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Cryptography

Construction - Cryptographer

Create a link between:

1 one hard to compute function

RSA : Factorization

2 one easy to compute function

RSA : Modular Exponentiation

Analyze - Cryptanalyst

Find better way to compute
the hard function

Optimization - Computer Arithmetician

Find better way to compute the easy to
compute function
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Structure in cryptography

Two type of structures

1 Identifiable: Able to check in efficiently way

2 Hidden: As hard to identify as to solve security problem

Example

Code:

Multivariate:

lattice based:

LWE:
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Advantage of Identifiable Structure

Memory - Compact object

Often a Polynomial Structure instead of a Matrix
Example: Quasicyclic

Speed - Operating on object more efficiently

Polynomial Multiplication faster than Vector-Matrix
Example: Module LWE

Functionality

Allow to perform new operation
Example: Ideal Lattice used by Gentry for first FHE Scheme

Security - Weaker Problem

Often unstudied problem
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Kyber

Q-Ary Lattice

L =

(
qId 0
A Id

)
with q = nO(1)

SPEED/MEMORY

No Multi Precision Arithmetic

Module Lattice

A composed of Toeplitz matrix
block generated by polynomial

MEMORY/SPEED

Polynomial Multiplication faster
than Matrix Multiplication

With a Cyclotomic Polynomial Φ

A composed of Negacyclic block

MEMORY

Less Expansion lead smaller q

Φ Smooth in Fq

Φ = (X − γ0) . . . (X − γn) mod q

SPEED

Polynomial Multiplication using
NTT in O(n log n)
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Complexity

Polynomial Multiplication A× B

Schoolbook, O(n2)

Karatsuba, O(n1.585)

Toom-Cook O(n1.465) . . .

NTT O(n log n)

A× B mod Φ

Naturally included with NTT
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Φ smooth in Fq

Polynomial Multiplication

A× B mod Φ

with Φ = (X − γ1)(X − γ2) . . . (X − γn) mod q

Polynomial Multiplication using NTT

1 Ã← NTT (A) with Ã = [A(γ1),A(γ2), . . . ,A(γn)]

2 B̃ ← NTT (B) with B̃ = [B(γ1),B(γ2), . . . ,B(γn)]

3 C̃ ← Ã.B̃ with C̃ = [A(γ1)B(γ1),A(γ2)B(γ2), . . . ,A(γn)B(γn)]

4 C ← NTT−1(C̃ )
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Φ not friable in Fq

Find Q

Q ≥ nq2

Φ = (X − γ1)(X − γ2) . . . (X − γn)modQ

Polynomial Multiplication using NTT

1 Ã← NTT (A) with Ã = [A(γ1),A(γ2), . . . ,A(γn)]

2 B̃ ← NTT (B) with B̃ = [B(γ1),B(γ2), . . . ,B(γn)]

3 C̃ ← A with C̃ = [A(γ1)B(γ1),A(γ2)B(γ2), . . . ,A(γn)B(γn)]

4 C ← NTT−1(C )

5 C ← C mod q
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1 Ã← NTT (A) with Ã = [A(γ1),A(γ2), . . . ,A(γn)]

2 B̃ ← NTT (B) with B̃ = [B(γ1),B(γ2), . . . ,B(γn)]

3 C̃ ← A with C̃ = [A(γ1)B(γ1),A(γ2)B(γ2), . . . ,A(γn)B(γn)]

4 C ← NTT−1(C )

5 C ← C mod q

Thomas Plantard (Nokia) Modular Arithmetic for PQC IHP Paris 2024 11 / 48



Conclusion

Gain of Φ Smooth in Fq

NTT on Fq instead of NTT on FQ with Q = nq2

q ≲ 12bits and Q ≲ 30 bits

For Kyber: need to operate on 64bits instead of 32bits

Structure

Structure have an unknown cost

Gain need to be at least significant

With no other solutions
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Main Problematic

Modular Multiplication

Compute

AB mod P = AB −
⌊
AB

P

⌋
P.

A,B Input Data

P Input Data on which Precomputation is possible.

Constraints

Size of moduli: form 10bits to 10000bits

Form of Moduli

Side-Channel resistance

Speed vs Memory
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Notation

Compute AB mod P

with 0 ≤ A,B < P

with P < 2n

Notation for 2n−register
1 [A]k the k lowest bit of A i.e.

[A]k = A mod 2k

2 [A]k the k highest bit of A i.e.

[A]k =

⌊
A

22n−k

⌋
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Barrett 1986

General Methodology

1 an integer multiplication is performed, followed by

2 approximation of the euclidean division quotient, followed by

3 some final corrections are performed.

Barrett Modular Multiplication

Input : 0 ≤ A,B < P and R = ⌊22nP ⌋
Output: C = AB mod P
begin

C ← AB
Q ← [[C ]n−1R]n

C ← C − QP
if C ≥ P then C ← C − P;
if C ≥ P then C ← C − P;

end
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Barrett

Example

Constant: P = 8461

Precomputation: R =
⌊

108

8461

⌋
= 11818

Input A = 6932 B = 4121

Computation
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Barrett

Example

Constant: P = 8461

Precomputation: R =
⌊

108

8461

⌋
= 11818

Input A = 6932 B = 4121

Computation

1 C ← A ∗ B = 28566772

2 [C ]4R = 2856 ∗ 11818 = 33752208

3 C −QP = 28566772− 3375 ∗ 8461 = 28566772− 28555875 = 10897

4 10897− 8461 = 2436

Thomas Plantard (Nokia) Modular Arithmetic for PQC IHP Paris 2024 18 / 48



Barrett

Advantage

Avoid division

Only requires cheap precomputation

Final Correction can be omitted using redundancy

Drawback

There is better
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Montgomery

General Methodology

1 Eliminate Lower bits instead of higher bits

2 Then shift to avoid division

Montgomery Modular Multiplication

Input : R = (−P−1) mod 2n

Output: C = AB2−n mod P
begin

C ← AB
Q ← [CR]n
C ← [C + QP]n

if C ≥ P then C ← C − P;

end
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Montgomery

Example

Constant: P = 8461

Precomputation: R = −P−1 mod 104 = 2859

Input A = 6932 B = 4121

Computation
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Montgomery

Example

Constant: P = 8461

Precomputation: R = −P−1 mod 104 = 2859

Input A = 6932 B = 4121

Computation

1 C ← A ∗ B = 28566772

2 Q = [CR]4 = [6772 ∗ 2859] = [19361148]4
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Montgomery Representation

Shifted output of Montgomery algorithm

Indeed AB2−n mod P instead of AB mod P

Return 3828 instead of 2436

3828 ∗ 104 mod P = 38280000 mod 8461 = 2436

Montgomery representation, A = A2n mod P

Mont(A,B) = A ∗ B ∗ 2−n mod P
= (A2n) ∗ (B2n) ∗ 2−n mod P
= AB2n mod P

= AB
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Modular Multiplication for Word Size moduli - 2021

Idea

Eliminate 2n-bits lower bits.

Compute AB(−2−2n) mod P even if AB < 22n

Word Size Modular Multiplication

Input : R = P−1 mod 22n

Output: C = AB(−2−2n) mod P
begin

C ← [([[ABR]2n]
n + 1)P]n

if C = P then C ← 0;

end
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Example

Constant: P = 8461

Precomputation: R = P−1 mod 108 = 40787141

Input A = 6932 B = 4121

Computation
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Example

Constant: P = 8461

Precomputation: R = P−1 mod 108 = 40787141

Input A = 6932 B = 4121

Computation

1 C ← A ∗ B = 28566772

2 [CR]8 = [28566772 ∗ 40787141]8 = [1165156957478852]8
3 [CR]8 = 57478852 [For Free]

4 Q = [[CR]8]
4 + 1 = 5747 + 1 = 5748

5 QP = 5748 ∗ 8461 = 48633828 [No more C]
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Require Representation

Montgomery’s like Representation

1 Return AB(−2−2n) mod P instead of AB mod P

2 4863 ∗ (−108) mod 8461 = 2436

3 Same type of representation than Montgomery
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Modular Multiplication for Word Size moduli - 2021

Advantage

1 Small Number of Operation with Register shift only

2 Minimal Redundancy: No correction/IF result always between [0,P]

3 One register only

Faster Multiplication by a constant

for ABR, ompute only one time BR for A0BR and A1BR

Gain for multiplication by “constant”: 2 MUL instead of 3

Sometime naturally done by compiler

Word Size

P ≲ 0.6180× 2n on a 2n-processor. Example: 31.3bits on 64bits
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Number systems

Positional number system with radix β

X =
n−1∑
i=0

xiβ
i with xi ∈ {0, ...β − 1}

Example: X = (1315)10 = (2, 4, 4, 3)8 = 3 + 4× 8 + 4× 82 + 2× 83

Modular number system MNS(p, n, γ, ρ)

X =
n−1∑
i=0

xiγ
i mod P with xi ∈ {0, . . . , ρ− 1}
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Example

MNS(p = 17, n = 3, γ = 7, ρ = 3)

a =
∑2

i=0 xi7
i mod 17 with ai ∈ {0, 1, 2}

0 1 2 3 4

0 1 2 2X 2 + X 2X 2 + X + 1

5 6 7 8 9

X 2 + X X 2 + X + 1 X X + 1 X + 2

10 11 12 13 14

2X 2 + 2X 2X 2 + 2X + 1 X 2 + 2X X 2 + 2X + 1 2X

15 16

2X + 1 2X + 2
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How find a “good” Modular Number System?

What do we need?

1 Compact: A PMNS where ρ is small (about ρ ∼ p1/n)

2 Efficient: “fast” arithmetic on the MNS

Polynomial MNS

A modular number system (p, n, γ, ρ) with a nice polynomial E of degree
n such that

1 E is irreducible over Q,

2 E (γ) = 0 mod P

and A× B → AB mod E can be done efficiently

Thomas Plantard (Nokia) Modular Arithmetic for PQC IHP Paris 2024 32 / 48



How find a “good” Modular Number System?

What do we need?

1 Compact: A PMNS where ρ is small (about ρ ∼ p1/n)

2 Efficient: “fast” arithmetic on the MNS

Polynomial MNS

A modular number system (p, n, γ, ρ) with a nice polynomial E of degree
n such that

1 E is irreducible over Q,

2 E (γ) = 0 mod P

and A× B → AB mod E can be done efficiently

Thomas Plantard (Nokia) Modular Arithmetic for PQC IHP Paris 2024 32 / 48



How find a “good” Modular Number System?

What do we need?

1 Compact: A PMNS where ρ is small (about ρ ∼ p1/n)

2 Efficient: “fast” arithmetic on the MNS

Polynomial MNS

A modular number system (p, n, γ, ρ) with a nice polynomial E of degree
n such that

1 E is irreducible over Q,

2 E (γ) = 0 mod P

and A× B → AB mod E can be done efficiently

Thomas Plantard (Nokia) Modular Arithmetic for PQC IHP Paris 2024 32 / 48



Existing Solutions

Option for E

a) power of 2 cyclotomic polynomial i.e. X 2k + 1,

b) polynomial of the form X n − c ,

c) polynomial of the form X n − aX − b,

d) trinomial X n ± X k ± 1 with k ≤ n
2 ,

e) quadrinomial X n ± X k ± X l ± 1 with l < k ≤ n
2 .

Existence Issue

No guarantee, there exists a polynomial both irreducible and with a
root in Fp for a given p.
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Binomial aX n − b

For any prime p and n ∈ N≥2, there exists a binomial E = aX n − b with

1) E is irreducible over Q,

2) E have at least one root, γ, in Fp,

3) 1 ≤ a < b ≤57
34n

Example

P = 8461, n = 4
57
34n ∼ 6.71

There exist an irreducible polynomial aX 4 − b with 1 ≤ a < b ≤6
1 E is irreducible over Q,
2 E has a root modulo 8461

Solution

3X 4 − 4,X 4 − 5
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PMNS Properties

Advantage

Polynomial avoid costly carry management

Natural Side-Channel resistance due too small redundancy

Polynomial multiplication acceleratation (Karatsuba,
Toom-Cook,NTT)

Drawback

Costly Comparison <

Costly Euclidean division
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Residue Number System

Chinese Remainder Theorem

A RNS basis is (m1,m2, . . . ,mn) with M =
∏n

i=1mi

If we consider (x1, x2, . . . , xn) with 0 ≤ xi < mi

Then ∃!X < M with xi = |X |mi
= X mod mi

Arithmetic

Addition: A+ B = (a1 + b1, a2 + b2, . . . , an + bn)

Multiplication: A× B = (a1 × b1, a2 × b2, . . . , an × bn)
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Residue Number System

Example

A RNS basis: (31, 32, 33) with M = 32736

Solution: RNS to RNS conversion

Modular Multiplication can be done modulo P

Using two basis larger than P

A second RNS basis: (29, 35, 37) with M = 37555
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RNS Properties

Advantage

Distribute operations from large number to small residues

Addition and multiplication can be parallelized.

Best case: X0Y0 +X1Y1 + · · ·+XkYk in vector-matrix multiplication.

Drawback

RNS to RNS Conversion is Quadratic

Moduli Picking

Costly Comparison <

Costly Euclidean division
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Mersenne Moduli

Mersenne Modular Reduction - Lehmer 51 (Thanks Markku)

Input : P = 2n − 1
Output: C = AB mod P
begin

C ← AB
C ← [C ]n + [C ]n

if C ≥ P then C ← C − P;

end

Thomas Plantard (Nokia) Modular Arithmetic for PQC IHP Paris 2024 41 / 48



Mersenne Moduli

Advantage

Cheap Reduction

Drawback

Low density for Prime Mersenne
2n − 1 is prime for n =
2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217 . . .

Thomas Plantard (Nokia) Modular Arithmetic for PQC IHP Paris 2024 42 / 48



Mersenne Moduli

Advantage

Cheap Reduction

Drawback

Low density for Prime Mersenne
2n − 1 is prime for n =
2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217 . . .

Thomas Plantard (Nokia) Modular Arithmetic for PQC IHP Paris 2024 42 / 48



Pseudo Mersenne - Crandall 92

Idea

Extend Mersenne Number to grow density to ensure some prime options

Pseudo Mersenne Modular Reduction

Input : P = 2n − c and 0 ≤ c2 < 2n

Output: C = AB mod P
begin

C ← AB
C ← [C ]n + [C ]nc
C ← [C ]n + [C ]nc
if C ≥ P then C ← C − P;

end
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Pseudo-Mersenne Moduli: 2n − c

Advantage

Density allows to have some prime. Example:232 − 5

Great for Random Sampling

Modular Inversion

If p is large, Euclid Algorithm or its variant

If p is small, Modular exponentiation using Fermat Theorem

If p is small and Pseudo Mersenne, Takagi Algorithm

Drawback

Reduction not so cheap for word size moduli
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Special Moduli

Mersenne like moduli - Barrett Friendly

Mersenne Numbers P = 2n − 1

Pseudo Mersenne P = 2n − c (Crandall 92)

Pseudo Mersenne with c > 2n/2 (BIP’02)

Generalized Mersenne P = 2n − 2k ± 1 (Solinas 99)

More Generalized Mersenne (Chung-Hassan’04)

Some other Special Moduli

Montgomery-Friendly: P = c2k − 1 (Hamburg’12)

Moduli adapted to PMNS (BIP’04)

For RNS, P = M2 − 2 (Bigou-Tisserand’15)

NFLlib: 2n−k − 2n−2k + 2n−3k < P < 2n−k
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Conclusion

Size ∼ Operation Solutions

RSA * 2000− 4000 × Montgomery, RNS

ECC 200− 500 +,×, x−1 Gen/Pseudo Mersenne
RNS, PMNS

LWE 10− 30 +,× Montgomery Friendly, RNS

Lattice 1000 +,× Pseudo-Mersenne, RNS

Isogeny * 300− 1000 +,×, x−1 Specific, Montgomery, PMNS

Multivariate 10 +,× Mersenne, Pseudo Mersenne

Tensor 10− 30 +,×, $ Pseudo Mersenne
Alternating Word Size Modular Arithmetic
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Conclusion

Modular Arithmetic Tools
1 There is a wild range of options

2 Adaptable for different applications/constraints

Structure in Cryptography

1 Structure have an unknown cost

2 Gain need to be at least significant

3 With no other solutions
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