Modular Arithmetic for PQC Implementations

Thomas Plantard

Nokia Bell Labs

https://thomas-plantard.github.io thomas.plantard@nokia-bell-labs.com

Deployment of post-quantum cryptography IHP Paris 2024

Outline

- Introduction
 - Structure in Cryptography
 - Kyber
- Modular Multiplication Algorithms
 - Barrett Reduction
 - Montgomery Reduction
 - Word Size Modular Multiplication
- Number Systems
 - Polynomial Modular Number systems
 - Residue Number System
- Special Moduli
- 5 Overview and Conclusion

Outline

- Introduction
 - Structure in Cryptography
 - Kyber
- 2 Modular Multiplication Algorithms
 - Barrett Reduction
 - Montgomery Reduction
 - Word Size Modular Multiplication
- Number Systems
 - Polynomial Modular Number systems
 - Residue Number System
- Special Moduli
- 5 Overview and Conclusion

Construction - Cryptographer

Create a link between:

- one hard to compute function
- 2 one easy to compute function

Construction - Cryptographer

Create a link between:

one hard to compute function RSA: Factorization

one easy to compute function RSA: Modular Exponentiation

Construction - Cryptographer

Create a link between:

one hard to compute function RSA: Factorization

2 one easy to compute function RSA: Modular Exponentiation

Analyze - Cryptanalyst

Find better way to compute the hard function

Construction - Cryptographer

Create a link between:

one hard to compute function RSA : Factorization

one easy to compute function RSA : Modular Exponentiation

Analyze - Cryptanalyst

Find better way to compute the hard function

Optimization - Computer Arithmetician

Find better way to compute the easy to compute function

Two type of structures

- Identifiable: Able to check in efficiently way
- Midden: As hard to identify as to solve security problem

Two type of structures

- Identifiable: Able to check in efficiently way
- Widden: As hard to identify as to solve security problem

Example

- Code: Quasicyclic
- Multivariate: Oil/Vinegar Structure
- lattice based: Ideal Lattice Diagonal Dominant
- LWE: Ring LWE Module LWE

Two type of structures

- Identifiable: Able to check in efficiently way
- Widden: As hard to identify as to solve security problem

Example

- Code: Quasicyclic
- Multivariate: Oil/Vinegar Structure
- lattice based: Ideal Lattice Diagonal Dominant
- LWE: Ring LWE Module LWE

Memory - Compact object

Often a Polynomial Structure instead of a Matrix

Example: Quasicyclic

Memory - Compact object

Often a Polynomial Structure instead of a Matrix

Example: Quasicyclic

Speed - Operating on object more efficiently

Polynomial Multiplication faster than Vector-Matrix

Example: Module LWE

Memory - Compact object

Often a Polynomial Structure instead of a Matrix

Example: Quasicyclic

Speed - Operating on object more efficiently

Polynomial Multiplication faster than Vector-Matrix

Example: Module LWE

Functionality

Allow to perform new operation

Example: Ideal Lattice used by Gentry for first FHE Scheme

Memory - Compact object

Often a Polynomial Structure instead of a Matrix

Example: Quasicyclic

Speed - Operating on object more efficiently

Polynomial Multiplication faster than Vector-Matrix

Example: Module LWE

Functionality

Allow to perform new operation

Example: Ideal Lattice used by Gentry for first FHE Scheme

Security - Weaker Problem

Often unstudied problem

Outline

- Introduction
 - Structure in Cryptography
 - Kyber
- 2 Modular Multiplication Algorithms
 - Barrett Reduction
 - Montgomery Reduction
 - Word Size Modular Multiplication
- 3 Number Systems
 - Polynomial Modular Number systems
 - Residue Number System
- Special Modul
- 5 Overview and Conclusion

Q-Ary Lattice

$$\mathcal{L} = egin{pmatrix} qId & 0 \ A & Id \end{pmatrix}$$
 with $q = n^{O(1)}$

Q-Ary Lattice

$$\mathcal{L} = \begin{pmatrix} qId & 0 \\ A & Id \end{pmatrix}$$
 with $q = n^{O(1)}$

Module Lattice

A composed of Toeplitz matrix block generated by polynomial

Q-Ary Lattice

$$\mathcal{L} = \begin{pmatrix} qId & 0 \\ A & Id \end{pmatrix}$$
 with $q = n^{O(1)}$

Module Lattice

A composed of Toeplitz matrix block generated by polynomial

With a Cyclotomic Polynomial Φ

A composed of Negacyclic block

Q-Ary Lattice

$$\mathcal{L} = \begin{pmatrix} qId & 0 \\ A & Id \end{pmatrix}$$
 with $q = n^{O(1)}$

Module Lattice

A composed of Toeplitz matrix block generated by polynomial

With a Cyclotomic Polynomial Φ

A composed of Negacyclic block

Φ Smooth in \mathbb{F}_q

$$\Phi = (X - \gamma_0) \dots (X - \gamma_n) \bmod q$$

Q-Ary Lattice

$$\mathcal{L} = \begin{pmatrix} qId & 0 \\ A & Id \end{pmatrix}$$
 with $q = n^{O(1)}$

SPEED/MEMORY

No Multi Precision Arithmetic

Module Lattice

A composed of Toeplitz matrix block generated by polynomial

With a Cyclotomic Polynomial Φ

A composed of Negacyclic block

Φ Smooth in \mathbb{F}_q

$$\Phi = (X - \gamma_0) \dots (X - \gamma_n) \bmod q$$

Q-Ary Lattice

$$\mathcal{L} = \begin{pmatrix} qId & 0 \\ A & Id \end{pmatrix}$$
 with $q = n^{O(1)}$

SPEED/MEMORY

No Multi Precision Arithmetic

Module Lattice

A composed of Toeplitz matrix block generated by polynomial

MEMORY/SPEED

Polynomial Multiplication faster than Matrix Multiplication

With a Cyclotomic Polynomial Φ

A composed of Negacyclic block

Φ Smooth in \mathbb{F}_q

$$\Phi = (X - \gamma_0) \dots (X - \gamma_n) \bmod q$$

Q-Ary Lattice

$$\mathcal{L} = \begin{pmatrix} qId & 0 \\ A & Id \end{pmatrix}$$
 with $q = n^{O(1)}$

SPEED/MEMORY

No Multi Precision Arithmetic

Module Lattice

A composed of Toeplitz matrix block generated by polynomial

MEMORY/SPEED

Polynomial Multiplication faster than Matrix Multiplication

With a Cyclotomic Polynomial Φ

A composed of Negacyclic block

MEMORY

Less Expansion lead smaller q

Φ Smooth in \mathbb{F}_q

$$\Phi = (X - \gamma_0) \dots (X - \gamma_n) \bmod q$$

Q-Ary Lattice

$$\mathcal{L} = \begin{pmatrix} qId & 0 \\ A & Id \end{pmatrix}$$
 with $q = n^{O(1)}$

SPEED/MEMORY

No Multi Precision Arithmetic

Module Lattice

A composed of Toeplitz matrix block generated by polynomial

MEMORY/SPEED

Polynomial Multiplication faster than Matrix Multiplication

With a Cyclotomic Polynomial Φ

A composed of Negacyclic block

MEMORY

Less Expansion lead smaller q

Φ Smooth in \mathbb{F}_q

$$\Phi = (X - \gamma_0) \dots (X - \gamma_n) \bmod q$$

SPEED

Polynomial Multiplication using NTT in $O(n \log n)$

Complexity

Complexity

Polynomial Multiplication $A \times B$

- Schoolbook, $O(n^2)$
- Karatsuba, $O(n^{1.585})$
- Toom-Cook $O(n^{1.465})\dots$
- NTT $O(n \log n)$

Complexity

Polynomial Multiplication $A \times B$

- Schoolbook, $O(n^2)$
- Karatsuba, $O(n^{1.585})$
- Toom-Cook $O(n^{1.465})\dots$
- NTT $O(n \log n)$

$A \times B \mod \Phi$

Naturally included with NTT

 Φ smooth in F_q

Φ smooth in F_q

Polynomial Multiplication

- $A \times B \mod \Phi$
- with $\Phi = (X \gamma_1)(X \gamma_2) \dots (X \gamma_n) \mod q$

Φ smooth in F_q

Polynomial Multiplication

- $A \times B \mod \Phi$
- with $\Phi = (X \gamma_1)(X \gamma_2) \dots (X \gamma_n) \mod q$

Polynomial Multiplication using NTT

- $\bullet \ \tilde{A} \leftarrow NTT(A) \text{ with } \tilde{A} = [A(\gamma_1), A(\gamma_2), \dots, A(\gamma_n)]$
- ② $\tilde{B} \leftarrow NTT(B)$ with $\tilde{B} = [B(\gamma_1), B(\gamma_2), \dots, B(\gamma_n)]$
- $\bullet \quad \tilde{C} \leftarrow \tilde{A}.\tilde{B} \text{ with } \tilde{C} = [A(\gamma_1)B(\gamma_1), A(\gamma_2)B(\gamma_2), \dots, A(\gamma_n)B(\gamma_n)]$

 Φ not friable in F_q

Φ not friable in F_q

Find Q

- $Q \ge nq^2$
- $\Phi = (X \gamma_1)(X \gamma_2) \dots (X \gamma_n) \operatorname{mod} Q$

Φ not friable in F_q

Find Q

- $Q \ge nq^2$
- $\Phi = (X \gamma_1)(X \gamma_2) \dots (X \gamma_n) \operatorname{mod} Q$

Polynomial Multiplication using NTT

- $\bullet \ \tilde{A} \leftarrow NTT(A) \text{ with } \tilde{A} = [A(\gamma_1), A(\gamma_2), \dots, A(\gamma_n)]$
- ② $\tilde{B} \leftarrow NTT(B)$ with $\tilde{B} = [B(\gamma_1), B(\gamma_2), \dots, B(\gamma_n)]$
- $\bullet \quad \tilde{C} \leftarrow A \text{ with } \tilde{C} = [A(\gamma_1)B(\gamma_1), A(\gamma_2)B(\gamma_2), \dots, A(\gamma_n)B(\gamma_n)]$

Conclusion

Gain of Φ Smooth in \mathbb{F}_q

- NTT on \mathbb{F}_q instead of NTT on \mathbb{F}_Q with $Q=nq^2$
- $q \lesssim 12$ bits and $Q \lesssim 30$ bits
- For Kyber: need to operate on 64bits instead of 32bits

Conclusion

Gain of Φ Smooth in \mathbb{F}_q

- NTT on \mathbb{F}_q instead of NTT on \mathbb{F}_Q with $Q=nq^2$
- $q \lesssim 12$ bits and $Q \lesssim 30$ bits
- For Kyber: need to operate on 64bits instead of 32bits

Structure

- Structure have an unknown cost
- Gain need to be at least significant
- With no other solutions

Outline

- Introduction
 - Structure in Cryptography
 - Kyber
- Modular Multiplication Algorithms
 - Barrett Reduction
 - Montgomery Reduction
 - Word Size Modular Multiplication
- Number Systems
 - Polynomial Modular Number systems
 - Residue Number System
- Special Modul
- 5 Overview and Conclusion

Main Problematic

Modular Multiplication

Compute

$$AB \mod P = AB - \left\lfloor \frac{AB}{P} \right\rfloor P.$$

- A, B Input Data
- *P* Input Data on which **Precomputation** is possible.

Main Problematic

Modular Multiplication

Compute

$$AB \bmod P = AB - \left\lfloor \frac{AB}{P} \right\rfloor P.$$

- A, B Input Data
- P Input Data on which **Precomputation** is possible.

Constraints

- Size of moduli: form 10bits to 10000bits
- Form of Moduli
- Side-Channel resistance
- Speed vs Memory

Notation

Compute AB mod P

- with $0 \le A, B < P$
- with $P < 2^n$

Notation

Compute AB mod P

- with $0 \le A, B < P$
- with $P < 2^n$

Notation for 2*n*-register

 \bigcirc $[A]_k$ the k lowest bit of A i.e.

$$[A]_k = A \mod 2^k$$

(2) $[A]^k$ the k highest bit of A i.e.

$$[A]_k = \left\lfloor \frac{A}{2^{2n-k}} \right\rfloor$$

Outline

- Introduction
 - Structure in Cryptography
 - Kyber
- Modular Multiplication Algorithms
 - Barrett Reduction
 - Montgomery Reduction
 - Word Size Modular Multiplication
- Number Systems
 - Polynomial Modular Number systems
 - Residue Number System
- Special Modul
- Overview and Conclusion

General Methodology

- an integer multiplication is performed, followed by
- approximation of the euclidean division quotient, followed by
- some final corrections are performed.

General Methodology

- an integer multiplication is performed, followed by
- approximation of the euclidean division quotient, followed by
- 3 some final corrections are performed.

Barrett Modular Multiplication

Input :
$$0 \le A, B < P$$
 and $R = \lfloor \frac{2^{2n}}{P} \rfloor$
Output: $C = AB \mod P$
begin
$$C \leftarrow AB$$

$$Q \leftarrow [[C]^{n-1}R]^n$$

$$C \leftarrow C - QP$$
if $C \ge P$ then $C \leftarrow C - P$;
if $C \ge P$ then $C \leftarrow C - P$;

end

Example

• Constant: P = 8461

• Precomputation: $R = \left| \frac{10^8}{8461} \right| = 11818$

• Input A = 6932 B = 4121

Example

- Constant: *P* = 8461
- Precomputation: $R = \left| \frac{10^8}{8461} \right| = 11818$
- Input A = 6932 B = 4121

Computation

1 $C \leftarrow A * B = 28566772$

Example

- Constant: *P* = 8461
- Precomputation: $R = \left| \frac{10^8}{8461} \right| = 11818$
- Input A = 6932 B = 4121

- **1** $C \leftarrow A * B = 28566772$
- $[C]^4R = 2856 * 11818 = 33752208$

Example

- Constant: *P* = 8461
- Precomputation: $R = \left| \frac{10^8}{8461} \right| = 11818$
- Input A = 6932 B = 4121

- **1** $C \leftarrow A * B = 28566772$
- $(C)^4 R = 2856 * 11818 = 33752208$
- O-QP = 28566772 3375 * 8461

Example

- Constant: *P* = 8461
- Precomputation: $R = \left| \frac{10^8}{8461} \right| = 11818$
- Input A = 6932 B = 4121

- **1** $C \leftarrow A * B = 28566772$
- $(C)^4 R = 2856 * 11818 = 33752208$

Example

- Constant: *P* = 8461
- Precomputation: $R = \left| \frac{10^8}{8461} \right| = 11818$
- Input A = 6932 B = 4121

- **1** $C \leftarrow A * B = 28566772$
- $(C)^4R = 2856 * 11818 = 33752208$
- \bullet 10897 8461 = 2436

Advantage

- Avoid division
- Only requires cheap precomputation
- Final Correction can be omitted using redundancy

Advantage

- Avoid division
- Only requires cheap precomputation
- Final Correction can be omitted using redundancy

Drawback

There is better

Outline

- Introduction
 - Structure in Cryptography
 - Kyber
- Modular Multiplication Algorithms
 - Barrett Reduction
 - Montgomery Reduction
 - Word Size Modular Multiplication
- 3 Number Systems
 - Polynomial Modular Number systems
 - Residue Number System
- Special Modul
- Overview and Conclusion

General Methodology

- Eliminate Lower bits instead of higher bits
- 2 Then shift to avoid division

General Methodology

- Eliminate Lower bits instead of higher bits
- 2 Then shift to avoid division

Montgomery Modular Multiplication

```
Input : R = (-P^{-1}) \mod 2^n
Output: C = AB2^{-n} \mod P
begin
C \leftarrow AB
Q \leftarrow [CR]_n
C \leftarrow [C + QP]^n
if C \ge P then C \leftarrow C - P;
```

end

Example

- Constant: *P* = 8461
- Precomputation: $R = -P^{-1} \mod 10^4 = 2859$
- Input A = 6932 B = 4121

Example

- Constant: *P* = 8461
- Precomputation: $R = -P^{-1} \mod 10^4 = 2859$
- Input A = 6932 B = 4121

Computation

1 $C \leftarrow A * B = 28566772$

Example

- Constant: *P* = 8461
- Precomputation: $R = -P^{-1} \mod 10^4 = 2859$
- Input A = 6932 B = 4121

- **1** $C \leftarrow A * B = 28566772$
- $Q = [CR]_4 = [6772 * 2859] = [19361148]_4$

Example

- Constant: *P* = 8461
- Precomputation: $R = -P^{-1} \mod 10^4 = 2859$
- Input A = 6932 B = 4121

- **1** $C \leftarrow A * B = 28566772$
- $Q = [CR]_4 = [6772 * 2859] = [19361148]_4$
- C + QP = 28566772 + 1148 * 8461 = 38280000

Example

- Constant: *P* = 8461
- Precomputation: $R = -P^{-1} \mod 10^4 = 2859$
- Input A = 6932 B = 4121

- **1** $C \leftarrow A * B = 28566772$
- $Q = [CR]_4 = [6772 * 2859] = [19361148]_4$
- C + QP = 28566772 + 1148 * 8461 = 38280000
- \bullet C = 3828

Montgomery Representation

Shifted output of Montgomery algorithm

- Indeed $AB2^{-n} \mod P$ instead of $AB \mod P$
- Return 3828 instead of 2436
- $3828 * 10^4 \mod P = 38280000 \mod 8461 = 2436$

Montgomery Representation

Shifted output of Montgomery algorithm

- Indeed $AB2^{-n} \mod P$ instead of $AB \mod P$
- Return 3828 instead of 2436
- $3828 * 10^4 \mod P = 38280000 \mod 8461 = 2436$

Montgomery representation, $\overline{A} = A2^n \mod P$

$$Mont(\overline{A}, \overline{B}) = \overline{A} * \overline{B} * 2^{-n} \mod P$$

= $(A2^n) * (B2^n) * 2^{-n} \mod P$
= $AB2^n \mod P$
= \overline{AB}

Outline

- Introduction
 - Structure in Cryptography
 - Kyber
- Modular Multiplication Algorithms
 - Barrett Reduction
 - Montgomery Reduction
 - Word Size Modular Multiplication
- Number Systems
 - Polynomial Modular Number systems
 - Residue Number System
- Special Moduli
- 5 Overview and Conclusion

Modular Multiplication for Word Size moduli - 2021

Idea

- Eliminate 2*n*-bits lower bits.
- Compute $AB(-2^{-2n}) \mod P$ even if $AB < 2^{2n}$

Modular Multiplication for Word Size moduli - 2021

Idea

- Eliminate 2*n*-bits lower bits.
- Compute $AB(-2^{-2n}) \mod P$ even if $AB < 2^{2n}$

Word Size Modular Multiplication

```
Input : R = P^{-1} \mod 2^{2n}

Output: C = AB(-2^{-2n}) \mod P

begin

C \leftarrow [([[ABR]_{2n}]^n + 1)P]^n

if C = P then C \leftarrow 0;
```

end

- Constant: *P* = 8461
- Precomputation: $R = P^{-1} \mod 10^8 = 40787141$
- Input A = 6932 B = 4121

- Constant: *P* = 8461
- Precomputation: $R = P^{-1} \mod 10^8 = 40787141$
- Input A = 6932 B = 4121

1
$$C \leftarrow A * B = 28566772$$

- Constant: *P* = 8461
- Precomputation: $R = P^{-1} \mod 10^8 = 40787141$
- Input A = 6932 B = 4121

- **1** $C \leftarrow A * B = 28566772$
- $(CR)_8 = [28566772 * 40787141]_8 = [1165156957478852]_8$

- Constant: *P* = 8461
- Precomputation: $R = P^{-1} \mod 10^8 = 40787141$
- Input A = 6932 B = 4121

- **1** $C \leftarrow A * B = 28566772$
- $(CR)_8 = [28566772 * 40787141]_8 = [1165156957478852]_8$
- $(CR)_8 = 57478852$ [For Free]

- Constant: *P* = 8461
- Precomputation: $R = P^{-1} \mod 10^8 = 40787141$
- Input A = 6932 B = 4121

- **1** $C \leftarrow A * B = 28566772$
- $(CR)_8 = [28566772 * 40787141]_8 = [1165156957478852]_8$
- $(CR)_8 = 57478852$ [For Free]
- $Q = [[CR]_8]^4 + 1 = 5747 + 1 = 5748$

- Constant: *P* = 8461
- Precomputation: $R = P^{-1} \mod 10^8 = 40787141$
- Input A = 6932 B = 4121

- **1** $C \leftarrow A * B = 28566772$
- $(CR)_8 = [28566772 * 40787141]_8 = [1165156957478852]_8$
- $(CR)_8 = 57478852$ [For Free]
- $Q = [[CR]_8]^4 + 1 = 5747 + 1 = 5748$
- QP = 5748 * 8461 = 48633828 [No more C]

- Constant: *P* = 8461
- Precomputation: $R = P^{-1} \mod 10^8 = 40787141$
- Input A = 6932 B = 4121

Computation

- **1** $C \leftarrow A * B = 28566772$
- $(CR)_8 = [28566772 * 40787141]_8 = [1165156957478852]_8$
- $(CR)_8 = 57478852$ [For Free]
- $Q = [[CR]_8]^4 + 1 = 5747 + 1 = 5748$
- QP = 5748 * 8461 = 48633828 [No more C]
- **6** C = 4863

Require Representation

Montgomery's like Representation

- Return $AB(-2^{-2n}) \mod P$ instead of $AB \mod P$
- $4863*(-10^8) \mod 8461 = 2436$
- Same type of representation than Montgomery

Modular Multiplication for Word Size moduli - 2021

Advantage

- Small Number of Operation with Register shift only
- Minimal Redundancy: No correction/IF result always between [0, P]
- One register only

Modular Multiplication for Word Size moduli - 2021

Advantage

- Small Number of Operation with Register shift only
- Minimal Redundancy: No correction/IF result always between [0, P]
- One register only

Faster Multiplication by a constant

- ullet for ABR, ompute only one time BR for A_0BR and A_1BR
- Gain for multiplication by "constant": 2 MUL instead of 3
- Sometime naturally done by compiler

Modular Multiplication for Word Size moduli - 2021

Advantage

- Small Number of Operation with Register shift only
- $oldsymbol{Q}$ Minimal Redundancy: No correction/IF result always between [0, P]
- One register only

Faster Multiplication by a constant

- for ABR, ompute only one time BR for A_0BR and A_1BR
- Gain for multiplication by "constant": 2 MUL instead of 3
- Sometime naturally done by compiler

Word Size

 $P \lesssim 0.6180 \times 2^n$ on a 2*n*-processor. Example: 31.3bits on 64bits

Outline

- Introduction
 - Structure in Cryptography
 - Kyber
- 2 Modular Multiplication Algorithms
 - Barrett Reduction
 - Montgomery Reduction
 - Word Size Modular Multiplication
- Number Systems
 - Polynomial Modular Number systems
 - Residue Number System
- Special Modul
- 5 Overview and Conclusion

Number systems

Positional number system with radix β

$$X = \sum_{i=0}^{n-1} x_i \beta^i$$
 with $x_i \in \{0, ...\beta - 1\}$

Example: $X = (1315)_{10} = (2, 4, 4, 3)_8 = 3 + 4 \times 8 + 4 \times 8^2 + 2 \times 8^3$

Number systems

Positional number system with radix β

$$X = \sum_{i=0}^{n-1} x_i \beta^i$$
 with $x_i \in \{0, ...\beta - 1\}$

Example: $X = (1315)_{10} = (2, 4, 4, 3)_8 = 3 + 4 \times 8 + 4 \times 8^2 + 2 \times 8^3$

Modular number system **MNS** (p, n, γ, ρ)

$$X = \sum_{i=0}^{n-1} x_i \gamma^i \mod P \qquad \text{with } x_i \in \{0, \dots, \rho - 1\}$$

- $MNS(p = 17, n = 3, \gamma = 7, \rho = 3)$
- $a = \sum_{i=0}^{2} x_i 7^i \mod 17$ with $a_i \in \{0, 1, 2\}$

$\sum_{i=0}^{\infty} x_i i$ mod $\sum_{i=0}^{\infty} x_i i$					
0	1	2	3	4	
5	6	7	8	9	
10	11	12	13	14	
15	16				

- $MNS(p = 17, n = 3, \gamma = 7, \rho = 3)$
- $a = \sum_{i=0}^{2} x_i 7^i \mod 17$ with $a_i \in \{0, 1, 2\}$

<i>□</i> 1=0 '		, - (/ /)		
0	1	2	3	4
0				
5	6	7	8	9
10	11	12	13	14
15	16			

- $MNS(p = 17, n = 3, \gamma = 7, \rho = 3)$
- $a = \sum_{i=0}^{2} x_i 7^i \mod 17$ with $a_i \in \{0, 1, 2\}$

<i>□</i> 1=0 '		, - (/ /)		
0	1	2	3	4
0	1			
5	6	7	8	9
10	11	12	13	14
15	16			

- $MNS(p = 17, n = 3, \gamma = 7, \rho = 3)$
- $a = \sum_{i=0}^{2} x_i 7^i \mod 17$ with $a_i \in \{0, 1, 2\}$

<i>□</i> 1=0 ·		. (, , ,		
0	1	2	3	4
0	1	2		
5	6	7	8	9
10	11	12	13	14
15	16			

- $MNS(p = 17, n = 3, \gamma = 7, \rho = 3)$
- $a = \sum_{i=0}^{2} x_i 7^i \mod 17$ with $a_i \in \{0, 1, 2\}$

1						
0	1	2	3	4		
0	1	2				
5	6	7	8	9		
		X	X+1	X + 2		
10	11	12	13	14		
15	16					

- $MNS(p = 17, n = 3, \gamma = 7, \rho = 3)$
- $a = \sum_{i=0}^{2} x_i 7^i \mod 17$ with $a_i \in \{0, 1, 2\}$

<i>∠</i> 1=0 '		, - (/ /)		
0	1	2	3	4
0	1	2		
5	6	7	8	9
		X	X+1	X + 2
10	11	12	13	14
				2 <i>X</i>
15	16			
2X + 1	2X + 2			

- $MNS(p = 17, n = 3, \gamma = 7, \rho = 3)$
- $a = \sum_{i=0}^{2} x_i 7^i \mod 17$ with $a_i \in \{0, 1, 2\}$

∠ 1=0		(, , ,		
0	1	2	3	4
0	1	2		
5	6	7	8	9
$X^2 + X$	$X^2 + X + 1$	X	X+1	X + 2
10	11	12	13	14
		$X^{2} + 2X$	$X^2 + 2X + 1$	2 <i>X</i>
15	16			
2X + 1	2X + 2			

- $MNS(p = 17, n = 3, \gamma = 7, \rho = 3)$
- $a = \sum_{i=0}^{2} x_i 7^i \mod 17$ with $a_i \in \{0, 1, 2\}$

∠ 1=0		. , , ,		
0	1	2	3	4
0	1	2	$2X^{2} + X$	$2X^2 + X + 1$
5	6	7	8	9
$X^2 + X$	$X^2 + X + 1$	X	X+1	X + 2
10	11	12	13	14
$2X^{2} + 2X$	$2X^2 + 2X + 1$	$X^{2} + 2X$	$X^2 + 2X + 1$	2 <i>X</i>
15	16			
2X + 1	2X + 2			

How find a "good" Modular Number System?

What do we need?

1 Compact: A PMNS where ρ is small (about $\rho \sim p^{1/n}$)

2 Efficient: "fast" arithmetic on the MNS

How find a "good" Modular Number System?

What do we need?

- **1** Compact: A PMNS where ρ is small (about $\rho \sim \rho^{1/n}$)
- 2 Efficient: "fast" arithmetic on the MNS

Polynomial MNS

A modular number system (p, n, γ, ρ) with a **nice polynomial** E of degree n such that

- **1** E is irreducible over \mathbb{Q} ,
- $E(\gamma) = 0 \bmod P$

How find a "good" Modular Number System?

What do we need?

- **1** Compact: A PMNS where ρ is small (about $\rho \sim \rho^{1/n}$)
- Efficient: "fast" arithmetic on the MNS

Polynomial MNS

A modular number system (p, n, γ, ρ) with a **nice polynomial** E of degree n such that

- **1** E is irreducible over \mathbb{Q} ,
- $E(\gamma) = 0 \bmod P$

and $A \times B \rightarrow AB \mod E$ can be done efficiently

Existing Solutions

Option for *E*

- a) power of 2 cyclotomic polynomial i.e. $X^{2^k} + 1$,
- b) polynomial of the form $X^n c$,
- c) polynomial of the form $X^n aX b$,
- d) trinomial $X^n \pm X^k \pm 1$ with $k \leq \frac{n}{2}$,
- e) quadrinomial $X^n \pm X^k \pm X^l \pm 1$ with $l < k \le \frac{n}{2}$.

Existing Solutions

Option for E

- a) power of 2 cyclotomic polynomial i.e. $X^{2^k} + 1$,
- b) polynomial of the form $X^n c$,
- c) polynomial of the form $X^n aX b$,
- d) trinomial $X^n \pm X^k \pm 1$ with $k \leq \frac{n}{2}$,
- e) quadrinomial $X^n \pm X^k \pm X^l \pm 1$ with $l < k \le \frac{n}{2}$.

Existence Issue

No guarantee, there exists a polynomial both **irreducible** and with a **root** in \mathbb{F}_p for a given p.

Binomial $aX^n - b$

For any prime p and $n \in \mathbb{N}_{\geq 2}$, there exists a binomial $E = aX^n - b$ with

- 1) E is irreducible over \mathbb{Q} ,
- 2) E have at least one root, γ , in \mathbb{F}_p ,
- 3) $1 \le a < b \le \frac{57}{34}n$

Binomial $aX^n - b$

For any prime p and $n \in \mathbb{N}_{\geq 2}$, there exists a binomial $E = aX^n - b$ with

- 1) E is irreducible over \mathbb{Q} ,
- 2) E have at least one root, γ , in \mathbb{F}_p ,
- 3) $1 \le a < b \le \frac{57}{34}n$

- P = 8461, n = 4
- $\frac{57}{34}n \sim 6.71$
- There exist an irreducible polynomial $aX^4 b$ with $1 \le a < b \le 6$
 - **1** E is irreducible over \mathbb{Q} ,
 - 2 E has a root modulo 8461

Binomial $aX^n - b$

For any prime p and $n \in \mathbb{N}_{\geq 2}$, there exists a binomial $E = aX^n - b$ with

- 1) E is irreducible over \mathbb{Q} ,
- 2) E have at least one root, γ , in \mathbb{F}_p ,
- 3) $1 \le a < b \le \frac{57}{34}n$

Example

- P = 8461, n = 4
- $\frac{57}{34}n \sim 6.71$
- There exist an irreducible polynomial $aX^4 b$ with $1 \le a < b \le 6$
 - **1** E is irreducible over \mathbb{Q} ,
 - 2 E has a root modulo 8461

Solution

$$3X^4 - 4, X^4 - 5$$

PMNS Properties

Advantage

- Polynomial avoid costly carry management
- Natural Side-Channel resistance due too small redundancy
- Polynomial multiplication acceleratation (Karatsuba, Toom-Cook,NTT)

PMNS Properties

Advantage

- Polynomial avoid costly carry management
- Natural Side-Channel resistance due too small redundancy
- Polynomial multiplication acceleratation (Karatsuba, Toom-Cook,NTT)

Drawback

- Costly Comparison <
- Costly Euclidean division

Outline

- Introduction
 - Structure in Cryptography
 - Kyber
- 2 Modular Multiplication Algorithms
 - Barrett Reduction
 - Montgomery Reduction
 - Word Size Modular Multiplication
- Number Systems
 - Polynomial Modular Number systems
 - Residue Number System
- Special Modul
- 5 Overview and Conclusion

Chinese Remainder Theorem

- A RNS basis is (m_1, m_2, \ldots, m_n) with $M = \prod_{i=1}^n m_i$
- If we consider (x_1, x_2, \dots, x_n) with $0 \le x_i < m_i$
- Then $\exists !X < M$ with $x_i = |X|_{m_i} = X \mod m_i$

Chinese Remainder Theorem

- A RNS basis is (m_1, m_2, \ldots, m_n) with $M = \prod_{i=1}^n m_i$
- If we consider (x_1, x_2, \dots, x_n) with $0 \le x_i < m_i$
- Then $\exists !X < M$ with $x_i = |X|_{m_i} = X \mod m_i$

Arithmetic

- Addition: $A + B = (a_1 + b_1, a_2 + b_2, \dots, a_n + b_n)$
- Multiplication: $A \times B = (a_1 \times b_1, a_2 \times b_2, \dots, a_n \times b_n)$

Example

• A RNS basis: (31, 32, 33) with M = 32736

- A RNS basis: (31, 32, 33) with M = 32736
- $A = 6932 \rightarrow (19, 20, 2)$
- $B = 4121 \rightarrow (29, 25, 29)$

- A RNS basis: (31, 32, 33) with M = 32736
- $A = 6932 \rightarrow (19, 20, 2)$
- $B = 4121 \rightarrow (29, 25, 29)$
- $A \times B = (24, 20, 25) = 20980 \mod 32736$

- A RNS basis: (31, 32, 33) with M = 32736
- $A = 6932 \rightarrow (19, 20, 2)$
- $B = 4121 \rightarrow (29, 25, 29)$
- $A \times B = (24, 20, 25) = 20980 \mod 32736$
- $M = 32736 \neq P = 8461$

Example

- A RNS basis: (31, 32, 33) with M = 32736
- $A = 6932 \rightarrow (19, 20, 2)$
- $B = 4121 \rightarrow (29, 25, 29)$
- $A \times B = (24, 20, 25) = 20980 \mod 32736$
- $M = 32736 \neq P = 8461$

Solution: RNS to RNS conversion

- Modular Multiplication can be done modulo P
- Using two basis larger than P
- A second RNS basis: (29, 35, 37) with M = 37555

RNS Properties

Advantage

- Distribute operations from large number to small residues
- Addition and multiplication can be parallelized.
- Best case: $X_0 Y_0 + X_1 Y_1 + \cdots + X_k Y_k$ in vector-matrix multiplication.

RNS Properties

Advantage

- Distribute operations from large number to small residues
- Addition and multiplication can be parallelized.
- Best case: $X_0 Y_0 + X_1 Y_1 + \cdots + X_k Y_k$ in vector-matrix multiplication.

Drawback

- RNS to RNS Conversion is Quadratic
- Moduli Picking
- Costly Comparison <
- Costly Euclidean division

Outline

- Introduction
 - Structure in Cryptography
 - Kyber
- 2 Modular Multiplication Algorithms
 - Barrett Reduction
 - Montgomery Reduction
 - Word Size Modular Multiplication
- Number Systems
 - Polynomial Modular Number systems
 - Residue Number System
- 4 Special Moduli
- 5 Overview and Conclusion

Mersenne Moduli

Mersenne Modular Reduction - Lehmer 51 (Thanks Markku)

```
Input : P = 2^n - 1

Output: C = AB \mod P

begin

C \leftarrow AB

C \leftarrow [C]_n + [C]^n

if C \ge P then C \leftarrow C - P;
```

Mersenne Moduli

Advantage

Cheap Reduction

Mersenne Moduli

Advantage

Cheap Reduction

Drawback

Low density for Prime Mersenne

 $2^n - 1$ is prime for n =

 $2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217\dots$

Pseudo Mersenne - Crandall 92

ldea

Extend Mersenne Number to grow density to ensure some prime options

Pseudo Mersenne - Crandall 92

Idea

Extend Mersenne Number to grow density to ensure some prime options

Pseudo Mersenne Modular Reduction

```
Input: P = 2^n - c and 0 \le c^2 < 2^n
Output: C = AB \mod P
begin
C \leftarrow AB
C \leftarrow [C]_n + [C]^n c
C \leftarrow [C]_n + [C]^n c
if C \ge P then C \leftarrow C - P;
```

end

Pseudo-Mersenne Moduli: $2^n - c$

Advantage

- Density allows to have some prime. Example: $2^{32} 5$
- Great for Random Sampling

Pseudo-Mersenne Moduli: $2^n - c$

Advantage

- Density allows to have some prime. Example: $2^{32} 5$
- Great for Random Sampling

Modular Inversion

- If *p* is large, **Euclid Algorithm** or its variant
- ullet If p is small, **Modular exponentiation** using Fermat Theorem
- If p is small and Pseudo Mersenne, **Takagi Algorithm**

Pseudo-Mersenne Moduli: $2^n - c$

Advantage

- Density allows to have some prime. Example: $2^{32} 5$
- Great for Random Sampling

Modular Inversion

- If p is large, **Euclid Algorithm** or its variant
- If p is small, **Modular exponentiation** using Fermat Theorem
- If p is small and Pseudo Mersenne, **Takagi Algorithm**

Drawback

Reduction not so cheap for word size moduli

Special Moduli

Mersenne like moduli - Barrett Friendly

- Mersenne Numbers $P = 2^n 1$
- Pseudo Mersenne $P = 2^n c$ (Crandall 92)
- Pseudo Mersenne with $c > 2^{n/2}$ (BIP'02)
- Generalized Mersenne $P = 2^n 2^k \pm 1$ (Solinas 99)
- More Generalized Mersenne (Chung-Hassan'04)

Special Moduli

Mersenne like moduli - Barrett Friendly

- Mersenne Numbers $P = 2^n 1$
- Pseudo Mersenne $P = 2^n c$ (Crandall 92)
- Pseudo Mersenne with $c > 2^{n/2}$ (BIP'02)
- Generalized Mersenne $P = 2^n 2^k \pm 1$ (Solinas 99)
- More Generalized Mersenne (Chung-Hassan'04)

Some other Special Moduli

- Montgomery-Friendly: $P = c2^k 1$ (Hamburg'12)
- Moduli adapted to PMNS (BIP'04)
- For RNS, $P = M^2 2$ (Bigou-Tisserand'15)
- NFLlib: $2^{n-k} 2^{n-2k} + 2^{n-3k} < P < 2^{n-k}$

Outline

- Introduction
 - Structure in Cryptography
 - Kyber
- 2 Modular Multiplication Algorithms
 - Barrett Reduction
 - Montgomery Reduction
 - Word Size Modular Multiplication
- Number Systems
 - Polynomial Modular Number systems
 - Residue Number System
- Special Modul
- 5 Overview and Conclusion

Conclusion

	Size \sim	Operation	Solutions
RSA *	2000 — 4000	×	Montgomery, RNS
ECC	200 - 500	$+, \times, x^{-1}$	Gen/Pseudo Mersenne
			RNS, PMNS
LWE	10 – 30	$+, \times$	Montgomery Friendly, RNS
Lattice	1000	$+, \times$	Pseudo-Mersenne, RNS
Isogeny *	300 - 1000	$+, \times, x^{-1}$	Specific, Montgomery, PMNS
Multivariate	10	+,×	Mersenne, Pseudo Mersenne
Tensor	10 - 30	$+, \times, \$$	Pseudo Mersenne
Alternating			Word Size Modular Arithmetic

Conclusion

Modular Arithmetic Tools

- There is a wild range of options
- Adaptable for different applications/constraints

Conclusion

Modular Arithmetic Tools

- There is a wild range of options
- Adaptable for different applications/constraints

Structure in Cryptography

- Structure have an unknown cost
- Gain need to be at least significant
- With no other solutions