without having to implement any level of Karatsuba and thus
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𝑛 𝑞 ℓ1 |ℓ2
Clock cycles

for one product
Reference Vectorized

512

3329
0|2 31535 3629
1|1 34234 3966
2|0 38478 3936

1601
0|4 34663 4582
1|3 34984 4665
2|2 38185 4970

1409
0|3 29770 3849
1|2 33469 4189
2|1 33980 4720

769
0|2 31294 3543
1|1 33668 3985
2|0 38112 3927

1024

3329

0|3 64831 8377
1|2 72335 9092
2|1 74156 9960
3|0 80459 9688

1601

0|5 83743 15654
1|4 91394 13149
2|3 88483 12729
3|2 106788 13278
4|1 103737 20706

1409

0|4 70637 9711
1|3 71740 9646
2|2 79573 10197
3|1 76516 11723

769

0|3 64109 8313
1|2 71628 8912
2|1 73261 9848
3|0 78823 9343

Table 6.3: Impact of ℓ1 and ℓ2 on the performance of the multiplication.

leads to a very simple implementation. The modulus 𝑞 = 769 improves significantly

the three main features of the protocol: security, compactness and performance

while maintaining a failure probability around 2−182, which is comparable to Kyber

and SABER.

Eventually using a smaller modulus 𝑞, and a smaller error parameter 𝑘, allows to

generate significantly less random bits during the execution of the protocol reducing

therefore the number of calls to the SHAKE128 function. Hence, for the whole pro-

tocol, we can expect gains in performance beyond the speed-ups presented in Table

6.4 which are only related to the arithmetic.
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𝑛 𝑞 𝑘 𝑡
probability
of failure

post-quantum
bits of security

bandwidth
(Bytes)

Reference Vectorized

ℓ1 |ℓ2
clock cycles

ℓ1 |ℓ2
clock cycles

for one product for one product

512

12289 8 8 2−393 (C) 101 2016 0|0 57125 0|0 4263
7681 5 4 2−194 (C) 101 (+0%) 1824 (−9.5%) 0|1 35919 (−37%) 0|1 3643 (−15%)
3329 2 4 2−239 (S) 100 (−1%) 1696 (−15.8%) 0|2 31537 (−44%) 0|2 3629 (−15%)
2017 2 8 2−197 (S) 108 (+7%) 1632 (−19%) 0|5 41208 (−26%) 2|3 5948 (+39%)
1601 1|3 8 2−170 (S) 109 (+8%) 1632 (−19%) 0|4 34663 (−39%) 0|4 4582 (+7.5%)
1409 1|2 8 2−197 (S) 107 (+6%) 1632 (−19%) 0|3 29770 (−48%) 0|3 3849 (−9.7%)
769 1 32 2−184 (S) 112 (+10%) 1632 (−19%) 0|2 31294 (−45%) 0|2 3543 (−17%)

1024

12289 8 8 2−412 (C) 233 4000 0|0 118461 0|0 9247
7681 5 4 2−208 (C) 233 (+0%) 3616 (−9.6%) 0|2 69503 (−41%) 0|2 8102 (−12%)
3329 2 4 2−249 (S) 230 (−1%) 3360 (−16%) 0|3 64831 (−45%) 0|3 8377 (−9.4%)
2017 2 8 2−204 (S) 245 (+5%) 3232 (−19.2%) 0|6 112066 (−4%) 3|3 16611 (+79%)
1601 1|3 8 2−175 (S) 245 (+5%) 3232 (−19.2%) 0|5 83743 (−29%) 2|3 12729 (+38%)
1409 1|2 8 2−202 (S) 242 (+4%) 3232 (−19.2%) 0|4 70637 (−40%) 1|3 9646 (+4%)
769 1 32 2−182 (S) 250 (+7%) 3232 (−19.2%) 0|3 64109 (−45%) 0|3 8313 (−10%)

Table 6.4: Alternative parameters with the performance of the associated arith-
metic for NewHope512 and NewHope1024. (C) and (S) denote whether the prob-
ability of failure was computed using Chernoff bound or only simulations respec-
tively.

Summary and conclusion

We refine the probability analysis made in [ADPS16b] and show that we can use

tighter parameters in order to increase the security, the compactness and sometimes

the performance of NewHope. We propose four alternative set of parameters using

smaller moduli. However these moduli do not allow to use the full efficient NTT

algorithm in the protocol dimensions. Nonetheless we show that by mixing smaller

NTTs with different multiplication algorithms we obtain very competitive perfor-

mance when compared to the state-of-the-art approach (gain of 16% for some of

them). While we are competitive in term of efficiency our alternative parameters

allow to increase the security of the protocol up to 8% and reduce the bandwidth

requirement by up to 19%. Furthermore some sets of parameters improved the three

features of the scheme: compactness, security, performance while the other improve

even more the compactness and security but lead to worse performance. For all

these sets of parameters we evaluate the failure probability around 2−200 as origi-

nally evaluated ([ERJ+18]), except for 𝑞 = 1601 where it is as big as 2−170, similarly

to Kyber, which should be enough to be protected against attacks such as the one

mentionned in [DGJ+19].



Chapter 7

Conclusions and open questions

In this thesis, we presented different structural modifications for lattice-based cryp-

tography. We list here the different conclusions of our work.

7.1 Using lattice intersections to hide a lattice

generated by a secret key

In chapter 3, we presented a previously unused structure of lattice-based cryptog-

raphy and applied it to the reinforcement of GGH. As the arising problems are

relatively undocumented, further work would be necessary to either exploit that

new structure for enhancing other schemes, or extend the existing knowledge in

cryptanalysis.

7.2 Using a diagonal dominant matrix to reduce

the maximum norm of vectors

In chapter 4, we presented in this chapter the DRS scheme, and another method

to generate secret keys for providing experimental results on the statistical distri-

bution of the keys generated following Yu and Ducas’ attack. We demonstrate that

our new approach is sufficient to improve DRS to be secure against machine learn-

ing attacks as reported earlier in the literature. However, the secret matrix is still

diagonal dominant and it remains an open question whether there exists a tight

security proof to a well-known problem or if there is any unforeseen weaknesses to

diagonal dominant lattices as both Li, Liu, Nitaj and Pan’s [LLNP18] and Yu and

Ducas’s attacks [YD18a] could lead to. The open questions for improvement stated

in the original DRS report are also still applicable to the last proposed iteration

(modifications of the public key and signing algorithm). Overall, we showed that

144
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both efficiency and security of such schemes are related to the noise more than the

diagonal coefficients. Given a fixed diagonal, [LLNP18, YD18a] showed weakness

on particular noise sets. It is unclear if our choice of uniform sampling in the 𝑛-

dimensional ball is provably secure, but we stress that the literature is very scarce

concerning this lattice family and thus lots of open questions remain.

On the technical side, our method to generate random samples is also slow and

might need improvement. It also impacts the setup as mentioned earlier, as keeping

the current DRS parameters one can see the possibility to overflow and go over

64-bits, even though the probability is extremely low, thus changing the public

key generation is also left as an open question. The initial DRS scheme was very

conservative not only on their security but also the manipulated integer size bounds:

one might use heuristics to drastically increase the memory efficiency of the scheme

and allow some small error probability for example.

7.3 Using Freivalds’ algorithm to accelerate sig-

nature verifications

In chapter5, we introduced a modification of Freivalds’ algorithm to introduce a

faster verification method to DRS. By introducing a precomputation step that is

in the same order of magnitude as the setup in time, we gain a factor of almost 20

for the verification part while also heavily reducing its memory cost. This process

is done while not modifying any information given by the signatory. Furthermore,

more research should greatly improve this new work.

1. We assumed almost “paranoiac” security requirements, thus a deeper analysis

should improve efficiency.

2. We can make use of RNS: stemming from [Gar59] with several applications,

finding large arithmetically efficient random groups is exactly what we need.

3. We could generalize to all lattices and HNF keys. It needs the extra vector

ℎ, but any party can compute ℎ in polynomial time with no security loss.

7.4 A potential improvement on New Hope

In chapter 6, we refine the probability analysis made in [ADPS16b] and show that

we can use tighter parameters in order to increase the security, the compactness and

sometimes the performance of NewHope. We propose four alternative set of parame-

ters using smaller moduli. However these moduli do not allow to use the full efficient
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NTT algorithm in the protocol dimensions. Nonetheless we show that by mixing

smaller NTTs with different multiplication algorithms we obtain very competitive

performance when compared to the state-of-the-art approach (gain of 16% for some

of them). While we are competitive in term of efficiency our alternative parameters

allow to increase the security of the protocol up to 8% and reduce the bandwidth

requirement by up to 19%. Furthermore some sets of parameters improved the three

features of the scheme: compactness, security, performance while the other improve

even more the compactness and security but lead to worse performance. For all

these sets of parameters we evaluate the failure probability around 2−200 as origi-

nally evaluated ([ERJ+18]), except for 𝑞 = 1601 where it is as big as 2−170, similarly

to Kyber, which should be enough to be protected against attacks such as the one

mentionned in [DGJ+19].

Although [DGJ+19] has shown how decryption failures could be exploited by a

malicious adversary, we still do not know exactly which bound should be aimed on

the failure probability for a given targeted security in practice. For instance NewHope

and Kyber maintain a similar failure probability regardless of the security level they

are aiming for, while SABER ([DKSRV18]) adapts its parameters so that the failure

probability gets smaller for a higher level of security.

Following the specifications of NewHope, we have kept a similar failure probability

regardless of the dimension 𝑛. However NewHope512 targets around 100 bits of se-

curity and can thus probably tolerate a bigger failure probability than NewHope1024

which aims at more than 200. Therefore the parameters for 𝑛 = 512 can probably

be further optimized. The only question remaining is: what failure probability can

we afford in practice?

As another example, we have been conservative on the compression parameter

𝑡 = 32 for 𝑞 = 769 in order to ensure a failure probability as small as possible.

Nonetheless, reducing 𝑡 to 16 would allow to improve further the bandwidth re-

quirement (−22%) at a cost of a failure probability smaller than 2−162. Although

this probability is similar to those of Kyber and SABER ([DKSRV18]) for their most

secure parameters (2−174 and 2−165 respectively), we have chosen to keep 𝑡 = 32 for

conservatism.



Bibliography
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[BSW18] Shi Bai, Damien Stehlé, and Weiqiang Wen. Measuring, simulating

and exploiting the head concavity phenomenon in BKZ. In Interna-

tional Conference on the Theory and Application of Cryptology and

Information Security, pages 369–404. Springer, 2018.

[CAG18] University of Sydney Computational Algebra Group. Magma online.

https://magma.maths.usyd.edu.au/calc/, 2018.
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Appendix A

Code snippets

This appendix figures various code snippets, that people can use hopefully to test

algorithms with MAGMA. While MAGMA is not free and open-source unlike SAGE-

MATH, OCTAVE, PARI-GP and other Computer Algebra System (CAS), it comes

with a free online editor which is quite handy [CAG18] (note that at the time of

testing a https connection is not available). We hope this can allow anybody to

test computations with just an access to a web browser and an internet connection.

This is especially useful for people without having access to admin rights in a public

library computer or lightweight laptops with small processing power. To adapt to

any screen size, you can change the size of the cells for input/output in the browser

by dragging the lower-left corner.

Most of the code here is written considering a lower triangular HNF while

MAGMA provides naturally upper-triangularHNF. This choice was made to match

most of the academic literature we have came across. We believe that if a reader

has the technical skills to use this code, they also have the technical skills to adapt

it, therefore it should not be a problem. Furthermore, we have provided a code to

switch to a lower-triangular HNF using MAGMA subroutines (see code in figure

A.2).

Note that PARI-GP also has an online editor [PG18], but we have not tested much

of it (yet). It seems MAGMA online does not require Javascript to be active and

works well on mobile devices. PARI-GP needs Javascript. At the time of this thesis,

MAGMA restricts “online” computations to 120 seconds, while PARI-GP does not

provide a limit (but slow your browser down). That being said, if computations that

lasts more than 2 minutes are needed, then using an online browser is probably not

adapted: feel free to use any other CAS then.

The code presented in Figure A.8 was tested using the free version of MAGMA

online at http://magma.maths.usyd.edu.au/calc/. At the time of the test, the
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Figure A.1: Magma code for vector HNF-reduction with a Gauss-Jordan
technique

1 // INPUT: "v" the vector to reduce, "H" the lower triangular HNF

2 // OUTPUT: Write in "w" the reduced form of "v" by "H"

3 ReduceByHNF:=procedure(~w,~v,~H)

4 /* Initial values */

5 NbCols:=Ncols(S);

6 w:=v;

7 i:=Ncols(S);

8

9 /* Reduce */

10 while i gt 0 do

11 q:=Round(w[i]/H[i][i]);

12 w:=w-(q*S[i]);

13 i:=i-1;

14 end while;

15 end procedure;

Figure A.2: Magma code for lower triangular HNF

1 // INPUT: A row matrix M

2 // OUTPUT: Replace M into its lower triangular HNF

3 LowerTriangleHNF:=procedure(~M)

4 //Initial Swap

5 NbCols:=Ncols(M);

6 for i:=1 to Floor(NbCols/2) do

7 SwapColumns(~M, i, NbCols-i+1);

8 end for;

9 //Compute HNF by trusting MAGMA

10 M:=HermiteForm(M);

11 //ReSwap Columns and rows

12 NbCols:=Ncols(M);

13 for i:=1 to Floor(NbCols/2) do

14 SwapColumns(~M, i, NbCols-i+1);

15 end for;

16 NbRows:=Nrows(M);

17 for i:=1 to Floor(NbRows/2) do

18 SwapRows(~M, i, NbRows-i+1);

19 end for;

20 end procedure;

MAGMA version was “V2.24-5”.
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Figure A.3: Magma code for PSW-reduction

1 // INPUT: "v" a vector to reduce below "D" by "S" the reduction matrix

2 // OUTPUT: Write in "w" the reduced form of "v" by "S" undil "w < D"

3 ReduceDiag:=procedure(~w,~v,~S,D)

4 /* Initial values */

5 NbCols:=Ncols(S);

6 i:=1;

7 w:=v;

8

9 /* Reduce */

10 while Max([Abs(w[i]) : i in [1..NbCols]]) ge D do

11 q:=Round(w[i]/S[i][i]);

12 w:=w-(q*S[i]);

13 if i eq NbCols then i:=0; end if;

14 i:=i+1;

15 end while;

16 end procedure;

Figure A.4: Magma code for the public key generation of DRS

1 /* Number of "obfuscation" rounds */

2 Rounds:=10;

3 /* Set P as the result of the R obfuscation of S with seed s */

4 PublicKeyDRS:=procedure(~P,~S,~s)

5 /* Load constants */

6 NbRows:=Nrows(S);

7 Grp:=Sym(NbRows);

8 P:=S;

9 SetSeed(s);

10

11 /* Apply R rounds of obfuscations */

12 for i:=1 to Rounds do

13

14 /* Random permutation */

15 P:=PermutationMatrix(Integers(), Random(Grp))*P;

16

17 /* Multiplication by unimodular matrix */

18 for j:=1 to NbRows-1 by 2 do

19 sgn:=2*Random(1)-1;

20 P[j]:= P[j] + (sgn * P[j+1]);

21 P[j+1]:= P[j+1] + (sgn * P[j]);

22 end for;

23

24 end for;

25 P:=PermutationMatrix(Integers(), Random(Grp))*P;

26 end procedure;
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Figure A.5: Magma code for the signature of DRS

1 /* given a DRS secret key/seed S/s, find kP=v-w with w < D */

2 ReduceDRS:=procedure(~k,~w,~v,~S,~s,D)

3 /* Initialize constants */

4 NbCols:=Ncols(S);

5 NbRows:=Nrows(S);

6 Grp:=Sym(NbRows);

7 P:=S;

8 i:=1;

9 w:=v;

10 k:=Vector([0 : i in [1..NbCols] ]);

11

12 /* Reduce the vector to kS=v-w */

13 while Max([Abs(w[i]) : i in [1..NbCols]]) ge D do

14 /* Depending on the noise used, switch between division by D or the

diagonal coefficient of the whole matrix */

15 //q:=Round(w[i]/S[i][i]);

16 q:=Round(w[i]/D);

17 k[i]:=k[i]+q;

18 w:=w-(q*S[i]);

19 if i eq NbCols then i:=0; end if;

20 i:=i+1;

21 end while;

22

23 /* Transform kS=v-w to kP=v-w */

24 SetSeed(s);

25 for i:=1 to Rounds do

26 k:=k*Transpose(PermutationMatrix(Integers(), Random(Grp)));

27 for j:=1 to NbRows-1 by 2 do

28 sgn:=2*Random(1)-1;

29 k[j+1]:= k[j+1] - (sgn * k[j]);

30 k[j]:= k[j] - (sgn * k[j+1]);

31 end for;

32 end for;

33 k:=k*Transpose(PermutationMatrix(Integers(), Random(Grp)));

34 end procedure;



169

Figure A.6: Magma code for computing the max norm of a matrix

1 /* put in res the max norm of mat with ln lines and col coloumns*/

2 MaxMatNorm:=procedure(~res,~mat,~ln,~col)

3 res:=0;

4 for i:=1 to col do

5 tmp:=0;

6 for j:=1 to ln do

7 tmp:=tmp+Abs(mat[j][i]);

8 end for;

9 res:=Maximum(res,tmp);

10 end for;

11 end procedure;
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Figure A.7: Magma code for the verification in DRS

1 /* Put in Bool whether kP=v-w and w < D */

2 VerifyDRS:=procedure(~Bool,~k,~w,~v,~P,D)

3 /* Initialize constants */

4 NbCols:=Ncols(P);

5 NbRows:=Nrows(P);

6 /*Use B:=2 for speed, B:=10 is for visual representation*/

7 B:=10;

8 Zero:=Vector([0 : i in [1..NbCols]]);

9 End:=true;

10

11 /* Initialize loop parameters */

12 q:=k;

13 t:=v-w;

14 modulo:=0;

15 MaxMatNorm(~modulo,~P,~NbRows,~NbCols);

16 modulo:=B^Floor(Log(B,modulo));

17

18 /* Checks the max norm */

19 Bool:=Max([Abs(w[i]) : i in [1..NbCols]]) lt D;

20 if (not Bool) then End:=false;Bool:=false; end if;

21

22 while Bool do

23 /*Check r <- load part of q */

24 r:=Vector([Round(q[i]/modulo) : i in [1..NbCols]]);

25 r:=Vector([q[i] - (r[i]*modulo) : i in [1..NbCols]]);

26 t:=t-(r*P);

27

28 /* Check equality for that block */

29 t2:=Vector([t[i] mod modulo : i in [1..NbCols]]);

30 if (t2 ne Zero) then

31 End:=false;break;

32 end if;

33

34 /* Eliminate block and update values */

35 t:=Vector([ ExactQuotient(t[i], modulo) : i in [1..NbCols]]);

36 q:=Vector([ ExactQuotient(q[i]-r[i], modulo) : i in [1..NbCols]]);

37 q_not_zero:=(q ne Zero);

38 t_not_zero:=(t ne Zero);

39

40 /* Test if one component is prematurely zero */

41 if ((not q_not_zero) xor (not t_not_zero)) then

42 End:=false;break;

43 end if;

44

45 /* Test if all components are zero: if yes we finished */

46 Bool:= (q_not_zero) and (t_not_zero);

47 end while;

48 Bool:=End;

49 end procedure;
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Figure A.8: Magma code for testing both DRS and PSW conditions

1 /* Set Randomness, Diagonal Coefficient and Dimension */

2 Seed:=1515430315;

3 SetSeed(Seed);

4 N:=51;

5 D:=N;

6

7 /* Initialize to Real values for computation of the Spectral Radius */

8 M:=ZeroMatrix(GetDefaultRealField(),N,N);

9

10 /* Randomly put noise values */

11 for i:=1 to N do

12 for j:=1 to N do

13 /* High probability of respecting PSW-bound but not DRS-bound */

14 M[i,j]:=Random(0,3)*((Random(0,1)*2)-1);

15 /* High probability of respecting DRS-bound but not PSW-bound */

16 // M[i,j]:=Random(0,Ceiling(D/N));

17 end for;

18 end for;

19

20 /* Compute Spectral Radius to check validity of PSW Conjecture */

21 SR:=SpectralRadius(M)*(D^-1);

22

23 /* Check the norm l1 for each vector of the noise */

24 MinS:=2*D;

25 MaxS:=0;

26 AvgS:=0;

27

28 for i:=1 to N do

29 S:=0;

30 for j:=1 to N do

31 S:=S+Abs(M[i,j]);

32 end for;

33 if S gt MaxS then MaxS:=S; end if;

34 if MinS gt S then MinS:=S; end if;

35 AvgS:=AvgS+S;

36 end for;

37

38 AvgS:=AvgS/N;

39

40 /* Print Results */

41 print "Random Seed is " cat IntegerToString(Seed);

42 print "Diagonal Value D is " cat IntegerToString(D);

43 print "Dimension N is " cat IntegerToString(N);

44 print "";

45 print "Spectral Radius";SR;

46 print "Minimum/Maximum l1 norm of noise vectors";

47 print Floor(MinS),Floor(MaxS);

48 print "Average l1 norm of noise vectors";

49 print Floor(AvgS);
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Figure A.9: Magma code for playing around HNF intersections: general case

1 // General MAGMA method for intersections

2 M1:=Matrix([

3 [32,13,15],

4 [14,17,13],

5 [87,21,11]

6 ]);

7

8 //HermiteForm(M1);

9

10 M2:=Matrix([

11 [2,13,1],

12 [12,98,11],

13 [7,21,21]

14 ]);

15

16 //HermiteForm(M2);

17

18 L1:=Lattice(M1);

19 L2:=Lattice(M2);

20

21 LInter:=L1 meet L2;

22 MInter:=Basis(LInter);

23

24 print "Expected Result using MAGMA command \"meet\"";

25 print HermiteForm(Matrix(MInter));

26

27 // Other general method without dual computation, using HNF algorithms

28 P1:=HorizontalJoin(M1,M1);

29 //print "P1",P1;

30 P2:=HorizontalJoin(M2,ZeroMatrix(Integers(),Nrows(M2),Ncols(M1)));

31 //print "P2",P2;

32

33 PJoin:=VerticalJoin(P1,P2);

34 //print "PJoin pre HNF",PJoin;

35

36 PJoin:=HermiteForm(PJoin);

37 //print "PJoin post HNF",PJoin;

38

39 PJoin:=ExtractBlock(PJoin,Nrows(M1)+1,Ncols(M1)+1,Nrows(M2),Ncols(M2));

40 print "Result M1 inter M2 using Hermite Normal Forms",PJoin;
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Figure A.10: Magma code for playing around HNF intersections: q-ary case

1 // Define 4 matrices with a single column and the same determinant

2 M1:=Matrix([

3 [1,0,0,0,0,0],

4 [0,1,0,0,0,2],

5 [0,0,1,0,0,0],

6 [0,0,0,1,0,0],

7 [0,0,0,0,1,0],

8 [0,0,0,0,0,5]]);

9 M2:=Matrix([

10 [1,0,0,0,0,0],

11 [0,1,0,0,3,0],

12 [0,0,1,0,0,0],

13 [0,0,0,1,0,0],

14 [0,0,0,0,5,0],

15 [0,0,0,0,0,1]]);

16 M3:=Matrix([

17 [1,0,0,0,0,0],

18 [0,1,0,3,0,0],

19 [0,0,1,0,0,0],

20 [0,0,0,5,0,0],

21 [0,0,0,0,1,0],

22 [0,0,0,0,0,1]]);

23 M4:=Matrix([

24 [1,0,0,0,0,0],

25 [0,1,2,0,0,0],

26 [0,0,5,0,0,0],

27 [0,0,0,1,0,0],

28 [0,0,0,0,1,0],

29 [0,0,0,0,0,1]]);

30

31 // Generate all related lattices

32 L1:=Lattice(M1);

33 L2:=Lattice(M2);

34 L3:=Lattice(M3);

35 L4:=Lattice(M4);

36

37 // Intersect them all

38 LInter:=L1 meet L2;

39 LInter:=LInter meet L3;

40 LInter:=LInter meet L4;

41

42 // Observe the resulting q-ary lattice

43 HermiteForm(Matrix(Basis(LInter)));
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Figure A.11: Magma code for playing around DRS

1 // Declare the secret key with D=10

2 S:=Matrix([

3 [10,0,2,-3,0,1],

4 [-1,10,2,3,0,2],

5 [1,0,10,3,0,-1],

6 [0,-4,2,10,0,3],

7 [-1,0,2,3,10,-2],

8 [3,3,0,-1,0,10]

9 ]);

10

11 // Create the public key

12 P:=S;

13 s:=3;

14 PublicKeyDRS(~P,~S,~s);

15

16 // Create a large vector and sign it

17 v:=Vector([Random(1000) : i in [1..6]]);

18 w:=v;

19 k:=v;

20 ReduceDRS(~k,~w,~v,~S,~s,10);

21

22 // Print the resulting computations

23 print "Secret Key:", S;

24 print "Public Key:", P;

25 print "v to reduce:", v;

26 print "signature k,w:";

27 print k,w;

28 print "v-w",v-w;

29 print "k*P",k*P;

30

31 // Verify the result

32 Bool:=true;

33 VerifyDRS(~Bool,~k,~w,~v,~P,10);

34 print "Check:", Bool;

35 k*P+w-v;



175

Figure A.12: MAGMA code for playing around Freivalds’ algorithm

1 // Apply one round of the Freivalds test

2 FreivaldsOneRound:=procedure(~res,~A,~B,~C)

3 v:=Vector([Random(0,1) : i in [1..Ncols(A)]]);

4 vc:=v*C;

5 v:=v*A;

6 v:=v*B;

7 res:=(v eq vc);

8 end procedure;

9

10 Rounds:=3;

11 // Apply multiple rounds of the Freivalds test

12 Freivalds:=procedure(~res,~A,~B,~C)

13 tmp:=true;

14 for i:=1 to Rounds do

15 FreivaldsOneRound(~res,~A,~B,~C);

16 tmp:=(tmp and res);

17 end for;

18 res:=tmp;

19 end procedure;

20

21 //Fix dimension, bound of values

22 N:=5;

23 BoundVal:=2;

24

25 //Generate samples, with one correct answer and one not

26 A:=ZeroMatrix(Integers(),N,N);

27 B:=ZeroMatrix(Integers(),N,N);

28 FakeAB:=ZeroMatrix(Integers(),N,N);

29

30 for i:=1 to 5 do

31 A[i]:=Vector([Random(-BoundVal,BoundVal) : i in [1..N]]);

32 B[i]:=Vector([Random(-BoundVal,BoundVal) : i in [1..N]]);

33 FakeAB[i]:=Vector([Random(-BoundVal*N,BoundVal*N) : i in [1..N]]);

34 end for;

35

36 AB:=A*B;

37

38 print "A",A;

39 print "B",B;

40

41 print "AB",AB;

42 print "FakeAB",FakeAB;

43

44 res:=0;

45

46 // Test both the correct answer and the fake

47 Freivalds(~res,~A,~B,~AB);

48 print "Test with AB: ",res;

49

50 Freivalds(~res,~A,~B,~FakeAB);

51 print "Test with FakeAB: ",res;
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Figure A.13: MAGMA code for playing around our modified Freivalds for DRS

1 S:=Matrix([

2 [10,0,2,-3,0,1],

3 [-1,10,2,3,0,2],

4 [1,0,10,3,0,-1],

5 [0,-4,2,10,0,3],

6 [-1,0,2,3,10,-2],

7 [3,3,0,-1,0,10]

8 ]);

9

10 // Create the public key

11 P:=S;s:=3;

12 PublicKeyDRS(~P,~S,~s);

13 print "Public Key",P;

14

15 /* Pick 2 primes (could be more) */

16 PrimeSize:=12;

17 p1:=RandomPrime(PrimeSize); p2:=RandomPrime(PrimeSize);

18 print "pick 2 primes:",p1,p2;

19

20 /* Create one vector per prime */

21 x1:=Matrix([[Random(0,p1-1) : i in [1..6]]]);

22 x2:=Matrix([[Random(0,p2-1) : i in [1..6]]]);

23

24 /* Precompute a multiplier */

25 V:=HorizontalJoin(Transpose(x1),Transpose(x2));

26 print "precomputed multiplier x for (v-w):",V;

27

28 /* Precompute product with public key */

29 T:=P*V;

30 for i:=1 to Nrows(T) do

31 T[i,1]:= T[i,1] mod p1; T[i,2]:= T[i,2] mod p2;

32 end for;

33 print "precomputed multiplier X for k:",T;

34

35 // Create a large vector and sign it

36 v:=Vector([Random(1000) : i in [1..6]]); w:=v; k:=v;

37 ReduceDRS(~k,~w,~v,~S,~s,10);

38

39 /* From here apply the new verification process */

40

41 kt:=k*T; kt[1]:= kt[1] mod p1; kt[2]:= kt[2] mod p2;

42 print "result kX:",kt;

43

44 vt:=(v-w)*V; vt[1]:= vt[1] mod p1; vt[2]:= vt[2] mod p2;

45 print "result vx:",vt;

46

47 print "Success (kx = vx): ",(vt eq kt);
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