
LATTICE-BASED CRYPTOGRAPHY: A

PRACTICAL IMPLEMENTATION

A Thesis Submitted in Partial Fulfilment of
the Requirements for the Award of the Degree of

Master of Computer Science - Research

from

UNIVERSITY OF WOLLONGONG

by

Michael Rose

BCompSci (Digital Systems Security)

School of Computer Science and Software Engineering
Faculty of Informatics

2011

c© Copyright 2011

by

Michael Rose

ALL RIGHTS RESERVED

CERTIFICATION

I, Michael Rose, declare that this thesis, submitted in partial fulfilment of the re-
quirements for the award of Master of Computer Science - Research, in the School
of Computer Science and Software Engineering, Faculty of Informatics, University of
Wollongong, is wholly my own work unless otherwise referenced or acknowledged. The
document has not been submitted for qualifications at any other academic institution.

(Signature Required)

Michael Rose
06 Oct 2011

Table of Contents

ABSTRACT . iv
Acknowledgements . v

1 Introduction 1
1.0.1 Quantum computing . 1
1.0.2 Quantum Key Distribution . 3

2 Post-Quantum Cryptography 5
2.1 Hash-based Signatures . 6

2.1.1 Hard problems in Hashing . 6
2.1.2 Hash-based one-time signatures 7
2.1.3 The Merkle Signature Scheme 8
2.1.4 Evaluation . 10

2.2 Code-based cryptography . 11
2.2.1 Binary Linear Codes . 11
2.2.2 The McEliece Cryptosystem . 13
2.2.3 Evaluation . 15

2.3 Multivariate cryptography . 15
2.3.1 Multivariate cryptosystems . 16
2.3.2 Construction Methods . 17
2.3.3 Evaluation . 19

2.4 Lattice-based cryptography . 19
2.4.1 Lattice-based Cryptosystems . 21
2.4.2 Evaluation . 22

2.5 Summary . 23

3 Lattice Theory 26
3.1 Overview . 26
3.2 Lattice properties . 27

3.2.1 Rank . 27
3.2.2 Determinant . 27
3.2.3 Norms . 28
3.2.4 Minima . 30
3.2.5 Unimodular Matrices . 30

i

TABLE OF CONTENTS ii

3.2.6 Hermite Normal Form . 30
3.2.7 Reducing a vector modulo a lattice 31
3.2.8 Orthogonality defect . 32

3.3 Lattice Problems . 32
3.4 Algorithmic Solutions for Lattice Problems 33

3.4.1 Gram-Schmidt Orthogonalization 33
3.4.2 LLL . 34
3.4.3 BKZ . 35
3.4.4 Babai’s Round-Off . 35
3.4.5 Babai’s Nearest-Plane . 36

3.5 Lattice Families . 37
3.5.1 q-ary Lattices . 37
3.5.2 Cyclic lattices . 38
3.5.3 Ideal lattices . 38

3.6 Cryptosystem Construction using CVP/BDD 39
3.6.1 GGH . 39
3.6.2 The Micciancio Cryptosystem 40
3.6.3 Other CVP-based cryptosystems 41

4 Optimisation 43
4.1 Optimising Implementation . 44

4.1.1 Pre-computation . 44
4.1.2 Chinese Remainder Theorem . 45

4.2 Optimising Babai’s Round-Off . 46
4.2.1 Improving GGH using the Chinese Remainder Theorem 46
4.2.2 Evaluation of the use of CRT in Babai’s Round-Off 49

4.3 Optimising the Public Basis . 50
4.3.1 Näıve testing . 52
4.3.2 Coprimality testing . 53
4.3.3 Evaluation of the use of Optimal Hermite Normal Form Public

Bases . 56
4.4 Optimising the Private Key-Space . 58

4.4.1 Motivation . 58
4.4.2 Construction approaches . 59
4.4.3 Evaluation of Rotated Nearly-Orthogonal Private Bases 62

4.5 An optimised GGH-style cryptosystem 63
4.5.1 Overview . 63
4.5.2 Key Generation . 65
4.5.3 Encryption . 71
4.5.4 Decryption . 71
4.5.5 Analysis . 73

5 Conclusions 78

TABLE OF CONTENTS iii

A Algorithms 81
A.1 Generic algorithms . 81
A.2 CVP solutions . 83
A.3 GGH cryptosystem . 84
A.4 Micciancio cryptosystem . 86

References 95

Lattice-based Cryptography: A practical implementation

Michael Rose

A Thesis for Master of Computer Science - Research

School of Computer Science and Software Engineering
University of Wollongong

ABSTRACT

Ever since Ajtai’s seminal paper Generating Hard Instances of Lattice Problems [4]
there has been much interest in developing Lattice-based cryptography for a number
of reasons. Firstly, Lattice-based cryptography provides a much stronger notion of se-
curity, in that the average-case of certain problems in lattice-based cryptography are
equivalent to the worst-case of those problems [4]. Secondly, there are strong indica-
tions that these problems will remain secure under the assumption of the availability
of quantum computers, unlike both the integer-factorisation and discrete-logarithm
problems as relied upon in many conventional cryptosystems. [72]

Despite these advantages however, a significant hurdle to the widespread adoption
of lattice-based cryptography has been that most lattice-based cryptosystems are com-
putationally expensive and hence impractical compared to conventional cryptosystems.
In this dissertation, the author will explore various methods to improve the practical-
ity of lattice-based cryptosystems and to optimise the algorithms that make up these
cryptosystems for modern computer processors.

KEYWORDS: Lattice, Cryptography, Security, Encryption, Decryption,
Signature, CRT, GGH, Micciancio

Acknowledgements

The author would like to thank the following people for their help and advice: Dr.
Thomas Plantard, Prof. Willy Susilo, Dr. Victor Shoup, Dr. Damien Stehlé, Loukas
Kalenderidis, Bill Tourloupis, Graeme Phillips, Tim Broady, Anastasia Mikuscheva,
Natalie Farrawell, Elise Jackson.

The author would also like to apologise to all those who have had the dubious
privelege of entertaining his animated discussions on the topic of lattice research with
feigned interest.

v

Chapter 1

Introduction

Albert Einstein’s assertion that Quantum Entanglement as a theory was incorrect as it

resulted in ‘spooky action at a distance’ was indicative of the resistance of conventional

physicists to the notion of quantum mechanics in the first half of the 20th century. It

is precisely this property of quantum particles however, that brings great hope for new

and much more efficient computing algorithms. The use of this quantum entanglement

property for computing purposes dates back to 1982 [24] and since then, interest has

been growing at a phenomenal rate, due in part to the effect quantum computers will

have on conventional cryptography.

1.0.1 Quantum computing

A quantum computer consists of a number of qubits (quantum bits) together with

some basic qubit gates and a mechanism for brief storage of these qubits. The pri-

mary difference that qubits have over standard conventional bits is that qubits can be

expressed probabilistically, having any real probability between 0 and 1, unlike a con-

ventional bit which must have only one of two states. Once the qubit is read however,

the quantum state collapses into one of these two states. [72] This property of having

an indeterminate state before being read, together with the entanglement of multiple

1

2

qubits, allows a new class of algorithms to be developed enabling a quantum com-

puter to perform some specific computations exponentially faster than a traditional

computer. Due to this new paradigm of computation, a quantum computer cannot be

modelled as a conventional Turing machine efficiently [21].

1.0.1.1 Quantum complexity classes

Since a quantum computer cannot be efficiently modelled as a conventional Turing

machine, new complexity classes need to be introduced. The BQP (Bounded error

Quantum Polynomial) complexity class is informally analogous to the conventional P

(Polynomial) complexity class. ie. a class of problems that are considered feasible

to compute on a quantum computer, albeit allowing some error due to a small, non-

zero probability of quantum decoherence induced errors and the probabilistic nature

of quantum calculations. Similarly, the QMA (Quantum, Merlin-Arthur) complex-

ity class is roughly analogous to the conventional NP (Non-deterministic Polynomial)

complexity class, being considered as the class of problems containing infeasible al-

gorithms to compute on a quantum computer. It is suspected that these classes are

not equal, however it is important to note that the relationships between these two

complexity classes are not proven, just as it is not known whether P = NP.

1.0.1.2 Implications of quantum computing

In 1994, Shor developed algorithms that can factor integers and solve the Discrete

Logarithm problem both in BQP [72]. This was groundbreaking for the field of con-

ventional cryptanalysis as the ability to solve these two problems in polynomial time

broke the long held complexity assumptions (and hence security) that almost all ma-

jor asymmetric-key cryptosystems at the time relied upon. Further development into

quantum algorithms resulted in Grover’s algorithm in 1996 [34] which reduces the

time of an unsorted database search by a quadratic factor over the fastest possible

3

algorithm on a conventional computer. This algorithm (and related algorithms) can

be used to invert any secure one-way function faster than a conventional computer,

given enough space. While the existence of this algorithm does not inherently break

conventional symmetric cryptosystems based on one-way functions, in certain cases

such cryptosystems could be rendered insecure.

1.0.2 Quantum Key Distribution

In 1984, Bennett and Brassard created the first Quantum Key Distribution (QKD)

protocol; BB84 [12]. This protocol is an unconditionally secure mechanism by which

two parties can agree on a common key. Such a key can then be used to form a one-time

pad, creating an information-theoretically secure cryptosystem. Unfortunately such

an approach has significant drawbacks, primarily the requirement for a new quantum-

aware infrastructure to support such quantum transmissions. Since all QKDs created

thus far are point-to-point session key exchanges, the feasibility of such a Quantum

Key Infrastructure would rely on enormous advances in Quantum Storage devices.

Additionally, due to the extremely fragile quantum carriers used (whether they are

photons, electrons, ions etc.), such an infrastructure would need to overcome two

significant hurdles. Firstly, this infrastructure would have to be kept in an extremely

controlled state, as any unintended interaction with the quantum information carrier

would cause irreversible quantum decoherence, significantly reducing throughput and

greatly increasing overhead in error correction. Secondly, to prevent man-in-the-middle

attacks, the systems involved must communicate through an authenticated channel,

using on average, singular quantum information carriers, uninterrupted from source

to destination. This limits the feasibility of routing networks with large physical size

requirements. Unfortunately, it also seems that in the literature, the creation of such

an authenticated channel for use in a QKD network is an exercise left to the reader. If

4

such an authentication mechanism is based on a classical algorithm (such as password-

authenticated Diffie-Hellman or PKI signatures) then any proposed security benefit

disappears when viewed in the context of quantum computer cryptanalysis.

Chapter 2

Post-Quantum Cryptography

Due to the limited scope and significant drawbacks involved with implementing efficient

Quantum Key Distribution, the search for a conventional, non-quantum cryptography

solution that will work in existing infrastructures is a rapidly growing area of research.

Such research has been given the term Post-Quantum Cryptography, post-quantum

indicating that these cryptographic constructs are believed to remain secure after

practical, large scale quantum computers become available. Primarily, cryptosystems

based on one-way trapdoors not believed to be in BQP but can operate efficiently

on conventional computing platforms are sought. Four general areas of research have

emerged:

• Hash-based signatures

• Code-based cryptography

• Multivariate cryptography

• Lattice-based cryptography

Each approach has unique advantages and disadvantages, which will be explored in

the following sections.

5

2.1. Hash-based Signatures 6

2.1 Hash-based Signatures

Traditional signature schemes have relied on number-theoretic problems to ensure se-

curity; primarily relying on the hardness of integer factorization and discrete logarithm.

Since both of these problems cannot be used in any secure post-quantum signature

scheme, a significant body of research has been produced on the topic of hash-based

signatures. An enormous benefit these signature schemes boast over traditional signa-

tures is that they are not being tied to any specific hash function. Such modularity

is rarely seen in an asymmetric cryptosystem. Should a hash function be broken or

compromised in any way, it is a simple matter to change to a hash function that is

still presumed secure.

2.1.1 Hard problems in Hashing

Hash functions are specifically designed to be resistant to certain operations. Different

scenarios require different security assurances to be present in the hash function; a hash

function designed for one scenario may not be suitable for use in another. The three

primary security goals are described below.

Definition 1 (Pre-Image Resistance). Given a pre-image resistant hash function H :

{0, 1}∗ → {0, 1}k and a message hash h, it is computationally infeasible to generate a

valid message m such that H(m) = h.

Definition 2 (Second Pre-Image Resistance). Given a second pre-image resistant

hash function H : {0, 1}∗ → {0, 1}k and a message m1, it is computationally infeasible

generate a valid message m2 6= m1 such that H(m1) = H(m2).

Definition 3 (Collision Resistance). Given a collision-resistant hash function H :

{0, 1}∗ → {0, 1}k, it is computationally infeasible to generate a message pair m1 6= m2

such that H(m1) = H(m2).

2.1. Hash-based Signatures 7

2.1.2 Hash-based one-time signatures

The Lamport-Diffie One-Time Signature scheme (LD-OTS) [42] was proposed by Lam-

port in 1979 as a signature scheme that is provably secure, requiring only that the hash

function used is collision resistant and each public/private key-pair is only used to sign

one message.

Key generation

1. A collision resistant hash function g is chosen, g : {0, 1}∗ → {0, 1}n.

2. A one-way function f is chosen, f : {0, 1}n → {0, 1}n.

3. Signing key X is created as two sets of n uniformly random bit-strings B, each

bit-string being length n.

X = {X0, X1},

Xk = {Bk,1, Bk,2, ..., Bk,n}, Bk,i ∈ {0, 1}n.

4. Verification key Y is created in a similar manner, with each bit-string being the

corresponding bit-string of X passed through one-way function f .

Y = {Y0, Y1},

Yk = {Ck,1, Ck,2, ..., Ck,n}, Ck,i = f(Bk,i).

Signing

1. A digest d of message M is generated using the collision resistant hash-function

d = g(M).

2. Signature S is constructed by choosing n bit-strings from the signature key X

2.1. Hash-based Signatures 8

in a consecutive manner, from the subset X0 or X1 based on the corresponding

bit of digest d.

S = {S0, S1, ..., Sn},

Si = Bd[i],i, 1 ≤ i ≤ n,

Where d[i] denotes the i’th bit of digest d.

Verification

1. The verifier calculates the digest d of the message M , d = g(M).

2. Each bitstring in S is passed through the one-way function f and compared to

the corresponding bitstring from Y , with the set Y0 or Y1 chosen based on the

corresponding bit in digest d.

∀1 ≤ i ≤ n, f(Si)
?
= Cd[i],i.

3. If and only if all bitstrings match, the signature is valid.

It can be seen that a single use of this signature reveals half the signing key. As such,

both keys must be discarded after use as the signing key can no longer be trusted.

While LD-OTS is quite efficient to compute, the signatures produced are relatively

large. An improvement was proposed by Winternitz in 1979 [50] that allows each bit-

string in X to sign several digest bits, reducing the signature size dramatically. For

an in-depth analysis we refer the reader to [23].

2.1.3 The Merkle Signature Scheme

Since the creation and distribution of keys is needed every time a one-time signature

is used, the practicality of these schemes are questionable. Merkle’s proposed solution

2.1. Hash-based Signatures 9

[50] in 1979 attempts to alleviate this problem by creating a large number of these

keys, bound together in a tree structure. Given any collision resistant cryptographic

hash function g : {0, 1}∗ ⇒ {0, 1}n and an existing secure one-time signature scheme,

the Merkle Signature Scheme (MSS) operates as follows.

Key Generation

1. The signer selects a height value H of the tree, H ∈ Z, H ≥ 2.

2. The signer generates 2H key-pairs for the chosen one-time signature scheme.

3. The signer creates a binary tree of height H and sets each leaf node to the hash

of each separate verification key.

4. The internal nodes of this tree then are constructed from the leaf to the root,

taking the value of the hash of the concatenation of the child nodes.

5. The root is given as the signer’s MSS public key.

Signing

1. Given a message M , generate digest d = g(M).

2. Create signature S of digest d with first available one-time signing key.

3. Create authenticity chain a of the corresponding one-time verification key v, by

traversing the tree from the verification leaf to the root, recording the sibling of

each node in the path.

4. Send {M , S, v, a}.

2.1. Hash-based Signatures 10

Verification

1. Verify that the authenticity chain a is valid by comparing each node to the hash

of it’s two children and the root to the signer’s MSS public key.

2. Verify that S is a valid signature of M using the one-time signature verification

key v.

2.1.4 Evaluation

Given a hash function that is provably collision resistant (and hence, also pre-image

resistant) then Merkle’s signature scheme with Lamport-Diffie one-time signatures is

provably secure under an adaptive chosen message attack (CMA) [16]. The efficiency

of the standard MSS scheme as described by Merkle in 1979 is quite low, considering

the number of hash calculations needed in the key-generation and verification stages.

In addition, the storage requirements for the one-time keys is enormous for any prac-

tical public-key scenario. Improvements have been made on Merkle’s scheme, such as

the use of space-time trade-offs in the tree traversal and the use of Pseudo-Random

Number Generators to generate the signature keys [16]. Particularly promising is the

adaptation of tree chaining to Merkle’s scheme by Buchmann et. al [15], whereby one

of the signature key pairs is used to sign a new tree root (and hence new public key).

A signature key-pair of this tree is then used to sign the next tree as it begins to

approach capacity. By continually signing new trees in this way, the security of the

original scheme is retained while capacity is effectively infinite.

Since the security of both the one-time signature scheme and the Merkle Signa-

ture Scheme is reliant on the security of the underlying hash function, it is noted

that for the scheme to be ultimately provably secure, the hash function must also be

provably collision resistant. While provably secure hash functions do exist, many of

these provably secure hash functions are based on assumptions that are not resistant

2.2. Code-based cryptography 11

against a quantum adversary. However, some hash functions have been designed to

be provably secure in the quantum sense (such as SWIFFT [44] and AFS [10]). While

using these hash functions with an efficient form of MSS may seem like the perfect

post-quantum signature scheme; and indeed is provably secure under the lattice as-

sumption; several code-based and lattice-based signature schemes will be described

in the following sections which do not suffer the overhead that using a post-quantum

hash with a hash-based signature scheme causes.

2.2 Code-based cryptography

Coding theory has a rich history in information theory as a mechanism to remove

inherent data redundancy from a message (ie. source coding) or to ensure it’s trans-

mission error free (channel coding). With the explosion of radio communications in the

20th century, together with both World Wars, research into coding theory increased

substantially. Not only was it important to reduce data redundancy as much as pos-

sible to compress messages, likewise it was extremely important for these messages to

reach their recipients error free.

It is primarily the error correcting codes developed for use in channel coding that

also find use in code-based cryptography, the first system being the McEliece cryp-

tosystem developed in 1978, using the presumed difficulty of decoding randomized

Goppa codes [48].

2.2.1 Binary Linear Codes

The simplest error correcting code is a repeating code. In this simple scheme, each

bit is repeated, at least twice for single-bit error detection and at least three times for

single-bit error correction. The repetition code is extremely inefficient however, and

many better codes have been developed since. A class of codes, referred to as linear

2.2. Code-based cryptography 12

codes, operate as follows.

Code Set-up

1. A code C with block input length k and codeword length n ≥ k is defined by

a k-row, n-column binary generator matrix G ∈ Fk,n2 , where each row of G is a

separate codeword of the code C.

2. G is permuted into systematic form. ie. G = (Ik|P).

3. A parity check matrix H is calculated H = (−P T |In−k).

4. d ∈ Z is defined as the minimum hamming distance of the code C (ie. the

minimum number of bits that are different between any two codewords in C).

5. It can be seen that the maximum number of bits capable of being corrected is:

t =

⌊
d− 1

2

⌋

6. A set S is computed of all possible error permutations strictly less than or equal

to t bits multiplied by the parity check matrix. ie.

S = (e,He) : e ∈ Fn2 ,
n∑
i=0

ei ≤ t.

Encoding

1. A codeword x is generated by multiplying some input vector v with the generator

matrix. ie. x = vG.

2.2. Code-based cryptography 13

Decoding (Syndrome-decoding method)

1. A received codeword z is defined as the transmitted codeword x with some error

vector e added. ie. z = x+ e.

2. The syndrome vector s is defined as the parity check matrix H multiplied by the

received codeword z. ie. s = Hz.

3. It can be seen that the parity check matrix multiplied with any codeword x ∈ C

will result in the zero vector. As such, we have:

s = Hz = H(x+ e) = Hx+He = 0 +He = He.

4. s is compared against the set S and the resulting e is derived.

5. The original codeword x is computed by removing the error vector e from the

received codeword z. ie. x = z − e.

The primary difference between linear codes is the method in which the genera-

tor matrix is chosen. Binary Goppa codes for instance are constructed by using an

algebraic genus-0 curve X over a finite field F2.

2.2.2 The McEliece Cryptosystem

McEliece published a paper [48] in 1978 describing a new public-key cryptosystem

based on binary irreducible Goppa codes. Although any error-correcting code class

can be used as the one-way trapdoor function, many other codes have been broken

[60]. The original proposition of Goppa codes has not been broken to date [60]. The

structure of the McEliece class of cryptosystems is as follows.

2.2. Code-based cryptography 14

Key Generation

1. A generator matrix G for a code C is created, with a parameter t such that:

t =

⌊
d− 1

2

⌋

2. The public key GPUB = TGP , where T is a random, binary, non-singular matrix

and P is a random permutation matrix.

3. The private key is {T,DC, P}, where DC is an efficient decoding algorithm for C.

eg. A set S for use with syndrome decoding.

Encryption

1. A plaintext message vector m is multiplied with GPUB. ie. x = mGPUB.

2. A small error vector e of hamming weight t is xored to make decryption non-

trivial and this is sent as the ciphertext.

z = x+ e.

Decryption

1. The ciphertext is multiplied with the inverse of the permutation matrix P . ie.

y = zP−1.

2. The error vector e is then removed by applying the algorithm DC to y.

3. Finally, the plaintext is recovered by multiplying by the inverse of T .

2.3. Multivariate cryptography 15

2.2.3 Evaluation

Due to the large memory requirements for binary Goppa codes of an adequate security

parameter [60], many other error-correcting codes have been used with McEliece with

varying success. Many have been proven insecure and modifications have consequently

been made to the McEliece cryptosystem to account for the new cryptanalysis attacks

[59] [74]. Research is continuing into this area of post-quantum cryptography however,

not just in producing an efficient, secure, public key cryptosystem, but also into code-

based cryptographic hash functions [10] and pseudo-random number generators [25].

2.3 Multivariate cryptography

Owing to their impressive speed, multivariate-based cryptosystems are showing much

promise as a class of practical post-quantum cryptosystems. In general, given the

results of a set of multivariate equations, it is NP-hard to determine the structure of

the multivariate equations [22]. However, due to the fact that a trapdoor must be

embedded in the system for it to be viable as a public key cryptosystem, this removes

the guarantee that the problem is NP-Hard. Many cryptosystems developed based on

multivariate one-way trapdoor functions which were originally presumed secure have

since been broken.

A set P of multivariate polynomials is defined,

P = {p1(x1, . . . , xn), . . . , pm(x1, . . . , xn)}, xk ∈ Fq,

where each polynomial takes the form:

pk(x1, . . . , xn) =
∑
i

Pikxi +
∑
i

Qikx
2
i +

∑
i>j

Rijkxixj.

2.3. Multivariate cryptography 16

2.3.1 Multivariate cryptosystems

In general, if a set of multivariate polynomials is evaluated with a single input vector

X = (x1, x2, · · · , xn), with the output of each polynomial given in a vector C =

{p1(X), p2(X), · · · , pm(X)}, it is difficult to find the original vector X, given only C.

In the standard bipolar multivariate cryptosystem, the set of multivariate polynomials

P is not taken at random however; it is created by taking a system Q that belongs

to a class of multivariate polynomials known to be easy to invert, together with two

affine maps. These maps serve to transform the system into one that is difficult to

invert, thereby creating a trapdoor. This general idea of taking some information in

which an operation is easy to invert and then perturbing the information in such a

way that the operation is hard to invert closely parallels the McEliece cryptosystem.

Indeed, the primary difference between various multivariate cryptosystems lies not in

the basic structure, but in the choice of map Q.

Key generation

1. A system of multivariate polynomials Q is created such that it is easy to invert.

2. Two affine maps S and T are created.

3. The map P is calculated by P = S ◦ Q ◦ T .

4. P is published as the public key.

5. {S,Q, T } is retained as the private key.

Encryption

1. A plaintext vector p is used as the input of each polynomial in the public mul-

tivariate system P .

2.3. Multivariate cryptography 17

2. A ciphertext vector c consisting of each of the outputs of the polynomial functions

is calculated.

Decryption

1. A vector u is calculated from applying the ciphertext vector c to the inverse of

the affine map T . ie. u = T−1(c).

2. A vector v is calculated from applying the vector u to the inverse of the central

map Q. ie. v = Q−1(u).

3. The plaintext vector p is recovered by applying the vector v to the inverse of the

affine map S. ie. p = S−1(v) = S−1(Q−1(T−1(c))).

2.3.2 Construction Methods

Since the construction of the central map Q is central to the security and efficiency of

the cryptosystem, many construction methods have been devised. It is important to

note that most of these listed have been broken in the original parameter specification.

Small-field approaches

A Triangular map is defined as:

J(x1, ..., xn) = (x1 + g1(x2, ..., xn), ..., xn−1 + gn−1(xn), xn)

where the gi are arbitrary polynomial functions. If these functions are known, then J

is invertible [22]. Unfortunately these maps are able to be attacked using rank attacks

(see [20] and [33]).

Another small-field construction is that of Oil and Vinegar schemes [62]. This

involves splitting the n variables into two sets, such that we have o oil variables and

2.3. Multivariate cryptography 18

v = n − o vinegar variables. A map Q : Fnq 7→ Foq is then created, such that each

polynomial of the central map is of the form:

1 ≤ l ≤ o, ql(x) =
v∑
i=1

n∑
j=1

α
(l)
i,jxixj,

where all coefficients α are randomly chosen from Fq.

As there are no quadratic terms of oil variables, it can be seen that the oil variables

and the vinegar variables don’t fully mix (referring to a salad dressing, explaining the

name of the scheme). This scheme is easily inverted by guessing values for the vinegar

variables, which results in a set of o linear equations with the oil variables. This

set has a high probability of having a solution, however if it has no solution, new

vinegar variables are guessed and the resulting set of linear equations tested again for

a solution. By using the affine transforms specified above, the variables are mixed

such that an attacker is unsure as to which were the vinegar variables and which were

the oil variables. Unfortunately this scheme has been attacked for when o = v. By

choosing v 6= o, we have an Unbalanced Oil and Vinegar (UOV) scheme [40], which

seems secure for around two to three times the number of vinegar variables than oil

variables [22].

Big-field approaches

A big-field approach to multivariate cryptography is where the central map Q is em-

bedded in a finite extension field Fqn , rather than the original finite field Fq. This

allows the central map to be inverted easily, as long as it is of a certain structure.

The Matsumoto-Imai construction [47] involves the creation of a central map of

the following form:

Q : x ∈ Fqn 7→ y = x1+qα ,

2.4. Lattice-based cryptography 19

where gcd(1 + qα, qn − 1) = 1.

The Hidden Field Equation (HFE) class of derivatives is a natural extension of the

Matsumoto-Imai scheme, whereby the central map is of the form:

Q : x ∈ Fqn 7→ y =
∑

0≤i,j<n

ai,jx
qi+qj +

∑
0≤i<n

bix
qi + c.

This central map can be inverted using the Berlekamp algorithm [13], with time

complexity O(nd2logd+ d3) [22].

2.3.3 Evaluation

If the system is operated in a base field of F2 then we see extremely fast cryptosystem

speeds and small keysizes compared to other post-quantum cryptosystems. Unfortu-

nately many multivariate cryptosystems have been broken and to date, there appears

to be no practical multivariate cryptosystem developed that inspires a high security

confidence in the research community [22]. An ongoing research effort into finding

a trapdoor that is resistant to both conventional and quantum attacks is needed for

multivariate cryptosystems to be seen as a secure, practical method for post-quantum

cryptography.

2.4 Lattice-based cryptography

Since Ajtai’s seminal paper “Generating hard instances of Lattice problems” [5], Lattice-

theory has emerged as a significant research area into efficient, provably secure post-

quantum cryptography. The security assurances given by lattice-based cryptography

provide a much greater confidence in the long-lasting security of cryptosystems built

using hard lattice problems for two reasons. Firstly, many problems in lattice-theory

are proven to be NP-Hard [14] (ie. at least as hard as the hardest problems in NP).

2.4. Lattice-based cryptography 20

While it is still unknown (and indeed may never be known) the relation between the

post-quantum classes of BQP and QMA; and conventional classes P and NP; we do

know that these problems are at least as hard as any problem in NP, which is a much

stronger assertion than can be made for most problems conventional cryptosystems

are based on. Secondly, the security of many lattice problems have a worst-case to

average-case reduction [5]. This reduces the requirement of a cryptosystem’s security

proof to a proof of average-case hardness due to this worst-case to average-case reduc-

tion. This equivalence also allows claims about the security of superclasses of lattice

problems to be made, if we know the security of a lattice problem within the super-

class. Informally, if a particular instance of a lattice problem is known to be hard, any

superclass containing this instance is known to be at least as hard on average. This

provides greater flexibility in designing cryptosystems to better suit the needs of the

scenario.

A full-rank lattice basis B is defined as a set of n linearly independent vectors in a

vector space of dimension n.

B = {b1, ...,bn}, bk ∈ Rn.

A lattice LB is defined as the set of all the integral combinations of a basis B of

linearly independent vectors across a vector space of dimension n.

LB = Zb1 + ...+ Zbn, bk ∈ Rn.

Some problems in lattice-based cryptography are easy to solve using bases of a

particular structure. We refer to good bases as those in which a given problem is easy

to solve, and bad bases as those in which it is generally no easier than a random basis

to solve a particular lattice problem. Since each lattice may be instantiated by an

2.4. Lattice-based cryptography 21

infinite number of bases, the ability to create a lattice that can be instantiated by

both a good basis and a bad basis simultaneously is the fundamental premise upon

which many one-way trapdoors are built.

2.4.1 Lattice-based Cryptosystems

With Ajtai’s seminal paper in 1996 [5], it was shown that a cryptosystem can be

created with its security proof reliant only on the worst-case of the one-way trapdoor

function through the hidden hyperplane problem. While this introduced the notion

of the worst-case/average-case reduction, due to the enormous ciphertext expansion

and the keysizes involved for an adequate security level, this cryptosystem was not

ever intended to be a practical replacement of existing cryptosystems. Furthermore,

Nguyen and Stern presented a heuristic attack against this cryptosystem [58]. Since

then, this initial proposition has been improved [31, 17, 39, 28, 77, 76, 46] and inspired

many other cryptosystems based on SVP [66, 67, 6].

The cryptosystem developed by Goldreich, Goldwasser and Halevi in 1996 [30] was

a step closer to a practical lattice-based cryptosystem. Vastly improving on Ajtai’s

extreme ciphertext expansion, this cryptosystem sparked a sustained interest in devel-

oping a practical cryptosystem using integral lattices and further improvements were

made (See Micciancio [51], Plantard et al. [63], Rose et al. [69]). The basic structure

of these cryptosystems follow the design of the McEliece cryptosystem with a lattice

trapdoor rather than a code trapdoor. The original GGH cryptosystem is described

as follows:

Key Generation

1. Create a good basis R.

2. Transform this good basis R into a bad basis Q through a unimodular transfor-

2.4. Lattice-based cryptography 22

mation.

3. Publish bad basis Q as public basis and keep good basis R as private basis.

Encryption

1. Choose any lattice vector w using the public basis Q and add some small plain-

text vector p to it.

2. Send this new vector c = w + p as the ciphertext.

Decryption

1. Using the private basis, compute the closest lattice vector w to the ciphertext c.

2. Subtract this lattice vector w from the ciphertext to give the plaintext p = c−w.

It is important to note that while Nguyen broke the original GGH cryptosystem in

1999 due to a limited parameter set, the basic premise is still viable.

2.4.2 Evaluation

With the worst-case/average-case reduction shown by Ajtai and Dwork [7], together

with some lattice problems shown to be NP-Hard [14], lattice-based cryptography

shows much promise for a practical, secure post-quantum cryptosystem. While many

lattice-based cryptosystems boast simplicity and elegance, the computational com-

plexity is still relatively high compared to both conventional cryptosystems as well as

some multivariate cryptosystems. Indeed, it would almost appear as though lattice-

based cryptographic research is a race towards efficiency whereas multivariate-based

cryptographic research is a race towards security. With constructions such as q-ary

lattices and the ideal lattice classes, this efficiency gap is closing quickly.

2.5. Summary 23

2.5 Summary

While hash-based signatures show promise for a viable post-quantum signature scheme

due to their good security reduction, particularly when used with provably collision-

resistant post-quantum hash functions (such as AFS [10], SWIFFT [45] and SWIFFTX [9]),

the large key and signature sizes still currently render hash-based signatures imprac-

tical. This area of research is also unlikely to present a post-quantum alternative to

conventional encryption schemes.

The code-based McEliece cryptosystem has not yet been broken, despite not having

any formal security proof. Since the McEliece cryptosystem, at least using the pareme-

ter set described by McEliece, is inefficient and has a large memory requirement, many

derivatives have been constructed attempting to alleviate these drawbacks. Unfortu-

nately many derivatives of the McEliece cryptosystem have been broken however and

it seems unlikely that the security assumptions made by code-based cryptography

will have a known relation with a formal complexity class since the main security as-

sumption underlying code-based cryptography has no proof of hardness (unlike basic

multivariate and lattice problems). This lack of proof makes it possible that an al-

gorithm could be developed (conventional or quantum) that renders the fundamental

problem behind code-based cryptosystems insecure.

While Multivariate-based cryptography is very fast and has small keys, many

multivariate-based cryptosystems have been broken and the security confidence in

new multivariate systems is lacking. While solving multivariate equation systems is

NP-Hard in general, the adaptation of this problem to allow polynomial time decryp-

tion does not appear to be well-understood due to the many attacks on these schemes.

A multivariate-based cryptosystem with a tight security proof based on a well-founded

security assumption is needed before security confidence in multivariate-based cryp-

tosystems will reach a point that would support practical adoption.

2.5. Summary 24

Lattice-based cryptography shows much promise where other post-quantum cryp-

tographic systems lack, such as the variety of applications that lattice-based crypto-

graphic systems can be developed for, the availability of many lattice problems (many

of which are reducible to NP-Hard) and the astonishing worst-case/average-case re-

duction shown by Ajtai. More research is needed however, to bridge the gap between

known NP-Hard problems and the variants that are used in lattice-based cryptography

as well as improving the practicality of these schemes.

For a tabled summary of the four post-quantum cryptographic research areas,

together with a subjective analysis, refer to Table 2.1.

2.5. Summary 25

H
a
sh

-b
a
se

d
C

o
d
e
-b

a
se

d
M

u
lt

iv
a
ri

a
te

-b
a
se

d
L

a
tt

ic
e
-b

a
se

d

S
ch

e
m

e
s

S
ig

n
at

u
re

S
ig

n
at

u
re

S
ig

n
at

u
re

S
ig

n
at

u
re

E
n
cr

y
p
ti

on
E

n
cr

y
p
ti

on
E

n
cr

y
p
ti

on
H

as
h

H
as

h
O

b
li
v
io

u
s

T
ra

n
sf

er
Id

en
ti

ty
-B

as
ed

E
n
cr

y
p
ti

on
H

om
om

or
p
h
ic

E
n
cr

y
p
ti

on

S
e
cu

ri
ty

C
ol

li
si

on
C

o
d
e

in
ve

rt
ib

il
it

y
S
ol

v
in

g
F

in
d
in

g
go

o
d

b
as

is
re

d
u
ct

io
n

R
es

is
ta

n
ce

M
u
lt

iv
ar

ia
te

fo
r

a
la

tt
ic

e
eq

u
at

io
n

sy
st

em
S
ol

v
in

g
la

tt
ic

e
p
ro

b
le

m
s

in
sp

ec
ia

l
la

tt
ic

es

T
h

e
o
re

ti
c

S
p

e
e
d
s

D
ep

en
d
en

t
on

G
o
o
d

fo
r

H
ar

d
w

ar
e

G
o
o
d

fo
r

H
ar

d
w

ar
e

G
o
o
d

fo
r

S
of

tw
ar

e
h
as

h
fu

n
ct

io
n

u
se

d

P
ra

ct
ic

a
l

S
p

e
e
d
s

E
x
tr

em
el

y
F

as
t

G
o
o
d

U
n
te

st
ed

U
n
te

st
ed

A
d

v
a
n
ta

g
e
s

E
x
tr

em
el

y
fa

st
M

at
u
re

w
it

h
fi
rs

t
F

as
t

E
x
ce

ll
en

t
se

cu
ri

ty
w

it
h

go
o
d

se
cu

ri
ty

sc
h
em

e
re

m
ai

n
in

g
S
m

al
l

ke
y
si

ze
s

re
d
u
ct

io
n
s

re
d
u
ct

io
n

se
cu

re
E

x
tr

em
el

y
m

o
d
u
la

r

D
is

a
d

v
a
n
ta

g
e
s

O
n
ly

si
gn

at
u
re

M
an

y
va

ri
an

ts
L

ow
se

cu
ri

ty
N

ot
fu

ll
y

R
el

ie
s

on
se

cu
re

p
ro

ve
n

in
se

cu
re

co
n
fi
d
en

ce
d
u
e

to
u
n
d
er

st
o
o
d

h
as

h
fu

n
ct

io
n

S
ec

u
re

va
ri

an
ts

m
an

y
sy

st
em

s
b
ro

ke
n

L
ar

ge
si

gn
at

u
re

s
h
av

e
ex

te
n
si

ve
m

em
or

y
re

q
u
ir

em
en

ts

T
ab

le
2.

1:
C

om
p
ar

is
on

am
on

g
d
iff

er
en

t
te

ch
n
iq

u
es

fo
r

p
os

t-
q
u
an

tu
m

cr
y
p
to

gr
ap

h
y

Chapter 3

Lattice Theory

3.1 Overview

In the following chapters, we will use a standard notation. Small scalar integers and

rationals will be represented in the lowercase roman alphabet (such as k and n). Large

scalar integers and rationals will be represented in the uppercase roman alphabet (such

as M and P). Scalar real numbers will be represented in the lowercase greek alphabet

(such as γ and φ). Vectors will be represented by boldface lowercase roman letters

(such as v and w. Matrices will be represented as boldface uppercase roman letters

(such as B and H).

A lattice is defined informally as the set of all integral linear combinations of a set

of basis vectors in an n-dimensional vector space. It follows that from a geometrical

perspective, this produces a set of regular, repeating points of a set pattern. Similarly,

it also follows that such a lattice can be defined by an infinite number of bases. Multiple

bases defining the same lattice are said to exhibit lattice equality. A formal definition

can be seen in Def. 4.

Definition 4 (Lattice). A lattice L is a discrete sub-group of Rn, or equivalently the

set of all the integral combinations of d ≤ n linearly independent vectors over R.

26

3.2. Lattice properties 27

LB = Zb1 + · · ·+ Zbn, bi ∈ Rn.

B = (b1, ...,bn) is called a basis of LB and d, the dimension of LB. We will refer LB

as a lattice of basis B.

3.2 Lattice properties

3.2.1 Rank

The rank of a lattice is defined as the number of linearly independent vectors in any

basis for that lattice. A lattice that is full-rank is defined as a lattice where the

number of linearly independent vectors in any basis for this lattice is exactly equal to

the number of dimensions in which the lattice is embedded. In such an instance, it is

clear that any basis for such a lattice can be described by a set of n vectors, each of n

dimensions. We can thus describe the basis as a square integer matrix, in row-vector

form. In this thesis, unless otherwise specified, we will only be operating with full-rank

lattices, with bases described by square matrices in row-vector form.

3.2.2 Determinant

In this dissertation, we refer to lattice determinants (as opposed to matrix determi-

nants) to measure properties about the lattice. Specifically, we define det(LB) as being

the n-dimensional volume of the fundamental parallelpiped defined by the lattice ba-

sis B. Since we will only be operating with full-rank lattices in this thesis, we can

simplify the definition of this lattice determinant as being the absolute value of the

determinant of some basis of the lattice. ie.

det(LB) = |det(B)|, B ∈ Zn,n

3.2. Lattice properties 28

.

Any multiplication of a lattice basis with a unimodular matrix will produce a new

basis that generates the same lattice. In fact, lattice equality is only achieved if there

exists such a unimodular transform between bases. [2] Due to the determinant of a

unimodular matrix being ±1, it is clear that the choice of basis will not affect the

lattice determinant. As such, the choice of basis for a particular lattice has no effect

on the volume of the fundamental parallelotope and we refer to the lattice determinant

as an invariant of the lattice.

3.2.3 Norms

Many problems in lattice theory involve distance minimization. While the most intu-

itive way to measure distance in a multi-dimensional space is by using the Euclidean

Norm, other norms exist. Unless otherwise specified, in this thesis we will operate

exclusively with the Euclidean norm.

Euclidean Norm

The Euclidean norm is the most intuitive norm to use in 2-dimensional and 3-dimensional

spaces. This norm comes from Pythagoras’ theorem, stating that the distance between

two points is the square root of the sum of the axial distances squared. This can be

extended to an arbitrary, finite-dimensioned vector space by squaring each of the axial

dimensions and taking the square root of the sum.

Definition 5 (Euclidean norm). Let w be a vector of Rn. The Euclidean norm is the

function ‖.‖2 defined by

‖w‖2 =

√√√√ n∑
i=1

|wi|2

3.2. Lattice properties 29

Taxi-cab Norm

The Taxi-cab norm or the Manhattan norm is named due to the rectangular grid of

city streets (eg. Manhattan) that a taxi or indeed any wheeled road vehicle must

legally follow to travel between two points. This norm is defined as the sum of the

axial distances.

Definition 6 (Taxi-cab norm). Let w be a vector of Rn. The L1 norm is the function

‖.‖1 defined by

‖w‖1 =
n∑
i=1

|wi|

p-Norm

Both of these norms can be generalized into a parametrized version. This is referred

to as the p-norm.

Definition 7 (p-norm). Let w be a vector of Rn. The p-norm is the function ‖.‖p

defined by

‖w‖p = p

√√√√ n∑
i=1

|wi|p

Infinite Norm

The p-norm can be taken at the limit case as p approaches infinity, giving us the

max -norm or the infinite-norm.

Definition 8 (infinite-norm). Let w be a vector of Rn. The max norm is the function

‖.‖∞ defined by

‖w‖∞ = max(|w1|, |w2|, ..., |wn|)

3.2. Lattice properties 30

3.2.4 Minima

The minimum λi of a lattice L is defined as the radius of the smallest hypersphere, cen-

tred at the origin, containing i linearly independent lattice vectors. Unless otherwise

stated, the radius will be measured using the Euclidean norm.

3.2.5 Unimodular Matrices

If a basis B can be transformed by a multiplication with a transformation matrix U

such that the new basis B′ yields the same lattice as the original basis B (ie. B′ = U×

B LB ≡ LB′), we refer to this transformation U as a unimodular transformation. [2]

A unimodular transformation matrix is defined as an integer matrix, whose inverse

is also integral. This implies the following properties:

1. U must be integral.

2. U must be square.

3. det(U) must be exactly ±1.

As such, any basis of a lattice can be transformed to any other basis for the same

lattice through a multiplication with a single unimodular transformation matrix.

3.2.6 Hermite Normal Form

If a matrix H is of Hermite Normal Form, then the matrix H must adhere to the

following criteria:

• H contains no negative coefficients.

• H is triangular.

• H diagonals are strictly greater than all other elements in the column.

3.2. Lattice properties 31

A more formal definition is described in Def. 9.

Definition 9 (HNF). Let L be an integer lattice of dimension d and H ∈ Zd,n a basis

of L. H is a Hermite Normal Form basis of L if and only if:

∀1 ≤ i, j ≤ d Hi,j


= 0 if i > j

≥ 0 if i ≤ j

< Hj,j if i < j

For any matrix B, there exists some unimodular matrix U such that H = U×B

where H is of Hermite Normal Form [51]. As such, there exists a function f(B) that

decomposes some matrix B into a Hermite Normal Form,

H = f(B), LH ≡ LB

.

Furthermore, the HNF of a lattice basis is unique for the lattice [51]; any basis

representing the same lattice will have the same HNF decomposition. Indeed, unlike

the lattice determinant, the HNF of any lattice basis completely describes that lattice.

Polynomial time algorithms exist for the decomposition of a matrix into HNF [51].

3.2.7 Reducing a vector modulo a lattice

In many lattice problems, we consider the relation between a vector v ∈ Zn and some

lattice LB. Computationally, since we represent the lattice LB as the basis matrix

B, we are actually only interested with the relationship between the vector v and the

basis B translated to the vicinity of v. Since the lattice’s domain is infinite, we can

simplify this relation by translating the vector v to the vicinity of the origin, while

3.3. Lattice Problems 32

keeping the same relative position within the lattice. We call this translation of the

vector v a lattice modulo reduction. See Algo. 10.

3.2.8 Orthogonality defect

Many problems in lattice theory have computational solutions proportional to the

orthogonality of the basis used to define the lattice. To compare the orthogonality of

lattice bases, a metric is required. The orthogonality defect of a basis B is defined as

the product of the vector norms ‖bi‖ in the basis B, divided by the determinant of

the lattice LB defined by B.

δ(B) =
n∏
i=1

‖bi‖
det(LB)

The orthogonality defect is equal to 1 if and only if the basis B is completely

orthogonal. As orthogonality decreases, the orthogonality defect increases.

It is common to normalize this by taking the n’th root (where n is the rank of

the basis B), such that if the vectors are multiplied by some constant factor, the

orthogonality defect is scaled by the same factor. [53]

3.3 Lattice Problems

Definition 10 (Shortest Basis Problem (SBP)). Given a basis B of a lattice L, create

another basis B′, such that LB = LB′, where the vectors of B′ are as short as possible

for some norm.

Definition 11 (Approximate Shortest Vector Problem (γ-SVP)). Given a lattice L,

the Approximate Shortest Vector Problem is to find a non-zero vector v ∈ L,∀u ∈

L, ‖v‖ ≤ γ‖u‖.

3.4. Algorithmic Solutions for Lattice Problems 33

Definition 12 (Shortest Independent Vector Problem (SIVP)). Given a basis of a

lattice L and a parameter q ∈ Z, find the shortest q linearly independent lattice vectors

(ie. the set of lattice vectors b1, ...,bq contained within the minima λq).

Definition 13 (Approximate Closest Vector Problem (γ-CVP)). Let w be a vector in

a lattice L. The Closest Vector Problem is to find a vector u ∈ L,∀v ∈ L, ‖w− u‖ ≤

γ‖v − u‖.

Definition 14 (Bounded Distance Decoding (BDD)). Given a basis of a lattice L;

and a vector v such that the distance between v and some u ∈ L is bounded by some

parameter; find u. This is a special case of CVP where the vector given is already

close to a lattice point.

3.4 Algorithmic Solutions for Lattice Problems

3.4.1 Gram-Schmidt Orthogonalization

In order to achieve an orthogonal basis, an iterative process can be taken whereby

each vector is projected onto a hyperplane perpendicular to the previous vectors. The

Gram-Schmidt Orthogonalization algorithm is an iterative approach to orthogonalizing

the vectors of a basis. The first vector b1 of a given basis B is taken as a reference

and the second vector b2 is projected on to an (n-1)-hyperplane perpendicular to b1.

The third vector b3 is projected onto a (n-2)-hyperplane perpendicular to the plane

described by b1 and b2. This process continues in an iterative fashion until all degrees

of freedom are exhausted. The new orthogonal vectors are denoted b∗i and the basis

as B∗.

b∗i = bi −
i−1∑
j=1

µi,jb
∗
j

3.4. Algorithmic Solutions for Lattice Problems 34

where

µi,j =
〈bi,b∗j〉
〈b∗j ,b∗j〉

It is important to note however that LB∗ is not lattice equivalent to LB as there

need not be any basis of the lattice consisting of orthogonal vectors. B∗ is simply the

orthogonal projection of B.

This concept of orthogonalization can be generalized by introducing a function for

projecting any vector into orthogonality with the set of basis vectors b1, ..., bi−1:

πi(x) =
n∑
j=i

〈x,b∗j〉
〈b∗j ,b∗j〉

b∗j

As a result, b∗i can be expressed as b∗i = πi(bi).

3.4.2 LLL

The polynomial-time algorithm proposed by Lenstra, Lenstra and Lovaśz[43] (LLL)

for increasing the orthogonality of a lattice basis efficiently solves the γ-SVP problem

(see Def. 11) for γ exponential in n, by taking any lattice basis as input and computing

a short, nearly-orthogonal, lattice-equivalent basis as output, within some bound δ.

We define an LLL-reduced basis as one in which the following two conditions hold:

∀i, j ≤ n |µi,j| ≤ 1/2

∀k < n, δ‖b∗k‖2 ≤ ‖b∗k+1‖2 + |µk+1,k|2 × ‖b∗k‖2

To achieve this while maintaining lattice equality, we are only able to use integral row

operations (ie. adding and subtracting vectors in the geometric sense).

Through modification of the Gram-Schmidt Orthogonalization algorithm we can

achieve this [53].See Algo. 11.

3.4. Algorithmic Solutions for Lattice Problems 35

3.4.3 BKZ

The Block Korkine-Zolotarev lattice reduction algorithm [70] can be seen to be a

generalization of the LLL algorithm. In particular, the BKZ algorithm effectively

performs SVP (using a Korkine-Zolotarev reduction) on blocks (sublattices) of vectors

of the original basis and then compares these blocks in a similar way to LLL. If the

block-size is 2, BKZ is equivalent to LLL. While larger block-sizes produce bases

with a lower orthogonality defect, the running time increases exponentially, limiting

practicality. Many improvements can be made to the running time, such as the use of

a probabilistic SVP approximation algorithm discovered by Ajtai et al. [8]

3.4.4 Babai’s Round-Off

A simple and computationally-fast approximation to the CVP/BDD problem is to

express the target vector as a linear, real combination of the basis vectors and round

this combination off to integer factors. In effect, this approach finds, for each basis

vector, which product of the vector is closer to the target vector. By then adding these

products together, the approximate closest vector is found. A geometrical, conceptu-

ally simpler explanation is that the target vector is first translated to place it inside

the fundamental parallelotope, the closest vertex of the fundamental parallelotope is

found and this vertex is translated back to it’s original position and returned. See

Algo. 12.

It is clear however that this approach becomes less effective as the orthogonality

of the basis decreases. Since the choice for approximation is limited only to the ver-

tices of the fundamental parallelotope, as the fundamental parallelotope becomes less

orthogonal, the target vector may be approximated to a vector that is further away

than if we had considered lattice vectors outside the fundamental parallelotope. In fig.

3.1, a basis B of a 2-dimensional lattice LB and an input vector v is given. Babai’s

3.4. Algorithmic Solutions for Lattice Problems 36

Round-Off is performed on the input vector and the output w is incorrectly computed

as the closest vertex of the parallelotope that the vector v is inside of. The real closest

vector is actually c, which is not a vertex of the parallelotope containing v.

Figure 3.1: Babai’s Round-Off algorithm on a low orthogonality lattice basis

With an LLL-reduced basis, the round-off approach finds a close vector with γ-

approximation (see [53])

γ ≤ 1 + 2d(9/2)d/2

3.4.5 Babai’s Nearest-Plane

A better approximation to Babai’s Round-Off approach is to consider the hyperplanes

of the lattice when assessing the proximity of the target vector. To start, the closest

hyperplane of {b1, ...,bn−1} to the target vector is found, constrained to steps of ‖b∗n‖.

The target vector is then projected on to this hyperplane. These steps are recursively

continued for each smaller dimensioned hyperplane until the degrees of freedom drops

3.5. Lattice Families 37

to one, at which point an approximate closest vector is found. See Algo. 13.

With an LLL-reduced basis, the nearest-plane approach finds a close vector with

γ-approximation (see [53])

γ ≤ 2d/2

3.5 Lattice Families

3.5.1 q-ary Lattices

A special case of lattices in lattice cryptography is that of q-ary lattices. A q-ary

lattice L is defined as that in which any vector which consists of multiples of some

scalar q is in the lattice L. ie.

qZn ⊆ L ⊆ Zn, q ∈ Z.

While any lattice can be represented as a q-ary lattice (for instance if q is a multiple

of det(L)), primarily q-ary lattice cryptography is concerned with the cases where q

is a small, possibly prime value [54]. q-ary lattices have a one-to-one correspondence

with linear codes in Znq [54].

q-ary lattices have seen extensive use recently in producing provably secure lattice-

based cryptosystems on q-ary variants of traditional lattice problems. Due to the use

of the above special property, lattices which are randomly chosen from a set are able

to be used which allows the average-case/worst-case connection as described by Ajtai

[5].

3.5. Lattice Families 38

3.5.2 Cyclic lattices

Cyclic lattices are a subset of general lattices, where each vector in the lattice basis

consists of the coefficients of the previous vector shifted by one position.

By using this construction in the creation of random lattices, enormous gains in

efficiency are seen for two reasons. Firstly, storage space decreases linearly as only a

vector need be stored as opposed to the entire random matrix, since each row can be

derived from a permutation of the first. Secondly, the computation of matrix-vector

multiplications can be sped up by using the Fast Fourier Transform if the dimension is

a power of two. It is important to note that while the hardness of lattice assumptions

in cyclic lattices has not yet been proven, there is no known algorithm for which

solving a lattice problem on cyclic lattices is easier than general lattices [54]. The

average-case/worst-case connection described by Ajtai [5] also applies to q-ary cyclic

lattices.

3.5.3 Ideal lattices

Ideal lattices can be seen to be a superset of cyclic lattices, where instead of a simple

shift of co-ordinates distinguishing each lattice vector, a more complex permutation is

described. This permutation is described using a vector, which also needs to be stored

along with the first vector.

Despite the more complex permutation, the computation and storage efficiency of

cyclic lattices is retained to a degree. These lattices are referred to ideal lattices as

they can be characterized as the ideals of a ring of modular polynomials. As with

cyclic lattices, there is no known algorithm for which solving a lattice problem on

ideal lattices is easier than general lattices [54].

3.6. Cryptosystem Construction using CVP/BDD 39

3.6 Cryptosystem Construction using CVP/BDD

In order to produce any asymmetric-key cryptosystem, a hard problem is needed for

which an efficient one-way trapdoor can be constructed. If this cryptosystem is to be

considered a post-quantum cryptosystem candidate, then the hard problem must be

considered hard in the quantum computational sense. In this section, a number of

cryptosystems will be discussed, utilizing CVP/BDD as the hard problem and lattice

equality as the one way trapdoor.

3.6.1 GGH

In 1996, Goldreich, Goldwasser and Halevi [30] proposed an efficient way to build

a cryptosystem that uses lattice theory, inspired by McEliece cryptosystem [49] and

based on Bounded Distance Decoding (see Def. 14). Their practical proposition of a

cryptosystem was attacked and broken by Nguyen in 1999 [56]. However, the general

idea is still viable, as can be seen by the many variants of the basic GGH cryptosystem

that have been proposed since (see [26, 52, 61]).

The three general cryptographic algorithms for the GGH class of cryptosystems are

as follows:

• Setup: Compute a “good basis” A and a “bad basis” B of a lattice L. ie.

L(A) = L(B).

Provide B as public and keep A secret.

• Encrypt: To encrypt a plaintext message vector p: Use the bad basis to create

a random vector r of L. Publish the encrypted message which is the addition of

the vector message with the random vector: c = p + r.

3.6. Cryptosystem Construction using CVP/BDD 40

• Decrypt: Use the good basis to find the closest vector in the lattice of the

encrypted ciphertext message c. The closest vector of the encrypted message c

is the random vector r1. Subtract the random vector of the encrypted message

obtain the vector message p = c− r.

The security of the GGH class of cryptosystems relies on the following three assump-

tions.

i) It is easy to compute a “bad basis” from a “good basis”, but it is difficult to

compute a “good basis” from a “bad basis”.

ii) It is easy to create a random vector of a lattice even with a “bad basis”.

iii) It is easy to find the closest vector with a “good basis” but difficult to do so with

a “bad basis”.

Goldreich et al. suggested the use of Babai’s Round-Off [11] method to address as-

sumption (iii).

After Nguyen’s first attack, the utilization of the initial GGH proposition requires

lattices with higher dimension (> 500), to ensure security. As a result, the computation

of the closest vector, even with a “good basis”, becomes very expensive. Another

significant drawback to this class of cryptosystems is the enormous key sizes in practical

implementations, particularly in such higher dimensions. See Algo. 14 for GGH Key

Generation, Algo. 15 for GGH encryption and Algo. 16 for GGH decryption.

3.6.2 The Micciancio Cryptosystem

In 2001, Micciancio [52] proposed some major improvements of the speed and the

security of GGH. In this scheme, the public key is of a Hermite Normal Form (HNF)

(see Def. 9). Such a HNF basis is not only compact in storage requirements, it also

1under the supposition that the norm of p is sufficiently small

3.6. Cryptosystem Construction using CVP/BDD 41

seems to be more difficult to transform to a “good basis” compared to other bases

[52]. Furthermore, the HNF of a lattice (and hence the public key of the Micciancio

cryptosystem) is unique [18] and can be computed from any lattice basis in polynomial

time [38].

The use of such HNF public keys gives space complexity advantages as the resulting

public key is much smaller than those proposed by GGH. Rather than Babai’s Round-

Off method [11] as suggested by Goldreich et al., Micciancio suggested the use of

Babai’s Nearest-Plane method [11] to address the CVP. However, implementations of

this algorithm are extremely slow, again limiting practicality. It is possible however

to adapt this cryptosystem to use Babai’s Round-Off method and in doing so, much

faster decryption speeds are seen, providing that the matrix inverse is precomputed.

Unfortunately, the storage requirement for this matrix inverse is extremely large and

practicality is again limited. See Algo. 17 for Micciancio Key Generation, Algo. 18

for Micciancio encryption and Algo. 19 for Micciancio Decryption.

3.6.3 Other CVP-based cryptosystems

In 2000, Fischlin and Seifert [26] proposed an original lattice construction with a good

basis, with which CVP is easy to solve. In this cryptosystem, the tensor product of

the lattice is used to obtain a divide and conquer way to solve CVP.

In 2003, Paeng, Jung and Ha [61] proposed to use a lattice built on polynomial

rings. However, in 2007, Han, Kim, and Yeom [35] used a lattice reduction to crypt-

analyse this scheme. Their attack recovered the secret key, even in huge dimensions

(> 1000) and hence make the PJH scheme unusable.

However, a non broken cryptosystem using polynomial representation exists: NTRU,

for N th degree truncated polynomial ring units. NTRU was proposed in 1998 by Hoff-

stein, Pipher and Silverman [36]. This cryptosystem was not modeled initially as a

3.6. Cryptosystem Construction using CVP/BDD 42

GGH type cryptosystem, however, it can been represented as one, which has been

useful in analysing the security of the cryptosystem [19].

Chapter 4

Optimisation

Part of this work has been published in QuantumComm 2009 [63] and in ISPEC

2011 [69].

We approached the task of optimising the existing GGH-style cryptosystems in

the literature as a modular one. We have identified four aspects of the GGH class of

cryptosystems that can be optimised independently to each other. These aspects are:

• Optimisation of Implementation

• Optimisation of Babai’s Round-Off in decryption

• Optimisation of the public basis size and encryption speed

• Optimisation of the private key-space

In each of the specialized instances, we will compare our technique with related

GGH-style cryptosystems. We will then create a GGH-style cryptosystem created

using all techniques and compare it with two related GGH-style cryptosystems.

Since we are primarily concerned with the implementation aspects of the cryptosys-

tems discussed, all of the coding used for the comparisons was performed in C++ using

Victor Shoup’s NTL [73] (version 5.5.2) compiled against GNU MultiPrecision Library

43

4.1. Optimising Implementation 44

(GMP) [1] (version 4.3.1). We feel that these libraries are the most appropriate choice

for implementation as they are created with runtime speed a major factor in the design

while maintaining numerical stability and correctness. With this in mind, the authors

feel that this choice of implementation forms a good basis for analysis and comparison.

These values were obtained on a 2.1Ghz Intel Core 2 Duo platform with 4Gb RAM.

Due to limitations with NTL, only one CPU core was used for testing.

4.1 Optimising Implementation

The theoretical propositions of the CVP-based cryptosystems mentioned in the pre-

vious chapter can be well-defined purely in the information theoretic sense, without

regard to implementation considerations, in terms of the four required variables; pub-

lic basis, private basis, plaintext, ciphertext; and the three base operations common

to all public-key cryptosystems; key generation, encryption, decryption. A practical

implementation based on the information theoretic specification will yield a function-

ally complete cryptosystem, however the computation time required, particularly in

the encrytion and decryption phases, renders such implementations impractical.

4.1.1 Pre-computation

Performance benefits can be seen from moving the computation of some variables from

the encryption/decryption phases to the key generation phase. Such variables must

be dependent only on the keys and as such can be computed once and stored, to be

recalled, rather than computed, when needed.

In the GGH cryptosystem, a precomputation time-space trade-off is specified; The

basis inverse is effectively stored in such a way that not only eliminates the need for in-

verse computation at decryption time, but also removes a vector-matrix multiplication

that would otherwise be required. While Micciancio does not specify precomputation

4.1. Optimising Implementation 45

of the private basis inverse due to the use of the Nearest-Plane method, by modifi-

cation of the Micciancio cryptosystem to use the Round-Off method, we see similar

performance gains by precomputing the inverse.

Since the round-off step requires the multiplication of a integer vector with a ra-

tional matrix (all coefficients having a denominator the determinant), then rounded

off, we can simplify this by adding half the determinant to each coefficient, dividing

by the determinant and taking the floor of the result. Since the determinant (and

indeed half the determinant) can be precomputed, depending upon low-level imple-

mentation specifics, this method can be implemented with no decisional branching in

the rounding off stage. The benefits of removing decisional branching in the decryption

phase is two-fold. Firstly, we see higher performance on pipelined CPU architectures,

increasing decryption throughput. Secondly, we can eliminate a source of possible

side-channel attacks in the form of branch-prediction analysis. [3]

4.1.2 Chinese Remainder Theorem

Speed increases were noted for some computations specifically involving division of

large integers by representing each integer as a sufficient number of residues modulo

some prime number. By specifically limiting the primes involved to be strictly smaller

than the maximum sized integer representable in a machine word, we are able to per-

form finite field divison (using the multiplicative inverse) using only integer arithmetic.

We can then reconstruct the resulting quotient using the Chinese Remainder Theorem

(see Theorem 1). If many separate operations are to be performed, we can signifi-

cantly speed up the computation by only performing the CRT reconstruction after all

operations have been performed. In addition, any such operations operating within

the modulo environment are easily adapted to multi-threaded processing platforms.

Theorem 1 (Chinese Remainder Theorem). Let mi ∈ N be n coprime integers, M =

4.2. Optimising Babai’s Round-Off 46

∏n
i=1mi and Mi =

M

mi

. Then, for any n-tuple ai there exists an unique integer 0 ≤

A < M such that ai = A mod mi,

A =
n∑
i=1

ai((Mi)
−1 mod mi)Mi mod M.

For a proof of Th. 1 we refer readers to [41].

4.2 Optimising Babai’s Round-Off

One method proposed by Babai for solving CVP (and by extension, BDD) within

some specified bound is the Round-Off algorithm. While the bound on the resultant

solution is not as tight as that of the Nearest-Plane method also specified in Babai’s

paper, the computational complexity of the Round-Off method is lower, resulting in

far greater computation speeds on tested processors. See Figure 4.1 for a comparison

of the methods.1

A significant speed increase of the Round-Off method can be realised by calculating

and storing the private basis matrix inverse as a matrix embedded in a residue number

system (RNS). In this way, we are able to perform finite-field multiplication inside

the rounding step and reconstruct the original value through the use of the Chinese

Remainder Theorem discussed above (See Algo. 1). This is only possible however if

an upper bound of the possible values is known.

4.2.1 Improving GGH using the Chinese Remainder Theorem

Due to the use of Babai’s Round-Off, the GGH cryptosystem can be optimised using

the Chinese Remainder Theorem (CRT) by placing an integer representation of the

1This graph shows that practically there is large constant factor between the methods on average.
We note that this constant factor does not represent the worst-case ratio. Due to this, we will use
the round-off method in our cryptosystem.

4.2. Optimising Babai’s Round-Off 47

1 ms

10 ms

100 ms

1 s

10 s

1 m

10 m

 100 200 300 400 500 600 700 800

T
im

e

Dimension

Round-Off
Nearest-Plane

Figure 4.1: Speeds of Round-Off and Nearest-Plane CVP computation

private basis inverse R−1 ∈ Qn,n into small finite fields through multiplication with the

determinant, then performing the multiplication inside Babai’s Round-Off step over

these fields. To do this, we first express R−1 as integral by multiplication with det(R)

so that we obtain R′ = R× det(R), R′ ∈ Zn,n. We then calculate the bound of the

size of the coefficients. If the coefficients involved include negative coefficients, this

bound must be doubled in order to ensure these values are represented uniquely. In

random private bases (such as those used by Micciancio), empirical evidence suggests

that the number of finite-fields needed is too large to show significant performance

gains, if any, over conventional big-integer arithmetic. Conversely, due to the smaller

coefficients of the GGH private basis inverse, given c the ciphertext, we define Q as

the lower bound of the coefficients in Babai’s Round-Off:

Q = 2× ‖c‖∞ × ‖R−1‖∞ × det(R)

4.2. Optimising Babai’s Round-Off 48

By acknowledging that since GGH specifies the ciphertext as c = pB + e,

‖c‖∞ ≤ ‖p‖∞ × ‖B‖∞ + ‖e‖∞

Thus,

Q = 2× (‖p‖∞ × ‖B‖∞ + ‖e‖∞)× ‖R−1‖∞ × det(R)

Once this bound Q is known, many small finite fields of prime order mi < 2b

are constructed, where b is the target platforms word size, until the product of these

moduli is above the coefficient bound. The decryption round-off calculations are per-

formed independently in these fields and once these have completed, a simple CRT

reconstruction is performed to calculate the final value. While the private basis inver-

sion is computationally expensive, we note that if decryption is to be practical, this

inversion is assumed to be computed in the key generation phase anyway. As such,

the extra computational requirements of the RNS setup is orders of magnitude less

significant than the inversion.

4.2.1.1 Construction

Firstly, we define the following scalar function which will be used in the CRT recon-

struction.

Q(mi) =
M

mi

, M =
k∏
i=1

mi

Secondly, to avoid rational arithmetic, R−1 ∈ Qn,n is multiplied by det(R) to

obtain R′ ∈ Zn,n (R−1 =
R′

det(R)
). To further save computation at decryption time,

we multiply this result with Q(mi) in the key-generation phase. We therefore define

4.2. Optimising Babai’s Round-Off 49

the function R′(mi) to represent the following:

R′(mi) = R−1 × det(R)×Q(mi)
−1 mod mi

These functions are precomputed for the set of moduli {m1,m2, ...,mk} in the

keygeneration phase and stored. Encryption operates as per the original GGH spec-

ification however we substitute our CRT Round-Off method discussed above in the

decryption stage.

Algorithm 1: CVP Round-Off using the Chinese Remainder Theorem

Input : v ∈ Zn the input vector, R ∈ Zn,n the private basis,
m = {m1,m2, ...,mq} ∈ Z a set of coprime integers, M =

∏q
i=1mi ∈ Z

the product of these primes, Mi = M
mi

)−1 mod mi ∀i ≤ q
Output: w ∈ LR a close vector of v in the lattice LR

begin
x← {0}n
for i← 1 to q do

x← x + M
mi
× (v × (R−1 × det(R))×Mi mod M

end
w← bx/det(R)e ×R
return w

end

4.2.2 Evaluation of the use of CRT in Babai’s Round-Off

We noted large increases in decryption speeds over the general GGH cryptosystem

due to the faster multiplication of cR′ inside the RNS (see Fig. 4.2). The number of

residues used was strongly correlated with decryption speed and as such we found it

necessary to ensure a tight upper bound to prevent using a higher number of residues

than required. Small variations were noted, however, and a large number of bases was

tested and averaged to obtain these results. As we need to store each matrix in the

Residue Number System for R′, we note that the private key size increases slightly

(see Fig. 4.3).

4.3. Optimising the Public Basis 50

We also note that since each finite field is independent, it is possible to decrypt a

plaintext via CRT serially with respect to the key, i.e., only loading each matrix over

some finite field into memory as we require it. This has great benefits for memory

utilization especially for embedded systems as we are only required to store a matrix

of standard fixed-precision integers in primary memory at any given time rather than a

matrix of much larger variable-precision integers. Obviously in such a case, decryption

speeds would be I/O bound in the case of loading each matrix in from a hard drive or

flash-based storage.

1 ms

10 ms

100 ms

1 s

10 s

 100 200 300 400 500 600 700 800

T
im

e

Dimension

GGH
GGH (with CRT)

Figure 4.2: Decryption speeds

4.3 Optimising the Public Basis

An analysis of the Micciancio cryptosystem reveals that due to the ciphertext being

the modulo reduction of the plaintext by the public basis (see Algo. 10), which itself

is of Hermite Normal Form, if this public basis is of a form whereby only one column

4.3. Optimising the Public Basis 51

100 kb

1 Mb

10 Mb

100 Mb

1 Gb

 100 200 300 400 500 600 700 800

Si
ze

Dimension

GGH
GGH (with CRT)

Figure 4.3: Private key sizes

Dimension: 500 800

Std. CRT Std. CRT

Encryption Speed (ms) 39.06 38.53 127.8 125.5
Decryption Speed (ms) 1608 302.8 8153 1340
Private Key size (Mbyte) 86.36 141.5 374.2 606.4
Public Key size (Mbyte) 37.80 36.51 149.6 152.6

Table 4.1: Comparison of methods for GGH

is populated, the ciphertext is reduced to a form whereby only one coefficient is non-

zero. This allows the ciphertext to be represented as a scalar rather than a vector

with no loss of information. While this has benefits in and of itself, such as simplified

ciphertext transmission and a reduction in the number of iterations in the encryption

and decryption phases, if we modify the decryption method from Babai’s Nearest-Plane

to Babai’s Round-Off, the primary benefits come from the associated storage reduction

of the private key. This technique has also been used in Smart and Vercauteren’s

improvement [75] of Gentry’s fully-homomorphic encryption scheme [27] and in the

4.3. Optimising the Public Basis 52

signature scheme developed by Plantard et. al [64].

While it is not strictly required to store the inverse of the private key to perform

Babai’s Round-Off, doing so dramatically reduces the computation costs of the decryp-

tion phase and it is assumed that this inversion occurs in the key generation phase.

However, it can be seen that the coefficients of the inverse will be significantly larger

than those of the private basis itself, due to the fact that they are not only rational,

but also not bound by some arbitrary small number used in the construction. As

such, a significant drawback of existing lattice based cryptosystems utilizing such a

precomputation step is extremely large storage costs associated with the private key.

Using Babai’s Round-Off algorithm [11] rather than the Nearest-Plane method

proposed by Micciancio, the first step of ciphertext decryption is to multiply the

ciphertext by the inverse of the private basis before rounding off. Since the ciphertext

vector is only populated in one position, we are only required to store the corresponding

row in the private basis inverse, again without any loss of information. This gives a

storage requirement decrease linear in the dimension. In addition, since the time of

vector-matrix multiplications is approximately linear in size, we also see a dramatic

reduction in decryption times.

We also see faster encryption times as we are able to optimise the vector modulo

reduction. Since the ciphertext is now in scalar form and the public basis is in column

vector form, we can reduce this step to have an iterative complexity O(n). See Algo.

2.

4.3.1 Näıve testing

A simple way to find such “optimal” Hermite Normal Form bases is to start with a

good basis, reduce to Hermite Normal Form and check for optimality.

We define the following:

4.3. Optimising the Public Basis 53

Algorithm 2: Modulo Reduction of a vector by a lattice with Optimal Hermite
Normal Form

Input : v ∈ Zn the vector to be reduced, h ∈ Zn the first column vector of a
lattice basis in Optimal Hermite Normal Form

Output: b ∈ Z the modulo reduced scalar
begin

b← v1

for i← 2 to n do
b← b− (vi × hi)

end
b← b mod h1

return b
end

• Pr[optimal] – the probability of the Hermite Normal Form of a random good

basis being of the aforementioned optimal form

• Tcreate – the time to create a good basis

• THNF – the time to perform a HNF reduction on a basis and check it is optimal

As such, it can be seen that the mean time taken to generate an optimal hermite

normal form via näıve testing is:

Tnäive =
Tcreate + THNF
Pr[optimal]

4.3.2 Coprimality testing

It can be seen that a full-rank basis with a prime lattice determinant and no vectors

identical to an identity matrix vector , will produce an optimal HNF, as since the HNF

matrix is triangular, the determinant is the product of the diagonal. Furthermore,

empirical testing reveals that suboptimal matrices predominantly have low valued

diagonals in the non-optimal column, which would not exist had the determinant been

coprime with these smaller values. With this in mind, we propose an improved method

over the näıve method discussed above. An orthogonal private basis is first created

4.3. Optimising the Public Basis 54

and the determinant calculated. If the determinant is coprime with some set P of n

smallest primes, we can get a much higher probability that the resultant HNF of this

matrix is optimal. We specifically define in our implementation that n = 9, as the

product of the 9 smallest primes is the largest such product that is strictly less than

232 and hence can be represented as an integer on common 32-bit consumer platforms.

We define the following:

• P = {2, 3, 5, 7, 11, 13, 17, 19, 23}.

• Pr[coprime] – probability of the determinant of a random good basis being

coprime with all elements of the set P .

• Tcheck – the time to calculate the determinant and check coprimality with the

set P .

It can be seen that the time to find an optimal basis using this method is the time

to create and check coprimality, multiplied by the average number of times this will

need to be done in order to achieve determinant coprimality with the set P . The time

to calculate the HNF of this basis and check optimality is then added on and the result

is multiplied by the average number of times this will need to be done to get optimal,

given the co-primality of the determinant:

Tcoprimality =

(
Tcreate + Tcheck
Pr[coprime]

)
+ THNF

Pr[optimal|coprime]
.

Furthermore, it naturally follows that if we take the limit case for the set P , the zero

set (ie. n = 0), then we intuitively must define Tcheck = 0 and Pr[coprime] = 1,

leaving us with Tnäive:

Tcreate + THNF
Pr[optimal]

= Tnäive

4.3. Optimising the Public Basis 55

Empirical testing was performed to ascertain values for Pr[coprime], Pr[optimal]

and Pr[optimal|coprime]. It is interesting to note that there was no statistically

significant deviation in probabilities over the range of dimensions 100 to 1000.

Pr[optimal] 0.4345

Pr[coprime] 0.0724

Pr[optimal|coprime] 0.9991

Table 4.2: Mean probabilities

Using the probabilities in table 4.2, we are able to compute an average time Tcheck

and compare the two aforementioned methods for generating optimal HNF bases.

10 ms

100 ms

1 s

10 s

1 m

10 m

1 h

 100 200 300 400 500 600 700 800

T
im

e

Dimension

Naive
Coprime check

Figure 4.4: Estimated time of optimal HNF basis generation methods

Due to the significant correlation between coprimality and optimality, we found for

all dimensions tested that Tcoprimality was better than twice as fast on average than

Tnäive. This is due to the extreme time needed to compute the Hermite Normal Form

of the basis, which, on average, is optimal with probability less than half.

4.3. Optimising the Public Basis 56

4.3.3 Evaluation of the use of Optimal Hermite Normal Form

Public Bases

For a practical assessment and approximate comparison of keysizes, all keys were

compressed with the bzip2 algorithm to mitigate the effect of any redundancies in the

data, as the data is not uniform. Decompression times were not included in timing

results.

The private key sizes of the standard Micciancio cryptosystem (adapted to use

Round-Off decryption) and the variant using Optimal Hermite Normal Form public

keys were compared (see Fig. 4.6). As these cryptosystems are compared on both a

theoretic and practical basis, we define the private key as also containing redundant,

pre-computed private basis inverse. As can be seen, due to the reduced storage require-

ments of the private basis inverse resulting from the use of Optimal Hermite Normal

Forms, our modified GGH cryptosystem has an extremely small private key in com-

parison to the standard cryptosystem. Similarly, a great improvement in encryption

speeds is seen over the standard cryptosystem (See Fig. 4.5.

Dimension: 500 800

Std. OHNF Std. OHNF

Encryption Speed (ms) 8.977 0.2315 22.49 0.5546
Decryption Speed (ms) 215.3 208.3 851.4 818.9
Private Key size (Mb) 194.0 0.7405 861.7 2.012
Public Key size (Mb) 0.3925 0.3882 1.085 1.077

Table 4.3: Comparison of methods for Micciancio

4.3. Optimising the Public Basis 57

10 µs

100 µs

1 ms

10 ms

100 ms

 100 200 300 400 500 600 700 800

T
im

e

Dimension

Micciancio
Micciancio (OHNF)

Figure 4.5: Encryption Speeds

10 kb

100 kb

1 Mb

10 Mb

100 Mb

1 Gb

 100 200 300 400 500 600 700 800

Si
ze

Dimension

Micciancio
Micciancio (OHNF)

Figure 4.6: Private keysizes

4.4. Optimising the Private Key-Space 58

4.4 Optimising the Private Key-Space

4.4.1 Motivation

Both Goldreich et al. and Micciancio specify methods for creating an appropriate

lattice basis which has an orthogonality defect sufficient enough to support poly-

nomial time CVP solutions. Traditionally, such a basis was required to be small

and nearly-orthogonal, while being sufficiently randomized to prevent basis recovery

through CVP-like attacks. Through implementing such cryptosystems, however, a

new requirement previously overlooked is that such a basis must be computed with

implementation efficiency a priority, in order to be more competitive with traditonal

cryptosystems.

While the LLL-reduced [43] private bases proposed by Micciancio can be seen to ex-

hibit good orthogonality, the LLL-reduction step is computationally expensive. While

work is constantly being done to improve the computational speed of this reduction

(see [57, 71, 55]), we propose a faster method to produce nearly-orthogonal bases,

bypassing the LLL step altogether. The private basis construction proposed by GGH

has exceptionally good orthogonality as well as being easy and quick to construct,

however, the construction restricts the bases to be oriented along the axes. This is

unnecessary as the only requirement for CVP is orthogonality and as such, we feel

that this poses a limitation on the private keyspace which could possibly be exploited

in the future.

Moreover, the particular structure of the GGH basis allows some attacks. For

example, instead of looking for some short vector in LB,B = kI + M, it is easier to

look for some close vector of (k, 0, . . . , 0) in LB. Since the distance is short (‖M1‖2),

this limits the security of the private basis. A practical attack will be to look for the

shortest vector of the lattice

4.4. Optimising the Private Key-Space 59

LB′ =



0 B1,1 B1,2 . . . B1,n

...
...

...
...

0 Bn,1 Bn,2 . . . Bn,n

1 k 0 . . . 0


which will be easier to find than the shortest vector of LB. This is due to

λ1(LB′) < λ1(LB)

To counteract this, we propose a rotation step to be added to the GGH private basis

construction phase, which will rotate the lattice probabilistically through a number of

planes in the Hilbert Space in which the lattice is embedded, greatly increasing the

private key-space and alleviating the aforementioned security issue.

4.4.2 Construction approaches

4.4.2.1 QR-matrices

One method to construct a randomized orthogonal basis non-aligned with the axes

is to use the Q matrix from a QR-decomposition of a matrix A having uniformly

distributed, random coefficients. Since, however, the R matrix is not needed, yet

carries significant information from the original matrix, it is not only wasteful from an

information theoretic sense to generate this extra, unnecessary entropy, it also results

in a higher computational complexity of O(n3) [29]. Instead, a method for generating

a uniformly distributed randomized Q matrix directly is sufficient. Several methods

exist to create such Q matrices directly [29], as discussed below.

4.4. Optimising the Private Key-Space 60

4.4.2.2 Butterfly orthogonal matrices

The butterfly orthogonal matrices used in Fast Fourier Transforms show promise for

two reasons. Firstly, butterfly matrices are computationally inexpensive to generate

in fixed precision as they are a product of n
2

matrices of complexity O(1). Secondly,

the product of a set of butterfly orthogonal matrices is uniformly distributed if the

dimension is a power of 2 [29]. Unfortunately, when the dimension is not a power of 2

however, the product of a set of butterfly orthogonal matrices exhibit significant bias

with some zero coefficients. These biases can be mitigated through the generation of

multiple sets of butterfly orthogonal matrices combined with intermediary permutation

matrices which act to distribute the bias, however, this approach requires n permutated

butterfly orthogonal matrices to distribute the bias uniformly.

4.4.2.3 Givens-rotation transform matrices

We can generalize the creation of Q to be a product of some number of independent

Givens rotations. To address the shortcoming discussed above, a randomized approach

can be taken to the creation of Q and uniformity can be achieved significantly quicker

in practice if the dimension is not a power of 2.

Definition 15 (Givens-rotation transformation matrix). Let i, j ∈ Z, i 6= j represent

two distinct axes of a d-dimensional space. Let θ ∈ R be an angle, −π ≤ θ ≤ π. A

matrix multiplicative transform G(i, j, θ) is defined as the rotation by θ through the

plane defined by the union of the axes i, j, where

4.4. Optimising the Private Key-Space 61

∀p, q ∈ Z, 1 ≤ p, q ≤ d Gp,q



= sin θ if p = j and q = i

= − sin θ if p = i and q = j

= cos θ if p = q = i or j

= 1 if p = q 6= i or j

= 0 otherwise

This definition can be simplifed by describing the rotation transform as an identity

matrix with the following exceptions:

Gi,i = Gj,j = cos θ

Gj,i = −Gi,j = sin θ

An example of such a matrix is as follows:

G(2, 4, θ) =



1 0 0 0 0

0 cos θ 0 − sin θ 0

0 0 1 0 0

0 sin θ 0 cos θ 0

0 0 0 0 1


.

A Givens rotation transform G has two properties that allows the construction

of a uniformly distributed orthogonal basis. Firstly, since the product of a basis A

with a Givens rotation transform G(i, j, θ) is geometrically represented as a rotation

through an axial plane defined by the axes (i, j), it follows that the multiplication of

any basis with a Givens rotation transform will preserve orthogonality. Secondly, since

the identity matrix is trivially orthogonal, the product of an identity matrix with a

Givens rotation transform will also be orthogonal, therefore the Givens rotation matrix

4.4. Optimising the Private Key-Space 62

itself is orthogonal.

By creating a rotation transform T being the product of a number of independent

Givens matrices, choosing each rotation plane and angle randomly, uniformity can be

achieved at little computational cost. To ensure uniformity, enough Givens matrices

are multiplied to ensure that every coefficient of the resultant basis T is strictly greater

than zero.

To perturb this orthogonal basis and ensure it is integral, the basis is multiplied by

some small parameter k and the coefficients are then randomly rounded off to one of the

two nearest integers. This can be expressed as R ∈ Zn,n such that R = kT+M where

M ∈ Rn,n. To simplify, this can be represented as R = bkTc+ M′ with M′ ∈ [0, 1]n,n.

This is a direct, rotated analog of the original GGH specification, alleviating the

security issue described above while still maintaining high orthogonality.

4.4.3 Evaluation of Rotated Nearly-Orthogonal Private Bases

While using a rotated nearly-orthogonal basis as a private basis is clearly not as effi-

cient for a given dimension as the original GGH specification due to the necessity of

the construction of the rotation matrix, the security parameter using rotated nearly-

orthogonal bases is higher due to the larger set of bases it encompasses, even without

considering the diagonally-dominant basis attack discussed above.

While it is clear that the original GGH private basis specification key-space is

O(cn
2
) where c is some constant, with n the dimension, it is a more complex proposition

to describe the keyspace of a rotated nearly-orthogonal basis, due to the rounding

of the real coefficients to integer. As we instantiate the axial-rotation angle θ as a

floating-point variable, a näıve approach to measuring the keyspace would result in

a keyspace increase exponential in the word-length of the implementation. This is,

however, inaccurate as due to the relatively low value of k in the diagonally-dominant

4.5. An optimised GGH-style cryptosystem 63

pre-rotated basis, the effect of the rotational angle means that the set of all real vectors

in the rotated basis may only be rounded to a finite number of integral vectors. The

actual domain of a rotated k-length vector is limited to the number of integer vectors

less than 1 unit distance from the (n-1)-dimension surface of the n-sphere of radius k.

It can be seen that this grows exponentially against the dimension n.

4.5 An optimised GGH-style cryptosystem

4.5.1 Overview

We developed a GGH-style cryptosystem incorporating all of the above optimisations

and we compared this cryptosystem to both the original GGH specification2 and Mic-

ciancio’s improvement. Specifically, this new cryptosystem is defined by having a

rotated nearly-orthogonal private basis and an Optimal Hermite Normal Form pub-

lic basis. Encryption is performed via a lattice modulo reduction as described by

Micciancio. Decryption is performed via our improvement to Babai’s Round-Off by

embedding the large private basis inverse in a Residue Number System.

4.5.1.1 Decryption Error

Due to attacks on lattice cryptosystems with decryption errors (such as Proos’ attack

on NTRU [65], for a more elaborate discussion see [37]), our scheme has been designed

to avoid decryption error through a choice of parameter k and the plaintext domain.

Theorem 2 gives a choice of possible parameters where there is no decryption error.3

Theorem 2. Let k ∈ R+, T ∈ Rn,n a rotation matrix, M ∈ Rn,n with |Mi,j| ≤ 1 and

R = kT+M . Then for any vectors c, p ∈ Rn with ‖p‖2 < k−n
2

and q ∈ Zn if c = p+qR

2under the assumption that the private key inverse is precomputed in the key-generation phase
3In our scheme, we will compute ‖R−1‖∞ and use this to better select the set of parameters

4.5. An optimised GGH-style cryptosystem 64

then q = bcR−1e. 4

Proof of Theorem 2.

Let’s study c− bcR−1eR.

c− bcR−1eR = p+ qR− b(p+ qR)R−1eR

= p+ qR− bpR−1 + qeR

= p− bpR−1eR

Let’s study ‖pR−1‖∞.

‖pR−1‖∞ ≤ ‖pR−1‖2

≤ ‖p‖2‖R−1‖2

≤ ‖p‖2‖(kT +M)−1‖2

≤ ‖p‖2‖(kT)−1(Id+MT−1k−1)−1‖2

≤ ‖p‖2k−1‖T−1‖2‖(Id+MT−1k−1)−1‖2

Let’s study ‖(MT−1k−1)‖2.

‖(MT−1k−1)‖2 ≤ ‖M‖2‖T−1‖2k−1

T−1 is a rotation matrix (unitary matrix) then ‖T−1‖2 = 1 ([32], Chapter 2.5.6) and

‖M‖2 ≤ nmax |Mi,j| ≤ n ([32], Chapter 2.3.2, Equation 2.3.8). As by k−n
2

> 0, we

obtain n−1 > k−1 and

‖(MT−1k−1)‖2 < n× 1× n−1 = 1.

Therefore, as ‖(MT−1k−1)‖2 < 1, we have ‖(Id + MT−1k−1)‖2 ≤ 1
1−‖MT−1k−1‖2 ([32],

Chapter 2.3.4, Lemma 2.3.3). Therefore, we obtain

4Therefore, p can be computed correctly from c and B using Babai’s Round-Off algorithm.

4.5. An optimised GGH-style cryptosystem 65

‖pR−1‖∞ ≤
‖p‖2k−1‖T−1‖2

1− ‖MT−1k−1‖2
≤ ‖p‖2‖T−1‖2
k − ‖M‖2‖T−1‖2

Then, ‖pR−1‖∞ ≤ ‖p‖2
k−n <

1
2
.Therefore bpR−1e = 0.

4.5.2 Key Generation

4.5.2.1 Private Key

Rotation matrix: A rotation matrix T is constructed by taking the product of a

sufficient number of randomized givens rotations, such that every coefficient in the

product is strictly not equal to 0.

See Algo. 3.

Scaling factor: A noise matrix N ∈ {0, 1}n,n is created and from this a scaling factor

k is derived such that ‖(kT + N)−1‖∞ <
1

2
.5 A näıve method for the computation

of this scaling factor k would involve the construction of an intermediary matrix X =

kT+N, inverting this and taking the infinite-norm. If the infinite norm is found to be

above
1

2
then k would be increased and the computation performed again. This would

continue until the size of k was sufficient such that ‖X−1‖∞ <
1

2
. While this method

would be mathematically correct, matrix inversion is computationally expensive.

Understanding that the determinant of the rotation matrix T is 1, we can compute

the scaling factor k quicker, by understanding that:

‖(kT + N)−1‖∞ ≤ k−1 × (1 +
‖N‖∞
k

+
‖N2‖∞
k2

+
‖N3‖∞
k3

+ ...)

We can have a high confidence that the scaling factor is sufficient by taking a

5This requirement assures us that there will be no decryption error if ‖p‖∞ ≤ 1 as shown in
the proof of Theorem 2. By choosing ‖p‖∞ ≤ 1, we can minimise the other parameters of the
cryptosystem for performance benefits

4.5. An optimised GGH-style cryptosystem 66

Algorithm 3: generateRotationTransform(n)

Input : n ∈ Z the dimension
Output: T ∈ Rn,n the rotation transform matrix
begin

T← I
repeat

R← I
i← RandInt(1, n− 1)
j ← RandInt(i+ 1, n)
θ ← RandDouble(−π, π)
Ri,i = cos(θ)
Rj,j = cos(θ)
Ri,j = −sin(θ)
Rj,i = sin(θ)
T← T×R
anyZeros← false
for r ← 1 to n do

for c← 1 to n do
if Tr,c = 0 then

anyZeros← true
r ← n
c← n

end
end

end
until anyZeros = false
return T

end

relatively low number of terms to ensure that the progression is tending towards a

value under
1

2
. As each successive term of the progression above decreases the value

of the final result, if we choose any fixed number of terms to evaluate, we know that

if the result is less than
1

2
, the k chosen is sufficient.

Further performance gains can be seen if we start the iterations with a higher

value and increasing it by 1 each iteration until sufficient. In [64] it is conjectured that

k =
⌈
2
√

2n
3

⌉
is sufficient to ensure ‖(kI + N)−1‖ < 1

2
however to be sure, we iterate

through k until we can ensure this to be the case.

See Algo. 4.

4.5. An optimised GGH-style cryptosystem 67

Algorithm 4: calculateScalingFactor(N)

Input : N ∈ {0, 1}n,n the noise matrix
Output: k ∈ Z the scaling factor
begin

k ← d2×
√

2×n
3
e

N′ ← N
k′ ← k
repeat

lim← 1
for i← 1to10 do

lim← lim+ ‖N ′‖
k′

N′ ← N′ ×N
k′ ← k′ × k

end

lim← lim
k

until lim

1− ‖N
′‖

k′
< 1

2

end

Optimal Hermite Normal Form: The private basis R is constructed:

R = bkTc+ N

This basis is then checked for coprimality via the method discussed prior (see Algo.

5). If coprimal, R is reduced via a HNF decomposition algorithm to produce B. B is

then checked exhaustively to ensure that it is of Optimal Hermite Normal Form (see

Algo. 6). If either of these tests fails, the process begins again with a new N and

k. Since T is computationally expensive to generate compared to N, we re-use this

rotation matrix with the new noise matrix and scaling factor.

Once the public basis is in Optimal Hermite Normal Form, R is inverted and

multiplied with det(R) to ensure that it is integral. We store this result as an integer

row vector r′ ∈ Zn, ie. r′ = (R−1).row(1)× det(R).

Chinese Remainder Theorem: By modification of the original GGH parameters,

we can calculate a bound on the coefficients of cR′ easier than in the original specifi-

4.5. An optimised GGH-style cryptosystem 68

Algorithm 5: isCoprime(n, P)

Input : n ∈ Z the number to check, P = {p1, p2, ..., pk} the set of k primes
Output: true if coprime with the set P , false otherwise
begin

for i← 1 to k do
if n 6= 0 mod pi then

return false
end

end
return true

end

Algorithm 6: isOptimal(A)

Input : A ∈ Zn,n the matrix in Hermite Normal Form to check
Output: true if Hermite Normal form is optimal, false otherwise
begin

for i← 2 to n do
if Ai,i > 1 then

return false
end

end
return true

end

cation. Since the public basis B is of Optimal Hermite Normal Form, we know that c

is strictly less than the lattice determinant. Similarly, as we have defined ‖R−1‖ < 1/2

we know that ‖R′‖ < det(R)
2

. Since the Residue Number System we’re embedding the

multiplication in must also handle negative numbers, we need to double this bound.

Therefore,

bound = 2× det(R)× det(R)

2
= det(R)2

A number of prime moduli m1,m2, ...,mq are chosen such that the product M of

the moduli is greater than the determinant squared. ie.

M =

q∏
i=1

mi > det(R)2

For optimal computation speeds, we reduce the number of required primes by

4.5. An optimised GGH-style cryptosystem 69

chosing the highest q primes that can fit in an integer datatype on the target platform.

ie. on a 32-bit processor, we choose the highest q primes less than 232.

We define Mi =
M

mi

, for each of the moduli mi being used. This is to reduce

unnecessary computations in the decryption phase.

As the public basis is of Optimal Hermite Normal Form, only the first row-vector

of R′ is needed. This row-vector is then multiplied by (M1)
−1 and reduced modulo

m1. The resultant vector is stored as r′1. This step is repeated for each modulo mi up

to mq, resulting in a set r′1, r
′
2, ..., r

′
q.

r′i = R−1.row(1)× det(R)× (Mi)
−1 mod mi

4.5.2.2 Public Key

The public key is the optimal Hermite Normal Form public basis B of the private basis

R. The populated column of B is stored as a column-vector of length n.

See Algo. 7 for the full key generation algorithm.

4.5. An optimised GGH-style cryptosystem 70

Algorithm 7: GenerateKeys(n)

Input : n ∈ Z the dimension
Output: R,B ∈ Zn,n such that LR ≡ LB, the array r′[i] ∈ Zn, the array

M [q] ∈ Z
begin

lowPrimelist←{2, 3, 5, 7, 11, 13, 17, 19, 23}
highPrimelist←{1073741789, 1073741783, 1073741741, ...}
T← generateRotationTransform(n)
repeat

repeat
for r ← 1 to n do

for c← 1 to n do
Nr,c ← RandInt(0,1)

end
end
k ← calculateScalingFactor(N)
R← bkTe+ N

until isCoprime(det(R), lowPrimeList)
B← HNF (R)

until isOptimal(B)
M ← 1
q ← 0
repeat

q ← q + 1
mq ← highPrimeList[q]
M ←M × highPrimeList[q]

until M ≥ det(R)2

for i← 1 to q do
Mi ← M

mi

r′i ← R−1.row(1)× det(R)× (Mi)
−1 mod mi

end
publicKey ← B.col(1)
privateKey ← {R, {{r′1,M1,m1}, {r′2,M2,m2}, ..., {r′q,Mq,mq}},M}
return publicKey, privateKey

end

4.5. An optimised GGH-style cryptosystem 71

4.5.3 Encryption

For encryption, we use Micciancio’s method of modulo lattice reduction with the public

basis, as this results in a smaller ciphertext. We modified Micciancio’s construction by

limiting the encryption vector domain to {−1, 0, 1} and by using ‖R−1‖∞ < 1/2, we

can ensure (See [30]) that there will not be any decryption error (See proof 4.5.1.1).

As the public basis is in Optimal Hermite Normal Form, the encryption step can be

much faster by reducing the problem to a reduction modulo the column vector. (See

Algo. 8). Due to this result, the ciphertext is only populated in the first position and

can thus be represented as a scalar. As the remaining columns of the public basis are

trivially identical to the identity matrix, the resultant positions in the ciphertext are 0

and do not need to be stored or transmitted. The encryption is not performed under

the Residue Number System.

4.5.4 Decryption

Decryption is of a similar form to the improved GGH decryption method using CRT

except with a minor change to reflect the encoded message being in the error vector

rather than the lattice point. i.e. given the lattice vector w, we calculate the plaintext

p = c−w. Since the ciphertext is a scalar however, we must either convert this into a

vector such that only the first position is populated, or adjust our algorithm to work

with the scalar itself. See Algo. 9.

4.5. An optimised GGH-style cryptosystem 72

Algorithm 8: Encrypt(m, publicKey)

Input : p ∈ {−1, 0, 1}n the plaintext, publicKey = {b} where b ∈ Zn the
public column vector

Output: c ∈ Z the ciphertext scalar
begin

c← p1
for i← n to 2 do

c← c− (pi × bi)
end
c← c mod b1

return c
end

Algorithm 9: Decrypt(c, privateKey)

Input : c ∈ Z the ciphertext,
privateKey = {R, {{r′1,M1,m1}, {r′2,M2,m2}, ..., {r′q,Mq,mq}},M}
where R ∈ Zn,n the private basis, r′i ∈ Zn a private row vector,

Mi =
M

mi

∈ Z a moduli subset product, mi ∈ Z a modulus,

M =
∑q

i=1mi ∈ Z the product of the moduli
Output: p ∈ Zn the message vector
begin

x← 0n

for i← 1 to q do
x← x +Mi × (c× r′i mod mi) mod M

end
w← bx/det(R)e ×R mod 2
w[1]← w[1]− c mod 2
p← −w
return p

end

4.5. An optimised GGH-style cryptosystem 73

4.5.5 Analysis

4.5.5.1 Overview

We compared this cryptosystem with both the GGH cryptosystem using the original

parameters and Micciancio’s improvement and we saw substantial increases in through-

put for both encryption and decryption, together with smaller private and public keys.

We used the dimension of these cryptosystems as the basis for comparison as this is

the most influential parameter for security.6 A full comparison between the new cryp-

tosystem defined above and the existing GGH and Micciancio cryptosystems can be

seen in Table. 4.4.

Dimension: 500 800

GGH Mic New GGH Mic. New

Encryption Speed (ms) 39.60 8.977 0.1415 127.8 22.49 0.3155
Decryption Speed (ms) 1608 215.3 140.2 8153 851.4 630.0
Private Key size (Mb) 86.36 194.0 0.6188 374.2 861.7 1.685
Public Key size (Mb) 37.80 0.3925 0.1711 149.6 1.085 0.4654

Table 4.4: Comparison of methods

4.5.5.2 Encryption

We see a substantial increase in encryption speeds over both standard GGH and Mic-

ciancio cryptosystems for a number of reasons. Firstly, due to the use of the Optimal

Hermite Normal Form public key, we can reduce the iterative complexity of the encryp-

tion step by a quadratic factor. Secondly, due to the decreased size of the coefficients

in the private basis as a result of using a rotated nearly-orthogonal basis instead of a

LLL-reduced random small basis, the public basis coefficients also benefit from a small

reduction in size. As a result of this, each arithmetic operation in the encryption phase

6We note that in our comparisons, we fixed the length of ‖p‖∞ ≤ 1 in our tests of the Micciancio
cryptosystem as this parameter was undefined in Micciancio’s specification.

4.5. An optimised GGH-style cryptosystem 74

is reduced in complexity, resulting in further speed gains over the Optimal Hermite

Normal Form variant of the Micciancio cryptosystem. See Fig. 4.7.

10 µs

100 µs

1 ms

10 ms

100 ms

1 s

 100 200 300 400 500 600 700 800

T
im

e

Dimension

GGH
Micciancio

New

Figure 4.7: Encryption speeds

4.5.5.3 Decryption

We also see improvements to decryption speeds over the existing cryptosystems studied

for two reasons. Firstly, by calculating the core multiplication operation over a Residue

Number System and the use of the Chinese Remainder Theorem in reconstructing the

plaintext, we see a similar factor of improvement to that gained over the standard

GGH. In addition to this, because our public key is of Optimal Hermite Normal Form,

we are not obliged to store or use any rows of the private basis inverses other than the

first, which reduces the complexity of the inner multiplication by a quadratic factor.

Lastly, the smaller coefficients of the private basis also result in lower complexity of

both the inner core multiplication with the inverse (due to the reduced number of

4.5. An optimised GGH-style cryptosystem 75

residues and hence iterations required) and the outer vector-matrix multiplication of

the rounded vector and the private basis. See Fig. 4.8.

1 ms

10 ms

100 ms

1 s

10 s

 100 200 300 400 500 600 700 800

T
im

e

Dimension

GGH
Micciancio

New

Figure 4.8: Decryption speeds

4.5.5.4 Private Key

The private keys of the new cryptosystem are extremely small compared to the existing

GGH and Micciancio cryptosystems and could be considered practical in absolute

terms in almost all scenarios. Due to the Optimal Hermite Normal Form public key,

only the first row of the private basis inverses need to be stored. As discussed prior, this

results in an enormous drop in storage and memory requirements. While the use of the

RNS inverse storage increase this storage requirement somewhat, the lower coefficients

in the private basis result in smaller coefficients in the private basis inverses, resulting

in a decrease in the number of modulo systems required. As these inverses can be

placed into the residue number systems at load-time from a ”master” inverse, it could

4.5. An optimised GGH-style cryptosystem 76

be feasible to store only the master inverse, reducing the storage requirements by a

small factor. This avenue of storage saving was not explored however due to the extra

load-time complexity and perceived minimal gains. See Fig. 4.9.

10 kb

100 kb

1 Mb

10 Mb

100 Mb

1 Gb

 100 200 300 400 500 600 700 800

Si
ze

Dimension

GGH
Micciancio

New

Figure 4.9: Private keysizes

4.5.5.5 Public Key

A reduction in the public key size was seen due to two factors. Firstly, a small gain

was seen from the use of the Optimal Hermite Normal Form. Since the non-optimal

column in the vast majority of Hermite Normal Form bases are extremely low values,

the gains seen here are minimal. Secondly and perhaps more importantly though is

the smaller public basis size due to the lower coefficients used in the private basis.

Both these factors reduced the public key size to below half that of the Micciancio

cryptosystem; and far below GGH at the same dimension. See Fig. 4.10.

4.5. An optimised GGH-style cryptosystem 77

1 kb

10 kb

100 kb

1 Mb

10 Mb

100 Mb

1 Gb

 100 200 300 400 500 600 700 800

Si
ze

Dimension

GGH
Micciancio

New

Figure 4.10: Public keysizes

4.5.5.6 Security

Since we have designed this cryptosystem to have no decryption error when the plain-

text is in the domain {−1, 0, 1}n, we are not obliged to use any mechanism to protect

against decryption error attacks (such as [65]). Due to the use of the floor function

in both the key generation stage and the decryption (by adding half the determi-

nant to the vector, dividing by the determinant and discarding the remainder) we are

also able to mitigate against some side-channel Branch Prediction Analysis attacks

as discussed in [3]. We have shown that despite the cryptosystem being vastly more

efficient in every metric than the original GGH cryptosystem, the security is enhanced

through a much larger private key-space due to the rotated nearly-orthogonal basis.

In addition to this larger key-space, we have also shown how some attacks against the

diagonally-dominant GGH basis can be prevented.

Chapter 5

Conclusions

The growing urgency for a practical, secure post-quantum cryptosystem has spawned

a number of research fields which are working towards this goal. Lattice-based cryp-

tography is showing promise due to a perceived higher security, due to provably NP-

hard problems [14], results such as Ajtai’s average-case/worst-case equivalence[4] and

a large number of provably secure cryptosystems in structured lattice environments.

Unfortunately, it remains to be seen whether these structured lattice environments

themselves are susceptible to attack. We feel that due to the intense investment of

research into cryptosystems operating over these structured lattice environments, it

would be prudent to investigate methods for improving general lattice cryptosystems

to a level where practical implementation is possible.

The GGH-class[30] of cryptosystems are elegant from a design point of view and

appear to offer almost practical keysizes and encryption/decryption speeds. However,

the GGH-style cryptosystems in the literature are not competitive with conventional

cryptosystems; a prime goal of post-quantum cryptography. We have taken the GGH-

class of cryptosystems and have proposed three specific mechanisms to improve the

practicality of this class of cryptosystems.

Firstly, we have taken the problem of the inner multiplication in Babai’s Round-

78

79

Off algorithm that is used in the original GGH specification and sought methods to

improve the throughput of this step, as this inner multiplication step is time consuming

due to the size of the coefficients involved. We have shown how this multiplication

can be placed into a Residue Number System and discussed design considerations

that must be taken into account when applying this method. We have analysed the

performance gains and have also discussed further optimisations to this process that

can be made to increase the speed.

Secondly, we have shown an efficient way to generate a nearly-orthogonal lattice

basis such that the Hermite Normal Form basis for that lattice will be non-trivial

in only one column. By ensuring that the public basis is in this Optimal Hermite

Normal Form, we can reduce the size of the private key storage by several orders of

magnitude and vastly increase the practicality of GGH-style cryptosystems. As the

encryption step described by Micciancio is iterative over the entire public basis, we

can also reduce the number of iterations down by an order of magnitude and vastly

increase the throughput of this step. Similarly, as decryption time is proportional to

the size of the private key, similar performance gains are seen in the decryption stage.

Lastly, we have demonstrated a method for vastly increasing the private keyspace

of GGH-style bases by the use of a rotation transform, effectively taking the original

GGH specified basis and rotating this through random angles over randomly selected

axial-planes. Since the success of Babai’s Round-Off algorithm is only dependent

upon the basis orthogonality, rotations of the lattice do not affect the efficiency of this

step. The rotated semi-orthogonal basis does prevent some attacks on the original

GGH basis however, increasing security beyond just the expansion of the private basis

keyspace.

Through these techniques, together with some generic optimisations, we have ade-

quately shown how GGH-style cryptosystems can be made practical in many instances,

80

being competitive in terms of encryption and decryption throughput with conventional

public-key cryptosystems such as RSA[68]. Similarly, we have demonstrated that we

can substantially reduce the size of private keys by an order of magnitude, further

improving practical adoption.

Appendix A

Algorithms

A.1 Generic algorithms

Algorithm 10: Modulo reduction of a vector by a lattice

Input : Basis H ∈ Zn,n of Hermite Normal Form, v ∈ Zn

Output: b ∈ Zn

begin

b← v

for j ← n to 1 do

cj ← bbj ÷ hj,jc

b← b− cj × bj
end

return b

end

81

A.1. Generic algorithms 82

Algorithm 11: LLL reduction

Input : B = [b1, b2, ..., bn] ∈ Zm,n

Output: B ∈ Zm,n, an LLL reduced basis

begin

loop:

for i← 1 to n do

for j ← i− 1 to 1 do

c←
⌊〈b∗i , b∗j〉
〈b∗j , b∗j〉

⌉
bi ← bi − c× bj

for k ← 1 to n do

if δ‖πk(bk)‖2 > ‖πk(bk+1)‖2 then

Swap(bk, bk+1)

GoTo loop

else

return B

end

end

end

end

end

A.2. CVP solutions 83

A.2 CVP solutions

Algorithm 12: CVP Round-Off

Input : v ∈ Zn the input vector, R ∈ Zn,n a basis of L ⊆ Zn,n.

Output: w ∈ L a close vector of v in the lattice L

begin

w ← bv ×R−1e ×R
end

Algorithm 13: CVP Nearest-Plane

Input : v ∈ Zm the input vector, B ∈ Zm,n a LLL-reduced basis for the lattice

L.

Output: w ∈ L a close vector of v in the lattice L

begin

b← v

for j ← n to 1 do

cj ← b〈b, bj〉/〈bj, bj〉e

b← b− cjbj
end

return t− b
end

A.3. GGH cryptosystem 84

A.3 GGH cryptosystem

Algorithm 14: GGH Key generation

Input : b ∈ R a number, n ∈ Z the security parameter.

Output: R ∈ Zn,n a private basis, B ∈ Zn,n a public basis, such that LR ≡ LB

RandomNumber(a, b) : Returns one of {−1, 0, 1} with probability

{a, 1− (a+ b), b} respectively.

begin

for i← 1 to n do

for j ← 1 to n do

Mi,j ← RandomNumber(1
3
, 1
3
)

end

end

R← b× I +M

U ← I

T ← I

for i← 1 to 2 do

for c← 1 to n do

A← I

for r ← 1 to n do

z ← RandomNumber(1
7
, 1
7
)

end

Ac,c ← 1

U ← U × A
end

end

B ← U ×R return R, B

end

A.3. GGH cryptosystem 85

Algorithm 15: GGH Encryption

Input : p ∈ Zn a plaintext vector, B ∈ Zn,n a public basis.

Output: c ∈ Zn a ciphertext vector

begin

for i← 1 to n do

q = σ2

2×bσe2

ei ← σ×RandomNumber(−q, q)
end

c← eB + p

return c

end

Algorithm 16: GGH Decryption

Input : c ∈ Zn a ciphertext vector, R ∈ Zn,n a private basis.

Output: p ∈ Zn a plaintext vector

begin

p = bc×R−1e ×R

return p

end

A.4. Micciancio cryptosystem 86

A.4 Micciancio cryptosystem

Algorithm 17: Micciancio Key Generation

Input : n ∈ Z the security parameter.

Output: R ∈ Zn,n a private basis, B ∈ Zn,n a public basis, such that LR ≡ LB

RandomMatrix(n) : Returns a square matrix of dimension n, with random

coefficients uniformly distributed in {−n, ..., n}.

begin

R = LLL(randomMatrix(n))

B = HNF (R)

return R, B

end

Algorithm 18: Micciancio Encryption

Input : p ∈ Zn a plaintext vector, B ∈ Zn,n a public basis.

Output: c ∈ Zn a ciphertext vector

begin

c = p mod B

return c

end

Algorithm 19: Micciancio Decryption

Input : c ∈ Zn a ciphertext vector, R ∈ Zn,n a private basis.

Output: p ∈ Zn a plaintext vector

begin

p = NearestPlane(c, R) return p

end

References

[1] The GNU multiple precision arithmetic library.

[2] In D. J. Bernstein, J. Buchmann, and E. Dahmen, editors, Post-quantum Cryprog-

raphy. Springer, 2008.

[3] Onur Acimez, etin Kaya Ko, and Jean-Pierre Seifert. On the power of simple

branch prediction analysis. In 2007 ACM SYMPOSIUM ON INFORMATION,

COMPUTER AND COMMUNICATIONS SECURITY (ASIACCS07, pages 312–

320. ACM Press, 2007.

[4] M. Ajtai. Generating hard instances of lattice problems (extended abstract). In

Twenty-Eighth Annual ACM Symposium on the Theory of Computing (STOC

1996), pages 99–108, 1996.

[5] M. Ajtai. Generating hard instances of lattice problems (extended abstract). In

Twenty-Eighth Annual ACM Symposium on the Theory of Computing (STOC

1996), pages 99–108, 1996.

[6] M. Ajtai. Representing hard lattices with o(n log n) bits. In STOC, pages 94–103,

2005.

[7] M. Ajtai and C. Dwork. A public-key cryptosystem with worst-case/average-

case equivalence. In Twenty-Ninth Annual ACM Symposium on the Theory of

Computing (STOC 1997), pages 284–293, 1997.

87

References 88

[8] M. Ajtai, R. Kumar, and D. Sivakumar. A sieve algorithm for the shortest lat-

tice vector problem. In 33rd Annual ACM Symposium on Theory of Computing

(STOC 2001), pages 601–610, 2001.

[9] Yuriy Arbitman, Gil Dogon, Vadim Lyubashevsky, Daniele Micciancio, Chris

Peikert, and Alon Rosen. SWIFFTX: a proposal for the SHA-3 standard, 2008.

[10] D. Augot, M. Finiasz, and N. Sendrier. A family of fast syndrome based crypto-

graphic hash functions. In Proceedings of Mycrypt 2005, volume 3715 of LNCS,

pages 64–83. Springer, 2005.

[11] L. Babai. On Lovász’ lattice reduction and the nearest lattice point problem.

Combinatorica, 6(1):1–13, 1986.

[12] C. H. Bennett and G. Brassard. Quantum cryptography: Public-key distribution

and coin tossing. In Proceedings of IEEE International Conference on Computers,

Systems and Signal Processing, Bangalore, India, pages 175–179. IEEE Press,

1984.

[13] E. R. Berlekamp. Factoring polynomials over finite fields. Bell Systems Technical

Journal, 46:1853–1859, 1967.

[14] P. Van Emde Boas. Another NP-complete problem and the complexity of comput-

ing short vectors in lattices. Technical Report 81-04, Mathematics Department,

University of Amsterdam, 1981.

[15] J. Buchmann, E. Dahmen, E. Klintsevich, K. Okeya, and C. Vuillaume. Merkle

signatures with virtually unlimited signature capacity. In Applied Cryptography

and Network Security - ANCS 2007, pages 31–45. Springer, 2007.

[16] J. Buchmann, E. Dahmen, and M. Szydlo. Post-quantum Cryprography, chapter

Hash-based Digital Signature Schemes, pages 35–93. Springer, 1 edition, 2008.

References 89

[17] J.-Y. Cai and T. W. Cusick. A lattice-based public-key cryptosystem. In Selected

Areas in Cryptography, pages 219–233, 1998.

[18] H. Cohen. A course in computational algebraic number theory, volume 138 of

Graduate Texts in Mathematics. Springer-Verlag, 1993.

[19] D. Coppersmith and A. Shamir. Lattice attacks on ntru. In EUROCRYPT, pages

52–61, 1997.

[20] D. Coppersmith, J. Stern, and S. Vaudenay. The security of the birational per-

mutation signature schemes. Journal of Cryptology, pages 207–221, 1997.

[21] D. Deutsch and R. Jozsa. Rapid solutions of problems by quantum computation.

In Royal Society of London A, volume 439, page 553, 1992.

[22] J. Ding and B. Y. Yang. Post-quantum Cryprography, chapter Multivariate Public

Key Cryptography, pages 193–241. Springer, 1 edition, 2008.

[23] C. Dods, N. Smart, and M. Stam. Hash based digital signature schemes. Cryp-

tography and Coding, pages 96–115, 2005.

[24] Richard P. Feynman. Simulating physics with computers. International Journal

of Theoretical Physics, 21(6-7):467–488, June 1982.

[25] J. B. Fischer and J. Stern. An efficient pseudo-random generator provably as

secure as syndrome decoding. In U. M. Maurer, editor, Advances in Cryptology -

EUROCRYPT ’96, volume 1070 of LNCS, pages 245–255. Springer-Verlag, 1996.

[26] R. Fischlin and J.-P. Seifert. Tensor-based trapdoors for cvp and their application

to public key cryptography. In IMA Int. Conf., pages 244–257, 1999.

[27] C. Gentry. Fully homomorphic encryption using ideal lattices. In STOC, pages

169–178, 2009.

References 90

[28] C. Gentry, C. Peikert, and V. Vaikuntanathan. Trapdoors for hard lattices and

new cryptographic constructions. In Richard E. Ladner and Cynthia Dwork,

editors, STOC, pages 197–206. ACM, 2008.

[29] A. Genz. Methods for generating random orthogonal matrices. In H. Niederreiter

and J. Spanier, editors, Monte Carlo and Quasi-Monte Carlo Methods, pages

199–213, 1999.

[30] O. Goldreich, S. Goldwasser, and S. Halevi. Public-key cryptosystems from lat-

tice reduction problems. Electronic Colloquium on Computational Complexity

(ECCC), 3(56), 1996.

[31] O. Goldreich, S. Goldwasser, and S. Halevi. Eliminating decryption errors in the

ajtai-dwork cryptosystem. In CRYPTO, pages 105–111, 1997.

[32] G. H. Golub and C. F. Van Loan. Matrix Computations, Third Edition. The

Johns Hopkins University Press, 1996.

[33] L. Goubin and N. T. Courtois. Cryptanalysis of the ttm cryptosystem. In

T. Okamoto, editor, Advances in Cryptology - ASIACRYPT 2000, volume 1976

of LNCS, pages 44–57. Springer, 2000.

[34] Lov K. Grover. A fast quantum mechanical algorithm for database search. In 28th

Annual ACM Symposium on the Theory of Computing (STOC), pages 212–219,

May 1996.

[35] D. Han, M.-H. Kim, and Y. Yeom. Cryptanalysis of the paeng-jung-ha cryptosys-

tem from pkc 2003. In Public Key Cryptography, pages 107–117, 2007.

[36] J. Hoffstein, J. Pipher, and J. H. Silverman. Ntru: A ring-based public key

cryptosystem. In Algorithmic Number Theory (ANTS 1998), Lecture Notes in

Computer Science 1423, Springer-Verlag, pages 267–288, 1998.

References 91

[37] N. Howgrave-Graham, P. Q. Nguyen, D. Pointcheval, J. Proos, J. H. Silverman,

A. Singer, and W. Whyte. The impact of decryption failures on the security of

ntru encryption. In CRYPTO, pages 226–246, 2003.

[38] R. Kannan and A. Bachem. Polynomial algorithms for computing the Smith

and Hermite normal forms of an integer matrix. SIAM Journal of Computing,

8(4):499–507, 1979.

[39] A. Kawachi, K. Tanaka, and K. Xagawa. Multi-bit cryptosystems based on lattice

problems. In Public Key Cryptography, pages 315–329, 2007.

[40] A. Kipnis, J. Patarin, and L. Goubin. Unbalanced oil and vinegar signature

schemes. In J. Stern, editor, Advances in Cryptology - EUROCRYPT 1999, vol-

ume 1592 of LNCS, pages 206–222. Springer, 1999.

[41] D. E. Knuth. The Art of Computer Programming, Vol. 2. Seminumerical Algo-

rithms. Addison-Wesley, Reading, Mass., 1981.

[42] L. Lamport. Constructing digital signatures from a one way function. Technical

report, SRI-CSL-98 SRI International Computer Science Laboratory, 1979.

[43] A. K. Lenstra, H. W. Lenstra, and L. Lovász. Factoring polynomials with rational

coefficients. Mathematische Annalen, Springer-Verlag, 261:513–534, 1982.

[44] V. Lyubashevsky, D. Micciancio, C. Peikert, and A. Rosen. Swifft: A modest

proposal for fft hashing. In FSE, pages 54–72, 2008.

[45] V. Lyubashevsky, D. Micciancio, C. Peikert, and A. Rosen. Swifft: A modest

proposal for fft hashing. In FSE, pages 54–72, 2008.

References 92

[46] V. Lyubashevsky, C. Peikert, and O. Regev. On ideal lattices and learning with

error over rings. In Proceedings of EUROCRYPT 2010, volume 6110 of Lecture

Notes in Computer Science, pages 1–23. Springer, 2011.

[47] T. Matsumoto and H. Imai. Public quadratic polynomial-tuples for efficient signa-

ture verification and message-encryption. In C. G. Gunther, editor, Advances in

Cryptology - EUROCRYPT 1988, volume 330 of LNCS, pages 419–545. Springer,

1988.

[48] R. McEliece. A public key cryptosystem based on algebraic coding theory. DSN

progress report, 1978.

[49] R. J. McEliece. A public-key cryptosystem based on algebraic coding theory.

Deep Space Network Progress Report, 44:114–116, january 1978.

[50] R. C. Merkle. A certified digital signature. In Proceedings of Advances in Cryp-

tology - CRYPTO’89, volume 435 of LNCS, pages 218–238. Springer, 1989.

[51] D. Micciancio. Improving lattice based cryptosystems using the Hermite normal

form. In Cryptography and Lattices Conference (CaLC 2001), pages 126–145,

2001.

[52] D. Micciancio. Improving lattice based cryptosystems using the Hermite normal

form. In Cryptography and Lattices Conference (CaLC 2001), pages 126–145,

2001.

[53] D. Micciancio and S. Goldwasser. Complexity of Lattice Problems, A Crypto-

graphic Perspective. Kluwer Academic Publishers, 2002.

[54] D. Micciancio and O. Regev. Post-quantum Cryprography, chapter Lattice-based

Cryptography, pages 147–191. Springer, 1 edition, 2008.

References 93

[55] I. Morel, D. Stehlé, and G. Villard. H-lll: using householder inside lll. In ISSAC,

pages 271–278, 2009.

[56] P. Q. Nguyen. Cryptanalysis of the Goldreich-Goldwasser-Halevi cryptosystem

from crypto ’97. In Advances in Cryptology - Crypto 1999, Lecture Notes in

Computer Science 1666, Springer-Verlag, pages 288–304, 1999.

[57] P. Q. Nguyen and D. Stehlé. Floating-point LLL revisited. In Advances in Cryptol-

ogy - Eurocrypt 2005, Lecture Notes in Computer Science 3494, Springer-Verlag,

pages 215–233, 2005.

[58] P. Q. Nguyen and J. Stern. Cryptanalysis of the ajtai-dwork cryptosystem. In

Advances in Cryptology - CRYPTO 1998, pages 223–242, 1998.

[59] H. Niederreiter. Knapsack-type cryptosystems and algebraic coding theory. Probl.

Control and Inform. Theory, 15:19–34, 1986.

[60] R. Overbeck and N. Sendrier. Post-quantum Cryprography, chapter Code-based

Cryptography, pages 95–145. Springer, 1 edition, 2008.

[61] S.-H. Paeng, B. E. Jung, and K.-C. Ha. A lattice based public key cryptosystem

using polynomial representations. In Public Key Cryptography, pages 292–308,

2003.

[62] J. Patarin. The oil and vinegar signature scheme. Dagstuhl Workshop on Cryp-

tography, September 1997.

[63] T. Plantard, M. Rose, and W. Susilo. Improvement of lattice-based cryptography

using CRT. In A. Sergienko, S. Pascazio, and P. Villoresi, editors, Quantum

Communication and Quantum Networking - QUANTUMCOMM 2009, volume 36,

pages 275–282. Springer, 2009.

References 94

[64] T. Plantard, W. Susilo, and K. T. Win. A digital signature scheme based on cvp∞.

In R. Cramer, editor, Proceedings of the 11th International Workshop on Practice

and Theory in Public Key Cryptosystems (PKC08), volume 4939 of LNCS, pages

288–307. Springer Berlin / Heidelberg, 2008.

[65] J. Proos. Imperfect decryption and an attack on the ntru encryption scheme.

IACR ePrint Archive, 2003.

[66] O. Regev. Improved inapproximability of lattice and coding problems with pre-

processing. In IEEE Conference on Computational Complexity, pages 363–370,

2003.

[67] O. Regev. On lattices, learning with errors, random linear codes, and cryptogra-

phy. In STOC, pages 84–93, 2005.

[68] R. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures

and public-key cryptosystems. Communications of the ACM, 21(2):120–126, Feb

1978.

[69] M. Rose, T. Plantard, and W. Susilo. Improving BDD cryptosystems in general

lattices. In to appear in Proceedings of ISPEC 2011, 2011.

[70] C.-P. Schnorr. A hierarchy of polynomial time lattice basis reduction algorithms.

Theoretical Computer Science, 53(2–3):201–224, 1987.

[71] C.-P. Schnorr. Fast LLL-type lattice reduction. Information and Computation,

204(1):1–25, 2006.

[72] P. W. Shor. Algorithms for quantum computation: discrete logarithms and fac-

toring, 1994.

[73] V. Shoup. NTL: Number theory library.

References 95

[74] V. Sidelnikov. A public-key cryptosystem based on binary reed-muller codes.

Discrete Mathematics and Applications, 4(3), 1994.

[75] Nigel Smart and Frederik Vercauteren. Fully homomorphic encryption with rel-

atively small key and ciphertext sizes. In Proceedings of the 13th International

Workshop on Practice and Theory in Public Key Cryptosystems (PKC10), volume

6056 of Lecture Notes in Computer Science, pages 420–443. Springer, 2010.

[76] D. Stehle and R. Steinfeld. Making NTRU as secure as worst-case problem over

ideal lattice. In Proceedings of EUROCRYPT 2011, volume 6632 of Lecture Notes

in Computer Science, pages 27–47. Springer, 2011.

[77] D. Stehlé, R. Steinfeld, K. Tanaka, and K. Xagawa. Efficient public key encryption

based on ideal lattices. In ASIACRYPT, pages 617–635, 2009.

	ABSTRACT
	Acknowledgements
	1 Introduction
	1.0.1 Quantum computing
	1.0.2 Quantum Key Distribution

	2 Post-Quantum Cryptography
	2.1 Hash-based Signatures
	2.1.1 Hard problems in Hashing
	2.1.2 Hash-based one-time signatures
	2.1.3 The Merkle Signature Scheme
	2.1.4 Evaluation

	2.2 Code-based cryptography
	2.2.1 Binary Linear Codes
	2.2.2 The McEliece Cryptosystem
	2.2.3 Evaluation

	2.3 Multivariate cryptography
	2.3.1 Multivariate cryptosystems
	2.3.2 Construction Methods
	2.3.3 Evaluation

	2.4 Lattice-based cryptography
	2.4.1 Lattice-based Cryptosystems
	2.4.2 Evaluation

	2.5 Summary

	3 Lattice Theory
	3.1 Overview
	3.2 Lattice properties
	3.2.1 Rank
	3.2.2 Determinant
	3.2.3 Norms
	3.2.4 Minima
	3.2.5 Unimodular Matrices
	3.2.6 Hermite Normal Form
	3.2.7 Reducing a vector modulo a lattice
	3.2.8 Orthogonality defect

	3.3 Lattice Problems
	3.4 Algorithmic Solutions for Lattice Problems
	3.4.1 Gram-Schmidt Orthogonalization
	3.4.2 LLL
	3.4.3 BKZ
	3.4.4 Babai's Round-Off
	3.4.5 Babai's Nearest-Plane

	3.5 Lattice Families
	3.5.1 q-ary Lattices
	3.5.2 Cyclic lattices
	3.5.3 Ideal lattices

	3.6 Cryptosystem Construction using CVP/BDD
	3.6.1 GGH
	3.6.2 The Micciancio Cryptosystem
	3.6.3 Other CVP-based cryptosystems

	4 Optimisation
	4.1 Optimising Implementation
	4.1.1 Pre-computation
	4.1.2 Chinese Remainder Theorem

	4.2 Optimising Babai's Round-Off
	4.2.1 Improving GGH using the Chinese Remainder Theorem
	4.2.2 Evaluation of the use of CRT in Babai's Round-Off

	4.3 Optimising the Public Basis
	4.3.1 Naïve testing
	4.3.2 Coprimality testing
	4.3.3 Evaluation of the use of Optimal Hermite Normal Form Public Bases

	4.4 Optimising the Private Key-Space
	4.4.1 Motivation
	4.4.2 Construction approaches
	4.4.3 Evaluation of Rotated Nearly-Orthogonal Private Bases

	4.5 An optimised GGH-style cryptosystem
	4.5.1 Overview
	4.5.2 Key Generation
	4.5.3 Encryption
	4.5.4 Decryption
	4.5.5 Analysis

	5 Conclusions
	A Algorithms
	A.1 Generic algorithms
	A.2 CVP solutions
	A.3 GGH cryptosystem
	A.4 Micciancio cryptosystem

	References

