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Abstract The LLL algorithm, named after its inventors, Lenstra, Lenstra and Lovász, is one
of the most popular lattice reduction algorithms in the literature. In this paper, we propose the
first variant of LLL algorithm that is dedicated for ideal lattices, namely, the iLLL algorithm.
Our iLLL algorithm takes advantage of the fact that within LLL procedures, previously
reduced vectors can be re-used for further reductions. Using this method, we prove that the
iLLL is at least as fast as the LLL algorithm, and it outputs a basis with the same quality.
We also provide a heuristic approach that accelerates the re-use method. As a result, in
practice, our algorithm can be approximately eight times faster than LLL algorithm for typical
scenarios where lattice dimension is between 100 and 150. When applying our algorithm to
the Gentry–Halevi’s fully homomorphic challenges, we are able to solve the toy challenge
within 24 days using a 2.66 GHz CPU, while with the classical LLL algorithm, it takes 32
days. Further, assuming a 4.0 GHz CPU, we predict to reduce the basis in 15.7 years for the
small challenges, while previous best prediction was 45 years.
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1 Introduction

A lattice L is a discrete subgroup of R
n . It is usually represented by a set of integer linear

combinations of vectors B = (b1, . . . , bd), bi ∈ R
n , d ≤ n. B is a basis of L, if bi -s are

linearly independent, and d is called the dimension of the L. For a given lattice L, there exists
an infinite number of bases for d ≥ 2. Given a ‘bad’ basis (basis with large coefficients), to
find a ‘good’ basis (bases with small coefficients and almost orthogonal) is known as “lattice
reduction”.

The concept of an ideal lattice was first introduced by Micciancio in [19]. For any vectors
within the lattice, the cyclic rotation of the vector (over a certain polynomial ring Z[X ]/F[X ])
is also in the lattice. Such a lattice enables important applications in modern cryptography such
as constructing an asymptotic efficient digital signature scheme [18] or a fully homomorphic
encryption scheme [8]. In those schemes, the public key is usually a bad basis, and to find
a good basis through the bad basis will break the cryptosystem. The principal ideal lattice
is a special ideal lattice that can be represented by 3 integers α, δ and d , where δ is the
determinant of the lattice, α is a root and d is the dimension. This type of lattice with this
kind of representation is usually adopted in practice, in order to improve the efficiency of the
system [8,30].

The first polynomial time lattice reduction algorithm, known as LLL, was devised by
Lenstra, Lenstra and Lovász [16] in 1982. For an arbitrary basis B = (b1, . . . , bd), where all
the Euclidean norms of bi are bounded by 2β , the LLL algorithm is guaranteed to terminate
in O(d6β3) time. In theory, the LLL algorithm is able to find vectors that are exponential
approximations of the shortest non-zero vectors of the lattice.

The most popular variant of LLL-type reduction algorithms was that of Nguyen and Stehlé
[24]. It was named L2 since its worst case complexity O(d5β2) was quadratic in β. Within
L2, there is a method named FP which makes uses of several heuristics as described in their
paper. In practice, FP is considered as the most efficient implementation so far.

The first fully homomorphic encryption scheme was proposed by Gentry [7–9], using
ideal lattices. To date, there exist three types of variants: schemes based on ideal lattices
[11,30,31], schemes based on integers [5,33] and schemes based on (ring) learning with
errors [2,3,12,13], among which, Gentry and Halevi’s scheme [11] is one of the most efficient
implementations. The authors also proposed four different challenges for their scheme. To
the best of our knowledge, the best known attack against those challenges was devised by
Chen and Nguyen [4,23].
Our contribution In this paper, we propose the first variant of LLL algorithm that is dedicated
to ideal lattices. We obtain the following results:

– In theory, our algorithm shares the same worst-case bit complexity with the LLL algo-
rithm. But our algorithm is at least as fast the corresponding LLL algorithm.

– On average cases, we reduce the complexity from O((d3β + d2β2)M(d)) (as in L2) to
O((d3β + dβ2)M(d)), where M(d) is the cost of integer multiplication with two d bit
integers.

– In practice, our algorithm out-performs all known lattice reduction algorithms in terms
of running time.

– In terms of the quality of the output basis, our algorithm produces an LLL reduced basis.
Furthermore, in a vast majority of cases, our modification will not affect the output of
the corresponding algorithm. With the same input, our iLLL algorithm will output the
same result as the LLL algorithm in most tests.
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– This leads us to a new result to the Gentry and Halevi fully homomorphic encryption
challenge. We solve the toy challenge within 24 days, while we estimate to solve the
small challenge in 16.7 years.

Paper organization In the next section, we will discuss the background for this paper. In
Sect.3, we present our iLLL algorithm, and prove its correctness. In Sect.4, we compare the
complexity of iLLL with the classical LLL algorithm. In Sect.5, we extend our technique
over bases other than principal ideal lattice bases. In Sect.6, we present the implementation
results. Finally, Sect.7 concludes the paper.

2 Background

2.1 Lattice theory

In this subsection, we review some concepts of lattice theory that will be used throughout
this paper. The lattice theory, also known as the geometry of numbers, was introduced by
Minkowski in 1896 [21]. We refer readers to [17,20] for a more complex account.

Definition 1 (Lattice) A lattice L is a discrete sub-group of R
n , or equivalently the set of all

the integral combinations of d ≤ n linearly independent vectors over R.

L = Zb1 + Zb2 + · · · + Zbd , bi ∈ R
n

B = (b1, . . . , bd) is called a basis of L and d is the dimension of L, denoted as dim(L). L
is a full rank lattice if d equals n.

For a given lattice L, there exists an infinite number of bases. However, its determinant,
denoted by det(L) = √

det(B · BT ), is unique, where BT is the transposition of B.
For a lattice L, the i th successive minima with respect to L, denoted by λi , is the smallest

real number, such that there exist i non-zero linearly independent vectors b1, b2, . . . , bi ∈ L
with

‖b1‖, ‖b2‖, . . . , ‖bi‖ ≤ λi ,

where ‖ · ‖ denotes the Euclidean norm of the corresponding vector. In addition, if the lattice
is random, then the value of i th minima is estimated by:

λi (L) ∼
√

d

2πe
det(L)

1
d . (1)

We note that the minimas are independent from i .
For any vector v, denote v(x) the polynomial form of v. Let Rot (v, i) be xiv(x)

mod f (x). Then {Rot (v, i)} 1 ≤ i ≤ d forms a rotation basis. For instance, if f (x) = xn+1
and v = (v1, v2, . . . , vd), then the rotation basis (B) is of the following form:

B =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

v1 v2 v3 . . . vd

−vd v1 v2 . . . vd−1

−vd−1 −vn v1 . . . vd−2
...

...
...

. . .
...

−v2 −v3 −v4 . . . v1

⎞

⎟
⎟
⎟
⎟
⎟
⎠
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Definition 2 (Ideal lattice [19]) Let R be a polynomial ring Z[X ]/ f (x), where f (x) ∈ Z[X ]
is a monic irreducible polynomial of degree n. Let v ∈ Z

n . The ideal lattice over R with
respect to v, denoted by L(Rot (v, f )) is the set of all integer linear combinations of v and
its rotation vectors.

Note that for ideal lattices, we have n = d for all bases. Since we are dealing with ideal
lattices throughout this paper, we have n = d .

For a principal ideal lattice, its Hermite normal form (HNF) basis (H) is in the following
form. Such a basis can be represented by three integers {α, δ, d}, where δ is the determinant
of the lattice, and α is the root of unity over the ring. From the point of view of cryptography,
one sometimes also uses H′, which shares a similar property with H. We note that the bit
complexity to reduce those two bases is the same.

H =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

δ 0 0 . . . 0 0

(−α) 1 0 . . . 0 0

(−α)2 mod δ 1 . . . 0 0
...

...
...

. . .
...

...

(−α)d−1 mod δ 0 0 . . . 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, H′ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

δ 0 0 . . . 0 0

−α 1 0 . . . 0 0

0 −α 1 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . −α 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

In this paper, we also deal with lattice bases with other special forms, such as cyclic bases
formed by the bottom several rows of H, or ideal lattices where the top several elements on
the diagonal of their HNF bases are not 1. We note that one can still use our technique when
the vectors whose last non-zero element is 1 start to appear. For simplicity, we use principal
ideal lattices to demonstrate our technique in the rest of the paper, and we assume that the
principal ideal lattices are given in the form of HNF bases.

Definition 3 (Hermite factor) Let B = (b1, . . . , bd) a basis of L. The Hermite factor with
respect to B is defined as ‖b1‖

det(L)
1
d

.

Note that the Hermite factor indicates the quality of a reduced basis.

Definition 4 (Gram–Schmidt orthogonalization) Let B = (b1, . . . , bd) be a basis of L. The
Gram–Schmidt orthogonalization (GSO) of B is the following basis B∗ = (b∗1, . . . , b∗d):

b∗1 = b1,

b∗i = bi −
i−1∑

j=1

μi, j b∗j , (2 ≤ i ≤ d),

μi, j =
bi · b∗j
b∗j · b∗j

.

Definition 5 (Gram determinants)] Let B = (b1, . . . , bd) be a basis of L. Let B∗ =
(b∗1, . . . , b∗d) be the corresponding GSO. The Gram determinants of B, noted {�∗1, . . . ,�∗d}
is defined as:

�∗i = det(b∗1, . . . , b∗i ).
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The product of all Gram determinants is defined as: D = ∏d−1
i=1 �∗i . For any basis, D is

upper-bounded by 2βd(d−1), while for the HNF bases of principal ideal lattices, D is further
bounded by 2β(d−1).

2.2 The LLL algorithm

In this subsection, we give a general overview of the LLL algorithm. We refer the reader to
the book by Nguyen and Vallée [26] for a more complex account.

The LLL algorithm is described in Algorithm 1 and 2. Algorithm 1 is for size reduction,
and it is sometimes referred to as the Gram–Schmidt reduction. Algorithm 2 outputs a (δ, η)-
reduced basis. The basis is also referred to as the LLL-reduced basis.

Definition 6 (η-size reduced) Let B = (b1, . . . , bd) be a basis of L. B is η-size reduced, if
|μi, j | ≤ η for 1 ≤ j < i ≤ d . η ≥ 0.5 is the reduction parameter.

Definition 7 ((δ, η)-reduced basis) Let B = (b1, . . . , bd) be a basis of L. B is (δ, η)-
reduced, if the basis is η-size reduced and it satisfies Lovász condition as follows: δ‖b∗i−1‖2 ≤
‖b∗i ‖2 + μ2

i,i−1‖b∗i−1‖2 for 2 ≤ i ≤ d . 1
4 < δ ≤ 1 and 1

2 ≤ η <
√

δ are two reduction
parameters.

It is quite straightforward to see that if Algorithm 2 terminates, then its output basis
satisfies the Lovász condition. Hence, the basis is (δ, η)-reduced. Note that in the classical
LLL, η = 0.5, while in L2 (see next subsection), it is essential that η is slightly greater than
0.5.

With regard to the running time of the algorithm, it has been shown that the loop invari-
ant D is unchanged except during the exchange procedure, while during the exchange, D
is decreased by a factor of δ. Hence, the total number of exchanges is upper bounded by∣
∣
∣βd(d−1)

log2 δ

∣
∣
∣, which implies there are maximum O(d2β) loop iterations. In addition, since

the size reduction algorithm requires O(d2) operations, the total number of operations is
O(d4β). Finally, each operation involves integer multiplications with a cost of M(dβ)

due to rational arithmetics.1 Hence, the original LLL algorithm terminates in polynomial
time O(d6β3).

Algorithm 1 Size Reduction
Input: B = (b1, b2, . . . , bd ), its GSO, an index κ and a reduction parameter η.
Output: A new basis B, where bκ is size reduced, and the updated GSO.

for i = (κ − 1)→ 1 do
if μ ≤ η then

bκ ← bκ − �μκ,i  · bi ;
Update GSO;

end if
end for
return B.

1 In this paper, we follow the LLL algorithm by using M(d) to be O(d2) assuming a naive integer multiplica-
tion, although one can replace it with O(d1+ε) to obtain the exact bit complexity using fast integer arithmetics
as indicated in Table 1.
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Algorithm 2 LLL
Input: B = (b1, b2, . . . , bd ) and reduction parameters (δ, η).
Output: A (δ, η)-reduced basis B.

Compute GSO;
κ ← 2;
while κ ≤ d do

size reduce (B, κ, η);
if δ‖b∗κ−1‖2 ≤ ‖b∗κ‖2 + μ2

κ,κ−1‖b∗κ−1‖2 (Lovász condition) then
κ ← κ + 1;

else
Exchange bκ and bκ−1;
κ ← max(κ − 1, 2);
Update GSO;

end if
end while
return B.

With regard to the quality of a reduced basis for an arbitrary lattice, the following theorem
provides an upper bound.

Theorem 1 For a lattice L, if (b1, . . . , bn) form an LLL-reduced basis of L, then,

∀i, ‖bi‖ ≤
(

1

δ − η2

) d−1
2

λi (L). (2)

Hence, if B = (b1, . . . , bd) forms an (δ, η)-reduced basis, then ‖bi‖ ≤ 2d det(L)
1
d for

1 ≤ i ≤ d .

2.3 LLL variants

In this subsection, we list some of the LLL-type algorithms that improve complexity with
regard to β. For other improvements with respect to d , we refer readers to [15,22,29].

In 2005, Nguyen and Stehlé [24] proposed an improvement to the LLL, which is the first
variant whose worst-case time complexity is quadratic with respect to β. This algorithm
is therefore named L2. We briefly recall the difference between L2 and classical LLL. L2

uses floating point arithmetics where the multiplication can be carried out with precision
O(d). Hence, it reduces the cost of integer multiplication from M(dβ) to M(d). However,
to assure correctness of the floating point, the L2 uses a ‘lazy’ size reduction algorithm which
incurs a cost of O(d2 + dβ), compared to O(d2) as in LLL. Finally, both algorithms use
maximum O(d2β) loop iterations. Therefore, it terminates with a worst-case time complexity
of O(d5β2 + d6β) for any basis with naive multiplication.

As for a principal ideal lattice basis, it is proved that L2 terminates in O(d4β2 + d5β),
since there are O(dβ) loop iterations for these bases instead of O(d2β) for bases of random
lattices (see Remark 3, [24]).

The FP is the fastest variant of L2 in practice. It uses some heuristics, such as multi-levels
of floating-point precisions. The classical L2 uses a fixed precision l = O(d), while FP will
try some small precisions (for instance, C int length, which allows fast computation) first,
before it finally uses l. This procedure with small precision is called “early reduction”. Since
the complexity depends largely on the precision, the early reductions are in general very fast.
Meanwhile, they produce a basis that is already reduced to some extent. So the cost of final
reduction with precision = l is greatly reduced.
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In [34], van Hoeij and Novocin proposed a gradual sub-lattice reduction algorithm based
on LLL that deals with knapsack-type bases. Unlike other LLL-type reduction algorithms, it
only produces a basis of a sub-lattice. This algorithm uses a worst-case O(d7 + d3β2) time
complexity.

In 2011, Novocin, Stehlé and Villard [27] proposed a new improved LLL-type algorithm

that is quasi-linear in β. This led to the name L̃
1
. It is guaranteed to terminate in time

O(d6β + dω+2β2) for any basis, where ω is a valid exponent from matrix multiplications.
To bound ω, we have 2 < ω ≤ 3. A typical setting in [27] is ω = 2.3.

In [28], Plantard et al. proposed a recursive reduction that can be applied to ideal lattice.
Their algorithm is proved to finish in O(d3β2+d5β) for principal ideal lattice bases. However,
we note that this work assumes a uniform distribution, hence, did not provided a worst-case
complexity.

In this paper, we compare our algorithm primarily with L2 and its fastest implementation,
FP, since those two are the best in theory and in practice.

2.4 Fully homomorphic encryption challenges

In the fully homomorphic encryption challenges [10], the authors published four sets of
public keys with respect to different parameters (toy, small, medium and large). To solve the
challenge, one needs to recover some short vectors from the public keys. In toy, small and
medium challenges, this can be achieved by performing an LLL reduction over the principal
ideal lattice bases. Since in those lattices, the corresponding Hermite factor is much greater
than the upper bound of the LLL algorithm. Therefore, performing an LLL reduction will
solve the challenge. As a result, the remaining problem is the running time of the LLL
algorithm. The previous best results/prediction for the running time of LLL can be found in
Table 2.

3 LLL for ideal lattices

Ideal lattice maintains this special property: if a vector v ∈ L, then all its rotation vectors
over R exist in this lattice as well. This useful property can accelerate the reduction. The LLL
algorithm uses a stepping method. At the κth step, the first κ vectors in the basis are involved.
For a certain step κ , the top κ − 1 vectors are (δ, η)-reduced. So it will first size-reduce bκ

with (b′1, . . . , b′κ−1), where (b′1, . . . , b′κ−1) denotes the reduced basis of (b1, . . . , bκ−1), and
then perform the LLL reduction on the whole κ vectors.

However, instead of size-reducing the input vector bκ whose bit-length is in β, one can
use a rotation of a previous vector, providing that this new vector, denoted as v, together with
{bi }, 1 ≤ i ≤ d, i �= κ also form a basis of L. This technique is named “re-use”.

Recall that in the κ − 1 step, one has already performed a size reduction on bκ−1 with
(b′1, . . . , b′κ−2). Denote v′ the reduced vector. Then one can simply shift v′ to the right to
obtain v. (b′1, . . . , b′κ−1, v) also form a basis of L(b1, . . . , bκ ). Moreover, since v is already
size-reduced to some extent, it will often be shorter than bκ , and as a result, re-use will often
accelerate the reduction.

To use the re-use technique recursively, we obtain iLLL algorithm. In the following, we
first show our iLLL algorithm. Then we prove that the algorithm is correct.
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3.1 The algorithm

The iLLL algorithm is described in Algorithm 3. We note that the only difference between
Algorithm 3 and the LLL algorithm is the re-use technique. In Algorithm 3, κ indicates the
current vector that iLLL is working on. κ1 indicates if the current size-reduced vector should
be re-used later.

Algorithm 3 The iLLL Algorithm
Input: The HNF basis B = (b1, b2, . . . , bd ) of an ideal lattice and reduction parameters (δ, η)

Output: An (δ, η)-reduced basis B.
Compute GSO.
κ ← 2, κ1 ← 2.
while κ ≤ d do

Size reduce (B, κ, η);
if κ = κ1 and κ < d then

v← Right shift (bκ );
if ‖v‖ < ‖bκ+1‖ then

bκ+1 ← v
end if
κ1 ← κ1 + 1;

end if
if δ‖b∗κ−1‖2 ≤ ‖b∗κ‖2 + μ2

κ,κ−1‖b∗κ−1‖2 then
κ ← κ + 1;

else
Exchange bκ and bκ−1;
κ ← max(κ − 1, 2);
Update GSO;

end if
end while
return B.

3.2 Correctness

To start with, for each step, we have the following Lemma:

Lemma 1 Let B = (b1, . . . , bd). Let Bi−1 = (b′1, . . . , b′i−1) where (b′1, . . . , b′i−1) forms a
(δ, η)-reduced basis of L(b1, . . . , bi−1). Let v ∈ L where the i th coefficient of v is 1. Then
B′ = (b′1, . . . , b′i−1, v, bi+1, . . . , bd) form a basis of L(B).

Proof Firstly, all row vectors of B′ can be obtained by linear operations of row vectors of B.
Meanwhile, all row vectors of B′ are linearly independent. b′1, . . . , b′i−1, bi+1, . . . , bd are
linear independent since the top i − 1 vectors are LLL reduced form b1, . . . , bi−1. Also, v is
independent with b′1, . . . , b′i−1, bi+1, . . . , bd since the i th element of all row vectors of B′
is 0 except for v. Hence, B′ is a basis of L(B). ��
Then we prove the correctness in Theorem 2.

Theorem 2 For an input basis B, our iLLL algorithm outputs an LLL-reduced basis of L(B).

Proof For the quality of the basis, it is quite straightforward that our algorithm produces an
LLL-reduced basis, since it checks Lovász condition at the last iteration. Furthermore, we
have shown that our algorithm produces a basis that spans the same lattice as the input basis
in Lemma 1, since the shifted vector is the only one whose (κ + 1)th coefficient is non-zero.
Hence, our iLLL algorithm outputs an LLL-reduced basis of L(B). ��
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4 Analysis

Our algorithm shares the same worst-case complexity with the LLL algorithm, however, we
show that our algorithm is in theory always faster than LLL algorithm. Further, on average
cases, we obtain a complexity of O(d5β + d3β2).

4.1 Comparison with LLL and worst-case complexity

Recall that the LLL algorithm uses a stepping method. For the κth step (κ > 2), the basis is
of the following form:

Bκ,L L L =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

x1,1 x1,2 . . . x1,κ 0 0 . . . 0
x2,1 x2,2 . . . x2,κ 0 0 . . . 0
...

... · · · ...
... 0 · · · ...

xκ−1,1 xκ−1,2 . . . xκ−1,κ 0 0 . . . 0
xκ,1 xκ,2 . . . xκ,κ 0 0 . . . 0

Xκ+1 0 . . . 0 1 0 . . . 0
Xκ+2 0 . . . 0 0 1 . . . 0

...
... · · · ...

...
... · · · ...

Xd 0 . . . 0 0 0 . . . 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

where the top κ vectors are LLL-reduced. Then, for the next step, since the top κ vectors are
already reduced, there will be no exchange initially. The LLL will directly size-reduce bκ+1,
and then operate on (b1, . . . , bκ+1).

Bκ,i L L L =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

x1,1 x1,2 . . . x1,κ 0 0 . . . 0
x2,1 x2,2 . . . x2,κ 0 0 . . . 0
...

... · · · ...
...

... · · · ...

xκ−1,1 xκ−1,2 . . . xκ−1,κ 0 0 . . . 0
xκ,1 xκ,2 . . . xκ,κ 0 0 . . . 0

0 v1 . . . vκ−1 1 0 . . . 0
Xκ+2 0 . . . 0 0 1 . . . 0

...
... · · · ...

...
... · · · ...

Xd 0 . . . 0 0 0 . . . 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

By comparison, the only change we have made is to replace bκ+1 with v as shown in
Bκ,i L L L . This modification indeed accelerates the size-reduction, since v is in general signif-
icantly shorter than bκ+1. Moreover, since our algorithm does not work on large coefficients
(i.e. Xκ+1), it requires less precision of floating-point to size-reduce.

To sum up, in theory, we proved that the iLLL will always be faster than the LLL algorithm
due to the fact that v is not longer than bκ+1. However, in worst cases, it is possible that
‖v‖ ∼ ‖bκ+1‖ if all κ vectors are not well reduced. In this case, our algorithm shares the
same worst-case complexity as the LLL algorithm. It is also worth pointing out that we can
never be more costly than LLL, since if ‖v‖ > ‖bκ+1‖, one simply does not adopt the re-use,
and we obtain an exact LLL algorithm.
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4.2 Average-case complexity

Now we analyze the average case complexity of our algorithm. We assume a uniform dis-
tribution of α over (0, δ), then the lattice is, therefore, a random ideal lattice as in [14]. If a
lattice is random, then its minima λi follow Eq. 1. We also assume that random ideal lattices
share same properties with (normal) random lattices in terms of the minimas. Hence, Eq. 1
will hold for our case under this assumption.

For the κth step (κ > 2), the basis our algorithm is shown as in the last subsection, where

‖bi‖ ∼ 2
κ−1

2 2
β

κ−1 for i < κ and ‖bκ‖ ∼ 2
κ−2

2 2
β

κ−2 . The loop invariant for current step

Dκ is then bounded by
∏κ

i=1 ‖bi‖2(κ−i+1) = 2κ(κ−1)2−122βκ+ β
(κ−1)(κ−2) . When the κth step

terminates, bi will be reduced to 2
κ
2 2

β
κ for i ≤ κ . Hence, one obtains O(β) loop iterations

on average cases for each step. We note that this observation is quite natural, since there are
O(dβ) loop iterations in total, hence, on average there are O(β) loop iterations for each κ .

1. For the κth step, the κth step terminated in O(β(κ2 + β)M(κ)) operations:

(a) There are maximum O(β) loop iterations.
(b) For each loop iteration, there is maximum O(1 + β

κ(κ−1)
) iterations within the size

reduction.
(c) In each size reduction, there are O(κ2) arithmetic operations.
(d) The cost of arithmetic operations is determined by integer multiplications with bit

length O(κ).

2. Assuming a naive integer multiplication, one obtains O(
∑d

κ=2(βκ4+β2κ2)) = O(d5β+
d3β2).

Table 1 shows a comparison of time complexity between iLLL and some of LLL-type algo-
rithms using fast multiplications.

5 Extensions

5.1 Heuristics

The main improvement in our provable algorithm is to replace bκ+1 with a vector from
previous reductions through the size reduction algorithm. In fact, any vector in the lattice
can be used as the replacement, as long as the last non-zero element of this vector is 1.

Table 1 Comparison of time
complexity

Algorithms Time complexity

LLL [16] O(d5+εβ2+ε)

LLL for ideal lattice O(d4+εβ2+ε)

L2 [24] O(d4+εβ2 + d5+εβ)

L2 for ideal lattice [24] O(d3+εβ2 + d4+εβ)

L̃
1

[27] O(dω+1+εβ1+ε + d5+εβ)

Rec-L2 [28] (average case) O(d2+εβ2 + d4+εβ)

iLLL (average case) O(d2+εβ2 + d4+εβ)
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The remaining issue is to find v more efficiently than size-reduce bκ+1 with (b1, . . . , bκ ).
Algorithm 4 describes a probabilistic yet very efficient method to find v.

Algorithm 4 Heuristic Re-use
Input: (b1, b2, . . . , bκ ) a (δ, η)-reduced basis
Output: v that can be used for the κ + 1 step of iLLL.

if The last non-zero coefficient of b1 = 1 then
Shift b1 such that the last coefficient is 1.
v← b1

else
for i = 1→ κ do

Shift bi such that the last coefficient is non-zero.
end for
v← zero vector
for i = 1→ κ do

for j = i + 1→ κ do
Find x , y and z such that x = ybi,κ + zb j,κ {The XGCD algorithm.}
if x = 1 then

v′ ← ybi + zb j .
if v �= 0 and ‖v‖ ≥ ‖v′‖ then

v← v′
end if

end if
end for

end for
end if
return v.

This algorithm first checks if we can directly use the first vector from the previous step
with simple shifting. It requires the last non-zero element of b1 to be 1. The successful rate
is high when β is small and κ is big.

If it fails, then it checks if one can construct a vector by linear combination of
two vectors. This can be done using the extended GCD algorithm. In the re-use tech-
nique, it finds all possible vectors where the last non-zero coefficient is 1, and return
the shortest one.

This procedure takes O(κ2M(β)) on worst-cases reductions and O(κ2M(β/κ)) on aver-
age case reductions. We note it is negligible in terms of time complexity, compared with the
cost of each iteration. In practice, it can be done in less than 1 s for dimensions as large as
500. Hence, it finds a vector much faster than using size-reduction algorithm. However, we
note that if one uses this optimization, when the first vector does not qualify, it is possible
that the returned vector will be slightly longer than the one from size-reduction. Hence, it
will make the next step a bit more costly. We also note that this technique is heuristic, since
sometimes it is possible that one cannot find a suitable vector. Nonetheless, our practical tests
show that this method is in general faster than iLLL.

5.2 Re-usable basis

In fact, our algorithm can also deal with bases other than principal ideal bases. For instance,
general ideal lattices or Coppersmith–Shamir bases, which are used to attack the NTRU
encryption scheme.

It is true that for some ideal lattice HNF bases, the diagonal coefficients do not follow the
same form as a principal ideal lattice. The first several coefficients on the diagonal are not 1.

123



T. Plantard et al.

We can adopt our technique when 1 starts to appear. This should appear very soon, since the
diagonal coefficients are decreasing rapidly to 1 with the increase in dimension.

BC S =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

q 0 . . . 0 0 0 . . . 0
0 q . . . 0 0 0 . . . 0
...

... · · · ...
...

... · · · ...

0 0 . . . q 0 0 . . . 0
h0 h1 . . . hN−1 1 0 . . . 0

hN−1 h0 . . . hN−2 0 1 . . . 0
...

... · · · ...
...

... · · · ...

h1 h2 . . . h0 0 0 . . . 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

The Coppersmith–Shamir basis are of the above form. It is not a principal ideal lattice
basis, however, its bottom part does allow one to apply our re-use technique, since the right
non-zero coefficient is 1 and the left part of the basis is a rotated basis.

To this end, we formally define a reusable basis as a basis where our re-use technique can
be applied.

Definition 8 (i-Reusable basis) B = (b1, . . . , bd) be a basis of L. Let i < d an integer. B is
a reusable basis if ∀κ > i , there exist vectors v, v′ ∈ Z

n and a permutation matrix P ∈ Z
n×n

with regard to the following:

– v = v′P;
– v′ is a linear combination of (b1, . . . , bκ−1)

– L(b1, . . . , bκ−1, v) = L(b1, . . . , bκ ).

It is quite straightforward to see that all ideal lattice HNF bases are reusable by simple shifting,
while the Coppersmith–Shamir basis is an n-reusable basis with certain permutation. Hence,
our iLLL is also applicable to these bases.

6 Implementation result and practice analysis

In this section, we show some implementation results. The implementation was conducted
with MAGMA [1] on Xeon E5640 CPUs @ 2.66 GHz. The memory was always sufficient
since the algorithm only requires a polynomial space. We first show the average behavior of
our algorithm by comparing us with L2 and FP on bases of random ideal lattice. Subsequently,
we apply iLLL to Gentry–Halevi’s fully homomorphic encryption challenge, and present the
results. Finally we summarize our advantage in practice.

6.1 Test results

We tested our algorithm with bases of random ideal lattice over three scenarios: β ∼ 10d ,
β ∼ 20d and β ∼ 380d . The first scenario for β ∼ 10d is the classical setting for the
SVP challenges [32], and the last one β ∼ 380d is the requirement for Gentry–Halevi’s
fully homomorphic encryption scheme. For comparison, we also tested β ∼ 20d to observe
the difference. To ensure the randomness of the ideal lattice, we require α to be a uniform
distribution between 1 and γ .

For each dimension of each test, we generated 10 bases with 10 different seeds. Then we
present the average time to reduce the bases using both L2 and FP methods.
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Fig. 1 Testing results: β = 10d
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Fig. 2 Testing results: β = 20d

Figures 1, 2 and 3 show the advantage for each scenario. The ratio is computed from the
running time of LLL divide by the running time of iLLL. As observed, the curves are always
above one, which implies that iLLL is always faster than the counterpart. We observe a small
advantage for L2 as we expected, and the advantage is stable for all three scenarios, while it
grows with the increase of β/d . With β ∼ 380d , iLLL is 20 % faster. The time difference in
these cases is due to the re-use technique. In another words, our improvement is due to the
unnecessary size reduction in LLL. As the increase of β/d , the length of the reusable vector
increases, which results in an increasing advantage.
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Fig. 3 Testing results: β = 380d

As for the FP method, apart from the starting point and dimension between 100 to 150,
iLLL can be approximately twice faster than LLL. When 100 < d < 150, we enjoy a
massive advantage. We do not present the result for β ∼ 380d in those dimensions, instead
we refer the reader to Fig. 7, which is essentially using the same setting. In some cases, when
d ∼ 150 and β ∼ 10d , iLLL can be as much as eight times faster than LLL. This is due to
the floating-point setting in FP. We shall discuss this in Sect. 6.3.

Interestingly, for small dimensions d < 80, iLLL and LLL always produce the same basis
in these tests„ while as the dimension grows, some differences may appear. Nevertheless,
in most cases (>90 %), the same basis is produced. We note that this phenomenon is quite
natural, since for a certain step, if we assume the size-reduced vector is indeed a random vector,

then two algorithms will produce same result with a probability of

(
1− 2

(
η−0.5

η

)2
) (d−1)d

2

.

This probability is obtained as follows:

– Let (b1, . . . , bκ−1, bκ ) and (b1, . . . , bκ−1, b′κ ) be two (δ, η)-reduced bases of the same
lattice L, where (b1, . . . , bκ−1) are also reduced under the same parameters.

– Let v← bd −∑κ−1
i=1 �μi,κ� ·bi,κ and v′ ← b′κ −

∑κ−1
i=1 �μ′i,κ� ·bi,κ , where μi,κ and μ′i,κ

are GSO for the respective basis.
– Since both basis are (δ, η)-reduced, we have ‖μi,κ‖ ≤ η and ‖μ′i,κ‖ ≤ η. Hence, if bκ

and b′κ are random vectors, the probability of ‖μi,κ + μ′i,κ‖ < 1 for a single pair is

1− 2
(

η−0.5
η

)2
.

– We need the condition holds for κ − 1 pairs, therefore, if bκ and b′κ are random vectors,

then, bκ = b′κ with a probability of

(
1− 2

(
η−0.5

η

)2
)κ−1

.

– If the above result holds for each step, then one obtains

(

1− 2

(
η − 0.5

η

)2
)∑d

i=2 i−1

=
(

1− 2

(
η − 0.5

η

)2
) (d−1)d

2

.
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Fig. 4 Toy challenge

Remark 1 In practice, we observe that in most cases our algorithm returns the same basis as
LLL. We believe that this is due to the fact that the reduced vectors in an LLL procedure are
very close to random vectors. Hence, since η = 0.501 by default in MAGMA [1] we achieve
a high rate, i.e., for a lattice with dimension 200, we obtain the same basis in over >85 %
of the tests. We also note that for some extreme cases, where the reduced vector has some
special distribution, this observation may not be valid.

6.2 Challenge results

We tested iLLL on the Gentry–Halevi’s fully homomorphic encryption challenge for dimen-
sion 512 and dimension 2048. For the dimension 512, the lattice basis was obtained from
the challenge website [10]. For the dimension 2048, we generated the basis as per Gentry–
Halevi’s paper [11], since the basis was not available from the website. Figures 4 and 5
show the result for dimension 512 and dimension 2048, respectively. We also include the test
results for our heuristic method, which accelerates the reduction a bit further (Fig. 6).

As observed from Fig. 4, iLLL is faster than LLL in practice for the small challenges. The
classical FP finishes in 32 days. In comparison, with iLLL we are able to finish within 28
days. In addition, our heuristics accelerate a bit further to 24 days. Overall, we are around
33 % faster than the classical FP algorithm.

As for the 2048 challenge, within 6 months, we are able to reach dimension 559 and 560 for
iLLL and its heuristics, respectively, while LLL reaches dimension 512. Furthermore, as the
dimension grows, the gap between the running time of iLLL and LLL grows as well, which
indicates the time that iLLL gains is increasing as the dimension grows. Nevertheless, we
anticipate to accelerate the reduction by 30 %, which is the same case with the toy challenge.
However, due to the fact that the size reduction of a single vector becomes less important
as the dimension grows, compared with the whole cost of a single step, the actual ratio of
advantage is diminishing.

Figure 7 shows a comparison of the running time of iLLL and LLL algorithms. The
green curve shows the ratio between the total running time of LLL and iLLL up to a certain
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dimension, while the blue curve shows LLL vs iLLL for each dimension. Since the curves
is always higher than 1, it is straightforward to see that iLLL is always faster than LLL. It is
also worth pointing out that at dimension around 100, iLLL can be 10 times faster than LLL.

6.3 Analysis

In the previous subsection, we have seen that the iLLL algorithm is faster than the LLL
algorithm in practice. If we look at each step (Fig. 8 shows one example of this), one can see
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that in each step, iLLL is faster. This is due to the fact that instead of reducing a vector of the
length β at the κth step, we can use a vector of length β/κ by simply re-using the previous
results. The result follows our theoretical analysis. As stated before, although the time we
are able to gain continues to increase, the advantage is actually diminishing as the dimension
grows. This is because the cost of size-reducing the large vector is less and less important
compare to the cost of reducing the whole basis as the dimension grows.

Interestingly, we enjoy a massive advantage when the dimension is less than 150. Similar
phenomenon is also observed in the tests with random lattices. This is mainly due to the
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implementation of L2. In theory, L2 uses a floating point precision p which is in function
of d . However, in practice, FP uses several levels of precisions. It starts with the smallest
precision, 53, which is with respect to C programming language of type double/int in the
program. It then increases the precision to the minimum value of p and the precision for the
next stage. This procedure will be continued until it reaches p. Since the cost relies heavily
on the length of floating-points, this optimization guarantees that the reduction is generally
performed with the lowest cost.

It must be noted, however, that since the coefficients of the basis for each new step is
large, FP will need to use a large precision to provide provable reductions. As a comparison,
since we are dealing with small coefficients on average cases, when the dimension is smaller,
we only require a default precision of 53. This is the reason our algorithm is faster in the
beginning.

6.4 New estimation

In this subsection, we show our new estimation for the small challenge of Gentry–Halevi’s
fully homomorphic encryption. We start with predicting L2 as in Fig. 9. We predict that the

curve follows d2.95

65 + 5d2.8

13 , which indicates that L2 will finish in 229.6 s which equals to 25.8
years. We note that this estimation is quite natural, since the previous research [6,25] has
shown that LLL runs in cubic with regard to d when d is big and β ∼ O(d2).

Then we look at the time difference between iLLL and LLL as shown by the third curve in
Fig. 8. The result implies that the time we are able to gain with re-use is linear in dimension,
when the curve becomes stable after dimension 130. This indicates that the accumulated time
contains a quadratic term. Now we predict the running time of iLLL. We use the heuristic

method, since in general it is faster. We predict that the curve follows d2.95

65 + 5d2.8

13 − 77d2

5 .
This gives us 229.47 s, which equals to 23.6 years. To conclude, we summarize our results in
Table 2.
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Table 2 Practical result on Gentry–Halevi’s challenge

Gentry–Halevi’s challenge dim 512 (days) dim 2048 (years)

Previous best results/prediction [4] 30 45
cre LLL implementation @2.66 GHz 32 25.8

iLLL implementation @2.66 GHz 24 23.6

iLLL prediction @4.0 GHz 16 15.7

Remark 2 The previous best prediction [4] was using L2. We note that it is not specified in
[4] what kind of a platform (CPU, library, etc.) their test was conducted on. Therefore, we
performed the same LLL reduction as in [4]. We believe the difference between [4] and our
approach is due to the implementation. This is the reason why we have compared our own
LLL/iLLL implementation against the Gentry–Halevi’s challenge.

7 Conclusion

In this paper, we presented the iLLL algorithm for ideal lattice. We take the advantage of
ideal lattices that if a vector is in the lattice, then its rotation vector over the ring is still in
the lattice. Therefore, previously reduced vectors can be re-used for further reduction. This
ensures our iLLL algorithm is always faster than the LLL algorithm, while providing the
same quality (if not exactly same) basis. In practice, it is also faster, especially when the
coefficients of the lattice are significantly larger than the dimension. To show the advantage
of our method, we applied our algorithm to Gentry–Halevi’s fully homomorphic encryption
challenge. We obtained a better estimation than the previously best known results.
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