
1

Efficient Word Size Modular Arithmetic
Thomas Plantard

Abstract—Modular multiplication is used in a wide range of applications. Most of the existing modular multiplication algorithms in the
literature often focus on large size moduli. However, those large moduli oriented modular multiplication solutions are also used to
implement modular arithmetic for applications requiring modular arithmetic on moduli of size inferior to a word size i.e. 32/64bits. As it
happens, a large majority of applications are using word size modular arithmetic.
In this work, we propose a new modular multiplication designed to be computed on one word size only. For word size moduli, in a large
majority of instances, our solution outperforms other existing solutions including generalist solutions like Montgomery’s and Barrett’s
modular multiplication as well as classes of moduli like Mersenne, Pseudo-Mersenne, Montgomery-Friendly and Generalized
Mersenne.

Index Terms—Modular Arithmetic, Modular Multiplication, Modular Exponentiation, Polynomial Evaluation, Number Theoretical
Transform, Residue Number System, Mixed Radix System.

F

1 INTRODUCTION

Modular arithmetic has a wide range of applications.
Amongst its many applications, cryptographic protocols
require efficient modular exponentiation (for Diffie-Hellman
key exchange protocol [1], RSA [2], DSA [3] . . . ) and com-
putation on finite field for Elliptic Curves Cryptography [4],
[5] (ECC) or Isogeny based Cryptography [6], [7]. Conse-
quently, a huge number of solution have been proposed
to operate efficiently on moduli used in cryptography i.e.
moduli of hundreds or even thousands of bits.

However, there is a large number of applications using
modular arithmetic on smaller moduli i.e. ∼ 10 to 32 bits
moduli, these moduli operations fit in a word size. For ex-
ample, one application is Residue Number System [8] which
purposefully replace large operations with multiple smaller
modular ones. An other widely used application of modu-
lar arithmetic is polynomial evaluation. Modular polyno-
mial evaluation is used for polynomial factorization [9],
to compute polynomial greatest common divisor [10], as
well as for secret sharing protocols [11]. Recently, lattice
based cryptography [12] has become one of the leading
solution for post-quantum cryptography [13]; lattice based
cryptography is mainly based on modular arithmetic on
small moduli, 10 to 13 bits (see for example [12]) often
using Number Theoretical Transform to encrypt/decrypt
efficiently [14], [15], [16], [17]

Existing solutions for large moduli do not perform as
well as expected when restrained to a single word.

Main result

In this work, we present a new modular reduction designed
to fully take advantage of a word size modular arithmetic
specificity. We show how it outperform existing solutions.

• Thomas Plantard is with IC2, Institute of Cybersecurity and Cryptology,
School of Computing and Information Technology, Faculty of Engineering
and Information Sciences, University of Wollongong, Wollongong NSW
2522, Australia. E-mail: thomaspl@uow.edu.au

Organization of the paper
In Section 2, we present different existing solutions to
perform modular operation and more specifically modular
multiplication which is the key - and most costly - operation
of modular arithmetic.

In Section 3, we present our new modular multiplication.
In Section 4, we present some comparisons as well

as some performance evidences for different applications,
namely modular exponentiation, polynomial evaluation,
Number Theoretical Transform and Residue Number Sys-
tem to Mixed Radix System conversion.

Section 5 will conclude this work.

2 EXISTING MODULAR MULTIPLICATIONS

In this section, we present the most used modular multi-
plication methods. We are placing ourselves in the context
where the multiplication is correct only on 2n bits i.e. 2n
will classically correspond to a word size of 32 or 64. In
such context, the size of the modulo P will be bounded to
guarantee correctness of those classical algorithms.

Those methods can often be described in 3 consecutive
steps:

• Firstly, an integer multiplication is performed,
• Secondly, a modular reduction is performed,
• Finally, a correction is performed, and it is composed

by one or two tests (IF) followed if necessary by few
additions/substations.

To obtain efficient modular arithmetic, the final correc-
tive step can be omitted if some redundancy is allowed. One
will only requires then, that for a constant S, the modular
multiplication algorithm receiving in input two value A,B
both inferior to S, guarantee an output C inferior to S
as well. This will guarantee a stable representation during
modular operation. However, in such context one needs to
bound even further the potentially usable moduli.

To have clearer and more readable algorithms, we will
note [X]k = X mod 2k, the result of a simple mask to
extract the k least significant bits ofX . For the same reasons,



2

we will note [X]k = bX
2k
c, the result of a simple shift of k

bits on X .

2.1 Montgomery Multiplication

In 1985 [18], P. Montgomery proposed one of the most used
modular multiplication algorithm.

Algorithm 1: Montgomery Modular Multiplica-
tion [18]

Input : A,B, P,R, n with 0 ≤ A,B < P < 2n and
R = (−P−1) mod 2n

Output: C with 0 ≤ C < P and C = AB2−n mod P
begin

C ← AB
C ← [C + [CR]nP ]n

if C ≥ P then
return C − P

end
return C

end

Montgomery algorithm can perform modular multipli-
cation correctly,

• in general, if P is odd and P < 2n,
• on 2n bits, if P 2 + 2nP < 22n allows C + [CR]nP

to be computed correctly before being divided by 2n

i.e. P < 2n

φ with φ = 1+
√
5

2 , the golden ratio,
• when omitted final correction, if P < 2n−2 as pro-

posed by C. D. Walter [19]. One can check that to
guarantee than C < S with A,B < S then one
needs S2+2nP

2n < S and therefore P < S2n−S2

2n .
Consequently the largest P , one can operate on, can
be computed by deriving S2n−S2

2n on S and obtaining
S = 2n−1 as a maxima. Finally, one can obtain for
P < S2n−S2

2n = 22n−1−22n−2

2n = 2n−1 − 2n−2 = 2n−2.

Remark 1 (Montgomery Representation). An impor-
tant remark is that Montgomery modular multipli-
cation (MONT) is not returning the correct value
X mod P but rather X2−n mod P . This is generally
solved by using a specific representation. Indeed, if
A mod P (respectively B mod P ) is represented by
Ã = A2n mod P (respectively B̃ = B2n mod P )
then ÃB = AB2n mod P representing AB mod P
can be computed directly using Montgomery’s Algo-
rithm: MONT(Ã, B̃) = (A2n)(B2n)2−n mod P =
AB2n mod P . Montgomery’s representation is also sta-
ble by addition and consequently will be stable during a
full modular computation.
To enter or exit Montgomery’s representation one can
simply uses Montgomery Algorithm (Algorithm 1) as
well:

• to enter, using a precomputed value, 22n mod P ,
one can obtain MONT(A mod P, 22n mod P ) =
A(22n)2−n mod P = A2n mod P = Ã,

• to exit, MONT(Ã, 1) = A2n2−n mod P = A mod
P .

2.2 Barrett Multiplication
In 1986 [20], P. Barrett proposed an algorithm slightly more
expensive than Montgomery’s, however which did not re-
quire a dedicated representation.

Algorithm 2: Barrett Modular Multiplication [20]
Input : A,B, P,R, n with 0 ≤ A,B < P and

R = b 2
2n

P c
Output: C with 0 ≤ C < P and C = AB mod P
begin

C ← AB
C ← C − [[C]n−1R]n+1P
if C ≥ 2P then

return C − 2P
end
if C ≥ P then

return C − P
end
return C ;

end

Barrett’s algorithm can perform modular multiplication
correctly

• in general, if P < 2n,
• on 2n bits, only if P < 2n−1 allows [[C]n−1R] <

P 2

2n+1
22n

P < P2n+1 to be computed correctly before
being divided by 2n+1.

In 1991, J.-J. Quisquater [21] proposed some improve-
ment of Barrett’s algorithm specially efficient for hardware
implementation. See [22] a survey.

2.3 Mersenne Moduli
Some applications allow users to pick the modulo P , gener-
ally under some restrictions. Consequently, different options
for picking moduli with efficient modular arithmetic have
been proposed [8]. Besides the most natural option for a
CPU, P = 2n, one of the oldest number proposed to be used
for modular arithmetic and named after Marin Mersenne is
the Mersenne’s number, P = 2n − 1.

Algorithm 3: Multiplication modulo a Mersenne [8]
Input : A,B, P, n with 0 ≤ A,B < P = 2n − 1
Output: C with 0 ≤ C < P and C = AB mod P
begin

C ← AB
C ← [C]n + [C]n

if C ≥ P then
return C − P

end
return C

end

Algorithm 3 is certainly one of the most efficient modular
multiplication algorithm. The final correction can be omitted
if one replace it by a repetition of the second step and
consequently avoiding comparison. We will call Forced such
type of reduction modulo a Mersenne and we will show in
Section 4.2 that in some case it allows faster reduction.



3

2.4 Pseudo Mersenne

Even if users can pick which moduli they are using, some
applications require to have multiple options as they re-
quired more than one modulo (for example Residue Num-
ber System implementation) or a special subclass (prime
number, for example for finite field). Consequently, denser
class of moduli have been proposed. In 1992 [23], R. Cran-
dall proposed to use the so-called pseudo-Mersenne number
i.e. P = 2n −K with K < 2

n
2 .

Algorithm 4: Multiplication modulo a Pseudo
Mersenne [23]

Input : A,B, P,K, n with 0 ≤ A,B < P = 2n −K
and K2 < 2n

Output: C with 0 ≤ C < P and C = AB mod P
begin

C ← AB
C ← [C]n + [C]nK
C ← [C]n + [C]nK
if C ≥ P then

return C − P
end
return C

end

Pseudo-Mersenne are widely used in cryptography [24].
It is also widely used for Residue Number System [25].

Generalizations have been proposed by [26] and by [27]
to allow modular operations on a even larger family. As
those families are slower than pseudo-Mersenne and as
we will show in Section 4.2 that Pseudo-Mersenne moduli
offer a modular arithmetic not competitive for word-size
arithmetic. We will not detailed those families in this work,
we will only detailed how to operate on Pseudo-Mersenne.

Remark 2 (Redundancy). Redundancy can be allowed to
omit final correction as for Montgomery algorithm. If
P = 2n −K and K2 ≤ 2n−3 then if A,B < 2P , one can
remark that result before correction will be inferior to

4P 2K2

22n
+ 2n.

Then we obtain

4P 2K2

22n
+ 2n < 4K2 + 2n.

So if K2 ≤ 2n−3 then one obtains

4K2 + 2n ≤ 2n−1 + 2n < 2P.

Such restriction could be refined, however, we will
see that those restrictions are still allowing a family
of moduli enough large for the different applications
studied in Section 4.
However, as we can operate only on 2n bits, then in a
word size context we obtain P = 2n−1 − K and K2 ≤
2n−4 to guarantee correctness of the initial product AB.
With AB < 4P 2 ≤ 422(n−1) ≤ 22n, we guarantee correct
computation.

2.5 Generalized Mersenne
To avoid expensive multiplication, J. Solinas [28] proposed
to replace the variable part of the pseudo-Mersenne, K =
2n − P , with a number with low hamming weight. Conse-
quently, multiplication by K in Algorithm 4 can be replaced
by shifts and additions. Those numbers are often called
Generalized Mersenne. In this work, we will focus on the most
efficient ones, the ones representable by P = 2n − 2k − 1.
Even if options with more moduli exist, we will focus on
trinoms, P = 2n− 2k− 1, as we will show in Section 4.2 that
Generalized Mersenne moduli based on trinoms are already
not the most competitive option for word-size arithmetic.
A larger class of Generalized Mersenne could become only
even slower. Algorithm 5 presents how to perform a modu-
lar multiplication modulo a Generalized Mersenne.

Algorithm 5: Multiplication modulo a Generalized
Mersenne [28]

Input : A,B, P, n, k with
0 ≤ A,B < P = 2n − 2k − 1 and k < n

2
Output: C with 0 ≤ C < P and C = AB mod P
begin

C ← AB
C ← [C]n + [C]n + [C]n2k

C ← [C]n + [C]n + [C]n2k

if C ≥ P then
return C − P

end
return C

end

Generalized Mersenne have been standardised by the
U.S. National Institute of Standards and Technology to
be used for efficient elliptic curve cryptography [29]. For
Residue Number System, it allows some powerful rela-
tions when the full basis is only composed of Generalized
Mersenne [30].

To omit final correction, one can use the same reasoning
applied for Pseudo-Mersenne (See Remark 2).

2.6 NFLlib Modular Multiplication
If one needs access to a larger family than Pseudo-Mersenne,
in NFLlib [31], authors have proposed a modification of a
general work on euclidean division by a constant by Moller
and Granlund [32].

Algorithm 6: NFLlib Modular Multiplication [31]

Input : A,B, P, n, k with 0 ≤ A,B < P < 2n−e

and R = b 2
2n

P c mod 2n

Output: C with 0 ≤ C < P and C = AB mod P
begin

C ← AB
Q← [R[C]n + 2eC]2n
C ← [C − [Q]nP ]n
if C ≥ P then

return C − P
end
return C

end



4

To operate correctly Algorithm 6 requires that

1 + 2−3e

2e + 1
2n < P <

2n

2e

with 1 ≤ e < n. From which one obtains that

2n−e − 2n−2e + 2n−3e < P < 2n−e.

It is important to note that if the size of the moduli on which
the modular multiplication operates is somewhat smaller,
n − 1 instead of n for Pseudo-Mersenne, the number of
moduli is significantly larger: 2n−2e − 2n−3e instead of 2

n
2 .

For moduli of size 30, 31 this difference is significant.

2.7 Montgomery-Friendly

Pseudo-Mersenne can be seen as a type of modulo par-
ticularly well suited for Barrett’s algorithm. Also, another
class of moduli used initially by [33] and [34] and suited
for Montgomery’s modular reduction is the Montgomery-
Friendly moduli. These are constructed as follow P =
K2e − 1 with 2n−e−1 < K ≤ 2n−e with e ≥ n

2 .

Algorithm 7: Multiplication modulo a
Montgomery-Friendly [33]

Input : A,B, P,K, n with 0 ≤ A,B < P = K2e − 1
with 2n−e−1 < K ≤ 2n−e and e ≥ n

2
Output: C with 0 ≤ C < P and

C = AB2−2e mod P
begin

C ← AB
C ← [C]eK + [C]e

C ← [C]eK + [C]e

if C ≥ P then
return C − P

end
return C

end

As for Montgomery’s multiplication, when using
Montgomery-Friendly, one needs to use a dedicated rep-
resentation which is the same as the one explained in
Remark 1, simply using 22e instead of 2n. Algorithm 7 has
strong connections with Montgomery’s initial work, Algo-
rithm 1. However, it follows more closely its word based
version [18]. In actual fact, it can be directly extracted from
it: the quotient is simply extracted using a mask instead of
a multiplication followed by a mask in the general method.
This is due to the specific form of Montgomery-Friendly
moduli.

Montgomery-Friendly moduli have been used for exam-
ple for fast Number Theoretical Transform in [16], [35], [36].

For a survey on Montgomery-Friendly moduli, see [37].
Remark 3 (Ommiting final Correction). Redundancy can

be allowed as well for Montgomery-Friendly moduli by
omitting final correction. However, some further restric-
tions on e will be necessary. Indeed, if P = K2e−1 with
2n−e−1 < K ≤ 2n−e and e ≥ n+2

2 , one can notice that
before final for A,B < 2P , one obtains a value for C

which is inferior to
(2P−1)2

2e +(2e−1)K
2e + (2e − 1)K which

leads to

C≤
(2P−1)2

2e + (2e − 1)K

2e
+ (2e − 1)K

≤
(2P−1)2

2e −K
2e

+K + (2e − 1)K

≤
(2P−1)2

2e −K
2e

+ 2eK

By using the property, that K2e = P + 1, we obtain

C≤
(2P−1)2

2e −K
2e

+ P + 1

≤
(2P−1)2−K2e

2e

2e
+ P + 1

≤ (2P − 1)2 −K2e

22e
+ P + 1

Once again, if we use the property K2e = P + 1, one
obtains

C≤ (2P − 1)2 − P − 1

22e
+ P + 1

≤ 4P 2 − 4P + 1− P − 1

22e
+ P + 1

≤ 4P 2 − 5P

22e
+ P + 1

<
4P 2 − 4P

22e
+ P + 1

<
(P − 1)4P

22e
+ P + 1

<
(P − 1)42n

22e
+ P + 1

< (P − 1)2n+2−2e + P + 1

To have such computation guaranteed to be inferior to
2P , one simply needs 2n+2−2e ≤ 1. Consequently, one
can fix e ≥ n+2

2 .
However, once again as operating only on 2n bits in
a word size context, one obtains P = K2e − 1 with
2n−e−2 < K ≤ 2n−e−1 and e ≥ n+1

2 guarantee cor-
rectness of the initial product AB.

3 NEW MODULAR ARITHMETIC

All existing methods listed in Section 2 are efficient al-
gorithms and each offers an advantage depending of the
context. However, those algorithms are generally highly
efficient for multi-precision operation i.e. when n >> 64, 32.
Nevertheless, there is a huge number of cases when modular
arithmetic is performed on a single word size. In such con-
text, bounding operands are relevant only to avoid overflow.

In this section, we proposed a new modular multipli-
cation purposefully efficient when operating on a unique
word. This algorithm will take advantage of the fact that
multiplication on a 2n bits word are equivalent to a modular
multiplication modulo 22n i.e. any multiplication AB are in
this context [AB]2n.



5

Algorithm 8: New Modular Multiplication
Input : A,B, P,R, n with 0 ≤ A,B ≤ P and

R = P−1 mod 22n

Output: C with 0 ≤ C < P and
C = AB(−2−2n) mod P

begin
C ← [([[ABR]2n]n + 1)P ]n

if C = P then
return 0

end
return C

end

Theorem 1 (Correctness). Let P an odd modulo with P < 2n

φ

and φ = 1+
√
5

2 , then Algorithm 8 is correct.

Proof 1 (of Algorithm 8).
Algorithm 8 first and main step is to compute
[([[ABR]2n]n + 1)P ]n i.e.

(⌊
(ABR mod 22n)

2n

⌋
+ 1
)
P

2n

 .
i) Firstly, we check that C < P . It is known that

[[ABR]2n]n fits on nbits and therefore ≤ 2n − 1. There-
fore, after Algorithm 8 first step, we obtain

C= [([[ABR]2n]n + 1)P ]n

≤ ((2n − 1) + 1)P

2n

≤ 2nP

2n

≤ P

Consequently, after reduction, either C = P or C < P .
The final correction guarantee C < P .

ii) Secondly, we check that C ≡ AB(−2−n) mod P . As P
is odd, we know that there exist a Q = ABP−1 mod
22n. Consequently, we have

QP −AB≡ (ABP−1)P −AB mod 22n

≡ AB −AB mod 22n

≡ 0 mod 22n

We obtain that QP − AB is divisible by 22n and there-
fore that

AB(−2−2n) mod P =
QP −AB

22n
.

We will note Q1 = b Q2n c and Q0 = Q − Q12n with
0 ≤ Q0 < 2n.
Now, we analyse P2n −Q0P + AB, knowing that 0 ≤
A,B ≤ P , then we obtain P2n−Q0P+AB ≤ P2n+P 2.
As by Theorem statement, we have P < 2n

φ with φ =
1+
√
5

2 . Consequently, we obtain

P2n −Q0P +AB< 2n
2n

φ
+

(
2n

φ

)2

<
22n

φ
+

22n

φ2

< 22n
φ+ 1

φ2
.

Therefore, to guarantee than P2n −Q0P + AB < 22n,
one need to check that φ+1

φ2 = 1. This is correct as

φ2= (
1 +
√

5

2
)2

=
1 + 2

√
5 + 5

4

=
6 + 2

√
5

4

=
3 +
√

5

2

=
1 +
√

5

2
+ 1

= φ+ 1.

Furthermore, as Q0 < 2n and A,B ≥ 0, we obtain
as well that P2n − Q0P + AB > 0, we, consequently,
obtain that

0 <
P2n −Q0P +AB

22n
< 1.

Therefore and because QP −AB is divisible by 22n,

QP −AB
22n

=

⌊
QP −AB

22n
+
P2n −Q0P +AB

22n

⌋
=

⌊
QP −AB + P2n −Q0P +AB

22n

⌋
=

⌊
(Q−Q0 + 2n)P

22n

⌋
=

⌊
(Q12n + 2n)P

22n

⌋
=

⌊
(Q1 + 1)P

2n

⌋
As

Q1 =

⌊
Q

2n

⌋
=

⌊
(ABP−1 mod 22n)

2n

⌋
,

we obtain that

AB(−2−2n) mod P≡ QP −AB
22n

≡
⌊

(Q1 + 1)P

2n

⌋

≡


⌊
(ABP−1 mod 22n)

2n

⌋
+ 1

2n


To finish this proof, we simply note that the last step of
Algorithm 8 does not change the value of C modulo P .

As for other methods, final correction can be omitted to
allow redundancy. However, as redundancy aims to be min-
imal (P + 1 instead of P values are authorised), constraints
for correctness are the same as the ones in Theorem 11.

Remark 4 (Dedicated Representation). One can also note
that Algorithm 8 does not return AB mod P , but rather

1. For simplicity, Algorithm 8 already assumes than A and B could
be equal to P .



6

AB(−2−2n) mod P . As for Montgomery’s multiplica-
tion (Algorithm 1), one will need to use a specific rep-
resentation. However, it can be managed exactly as for
Algorithm 1 and as explained in Remark 1.

Remark 5 (Multiplication by a Constant). An important
remark is that Algorithm 8 first step is to perform a dou-
ble multiplication, ABR. Often, one of the two values of
a multiplication will be used multiple times. For exam-
ple, for a modular exponentiation, Ae mod P , multiple
multiplications by A will be performed. Therefore, using
Algorithm 8, after multiplying AR, the first time, one
can keep AR instead of A gaining one multiplication on
any further modular multiplication involving A. This is
a powerful advantage which can be used multiple times
depending on which modular computation is being per-
formed. Furthermore, any constant precomputed for an
algorithm will fall under the same rule.

4 COMPARISON

To perform a precise comparison, the size and number of
moduli on which each algorithm can perform will be given
and we will count the different operations used by each
modular multiplication method, namely:

• log2(P ), the size of possible moduli,
• log2(#P ), the number of possible moduli,
• REP, the need of a specific representation indicated

by T, true, or F, false,
• MUL, the number of word size multiplication,
• ADD, the number of word size addition/subtraction,
• IF, the number of time an instruction if is used which

includes the cost of a comparison,
• SFT, the number of shift i.e. [x]k. However, we should

note that all shifts are noted as costly. However, on
a 64bits processor, 32bits shifts are generally cheaper
than other ones. As our new method uses only n
shifts on 2n digit size no matter the modulo size
used, it will allow a comparable gain when measured
against other methods. This will be shown later in the
timing section (Section 4.2),

• MSK, the number of mask used i.e. [x]k. We note
that our new proposal uses a theoretical mask. In
reality, there aren’t any as they are included in the
natural modularity (modulo 22n) of word size multi-
plication/addition,

• TOT, the total number of operations required to
perform a modular multiplication. We note that such
number is not always representative and only timing
test will help to fairly compare all those methods.

• CNT, the number of constant used by each algorithm
to perform a modular multiplication,

• REG, the number of variable used by each algorithm.
We note than it is not always trivial to evaluate this
number. However, it is important to notice that our
new method does not require to keep different parts
of the product result, which is not the case in all
other methods. This could be a key parameter for
implementation on constrained devices.

To give a full comparison we also included information
regarding moduli size and density on which each algorithm

can perform and if algorithms are requiring dedicated rep-
resentation.

Table 1 presents each algorithm advantages and draw-
back. Our new method is indicated on the same row for
with/without correction as only the number of IFs is chang-
ing.

4.1 Example of Applications
In this section, we present four classical applications for
modular arithmetic.

1) Algorithm 9 describes how to perform a modular expo-
nentiation,

2) Algorithm 10 describes how to evaluate a modular
polynomial evaluation,

3) Algorithm 11 describes how to perform a number theo-
retical transform,

4) Algorithm 12 describes how to convert a number from
its residue number representation to its mixed radix
representation.

4.1.1 Modular Exponentiation
Modular exponentiation is a widely used computation, es-
pecially for cryptography. Even if modular exponentiation
are mainly used with moduli of larger size i.e log2 P going
from 200 to 4000 bits in general, it is still a good candidate
to compare efficiency of different modular arithmetic. Algo-
rithm 9 describes how to perform a modular exponentiation
using a right-to-left method.

Algorithm 9: Right-to-Left Modular Exponentiation
Input : A, e, P with 0 ≤ A, e < P
Output: B with 0 ≤ B < P and B = Ae mod P
begin

B ← 1
C ← A
k ← e
while k > 1 do

if k mod 2 = 1 then
B ← BC mod P

end
C ← CC mod P ;
k ← k

2 ;
end
B ← BC mod P ;
return B

end

Algorithm 9 is one of most standard ways to compute
a modular exponentiation. However, we should note that
there exists a lot of different methods to compute efficiently
modular exponentiation. For surveys, see [38].

4.1.2 Polynomial Evaluation
Modular polynomial evaluation has multiple applica-
tions [9], [10], [11] and it corresponds to one of the most fun-
damental operation for polynomials. Algorithm 10 describes
how to evaluate a modular polynomial using Horner’s
method [8].

Algorithm 10 gives a different set of needs for modular
arithmetic compare to the modular exponentiation.



7

TABLE 1
Comparison of different methods for modular multiplication

Algorithm log2(P ) log2(#P ) REP MUL ADD IF SFT MSK TOT CNT REG TOT

New method (8) w/wo corr. n-0.694 n-1.694 T 3 1 1/0 2 0 7/6 2 1 3
New (8) for a constant w/wo corr. n-0.694 n-1.694 T 2 1 1/0 2 0 6/5 1 1 2
Montgomery (1) n-0.694 n-1.694 T 3 2 1 1 1 8 2 2 4
Montgomery (1) wo corr. n-2 n-3 T 3 1 0 1 1 6 2 2 4
Barrett (2) n-1 n-1 F 3 2 2 2 0 9 2 2 4
NFLlib (6) n-1 n-3 F 3 3 1 3 1 11 2 2 4
Pseudo-Mersenne (4) n n

2
F 3 3 1 2 2 11 2 2 4

Pseudo-Mersenne (4) wo corr. n-1 n−4
2

F 3 2 0 2 2 9 2 2 4
Montgomery-Friendly (7) n n

2
T 3 3 1 2 2 11 2 2 4

Montgomery-Friendly (7) wo corr. n-1 n−3
2

T 3 2 0 2 2 9 2 2 4
Generalized Mersenne (5) n log2(n)−2

2
F 1 5 1 4 2 11 1 2 3

Generalized Mersenne (5) wo corr n-1 log2(n)−6
2

F 1 4 0 4 2 9 1 2 3
Mersenne (3) n 0 F 1 2 1 1 1 6 0 2 2
Forced Mersenne (3) n 0 F 1 2 0 2 2 7 0 2 2

Algorithm 10: Polynomial Evaluation

Input : A,P and F (X) with 0 ≤ A < P
Output: B with 0 ≤ B < P and B = F (A) mod P
begin

B ← FdegF

for i← degF − 1 to 0 by −1 do
B ← (BA) mod P
B ← (B + Fi) mod P

end
return B

end

4.1.3 Number Theoretical Transform
Number Theoretical Transform (NTT) is an algorithm to
evaluate efficiently a polynomial A(X) for all roots of unity
in FP i.e.

A(X)→< A(ζ1) mod P, . . . , A(ζn) mod P >

with Φ(ζi) mod P = 0, Φ(X) = Xk + 1 and k = 2t.
NTT has became the key operation for a wide number

of lattice based cryptosystems, see [35] for a classic imple-
mentation. We note that we are focusing on NTT operating
on Φ(X) = X2t + 1 as it is the most used in cryptography.
Other versions exist for X2t − 1.

Lattice based cryptography has started to use more and
more lattice based on rings or modules. In such lattices,
operations are performed on polynomial ring modulo a
small number, 10 to 20 bits. The polynomial ring is gen-
erally quotiented by a cyclotomic polynomial, X2t + 1.
Consequently, the main cost of encrypting/decrypting or
signing/verifying signature is to perform NTT to make
efficient polynomial multiplications quotiented by a cy-
clotomic polynomial. U.S. National Institute of Standards
and Technology standardization process for post-quantum
cryptography [13] is currently keeping, after 3 rounds of
selections, 3 lattice based cryptosystems based on NTT [16],
[17], [39] on the 4 finalist post-quantum cryptosystems and
2 lattice based signatures based on NTT [14], [40] on the 3

finalist for post-quantum signatures. Algorithm 11 describes
how to perform a number theoretical transform.

Algorithm 11: Number Theoretical Transform

Input : A(X) with degA < k and Z a k root of
unity, Zk + 1 ≡ 0 mod P.

Output: Bi = A(Zi) mod P with 0 ≤ Bi < P
begin

for i← 1 to k do
Bi ← Ai

end
c← 1
l← k

2
while l > 0 do

for s← 0 to k − 1 by 2l do
for j ← s to s+ l − 1 do

tmp← Bj+lZ
rev(c) mod P

Bj+l ← (Bj − tmp) mod P
Bj ← (Bj + tmp) mod P

end
c← c+ 1

end
l← l

2
end
return B

end

Algorithm 11 uses some precomputed value Zrev(c) mod
P where rev(c) is the k bit-for-bit reverse of c.

Algorithm 11 offers another perspective (in term of
needs for modular arithmetic) compare to Algorithm 9 or
Algorithm 10. Especially, it uses modular multiplication by
some precomputed constants.

4.1.4 RNS to MRS Conversion

Residue Number System (RNS) is an important number sys-
tem used in a lot of applications from signal processing [41]
to cryptography [42].



8

A RNS basis of size k is a set of k moduli Mi, pairwise
co-prime i.e.

∀i 6= j,GCD(Mi,Mj) = 1.

A number

0 ≤ X <
∏

Mi

is represented by its residual modulo Mi i.e.

X =< X mod M1, . . . , X mod Mk > .

Residue number systems offer a natural paralelization
which makes it highly efficient for some operations. How-
ever, as it is not a positional number system, it does not

offer a trivial way to compare two numbers (X
?
< Y ). One

of the possibility to compare two numbers in their RNS
representation is to first convert them from RNS to Mixed
Radix System.

Mixed Radix System (MRS) is a positional number sys-
tem where a number 0 ≤ X <

∏
Mi is represented by

X̃ =< X1, . . . , Xk > such that 0 ≤ Xi < Mi and

X =
n∑
i=1

Xi

i−1∏
j=1

Mj

allowing to compare two numbers. It is also used to convert
a number represented in one RNS basis to another one [43],
even if some other methods are generally more efficient [25],
[44].

Algorithm 12 describes how to convert a number from
its residue number representation to its mixed radix repre-
sentation.

Algorithm 12: RNS to MRS

Input : X representing X in a RNS Basis [Mi]
Output: X̃ representing X in MRS with basis [Mi]
begin

for i← 0 to n− 1 do
for j ← i+ 1 to n− 1 do

Xj ← (Xj −Xi) mod Mj

Xj ← Xj(M
−1
i ) mod Mj

end
end
returnX̃

end

Algorithm 12 uses some precomputed value (M−1i ) mod
Mj . The interesting aspect of Algorithm 12 is that in com-
parison to the other 3 applications previously presented,
it requires to perform modular multiplication on different
moduli. We note that other algorithms are more relevant in
for RNS, however they often perform simple vector matrix
multiplication followed by a modular reduction. Therefore,
the quality of modular arithmetic is less important. Hence,
those algorithms - such as conversion between two different
RNS basis - are less relevant for comparing modular arith-
metic methods.

4.2 Timings

In this section, we present result of tests performed on
a Linux 5.8.0-26-generic with Intel Core i7-8565U CPU
(1.80GHz) and compiled with g++ 10.2.0 with -Ofast -flto
-fwhole-program -march=native -std=c++17 options. Tests
have been performed 107 times on Algorithm 9, Algo-
rithm 10, Algorithm 11 and Algorithm 12. Polynomial eval-
uations were taken with a degree less than 64, Number
Theoretical Transform on cyclotomic polynomial x16+1 and
RNS basis were taken with 32 moduli.

Macro have been used to guarantee equivalence and
same moduli have been used when possible i.e. at least for
all 3 generalist algorithms i.e. Montgomery’s (Algorithm 1),
Barrett’s (Algorithm 2) and our new method (Algorithm 8).

4.2.1 Comparison with Montgomery’s Method
In this section, we compare our new method with Mont-
gomery’s method.
Remark 6 (Avoiding Using Dedicated Representation). Both

algorithms require a specific representation (Remark 1
and Remark 4). However, this representation is only
necessary for Modular Exponentiation (Algorithm 9).
For the three others applications, as variable are only
multiplied by constants, only constants will be used
in specific representations. Effectively, for Montgomery
modular multiplication for example, if a variable a is
multiplied by c̃ where c̃ represents c in Montgomery
representation i.e. c̃ = c2n mod P , then

MONT (a, c̃)= ac̃2−n mod P

= ac2n2−n mod P

= ac mod P.

Consequently, for Polynomial Evaluation, Number
Theoretical Transform and Residue Number System to
Mixed Radix System Conversion, as variables are only
multiplied by constants, one does not need to put
variables in Montgomery representation and the same
goes for our new method. Only constant values will be
prepare in Montgomery representation. By avoiding to
represent variables in Montgomery representations, one
gains two modular multiplications for each variable i.e.
one in input, one in output (Remark 1).2

Furthermore, in our new method constants will be mul-
tiply by R (C ′ = CR) to transform ACR by AC ′

in the first step of Algorithm 8 and gain a word size
multiplication as explain in Remark 5.

Table 2 shows average number of cycles for our new and
Montgomery’s algorithms.

Additionally, it shows that our new method clearly out-
performed Montgomery’s for word size modular arithmetic:
for each applications, Montgomery’s method is slower by
10% to 50%. It is only when Montgomery’s method is
used without correction and consequently only for smaller

2. Furthermore, some works have been done to use modular expo-
nentiation with Montgomery algorithm without Montgomery’s repre-
sentation as well, using Barrett’s algorithm to operate correction [45].
However, this work did not allow faster computation as it was focusing
on side-channel resistance.



9

TABLE 2
Comparison between our and Montgomery’s modular arithmetic

log2 P New (8) Montgomery (1)
w corr. wo corr.

30 128.9 178.3 (+38%) 126.5 (-1.9%)
EXP 31 134.5 189.8 (+41%) n/a

32 137.2 169.6 (+24%) n/a
30 330.2 450.4 (+36%) 357.4 (+8.2%)

EVL 31 330.1 450.1 (+36%) n/a
32 329.5 450.0 (+36%) n/a
30 189.8 204.8 (+7.9%) 202.2 (+6.6%)

NTT 31 188.3 210.9 (+12%) n/a
32 189.0 210.9 (+12%) n/a
30 944.9 1366 (+44%) 1187 (+26%)

RNS 31 946.9 1390 (+47%) n/a
32 954.4 1419 (+48%) n/a

TABLE 3
Comparison between our and Montgomery’s modular arithmetic for

NTT

log2 P New (8) Montgomery (1)
w corr. wo corr.

NTT 30 189.8 204.8 (+7.9%) 202.2 (+6.6%)
with 31 188.3 210.9 (+12%) n/a

Correction 32 189.0 210.9 (+12%) n/a
Without 30 161.5 173.0 (+7.1%) n/a

Correction 31 159.9 173.7 (+8.6%) n/a

moduli, that Montgomery’s method offers a reasonably
close efficiency for some applications. Moreover, Mont-
gomery’s method could offer some instances (for Modular
Exponentiation) were it could eventually be faster than
our new method. However, for most applications, our new
method offers clear gain to Montgomery’s which is up to
25% slower for RNS to MRS, and up to 48% slower when
not allowed to use redundancy.

Furthermore, it is important to note that if redundancy
is used by Montgomery’s reduction, then redundancy can
not be use to optimize the applications themselves. As
an example, our new method can be used to implement
NTT with a modification where the two modular addi-
tions/subtractions of the variable tmp are not reduced i.e.
performing the addition/substation without correcting it
afterwards. This is a gain not available if redundancy is
already used by Montgomery’s method without correction.

Table 3 shows average number of cycles for our new
algorithm and Montgomery’s one for NTT and NTT without
correction.

Table 3 clearly shows that redundancy is better used by
optimizing NTT itself. The advantage between new method
and Montgomery’s one is stable for NTT and sits around
8% gain in our new method.

4.2.2 Comparison with Barrett’s Method
Table 4 shows average number of cycles for our new algo-
rithm and Barrett’s one.

Barrett’s is offering slower timing than our method by
at least 27% and up to 85% depending of applications. As

TABLE 4
Comparison between our and Barrett’s modular arithmetic

log2 P New (8) Barrett (2)

30 128.9 168.0 (+30%)
EXP 31 134.5 171.0 (+27%)

32 137.2 n/a
30 330.2 473.9 (+44%)

EVL 31 330.1 461.6 (+40%)
32 329.5 n/a
30 189.8 229.4 (+21%)

NTT 31 188.3 228.6 (+22%)
32 189.0 n/a
30 944.9 1723 (+82%)

RNS 31 946.9 1753 (+85%)
32 954.4 n/a

TABLE 5
Comparison between New method and Mersenne based arithmetic

log2 P New Mersenne
Classic Forced

30 128.9 146.3 (+14%) 134.2 (+4.1%)
EXP 31 134.5 151.3 (+12%) 138.6 (+3.0%)

32 137.2 154.3 (+12%) 144.2 (+5.1%)
30 330.2 339.8 (+2.9%) 361.5 (+9.5%)

EVL 31 330.1 337.0 (+2.1%) 361.4 (+9.5%)
32 329.5 335.9 (+1.9%) 296.7 (-10%)

for Montgomery’s without correction, Barrett cannot offer
solutions for 32bits moduli.

4.2.3 Comparison with Mersenne Moduli

Mersenne based arithmetic is highly limited and cannot
be used for applications requiring multiple moduli of the
same size (RNS to MRS) or when requiring a prime number
(NTT). As explained in Section 2.3, two options are available
when implemented Mersenne based arithmetic:

• a classic version, with an IF for correction after re-
duction,

• a forced version, imposing a second reduction what-
ever is the result of the first one to avoid the IF.

Table 5 shows average number of cycles for our new
method and Mersenne based arithmetic.

We observe that forced approach is outperforming clas-
sical approach when n = 32. Indeed, in such situation, the
shift become cheaper than in other sizes. This is also one of
the reasons why our method outperforms Mersenne based
arithmetic in most of cases: our approach uses two shifts of
32bits even when operating on smaller size moduli.

Nevertheless, in the case of polynomial evaluation on
a 32bits Mersenne number, Mersenne forced approach out-
performs ours. This is the one and only case.

4.2.4 Comparison with Pseudo-Mersenne

Pseudo-Mersenne numbers offer enough moduli for them
to be used in each application we are proposing. However,



10

TABLE 6
Comparison between New method and Pseudo-Mersenne based

arithmetic

log2 P New (8) Pseudo-Mersenne (4)
w corr. wo corr.

30 128.9 180.9 (+40%) 152.4 (+18%)
EXP 31 134.5 189.2 (+40%) 157.2 (+17%)

32 137.2 187.0 (+36%) n/a
30 330.2 433.3 (+31%) 418.8 (+27%)

EVL 31 330.1 441.8 (+34%) 405.1 (+23%)
32 329.5 429.2 (+30%) n/a
30 189.8 224.9 (+18%) 214.4 (+13%)

NTT 31 188.3 224.0 (+19%) 214.5 (+14%)
32 189.0 231.0 (+22%) n/a
30 944.9 1440 (+52%) 1288 (+36%)

RNS 31 946.9 1441 (+52%) 1310 (+38%)
32 954.4 1429 (+50%) n/a

TABLE 7
Comparison between our and NFLlib’s modular arithmetic

log2 P New (8) NFLlib (6)

30 128.9 188.6 (+46%)
EXP 31 134.5 176.3 (+31%)

32 137.2 n/a
30 330.2 429.5 (+30%)

EVL 31 330.1 436.3 (+32%)
32 329.5 n/a
30 189.8 216.4 (+14%)

NTT 31 188.3 215.1 (+14%)
32 189.0 n/a
30 944.9 1414 (+50%)

RNS 31 946.9 1445 (+53%)
32 954.4 n/a

table 6 clearly shows that even without correction, pseudo-
Mersenne based arithmetic is slower than our by at lease
17% and up to 38% depending of applications, and up to
52% when redundancy is not available.

4.2.5 Comparison with NFLlib’s Method
Table 7 shows average number of cycles for our new algo-
rithm and NFLlib’s one.

NFLlib’s is offering slower timing than our method by
at least 13% and up to 53% depending of applications. As
previously stated, NFLlib’s solution can not offer solutions
for 32bits moduli.

4.2.6 Comparison with Montgomery-Friendly
Montgomery-Friendly arithmetic offers enough moduli for
most of our applications. However, its specific structure
does not allow it to have prime moduli with 2k roots of
unity (for NTT computation). A solution is possible by using
an extended class of Montgomery-friendly numbers i.e.
P = K2e + 1 with 2n−e−1 < K ≤ 2n−e. Such numbers are
close from Montgomery-Friendly, see [37] for more details.
As this work, is investigating already 3 generalist algorithms
and 4 special classes of moduli, an additional class has

TABLE 8
Comparison between New method and Montgomery’s Friendly based

arithmetic

log2 P New (8) Montgomery-Friendly (7)
w corr. wo corr.

30 128.9 189.5 (+47%) 146.5 (+14%)
EXP 31 134.5 206.0 (+53%) 151.4 (+12%)

32 137.2 194.9 (+42%) n/a
30 330.2 477.7 (+44%) 397.3 (+20%)

EVL 31 330.1 478.2 (+45%) 396.9 (+20%)
32 329.5 481.7 (+46%) n/a
30 944.9 1485 (+57%) 1227 (+30%)

RNS 31 946.9 1464 (+54%) 1215 (+28%)
32 954.4 1492 (+56%) n/a

TABLE 9
Comparison between New method and Generalized Mersenne based

arithmetic

log2 P New (8) Generalized Mersenne (5)
w corr. wo corr.

30 128.9 180.3 (+40%) 177.2 (+38%)
EXP 31 134.5 186.0 (+38%) 183.7 (+36%)

32 137.2 197.1 (+44%) n/a
30 330.2 378.9 (+15%) 349.0 (+5.7%)

EVL 31 330.1 375.3 (+14%) 351.9 (+6.6%)
32 329.5 370.0 (+12%) n/a

not be pursued. Furthermore, this extended class should
provide a highly close efficiency than Montgomery-Friendly.

As for Pseudo-Mersenne, table 8 clearly shows that even
without correction, Montgomery-Friendly based arithmetic
is slower by at lease 12% and up to 30% depending of
applications, and up to 57% when not allowed redundancy.

We note that Montgomery-Friendly numbers seem a bit
slower than pseudo-Mersenne. However, when redundancy
is allowed Montgomery-Friendly numbers outperformed
Pseudo-Mersenne.

4.2.7 Comparison with Generalized Mersenne

Generalized Mersenne numbers offer a wider range of
moduli that Mersenne number. However, as for Mersenne
numbers, they can be applied for only 2 of our 4 applica-
tions. This is due to the smaller number of moduli available
for one size.

Table 9 shows average number of cycles for our new
algorithm and Generalized Mersenne based arithmetic.

Generalized Mersenne numbers offer some advantages
compare to Pseudo-Mersenne numbers for polynomial eval-
uation. However, it is still slower on all applications, even
using redundancy, compare to our new approach.

4.2.8 Comparison Summary

Table 10 summarizes timing analysis by comparing our new
method to the best available existing solutions: we kept the
algorithm which returns the smallest average number of
cycles. wo c. indicate when algorithms are using without
final correction.



11

TABLE 10
Comparison between New method and Best Existing Solution on an

Intel Core i7

log2 P New Best Existing Solution
(8) # cycles Algorithm

30 128.9 126.5 (-1.9%) Montgomery (1) wo c.
EXP 31 134.5 138.6 (+3.0%) Forced Mersenne (3)

32 137.2 144.2 (+5.1%) Forced Mersenne (3)
30 330.2 339.8 (+2.9%) Mersenne (3)

EVL 31 330.1 337.0 (+2.1%) Mersenne (3)
32 329.5 296.7 (-10%) Forced Mersenne (3)
30 189.8 202.2 (+6.6%) Montgomery (1) wo c.

NTT 31 188.3 210.9 (+12%) Montgomery (1)
32 189.0 210.9 (+12%) Montgomery (1)
30 944.9 1187 (+26%) Montgomery (1) wo c.

RNS 31 946.9 1215 (+28%) M.-Friendly (7) wo c.
32 954.4 1419 (+48%) Montgomery (1)

TABLE 11
Comparison between New method and Best Existing Solution on an

Intel Xeon Gold

log2 P New Best Existing Solution
(8) # cycles Algorithm

30 101.8 101.1 (-0.71%) Montgomery (1) wo c.
EXP 31 105.2 117.0 (+11%) M.-Friendly (7) wo c.

32 109.9 132.5 (+20%) Barrett (2)
30 246.1 231.9 (-5.8%) Forced Mersenne (3)

EVL 31 246.3 231.0 (-6.2%) Forced Mersenne (3)
32 246.2 227.3 (-7.7%) Forced Mersenne (3)
30 171.0 180.0 (+5.3%) Montgomery (1) wo c.

NTT 31 170.4 181.8 (+6.7%) NFLlib (6)
32 172.6 184.5 (+6.9%) Montgomery (1)
30 764.6 907.2 (+19%) Montgomery (1) wo c.

RNS 31 765.1 934.8 (+22%) M.-Friendly (7) wo c.
32 774.9 1096 (+42%) Montgomery (1)

To confirm competitivity of our new method, we per-
formed the exact same tests on a second machine, a Linux
5.4.0-40-generic with Intel Xeon Gold 6128 CPU (3.40GHz).
Table 11 presents those results confirming the same be-
haviour even if some small change can be observed. If some
applications are close or even slower, a large number of
applications are faster when implemented with our new
method with even some instances were every other solu-
tions can go slower by 48% on the Intel Core i7 and by 42%
on the Intel Xeon Gold.

5 CONCLUSION

In this work, we proposed a new modular multiplication
designed to be computed on a unique word. It offers some
strong advantages compare to other existing solutions:

• a computational cost low in word size instructions,
• possibility to be computed on one word size register,
• a dedicated - with further efficiency - modular mul-

tiplication by a constant.

We showed that our new method outperformed all ex-
isting solutions in the majority of cases.

However, further investigation should be done to eval-
uate if such approach can accelerate application using not
a family of moduli but rather one specific moduli. Lattice
based cryptosystems such as New Hope [15] or Kyber [16]
use one unique prime moduli, 213 + 212 + 1 for New
Hope, 213 − 29 + 1 for Kyber. With such specific moduli,
[15] and [16] have used a combination of Lazy Barrett’s
reduction and Montgomery’s ones, to minimize the number
of operations required to perform a NTT. In those works,
usage of redundancy for NTT have been optimized for those
moduli. Furthermore, AVX instructions have to accelerate
further computation.

There is the potential to further investigate how our new
method perform on NTT on such moduli when maximizing
redundancy and when using AVX instructions.

Nevertheless, we think that our new method offers a
highly competitive option for word size modular arithmetic.

REFERENCES

[1] W. Diffie and M. E. Hellman, “New directions in cryptography,”
IEEE Transactions on Information Theory, vol. IT-22, no. 6, pp. 644–
654, nov 1976.

[2] R. Rivest, A. Shamir, and L. Adleman, “A method for obtaining
digital signatures and public-key cryptosystems,” Communications
of the ACM, vol. 21, no. 2, pp. 120–126, Feb 1978.

[3] National Institute for Standards and Technology, “Digital Signa-
ture Standard (DSS),” Jun 2009.

[4] V. Miller, “Use of elliptic curves in cryptography,” in Advances
in Cryptology, proceeding’s of CRYPTO’85, ser. LNCS, vol. 218.
Springer-Verlag, 1986, pp. 417–426.

[5] N. Koblitz, “Elliptic curve cryptosystems,” Mathematics of Compu-
tation, vol. 48, no. 177, pp. 203–209, January 1987.

[6] J.-M. Couveignes, “Hard homogeneous spaces,”
Cryptology ePrint Archive, Report 2006/291, 2006,
https://eprint.iacr.org/2006/291.

[7] D. Jao and L. D. Feo, “Towards quantum-resistant cryptosystems
from supersingular elliptic curve isogenies,” in Post-Quantum
Cryptography - 4th International Workshop, PQCrypto 2011, Taipei,
Taiwan, November 29 - December 2, 2011. Proceedings, ser. Lecture
Notes in Computer Science, B. Yang, Ed., vol. 7071. Springer,
2011, pp. 19–34.

[8] D. E. Knuth, The Art of Computer Programming, Vol. 2. Seminumerical
Algorithms, 3rd ed. Addison-Wesley, 1997.

[9] M. B. Monagan and B. Tuncer, “The complexity of sparse hensel
lifting and sparse polynomial factorization,” J. Symb. Comput.,
vol. 99, pp. 189–230, 2020.

[10] J. Hu and M. B. Monagan, “A fast parallel sparse polynomial GCD
algorithm,” in Proceedings of the ACM on International Symposium
on Symbolic and Algebraic Computation, ISSAC 2016, Waterloo, ON,
Canada, July 19-22, 2016, S. A. Abramov, E. V. Zima, and X. Gao,
Eds. ACM, 2016, pp. 271–278.

[11] A. Shamir, “How to share a secret,” CACM: Communications of the
ACM, vol. 22, pp. 612–613, 1979.

[12] D. Micciancio and O. Regev, “Lattice-based cryptography,” in Post-
quantum Cryprography, D. J. Bernstein, J. Buchmann, and E. Dah-
men, Eds. Springer, 2008.

[13] G. Alagic, J. Alperin-Sheriff, D. Apon, D. Cooper, Q. Dang,
J. Kelsey, Y.-K. Liu, C. Miller, D. Moody, R. Peralta, R. Perlner,
A. Robinson, and D. Smith-Tone, “Status report on the second
round of the NIST post-quantum cryptography standardization
process,” National Institute of Standards and Technology, Tech.
Rep. NIST IR 8309, Jul. 2020.

[14] L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, P. Schwabe,
G. Seiler, and D. Stehlé, “Crystals-dilithium: A lattice-based
digital signature scheme,” IACR Trans. Cryptogr. Hardw. Embed.
Syst., vol. 2018, no. 1, pp. 238–268, 2018. [Online]. Available:
https://doi.org/10.13154/tches.v2018.i1.238-268

[15] E. Alkim, L. Ducas, T. Pöppelmann, and P. Schwabe, “Post-
quantum key exchange – a new hope,” 2016, pp. 327–343.

[16] J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. Schanck,
P. Schwabe, G. Seiler, and D. Stehle, “Crystals - kyber: A cca-secure
module-lattice-based kem,” 2018, pp. 353–367.



12

[17] J.-P. D’Anvers, A. Karmakar, S. Sinha Roy, and F. Vercauteren,
“Saber: Module-lwr based key exchange, cpa-secure encryption
and cca-secure kem,” Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), vol. 10831 LNCS, pp. 282–305, 2018.

[18] P. L. Montgomery, “Modular multiplication without trial divi-
sion,” Mathematics of Computation, vol. 44, no. 170, pp. 519–521,
Apr 1985.

[19] C. D. Walter, “Precise bounds for Montgomery modular multipli-
cation and some potentially insecure RSA moduli,” in CT-RSA,
2002, pp. 30–39.

[20] P. Barrett, “Implementing the Rivest Shamir and Adleman public
key encryption algorithm on a standard digital signal processor,”
in Advances in Cryptology – CRYPTO ’86, ser. LNCS, A. M. Odlyzko,
Ed., vol. 263. Springer-Verlag, 1986, pp. 311–326.

[21] J.-J. Quisquater, “Encoding system according to the so-called rsa
method, by means of a microcontroller and arrangement imple-
menting this system,” U.S. Patent number # 5, 166–978, 1991.

[22] M. Joye, “On quisquater’s multiplication algorithm,” in Cryptog-
raphy and Security: From Theory to Applications - Essays Dedicated
to Jean-Jacques Quisquater on the Occasion of His 65th Birthday, ser.
Lecture Notes in Computer Science, D. Naccache, Ed., vol. 6805.
Springer, 2012, pp. 3–7.

[23] R. Crandall, “Method and apparatus for public key exchange in a
cryptographic system,” U.S. Patent number 5159632, 1992.

[24] Certicom Research, “SECG SEC2: Recommended Elliptic Curve
Cryptography Domain Parameters,” Sep 2000.

[25] S. Kawamura, M. Koike, F. Sano, and A. Shimbo, “Cox-rower
architecture for fast parallel montgomery multiplication,” in Proc.
Int’l Conf. Theory and Application of Cryptographic Techniques: Ad-
vances in Cryptology (EUROCRYPT 2000), ser. Lecture Notes in
Computer Science, Springer, Ed., no. 1807, 2000.

[26] J.-C. Bajard, L. Imbert, and T. Plantard, “Improving Euclidean
division and modular reduction for some classes of divisors,” in
37th IEEE Asilomar Conference on Signals, Systems, and Computers,
November 2003.

[27] J. Chung and A. Hasan, “More generalized Mersenne numbers,”
in Selected Areas in Cryptography – SAC 2003, ser. LNCS, M. Matsui
and R. Zuccherato, Eds., vol. 3006. Ottawa, Canada: Springer-
Verlag, Aug 2003, (to appear).

[28] J. Solinas, “Generalized Mersenne numbers,” Center for Applied
Cryptographic Research, University of Waterloo, Waterloo, ON,
Canada, Research Report CORR-99-39, 1999.

[29] National Institute for Standards and Technology, FIPS PUB 186-
2: Digital Signature Standard (DSS), Gaithersburg, MD, USA, Jan.
2000.

[30] J.-C. Bajard, M. Kaihara, and T.Plantard, “Selected RNS bases for
modular multiplication,” in ARITH’19: Proceedings of the 19th IEEE
Symposium on Computer Arithmetic. IEEE Computer Society, June
2009.

[31] C. A. Melchor, J. Barrier, S. Guelton, A. Guinet, M. Killijian, and
T. Lepoint, “Nfllib: Ntt-based fast lattice library,” in Topics in
Cryptology - CT-RSA 2016 - The Cryptographers’ Track at the RSA
Conference 2016, San Francisco, CA, USA, February 29 - March 4,
2016, Proceedings, ser. Lecture Notes in Computer Science, K. Sako,
Ed., vol. 9610. Springer, 2016, pp. 341–356.

[32] N. Moller and T. Granlund, “Improved division by invariant
integers,” IEEE Trans. Computers, vol. 60, no. 2, pp. 165–175, 2011.

[33] M. Hamburg, “Fast and compact elliptic-curve cryptography,”
IACR Cryptol. ePrint Arch., vol. 2012, p. 309, 2012.

[34] J. W. Bos, C. Costello, H. Hisil, and K. E. Lauter, “Fast cryptog-
raphy in genus 2,” in Advances in Cryptology - EUROCRYPT 2013,
32nd Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Athens, Greece, May 26-30, 2013. Pro-
ceedings, ser. Lecture Notes in Computer Science, T. Johansson and
P. Q. Nguyen, Eds., vol. 7881. Springer, 2013, pp. 194–210.

[35] P. Longa and M. Naehrig, “Speeding up the number theoretic
transform for faster ideal lattice-based cryptography,” in
Cryptology and Network Security - 15th International Conference,
CANS 2016, Milan, Italy, November 14-16, 2016, Proceedings,
ser. Lecture Notes in Computer Science, S. Foresti and
G. Persiano, Eds., vol. 10052, 2016, pp. 124–139. [Online].
Available: https://doi.org/10.1007/978-3-319-48965-0 8

[36] G. Seiler, “Faster avx2 optimized ntt multiplication for ring-
lwe lattice cryptography,” Cryptology ePrint Archive, Report
2018/039, 2018.

[37] J. Bajard and S. Duquesne, “Montgomery-friendly primes
and applications to cryptography,” IACR Cryptol. ePrint
Arch., vol. 2020, p. 665, 2020. [Online]. Available:
https://eprint.iacr.org/2020/665

[38] A. Menezes, P. C. V. Oorschot, and S. A. Vanstone, Handbook of
Applied Cryptography. CRC Press, 1996.

[39] J. Hoffstein, J. Pipher, and J. H. Silverman, “NTRU: A ring-based
public key cryptosystem,” in Algorithmic Number Theory (ANTS
1998), Lecture Notes in Computer Science 1423, Springer-Verlag, 1998,
pp. 267–288.

[40] T. Prest, P.-A. Fouque, J. Hoffstein, P. Kirch-ner, V. Lyubashevsky,
T. Pornin, T. Ricos-set, G. Seiler, W. Whyte, , and Z. Zhang, “Falcon:
Fast-fourier lattice-basedcompact signatures over NTRU,” Sub-
mission to the NIST’s post-quantum cryptography standardiza-
tion process, 2017.

[41] G. A. Jullien and W. C. Miller, “Application of the residue number
system to computer processing of digital signals,” in IEEE Sympo-
sium on Computer Arithmetic ARITH 4, 1978, pp. 220–225.

[42] J.-C. Bajard and L. Imbert, “A full RNS implementation of RSA,”
IEEE Transactions on Computers, vol. 53, no. 6, pp. 769–774, 2004.

[43] J.-C. Bajard and T. Plantard, “RNS bases and conversions,” in
SPIE’04: Advanced Signal Processing Algorithms, Architectures and
Implementations XIV, August 2004.

[44] J.-C. Bajard, L.-S. Didier, and P. Kornerup, “An RNS Montgomery
modular multiplication algorithm,” IEEE Transactions on Comput-
ers, vol. 47, pp. 766–776, 1998.

[45] A. Lesavourey, C. Nègre, and T. Plantard, “Efficient randomized
regular modular exponentiation using combined montgomery and
barrett multiplications,” in Proceedings of the 13th International Joint
Conference on e-Business and Telecommunications (ICETE 2016) -
Volume 4: SECRYPT, Lisbon, Portugal, July 26-28, 2016, C. Callegari,
M. van Sinderen, P. G. Sarigiannidis, P. Samarati, E. Cabello,
P. Lorenz, and M. S. Obaidat, Eds. SciTePress, 2016, pp. 368–375.

Thomas Plantard is a senior research fellow
at the Institute of Cybersecurity and Cryptol-
ogy at the University of Wollongong. He has
worked for more than 10 years at the Univer-
sity of Wollongong on various topics related to
computer arithmetic, algorithmic number theory,
computer algebra and cryptology, in particular
modular arithmetic, number system and lattice
based cryptography.


