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Abstract. A prime goal of Lattice-based cryptosystems is to provide
an enhanced security assurance by remaining secure with respect to
quantum computational complexity, while remaining practical on con-
ventional computer systems. In this paper, we define and analyze a su-
perclass of GGH-style nearly-orthogonal bases for use in private keys,
together with a subclass of Hermite Normal Forms for use in Micciancio-
style public keys and discuss their benefits when used in Bounded Dis-
tance Decoding cryptosystems in general lattices. We propose efficient
methods for the creation of such nearly-orthogonal private bases and
“Optimal” Hermite Normal Forms and discuss timing results for these
methods. Finally, we propose a class of cryptosystems based on the use
of these constructions and provide a fair comparison between this class
of cryptosystems and related cryptosystems.
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1 Introduction

1.1 Post-Quantum Cryptography

The intractability of both integer-factorization and the discrete logarithm prob-
lem have long been used to construct asymmetric-key cryptosystems and prove
such cryptosystems secure. In 1994, Shor’s paper “Algorithms for quantum com-
putation: discrete logarithms and factoring” [1] rendered these two problems
tractable on a quantum computer. As a result of the continual advancements in
quantum computer architecture, new one-way trapdoor functions must be de-
veloped that will remain secure after quantum computers become practical. One
promising avenue of research in this direction is lattice-based cryptography.

1.2 Lattice-based Cryptography Overview

Since Ajtai’s seminal paper “Generating hard instances of Lattice problems” [2],
there has been an ongoing effort by the cryptographic community to produce



a practical yet secure lattice-based (see Def. 1) cryptosystem based on lattice
problems [3]. It is believed that such lattice problems remain hard in quantum
complexity [4], providing strong indications that lattice-based cryptosystems re-
main secure assuming the existence of quantum computers. This is immensely
beneficial for parties who need to retain long term data privacy, beyond the
foreseeable advent of practical, large-scale quantum computers.

Definition 1. A lattice L is a discrete sub-group of Rn, or equivalently the set
of all the integral combinations of d ≤ n linearly independent vectors over R.

L = Z b1 + · · ·+ Z bd, bi ∈ Rn.

B = (b1, ..., bd) is called a basis of L and d, the dimension of L. If d = n, the
lattice is called full-rank.

We will refer LB as a lattice of basis B. In this paper, full-rank lattices will be
used (simplifying some definitions accordingly) and be represented by a matrix
of the basis vectors, in row-vector form.

Many lattice problems are based on distance minimization. Distance is mea-
sured in a lattice system by a norm, denoted ‖.‖. In this paper, the euclidean
norm as defined in Def. 2 will be used for some calculations. In addition, the
l∞-norm, also known as the infinity norm or the max norm, will also be used as
defined in Def. 3. The induced matrix norm as defined in Def. 4 is also required.

Definition 2. Let H be a Hilbert space of some finite dimension d. Given a
vector v ∈ H, ‖v‖2 =

√
v21 + v22 + v23 + ...+ v2d.

Definition 3. Let H be a Hilbert space of some finite dimension d. Given a
vector v ∈ H, ‖v‖∞ = max {|vi|, 1 ≤ i ≤ d} .

Definition 4. Let A ∈ Rn,n be a matrix. Then a matrix norm denoted as ‖A‖ is
said to be consistent to a vector norm ‖.‖, if ‖A‖ = sup {‖xA‖, x ∈ Rn, ‖x‖ = 1}.

Both matrix norm ‖.‖∞ and ‖.‖2 can be easily computed [5].
In this paper, we also use bxe as the closest integer of x if x ∈ R or the closest

vector with integer coefficient if x ∈ Rn.

1.3 Existing Lattice Cryptosystems

Cryptosytems in q-ary lattices In 1997, Ajtai and Dwork [6] proposed a
cryptosystem such that its security is based on a variant of the Shortest Vector
Problem (SVP) called the unique Shortest Vector Problem. This cryptosystem
received wide attention due to a surprising security proof based on worst-case as-
sumptions. Nonetheless, due to extreme ciphertext expansion, this cryptosystem
is merely a theoretical proposition and it cannot be used in practice. Further-
more, Nguyen and Stern presented a heuristic attack against this cryptosystem
[7]. Since then, this initial proposition has been improved [8–10] and inspired



many other cryptosystems based on SVP [11–13]. For a more detailed examina-
tion of SVP-based trapdoors, we refer the readers to [14].

However, each of these cryptosytems, like most lattice based cryptographic
protocols [15, 4, 16–20] are based on q-ary lattices [4]. In 1998, a non broken
q-ary lattice cryptosystem was discovered: NTRU, for N th degree truncated
polynomial ring units. NTRU was proposed in 1998 by Hoffstein, Pipher and
Silverman [21]. This cryptosystem was not modelled initially as a Goldreich-
GoldwasserHalevi (GGH) type cryptosystem, however, it can been represented
as one, which has been useful in evaluating the security of the cryptosystem [22].

We note that while some problems in conditional lattices (such as q-ary or
ideal lattices) are reducible to problems in general lattices, the opposite is not
true. As such, we feel that providing a practical alternative based only on general
lattices is prudent. It is clear that general lattices are at least as secure as any
conditional form of lattice and should there be any conditional lattice assumption
broken in the future, a practical alternative would be needed. Therefore, in this
paper, we will work with the class of cryptosystems defined by GGH and Mic-
ciancio, in general lattices constructed by some non-random, nearly-orthogonal
private basis, to allow the public basis to have no specific constraints.

GGH In 1996, Goldreich, Goldwasser and Halevi [23] proposed an efficient way
to build a cryptosystem that uses lattice theory, inspired by McEliece cryptosys-
tem [24] and based on Bounded Distance Decoding (see Def. 5). Their practical
proposition of a cryptosystem was strongly attacked and broken by Nguyen in
1999 [25]. However, the general idea is still viable, as can be seen by the many
variants of the basic GGH cryptosystem that have been proposed since (see
[26–28]).

Definition 5. Let L be a lattice, λ1(L) be the norm of the shortest non-zero
vector of the lattice L. Given a vector w such that ∃u ∈ L, ‖w − u‖ ≤ αλ1(L),
the α-Bounded Distance Decoding Problem (BDDα) is to find such a vector u.

The three general cryptographic algorithms for the GGH class of cryptosystems
are as follows:

• Setup: Compute a “good basis” A and a “bad basis” B of a lattice L. i.e.
L(A) = L(B). Provide B as public and keep A private.
• Encrypt: To encrypt a plaintext vector-message p: Use the bad basis to

create a random vector r ∈ L. Publish the encrypted message which is the
addition of the vector message with the random vector: c = p+ r.
• Decrypt: Use the good basis to find the closest vector in the lattice to the

encrypted ciphertext message c. The closest vector of the encrypted message
c is the random vector r1. Subtract the random vector from the encrypted
message to obtain the vector message p = c− r.

The security of the GGH class of cryptosystems relies on the following three
assumptions.

1 under the supposition that the norm of p is sufficiently small



i) It is easy to compute a “bad basis” from a “good basis”, but it is difficult
to compute a “good basis” from a “bad basis”.

ii) It is easy to create a random vector of a lattice even with a “bad basis”.

iii) It is easy to find the closest vector with a “good basis” but difficult to do
so with a “bad basis”.

Goldreich et al. suggested the use of Babai’s Round-Off [29] method to address
assumption (iii).

After Nguyen’s first attack, the utilization of the initial GGH proposition
requires lattices with higher dimension (> 500) to ensure security. As a result,
the computation of the closest vector, even with a “good basis”, becomes very
expensive. Another significant drawback to this class of cryptosystems is the
enormous key sizes in practical implementations, particularly in such higher
dimensions. Due to these two drawbacks, we feel that this cryptosystem has
limited practicality.

Micciancio In 2001, Micciancio [27] proposed some major improvements of the
speed and the security of GGH. In this scheme, the public key is of a Hermite
Normal Form (HNF) (see Def. 6). Such a HNF basis is not only compact in
storage requirements as will be shown in later sections of this paper, it is also
provably the hardest basis to transform to a “good basis” compared to other
bases [27]. Furthermore, the HNF of a lattice (and hence the public key of the
Micciancio cryptosystem) is unique [30] and can be computed from any lattice
basis in polynomial time [31].

Definition 6. Let L be an integer full-rank lattice of dimension d and H ∈ Zd,d
be a basis of L. H is a Hermite Normal Form basis of L if and only if

∀1 ≤ i, j ≤ d 0 ≤ Hi,j

= 0 if i < j
≥ 1 if i = j
< Hj,j if i > j

The use of such HNF public keys gives space complexity advantages as the
resulting public key is much smaller in a data storage sense than those proposed
by GGH, as will be shown later in this paper. Rather than Babai’s Round-
Off method [29] as suggested by Goldreich et al., Micciancio suggested the use
of Babai’s Nearest-Plane method [29] to address the BDD problem. However,
implementations of this algorithm are extremely slow, again limiting practicality.
It is possible however to adapt this cryptosystem to use Babai’s Round-Off
method and in doing so, much faster decryption speeds are seen, provided that
the matrix inverse is precomputed. Unfortunately, the storage requirement for
this matrix inverse is extremely large and practicality is again limited. We will
show later in this paper how we can reduce this storage requirement through a
special sub-class of Hermite Normal Forms, without reducing security.



Other cryptosystems in general lattices The use of general lattices seems
to preclude any notion of provable security based on hard lattice assumptions,
as we are obliged to create a good basis of a particular stucture in order to allow
decryption. Other ideas have been proposed however, based on random bases
in conditional lattices. In 2000, Fischlin and Seifert [26] proposed an original
lattice construction with a good basis with which BDD is easy to perform. In
this cryptosystem, the tensor product of the lattice is used to obtain a divide
and conquer way to solve the BDD problem.

In 2003, Paeng, Jung and Ha [28] proposed to use a lattice built on polynomial
rings. However, in 2007, Han, Kim, and Yeom [32] used a lattice reduction to
cryptanalyse this scheme. Their attack recovered the secret key, even in huge
dimensions (> 1000) and hence make the PJH scheme unusable.

Imperfect Decryption We note that all existing lattice-based cryptosystems
proposed in the literature have some small non-zero probability of decryption
error. This small but evaluable probability of decryption error has been shown
to lead to a cryptanalysis of several schemes, a successful example of such being
Proos’ attack on NTRU [33]. Since NTRU is the most practical cryptosystem
that is related to lattice theory, NTRU has been studied exhaustively in the
literature. For a more elaborate discussion on the decryption error problem in
NTRU, we refer the readers to [34].

Although there are some methods to protect cryptosystems against decryp-
tion errors [35], these adversely affect the efficiency of the cryptosystems. Based
on past attacks on existing lattice cryptosystems it seems to be beneficial in
terms of security confidence to construct a lattice-based cryptosystem that is
free from decryption errors by design. Construction of such a cryptosystem with
a zero error-probability a design goal will remove the algorithmic and compu-
tational complexity involved in using “tack-on” systems such as that described
above.

2 Rotated Nearly-Orthogonal Bases

2.1 Motivation

While the LLL-reduced [36] private bases proposed by Micciancio can be seen
to exhibit good orthogonality, the LLL-reduction step is computationally ex-
pensive. While work is constantly being done to improve the computational
speed of this reduction (see [37–39]), we propose a faster method to produce
nearly-orthogonal bases, bypassing the LLL step altogether. The private basis
construction proposed by GGH has exceptionally good orthogonality as well as
being easy and quick to construct. However, the construction restricts the bases
to be oriented along the axes. This is unnecessary as the only requirement for
efficient BDD is orthogonality and, as such, we feel that this poses a limitation
on the private keyspace which could possibly be exploited in the future.



Moreover, the particular structure of the GGH diagonally-dominant basis
allows some attacks. For example, instead of looking for some short vector in
L(kId+M), it is easier to look for some close vector of (k, 0, . . . , 0) in L(kId+M).
Since the distance is short (‖M [1]‖2), this limits the security of the private basis.
To counteract this, we propose a rotation step to be added to the GGH private
basis construction phase, which will rotate the lattice probabilistically through
a number of planes, greatly increasing the private key-space and alleviating the
aforementioned security issue. Since these bases are in general random lattices,
they will still need to be structured to allow decryption. While we have designed
these bases to be resistant to all known attacks on GGH-style bases in gen-
eral lattices, several properties still distinguish these rotated bases from general
bases, such as the length of the first minima compared to the Gaussian heuris-
tic. Further research into this area needs to be conducted to provide a greater
security confidence that these properties are not able to be exploited.

2.2 Construction approaches

An obvious method to construct a randomized orthogonal basis non-aligned with
the axes is to use the Q matrix from a QR decomposition of a matrix A having
uniformly distributed, random coefficients. Since, however, the R matrix is not
needed, yet carries significant information from the original matrix, it is not only
wasteful from an information theoretic sense to generate this extra, unnecessary
entropy, it also results in a higher computational complexity [40]. Instead, a
method for generating a uniformly distributed randomized Q matrix directly is
sufficient. Several methods exist to create such Q matrices directly [40].

The butterfly orthogonal matrices used in Fast Fourier Transforms show
promise for two reasons. Firstly, butterfly matrices are computationally inexpen-
sive to generate in fixed precision as they are a product of n

2 Givens rotations.
Secondly, the product of a set of butterfly orthogonal matrices is uniformly dis-
tributed if the dimension is a power of 2 [40]. Unfortunately, when the dimension
is not a power of 2 however, the product of a set of butterfly orthogonal ma-
trices exhibit significant bias with some zero coefficients. These biases can be
mitigated through the generation of multiple sets of butterfly orthogonal matri-
ces combined with intermediary permutation matrices which act to distribute
the bias, however, this approach requires n permutated butterfly orthogonal
matrices to distribute the bias uniformly.

We can generalize the creation of Q to be a product of some number of
independent Givens rotations. To address the shortcoming discussed above, a
randomized approach can be taken to the creation of Q and uniformity can be
achieved significantly quicker in practice if the dimension is not a power of 2.

2.3 Givens rotations

Definition 7. Let i, j ∈ Z, i 6= j represent two distinct axes of a Hilbert space of
finite dimension d. Let θ ∈ R be an angle, −π ≤ θ ≤ π. A matrix multiplicative



transform G(i, j, θ) is defined as the rotation by θ through the plane defined by
the union of the axes i, j, where

∀p, q ∈ Z, 1 ≤ p, q ≤ d Gp,q


= sin θ if p = j and q = i
= − sin θ if p = i and q = j
= cos θ if p = q = i or j
= 1 if p = q 6= i or j
= 0 otherwise

This definition can be simplifed by describing the rotation transform as an iden-
tity matrix with the following exceptions: Gi,i = Gj,j = cos θ and Gj,i = −Gi,j =
sin θ.

A Givens rotation transform G has two properties that allows the construc-
tion of a uniformly distributed orthogonal basis. Firstly, since the product of a
basis A with a Givens rotation transform G(i, j, θ) is geometrically represented
as a rotation through an axial plane defined by the axes (i, j), it follows that the
multiplication of any basis with a Givens rotation transform will preserve orthog-
onality. Secondly, since the identity matrix is trivially orthogonal, the product
of an identity matrix with a Givens rotation transform will also be orthogonal,
therefore the Givens rotation matrix itself is orthogonal.

By creating a transform T being the product of a number of independent
Givens matrices, choosing each rotation plane and angle randomly, uniformity
can be achieved at little computational cost. To ensure uniformity, enough Givens
matrices are multiplied to ensure that every coefficient of the resultant basis T
is strictly greater than zero.

To perturb this orthogonal basis and ensure it is integral, the basis is multi-
plied by some small parameter k and the coefficients are then randomly rounded
off to one of the two nearest integers. This can be expressed as R ∈ Zn,n such
that R = kT + M where M ∈ Rn,n. To simplify, this can be represented as
R = bkGc+M ′ with M ′ ∈ [0, 1]n,n. This is a direct, rotated analog of the orig-
inal GGH specification, alleviating the security issue described above while still
maintaining high orthogonality.

2.4 Decryption Error

Due to attacks on lattice cryptosystems with decryption errors (such as Proos’
attack on NTRU [33], for a more elaborate discussion see [34]), our scheme has
been designed to avoid decryption error through a choice of parameter k and
the plaintext domain as described in Theorem 1.

Theorem 1. Let k ∈ R+, T ∈ Rn,n a rotation matrix, M ∈ Rn,n with |Mi,j | ≤ 1
and R = kT +M . Then for any vectors c, p ∈ Rn with ‖p‖2 < k−n

2 and q ∈ Zn
if c = p+ qR then q = bcR−1e. 2

2 Therefore, p can be computed correctly from c and B using Babai’s Round-Off
algorithm.



Proof (Theorem 1).
Let’s study c−

⌊
cR−1

⌉
R.

c−
⌊
cR−1

⌉
R = p+ qR−

⌊
(p+ qR)R−1

⌉
R

= p+ qR−
⌊
pR−1 + q

⌉
R

= p−
⌊
pR−1

⌉
R

Let’s study ‖pR−1‖∞.

‖pR−1‖∞ ≤ ‖pR−1‖2
≤ ‖p‖2‖R−1‖2
≤ ‖p‖2‖(kT +M)−1‖2
≤ ‖p‖2‖(kT )−1(Id+MT−1k−1)−1‖2
≤ ‖p‖2k−1‖T−1‖2‖(Id+MT−1k−1)−1‖2

Let’s study ‖(MT−1k−1)‖2.

‖(MT−1k−1)‖2 ≤ ‖M‖2‖T−1‖2k−1

T−1 is a rotation matrix (unitary matrix) then ‖T−1‖2 = 1 ([5], Chapter 2.5.6)
and ‖M‖2 ≤ nmax |Mi,j | ≤ n ([5], Chapter 2.3.2, Equation 2.3.8). As by k−n

2 >
0, we obtain n−1 > k−1 and

‖(MT−1k−1)‖2 < n× 1× n−1 = 1.

Therefore, as ‖(MT−1k−1)‖2 < 1, we have ‖(Id+MT−1k−1)‖2 ≤ 1
1−‖MT−1k−1‖2

([5], Chapter 2.3.4, Lemma 2.3.3). Therefore, we obtain

‖pR−1‖∞ ≤
‖p‖2k−1‖T−1‖2

1− ‖MT−1k−1‖2
≤ ‖p‖2‖T−1‖2
k − ‖M‖2‖T−1‖2

Then, ‖pR−1‖∞ ≤ ‖p‖2k−n <
1
2 .Therefore

⌊
pR−1

⌉
= 0. ut

In all scenarios tested, k = 2n where n is the basis dimension. Given this choice

of k, the correct plaintext domain used was [−d
√
n
2 e+ 1, d

√
n
2 e − 1]n.

3 Optimal Hermite Normal Forms

3.1 Definition

We define an “Optimal” Hermite Normal Form as a subclass of general Hermite
Normal Forms, where only one column (given a row-vector representation) is
non-trivial. See Def. 8.

Definition 8. Let L be an integer full-rank lattice of dimension d and H ∈ Zd,d
a basis of L. H is an Optimal Hermite Normal Form basis of L if and only if H
is a HNF basis and ∀1 < i ≤ d,Hi,i = 1.



3.2 Motivation

An analysis of the Micciancio cryptosystem reveals that due to the ciphertext
being the modulo reduction of the plaintext by the public basis, which itself is of
Hermite Normal Form, if this public basis is of a form whereby only one column
is non-trivial (i.e. only one diagonal is strictly greater than one), the ciphertext
is reduced to a form whereby only one coefficient is non-zero. This allows the
ciphertext to be represented as a scalar rather than a vector with no loss of
information. This construction was previously defined and used in GGH-based
signature scheme by Plantard et. al. [41]. While this construction has benefits in
and of itself, such as simplified ciphertext transmission, if the decryption method
is changed from Nearest-Plane to Round-Off, the primary benefits come from
the associated storage reduction of the private key.

While it is not strictly required to store the inverse of the private key to
perform Babai’s Round-Off, doing so dramatically reduces the computation costs
of the decryption phase and it is assumed that this inversion occurs in the key
generation phase. However, it can be seen that the coefficients of the inverse will
be significantly larger than those of the private basis itself, if stored as rational,
due to the fact that they are not bounded by some arbitrary small number used
in the construction. As such, a significant drawback of existing lattice based
cryptosystems utilizing such a precomputation step is extremely large storage
costs associated with the private key.

If Babai’s Round-Off algorithm [29] is used rather than the Nearest-Plane
method proposed by Micciancio, the first step of ciphertext decryption is to mul-
tiply the ciphertext by the inverse of the private basis before rounding off. Since
the ciphertext vector only has one non-zero coefficient, only the corresponding
row in the private basis inverse needs to be stored, again without any loss of
information. Since the inverse is many times larger than the basis, this reduc-
tion in storage size gives a storage requirement decrease approximately linear
in the dimension. In addition, since the speed of vector-matrix multiplication
is approximately linear in the size of the basis inverse, a dramatic reduction in
decryption times is also seen.

3.3 Naive testing

A simple way to find such “optimal” Hermite Normal Form bases is to start with
a good basis, reduce to Hermite Normal Form and check for optimality.

We define the following:

• Pr[optimal] – the probability of the Hermite Normal Form of a random good
basis being of the aforementioned optimal form
• Tcreate – the time to create a good basis
• THNF – the time to HNF a basis and check it is optimal

As such, it can be seen that the mean time taken to generate an optimal hermite
normal form via naive testing is:

Tnaive =
(Tcreate + THNF )

Pr[optimal]



3.4 Coprimality testing

It can be seen that a square matrix with a prime determinant will produce an
optimal HNF if no vectors lie on an axis, as since the HNF matrix is triangular,
the determinant is the product of the diagonal. Since the product is prime, only
one diagonal can be populated and if no vector lies on an axis, all resultant vec-
tors in the HNF produced must be non-trivial. Furthermore, empirical testing
reveals that suboptimal matrices predominantly have low valued diagonals in the
non-optimal column, which would not exist had the determinant been coprime
with these smaller values. With this in mind, we propose an improved method
over the naive method discussed above. An orthogonal private basis is first cre-
ated and the determinant calculated. If the determinant is coprime with some
set P of n smallest primes, the resultant HNF of this matrix has a much higher
probability of being optimal. We specifically define in our implementation that
n = 9, as the product of the 9 smallest primes is the largest such product that
is strictly less than 232 and hence can be represented as an integer on common
32-bit consumer platforms.

We define the following:

• P = {2, 3, 5, 7, 11, 13, 17, 19, 23}.
• Pr[coprime] – probability of the determinant of a random good basis being

coprime with all elements of the set P.
• Tcheck – the time to calculate the determinant and check coprimality with

the set P.

It can be seen that the time to find an optimal basis using this method is
the time to create and check coprimality, multiplied by the average number of
times this will need to be done in order to achieve determinant coprimality with
the set P. The time to calculate the HNF of this basis and check optimality is
then added on and the result is multiplied by the average number of times this
will need to be done to get optimal, given the co-primality of the determinant:

Toptimized =

Tcreate+Tcheck

Pr[coprime] + THNF

Pr[optimal|coprime]
.

3.5 Comparison

We coded these test cases in C++ using Victor Shoup’s NTL [42], compiled
against GNU MultiPrecision Library (GMP) [43]. These timing values were ob-
tained on a 2.1Ghz Intel Core 2 Duo platform with 4Gb RAM. The probability
values were assessed as an average across all test cases as no statistically signif-
icant deviation in probabilities was seen between dimensions.

A significant correlation between coprimality and optimality was noted Pr[optimal|coprime] ≈
0.9991 The extreme time required to compute the HNF transform matrix com-
pared to checking for coprimality, combined with the probability of a random
HNF matrix being of optimal form (Pr[optimal] ≈ 0.435) contributed to the
naive method being more than twice as slow on average as the optimized method
even if Pr[optimal] is small, ≈ 0.0724. See Fig. 1
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4 Our New Scheme

4.1 Construction

Key setup A key-pair is produced consisting of a rotated nearly-orthogonal
private basis R and an optimal public basis B, using the coprimality method
above. The basis R is stored and the populated column of B is stored as a vector
of length n. The inverse of R is also precomputed and the row corresponding to
the populated column of B is stored as a private vector. See Algorithm 1.

Algorithm 1: Key Setup

Input : n ∈ Z the dimension
Output: R,B ∈ Zn,n such that LR ≡ LB , RINV ∈ Qn

begin
P [9]←{2, 3, 5, 7, 11, 13, 17, 19, 23}
T ←RotationMatrix(n), k ← 2n
repeat

repeat
M ← {0, 1}n,n

R← bkT e+ M
until isCoprime(determinant(R), P )
B ← HNF(R)

until isOptimal(B)
RINV ← R−1

return {B.Col(1)}, {R, RINV .Row(1)}
end

Encryption The plaintext vector is reduced modulo the public basis to obtain
the ciphertext. As the public basis is of optimal HNF, the ciphertext can be
represented as a scalar. See Algorithm 2.



Algorithm 2: Encryption

Input : p ∈ Zn the plaintext vector, B ∈ Zn the public basis first column
Output: c ∈ Z the ciphertext scalar
begin

c← p[1]
for i← 2 to n do c← c− (p[i]×B[i])
c← c mod B[1]

end

Decryption To decrypt, the ciphertext scalar is multiplied with the R inverse
row vector and the values are rounded to the nearest integer. The result is then
multiplied by the R basis and subtracted from the ciphertext vector. Due to the
form of the ciphertext vector, this is only performed on the first value of the
resultant vector. See Algorithm 3.

Algorithm 3: Decryption

Input : c ∈ Z the ciphertext scalar, R ∈ Zn,n the private basis, RINV ∈ Qn

the private basis inverse first row
Output: p ∈ Zn the plaintext vector
begin

p← −bc×RINV e ×R
p[1] = p[1] + c

end

4.2 Results

All three cryptosystems were coded in C++ using Victor Shoup’s NTL [42] com-
piled against GNU MultiPrecision Library (GMP) [43]. With runtime speed and
numerical correctness design goals in both libraries, we feel that this choice of
implementation forms a good basis for comparison. These values were obtained
on a 2.1Ghz Intel Core 2 Duo platform with 4Gb RAM. For a practical assess-
ment and approximate comparison of keysizes, all keys were compressed with
the bzip2 algorithm. Decompression times were not included in timing results.

A brief overview of the space and time complexity of the cryptosystems dis-
cussed is displayed in Table 1. The public and private key sizes of the three
cryptosystems discussed were compared for a low dimension 400 and a high di-
mension 800 (see Table 2). As we are comparing these cryptosystems on both
a theoretic and practical basis, we define the private key as also containing
redundant, pre-computed private basis inverse. As can be seen, due to the re-
duced storage requirements of the private basis inverse resulting from the use
of Optimal Hermite Normal Forms, our cryptosystem has an extremely small
private key in comparison in both cases. Similarly, a great improvement in both
encryption and decryption speeds is seen over both the existing cryptosystems
discussed (See Fig. 2 ).3

3 To give an indication of speed, a fast implementation of RSA-2048 as displayed on
Bernstein’s eBACS page at http://bench.cr.yp.to/, is around 5643 kbps/69 kbps for
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Fig. 2. Encryption and Decryption Results

Table 1. Complexity of Encryption Schemes.

New GGH Mic

Private Key Size O(n2 logn) O(n2) O(n2 logn)
Public Key Size O(n2 logn) O(n3) O(n2 logn2)

Message Size O(n logn) O(n) O(n)
Encrypted Size O(n logn) O(n log(n)) O(n log(n))

Encryption Time O(n2 logn2) O(n2 logn) O(n2 logn)
Decryption Time O(n2 logn2) O(n2 logn) O(n5 log(n)2

Decryption Error No Yes Yes

5 Conclusion

We have described a new method for the creation of private bases in GGH-
like BDD-based cryptosystems that provides a much larger private key-space
without significantly decreasing key generation speed. This new method is based
on planar rotations and retains the high orthogonality of the GGH private key at
minimal computational expense. Furthermore, the use of these bases addresses
a security issue inherent in the original GGH diagonally-dominant bases and is
provably without decryption error.

We have also discussed the notion of “optimal” Hermite Normal Forms and
the benefits arising from the use of such bases in lattice-based cryptosystems.
Furthermore, we have described two methods to find lattices with optimal Her-
mite Normal Forms and compared these methods to assess suitability for imple-
menting such a cryptosystem.

Finally, we have created a class of lattice based cryptosystems, using the two
aforementioned improvements. We have provided a fair comparison between this
cryptosystem and the two existing cryptosystems discussed.

encryption and decryption respectively on a similar processor to that used for testing
in this paper



Table 2. Average compressed Key-sizes for low and high security.

Dimension 400 800

Public Key Private Key Public Key Private Key

GGH 18.7 MB 43.0 MB 153.0 MB 374.4 MB

Micciancio (Round-Off) 241.4 kB 95.4 MB 1.1 MB 861.6 MB

New Scheme 200.8 kB 281.2 kB 885.8 kB 1.1 MB
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