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Abstract—All the existing fully homomorphic encryption
schemes are based on three different problems, namely bounded
distance decoding problem over ideal lattice, approximate greatest
common divisor problem over integers and learning with error
problem. In this paper, we unify the first two families of problems
by introducing a new class of problems, which can be reduced
from both problems. Based on this new problem, namely the
bounded distance decoding over hidden ideal lattice, we present
a new fully homomorphic encryption scheme. Since it is a
combination of the two problems to some extent, the performance
of our scheme lies between the ideal lattice based schemes and
the integer based schemes. Furthermore, we also show a lower
and upper bound of the problem our scheme is based on. As a
result, we present a security conjecture. Assuming this security
conjecture holds, we can incorporate smaller parameters, which
will result in a scheme that is more efficient than both lattice
based and integer based schemes.

Hence, our scheme makes a perfect alternative to the state-of-
art ring learning with error based schemes.

Keywords: Hidden Lattice, Ideal Lattice, Bounded Distance De-
coding problem, Fully Homomorphic Encryption, Approximate
Greatest Common Divisor.

I. INTRODUCTION

A homomorphic public key encryption scheme that supports
arbitrary operations on encrypted data has been a “holy grail”
of cryptography for over 30 years [28]. Recently, Gentry [8]
proposed the very first fully homomorphic encryption (FHE)
scheme. Moreover, he presented a methodology of how to
construct fully homomorphic encryption schemes. Gentry’s
framework consists of three steps.

• He firstly constructed a “somewhat homomorphic” encryp-
tion (SHE) scheme that supports evaluation of low degree
polynomials.

• Then he “squashed” the decryption algorithm to obtain a
lower circuit depth so that the somewhat scheme is capable
of evaluating its own decryption circuit.

• Finally, he used a “bootstrapping” technique to achieve a
fully homomorphic encryption scheme.

The main point here is to find a “bootstrappable” SHE scheme,
which refers to the maximum depth of the supported circuits
is greater than twice of the depth of the decryption circuit.
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A. Related Work

The initial construction of Gentry’s framework is based
on ideal lattice [8], [9], [10]. Its somewhat homomorphic
encryption scheme is a GGH-type cryptosystem [16], i.e., the
secret key/public key are “good”/“bad” basis of the lattice,
and the underlying lattice problem is a Bounded Distance
Decoding problem over ideal lattice (BDDi, see Definition 7).
The encryption is to map a message to a vector close to the
lattice using the bad basis, while with the good basis, one can
perform the vector reduction to recover the message. For two
vectors that are close to the ideal lattice, operations (additions
and multiplications) on the vectors will result in a new vector
whose distance to the lattice is short enough for a correct
decryption. Therefore, the property of homomorphic encryption
is provided.

However, during the evaluations, the noise (i.e., the distance
between a ciphertext vector and the lattice) grows, and when
it exceeds a threshold, the ciphertext cannot be decrypted
correctly. Gentry used a “refresh” procedure to reduce the
noise. Since the scheme is bootstrappable, it is capable of
evaluating its own decryption circuit. During this evaluation, the
ciphertext is recrypted. The original noise is eliminated and a
new noise (much smaller) is induced. By doing this repetitively,
one is able to evaluate circuit with any depth, therefore, a fully
homomorphic encryption scheme is achieved.

Following Gentry’s framework, a few FHE schemes are
proposed, which can mainly be divided into three categories:

Ideal Lattice based schemes: One of the first variants pro-
posed shortly after the initial construction was made by Smart
and Vercauteren [31]. They used the “principal ideal lattice”
where the lattice can be represented by two integers. Therefore,
they maintained a smaller key size and a simpler encryp-
tion/decryption algorithm. However, one major obstacle of this
scheme is its inefficient key generation algorithm. Indeed, one
is required to find a lattice with a prime determinant, and this
criteria is impractical with a large dimension, for instance,
2048, which will lead to a larger determinant, and hence making
the probability of the determinant being prime to be smaller.
Later, Gentry and Halevi presented an alternative solution to
avoid this issue in [12], together with some other optimizations,
which is by far the most efficient fully homomorphic encryption
scheme using ideal lattice.

Other optimizations on fully homomorphic encryption
schemes based on ideal lattice have been proposed by Stehlé
and Steinfeld in [32]. They improved the efficiency of Gentry’s
original scheme. Part of their techniques are adopted in [12]
as well. There is also an improvement proposed by Loftus et
al. in [21], which deals with the CCA-1 security of Gentry
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and Halevi’s work. Nevertheless, this variant does not improve
the efficiency of the system and therefore, Gentry and Halevi’s
scheme is still regarded as the most efficient fully homomorphic
encryption scheme based on ideal lattice.

Integer based schemes: In [33], van Dijk et al. proposed
another fully homomorphic encryption scheme where the some-
what homomorphic scheme is based on the general version of
Approximate Greatest Common Divisor of integers (AGCD,
see Definition 9). In [6], Coron et al. showed an optimization
of this scheme, where the security is based on a partial version
of the AGCD problem. The hardness of the partial version was
soon re-evaluated in [26], [5]. In this paper, we mainly focus
on the first variant of AGCD problem, since it is in general
harder to solve.

So far, the best implementation of integer based FHE scheme
was presented in [7]. We note that homomorphic encryption
schemes based on AGCD problems provide an interesting
alternative to the use of ideal lattice, but none of them is as
efficient as Gentry and Halevi’s scheme.

LWE based schemes: The state-of-the-art of FHE is based on
the Learning With Error problem (LWE) [2] and Ring-LWE
problem [3]. The work in [14], [15] delivers the best efficiency
among all fully homomorphic encryption schemes to date.

The major advantage of using LWE is that one can freely
select the moduli [1] and the ring [13]. By using some moduli
with a special form (i.e., 2n + 1, where n is an integer), one
can use some noise control techniques [1], or omit the second
step in the framework [14]. Unfortunately, this technique cannot
be adopted in schemes using ideal lattice, since the moduli
is the determinant of the lattice, hence, it does not possess
such freedom. We also note that there is no known reductions
between Bounded Distance Decoding (BDD) problem over
ideal lattice and the learning with error problem. In this work,
we focus on the first direction, namely, construction of a FHE
scheme with ideal lattice.

B. Our Contribution

In this paper, we unify two families of FHE schemes by
presenting a new fully homomorphic encryption scheme using
a hidden ideal lattice. We note Our scheme does not rely
on the sparse sub set sum problem (SSSP), and therefore,
the security of our squashed scheme remains the same as
our SHE scheme. Using the conjectured security, our scheme
outperforms all integer based/ideal lattice based FHE schemes,
therefore, our scheme is a perfect alternative to the learning
with error based schemes, whose security is based on a different
type of problem.

Our scheme is based on an observation: it is not essential to
publish the lattice to construct a fully homomorphic encryption
scheme. In fact, one can operate on vectors close to a lattice,
without knowing the lattice. If many bounded distance vectors
of this lattice is provided, the lattice is unique. Therefore one
can use these vectors, instead of a bad basis of the lattice, to
encrypt. Informally, we call this lattice as “the hidden lattice”.
We show that with this new public key, one is still capable of
conducting encryption/decryption correctly.

In terms of security, we base the CPA security on a bounded
distance decoding problem over hidden ideal lattice (BDDH
problem). We also show that this problem is harder than both
the BDD over ideal lattice and AGCD problems, which are the
two out of three main problems that have been used to design
fully homomorphic encryption schemes do date.

In this paper, we show that BDDH problem over dimension
n is equivalent to BDD problem over dimension O(nξ), where
ξ ∈ [1, 2]. Furthermore, we conjectured that the scheme is still
secure even when ξ = 2.

Moreover, since our lattice is not public, the security of the
squashed scheme does not rely on one instance of the Subset
Sum Problem (SSP), as in Gentry’s original framework. Rather,
we only require the attacker to be incapable of solving many
different SSP instances simultaneously. This allows us to use
exponentially smaller set, if the number of the instances is big.
This feature, along with the smaller lattice dimension, gives us
a very practical FHE scheme.

Finally, we also propose two sets of parameters with respect
to ξ = 1 and ξ = 2. The first scenario delivers strong
security by operating on lattices of large dimensions. In this
construction, our scheme is less efficient than Gentry and
Halevi’s scheme because our decryption polynomial degree
is greater than Gentry-Halevi’s scheme due to the fact that
the lattice is hidden. For the second scenario, we are able to
operate on ideal lattices with a smaller dimension than usual,
for instance, 31 or 63, compared to 2048 in Gentry and Halevi’s
scheme. This further improves the efficiency of our scheme.

II. BACKGROUND

A. Notations
Let λ be the security parameter of the system, i.e., it takes

at least 2λ operations to break the system.
Denote upper case bold letters (such as M) for matrices.

Vectors will be denoted with lower case bold letters (i.e.,
v = 〈v0, . . . , vn−1〉), while vi is the (i + 1)-th element of
v. Polynomials will be denoted in italic (i.e., f(x)).

For integers z and d, denote [z]d for the reduction of z mod
d within (−d/2, d/2]. For a rational number q, let bqe be the
closest integer to q. These notations are extended to vectors in
a natural way, i.e., for a rational vector v = 〈v0, v1, . . . , vn−1〉,
bve = 〈bv0e, bv1e, . . . , bvn−1e〉.

For a vector v, denote Poly(v) as its polynomial form, i.e.
Poly(v) =

∑n−1
i=0 vix

i. When it is unambiguous, we use v(x).
For a polynomial f(x), denote V ec(f(x)) as its vector form.
For a vector v, or its polynomial form v(x) =

∑n−1
i=0 vix

i, and
a polynomial f(x), denote Rot(v, f) and Rot(v(x), f) as the
rotation matrix, where the i-th row of this matrix equals to the
coefficients of v×xi−1 mod f . We use f(x) = xn+1 to build
our ring, which is the classic ring for ideal lattice, therefore,
when it is not ambiguous, we use Rot(v).

For two vectors v1 and v2, denote v1×v2 as the polynomial
multiplication over the ring, i.e., v1 × v2 = V ec(v1(x) ×
v2(x) mod f(x)).

B. Homomorphic Encryption
A homomorphic encryption scheme ξ consists of four algo-

rithms: KEYGEN, ENCRYPT, DECRYPT and EVALUATE. The
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first three algorithms follow the definition of a public key en-
cryption scheme, while the last one is defined as follows: input
a public key pk, a set of ciphertexts {ci} whose corresponding
messages are {mi}, and a circuit C, output another ciphertext
c. This evaluation is correct if the following holds:

DECRYPT(EVALUATE(C, {ci}, pk), sk)

= C(m1, . . . ,mt).
(1)

Definition 1 (Homomorphic Encryption): The scheme ξ =
(KEYGEN, ENCRYPT, DECRYPT, EVALUATE) is homomorphic
for a class C of circuits if it is correct according to Equation 1
for all circuits C ∈ C. ξ is fully homomorphic if it is correct
for all boolean circuits. Further, ξ is compact, if for any circuit
C ∈ C with a number of inputs polynomial in λ, the size of
ciphertexts output by EVALUATE is bounded by a fixed value
which is polynomial in λ.

Definition 2 (Bootstrappable Encryption): Let scheme ξ =
(KEYGEN, ENCRYPT, DECRYPT, EVALUATE) be a compact
homomorphic encryption scheme, and let Cξ be the class of
circuits regarding to which the scheme is correct. Denote Dξ

its decryption circuit. ξ is bootstrappable if Dξ ∈ Cξ.

Remark 1: Gentry has shown that if a bootstrappable scheme
can correctly evaluate bitwise additions and multiplications
over two ciphertexts, then this scheme is fully homomorphic
[8].

C. Lattice Basics

In the next two subsections, we show the definition of lattice
and related problems that will be used throughout the paper. We
refer the readers to [20], [24] for a more complex account.

Definition 3 (Lattice): Let vi ∈ Rn be d linearly indepen-
dent vectors. An d-dimensional lattice with respect to {vi},
denoted as L({vi}), is the set of all integer linear combinations
of {vi}. The vi-s are called a basis of L. The determinant of
a lattice is defined as det(L) =

√
B× BT , where B is a basis

of L.

Definition 4 (Ideal Lattice [23]): Let R be a polynomial
ring Z[X]/f , where f ∈ Z[X] is a monic irreducible poly-
nomial of degree n. Let v ∈ Zn. The ideal lattice over R with
respect to v, denoted by L(Rot(v, f)) is the set of all integer
linear combinations of v and its rotation vectors.

Definition 5 (Norm): Let v = 〈v0, . . . , vn−1〉 ∈ Rn be a
vector. The Euclidean norm is the function ‖ · ‖, defined by

‖v‖ =
√∑n−1

i=0 v
2
i .

For two vectors v1,v2 ∈ Rn, ‖v1 + v2‖ ≤ ‖v1‖+ ‖v2‖, and
‖v1 × v2‖ ≤ θ‖v1‖ · ‖v2‖, where θ is a constant factor that
depends on the polynomial ring R, i.e., when f(x) = xn + 1,
θ =
√
n.

The distance between v1 and v2 is defined by dist(v1,v2) =
‖v1 − v2‖. For a vector v ∈ Rn and a lattice L, the distance
between the two, denoted by dist(v,L) = min(‖v−u‖),∀u ∈
L.

Definition 6 (Successive Minima): Let L be a lattice and i
be an integer. The i-th successive minima, denoted by λi(L) is

the smallest real number such that there exist i non-zero linear
independent vector v1, . . . ,vi ∈ L satisfying ‖v1‖, . . . , ‖vi‖ ≤
λi(L).
For the relationship of minima and the determinant we have∏n
i=1 λi ≤ n

n
2 det (L), hence, we obtain

λ2 ≤ (n
n
2 det(L)/λ1)

1
n−1 . (2)

D. Cryptographic Hard Problem

Definition 7 (BDDP over (Ideal) Lattice): Let γ ∈ R+ be
a positive real. Let L be an n dimensional (ideal) lattice, and
v ∈ Zn, such that there exists a unique vector u ∈ L satisfying
dist(v,u) ≤ γ. The γ-Bounded Distance Decoding problem
over (ideal) lattice, denoted by γ-BDDn (γ-BDDin, resp.), is
to find u, given a basis of L and v.

Definition 8 (Dec BDDP over (Ideal) Lattice): Let γ ∈ R+

be a positive real. Let L be an n dimensional (ideal) lattice,
and v ∈ Zn. The Decisional γ-Bounded Distance Decoding
problem over (ideal) lattice, denoted by Dec γ-BDDn (Dec
γ-BDDin, resp.), is to decide if there exists a unique vector
u ∈ L satisfying dist(v,u) ≤ γ or not, given a basis of L and
v.

There have been several definitions of BDD (see [22], [12] for
comparison), due to the simplification of their proof reductions.
In our case, we subsequently define BDD with slight modifi-
cation to achieve the same goal. Nevertheless, it is clear that
all these definitions capture the same notion.

Definition 9 (AGCD Problem): Let ci ∈ Z, τ integers such
that there exist some unique integers ri ∈ Z and a unique
integer p ∈ N such that ∀i, (ci − ri)|p and ∀i, |ri| ≤ γ < p/2.
Then, the Approximate Greatest Common Divisor problem,
denoted by γ-AGCDτ , is to find p, given ci.

The above definition describes the general version of AGCD
problem. By setting r1 = 0 one obtains the partial version
(P-AGCD). For the rest of this paper, as mentioned earlier,
we only concern with the general version of this problem.
Subsequently, as in the case of BDD, the problem of AGCD has
been defined slightly differently in the literature (see [33], [19]
for comparison). Again, we apply the same principle to achieve
our goal. Nevertheless, all of these definitions still capture the
same notion.

The classic way to attack this problem makes use of lattices
[33]. Nevertheless, there are also attacks like [5] which do not
use lattices.

Definition 10 (Subset Sum Problem): Let {c1, c2, . . . , cn}
be a set of positive integers. Let c =

∑n
i=1 sici, where

si ∈ {0, 1}. Let d ←
∑n
i=1 si. The subset sum problem,

denoted by d, n-SSP, is to find {si}, given {ci} and c.

For completeness, we also list the subset sum problem used
in the squashing technique. When d � n it becomes a sparse
subset sum problem (SSSP). We note that our scheme does not
rely on the hardness of this problem.
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III. HIDDEN LATTICE

In this section, we formally define the new problems related
to the hidden lattice.

Definition 11 (Hidden (Ideal) Lattice): Let α ∈ R+ be a
positive real, vi ∈ Zn be τ integer vectors such that there exists
a unique (ideal) lattice L and some unique vectors wi ∈ L
respecting ∀1 ≤ i ≤ τ , dist(vi,wi) ≤ α. Then L is called an
α-Hidden (Ideal) Lattice hidden under {vi}.

A. Definitions of New Problems

Definition 12 (Hidden (Ideal) Lattice Problem): Let α ∈
R+ be a positive real, vi ∈ Zn be τ integer vectors such that
there exists an α-Hidden (Ideal) Lattice L hidden under {vi}.
The α-Hidden (Ideal) Lattice Problem, denoted by α-HLPn,τ
(α-HILPn,τ , resp.), is to find L, given {vi}.

Informally, the HLP/HILP is defined as follows: given some
vectors close to a (ideal) lattice, find such a lattice.

Definition 13 (BDDP over Hidden (Ideal) Lattice): Let
α, β ∈ R+ be some positive reals. Let vi ∈ Zn be τ integer
vectors such that there exists an α-Hidden (Ideal) Lattice, L,
hidden under {vi}. Let u ∈ Zn be an integer vector such that
there exists a unique w ∈ L respecting dist(u,w) ≤ β. Then
the Bounded Distance Decoding problem over Hidden(ideal)
lattice, denoted by α, β-BDDHn,τ (α, β-BDDHin,τ , resp.), is
to find w, given {vi} and u.

Definition 14 (Dec BDDP over Hidden (Ideal) Lattice):
Let α, β ∈ R+ be some positive reals. Let vi ∈ Zn be τ integer
vectors such that there exists an α-Hidden (Ideal) Lattice, L,
hidden under {vi}. Let u ∈ Zn be an integer vector. Then
the Decisional Bounded Distance Decoding problem over
Hidden (ideal) lattice, denoted by Dec α, β-BDDHn,τ (Dec
α, β-BDDHin,τ , resp.), is to decide if there exists a unique
w ∈ L such that dist(u,w) ≤ β or not, given {vi} and u.

B. Reductions from Existing Problems

In this subsection, we provide reductions of our new prob-
lems from some existing problems. The relations among the
problems is described in Figure 1, where an arrow from
problem A to problem B means that A is harder to solve than B.
We omit the proof of the reductions from problems over general
lattice to problems over ideal lattice (i.e. HILP to HLP), since
if an algorithm can solve the problem in any lattice, it can solve
the problem in an ideal lattice.

In this work, we do not provide an average case/worst case
equivalence. We note that this is not surprising, considering that
both of the previous works that we generalized (due to Gentry
and Halevi’s scheme [12] and van Dijk et. al’s scheme [33])
also do not provide such a proof. Nevertheless, Gentry also
provided an average/worst case equivalent for BDD over ideal
lattice [11], but this work was not adopted in the subsequent
work in Gentry and Halevi’s scheme due to its impracticality.
Further, both of the schemes [12], [33] also rely on anther
problem (SSSP), in which the proof for the average case/worst
case equivalent has never been investigated yet, to the best of
our knowledge.

Fig. 1: Relations among problems.

Theorem 1: If an algorithm A solves α, β-BDDHn,τ (α, β-
BDDHin,τ resp.) with an advantage of ε, then there exist an
algorithm B that solves the γ-BDDn (γ-BDDin resp.) with an
advantage of at least ε. The running time of B is polynomial
in the running time of A.

Proof: Let {vi},u be the input of a γ-BDDn (γ-BDDin
resp.) problem, where {vi} is a basis of L. Set τ ← #vi,
α← 0 and β ← γ. Call A with {vi}, u. Since dist(vi,L) ≤ α,
and dist(u,L) ≤ γ, {v1} and u is in the correct form of the
input of A. Therefore, A returns the unique w ∈ L such that
dist(u,w) ≤ β = γ. Return w.

The above theorem is also correct for the decisional version of
the problems. We omit the proof, which can be adapted in a
similar fashion as above.

Theorem 2: If an algorithm A solves α, β-BDDHn,τ (α, β-
BDDHin,τ , resp.) with an advantage of ε, then there exits an
algorithm B that solves the α-HLPn,τ (α-HILPn,τ , resp.) with
an advantage of at least ε. The running time of B is polynomial
in the running time of A.

Proof: Let {vi} be the input of an α-HLPn,τ (α-HILPn,τ ,
resp.). Set β ← α, τ ← #vi. For 1 ≤ i ≤ τ , set u ← vi
and call A with {vi}, u to get the unique wi ∈ L where
L is the α-Hidden (Ideal) Lattice hidden under {vi}, such
that dist(u,wi) ≤ β = α. Reconstruct the lattice L from
the generating vectors {wi}. Return L.

Theorem 3: If an algorithm A solves α-HILPn,τ with an
advantage of ε, then there exists an algorithm B that solves the
γ-AGCDτ with an advantage of at least ε. The running time
of B is polynomial in the running time of A.

Proof: Let ci be the input of a γ-AGCDτ problem. Set
n ← 1, α ← γ and vi ← 〈ci〉. Call A with {vi} to get the
unique L such that dist(vi,L) ≤ α. The basis of L is equal to
the vector 〈p〉 such that ci = qip+ ri with |ri| ≤ α. Return p.

IV. THE SHE SCHEME

The general idea of our work is to give some vectors close
to the lattice, instead of giving directly the lattice, for enabling
encryption. Only the secret key holder knows the lattice, and
hence, can perform the correct decryption. The ciphertexts are
vectors close to the lattice with a bounded distance, therefore
we do not lose the property of homomorphism of the ciphertext.
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A. Generic Construction

1) Parameters: The construction below uses the following
parameters. Section VIII provides the concrete values for the
parameters.
• ρ: the norm of the random noise vector;
• η: the bit length of the norm of generating polynomial;
• γ: the bit length of the norm of the random multiplier

vector;
• τ : the number of vectors in the public key;
• ζ: the norm of noise used in encryption;
• n: the dimension of the hidden lattice.
2) The scheme: Our somewhat homomorphic encryption

scheme uses following four algorithms:

KEYGEN(λ)
• Set parameters ρ, η, γ, τ, ζ, n as in Section VIII with

respect to λ, n is a power of 2;
• Pick an irreducible polynomial of degree n, f(x) = xn+1

(see Remark 2);
• Pick a vector v randomly in {u ∈ Zn, 2η−1 < ‖u‖ <

2η,
∑n−1
i=0 ui mod 2 = 1};

• Generate the rotation matrix V ← Rot(v, f), i.e., when
f(x) = xn + 1,

Rot(v, f) =

∣∣∣∣∣∣∣∣∣
v0 v1 v2 . . . vn−1
−vn−1 v0 v1 . . . vn−2

...
...

...
. . .

...
−v1 −v2 −v3 . . . v0

∣∣∣∣∣∣∣∣∣ .
• d← |det(V)| is the determinant of V (see Remark 3);
• Pick τ−1 vectors gi randomly in {u ∈ Zn, 2γ−1 < ‖u‖ <

2γ} and another vector gτ randomly in {u ∈ Zn, ‖u‖ <
2γ ,
∑n−1
j=0 uj mod 2 = 1};

• Pick τ − 1 vectors ri randomly in {u ∈
{−1, 0, 1}n, ‖u‖ ≤ ρ} and another vector rτ randomly
in {u ∈ {−1, 0, 1}n, ‖u‖ ≤ ρ,

∑n−1
j=0 uj mod 2 = 1};

• Compute τ vectors πi ← gi × v + ri for 1 ≤ i ≤ τ ;
• Find the integer polynomial w(x), such that w(x)×v(x) =
d mod f(x) (see Remark 3), denote W← Rot(w, f);

• Output sk ← {d,w} and pk ← {πi}.

Remark 2: In [31], Smart and Vercauteren showed that one
can use any irreducible polynomial for the ideal lattice to build
FHE cryptosystems, however, Gentry and Halevi [12] restricted
it to xn + 1, where n is a power of 2, for enabling a faster
operations. Recent result in [30] shows that n being a power
of 2 is not essential, even if that leads to xn + 1 being not
irreducible. In our case, we adopt the setting from Gentry and
Halevi’s scheme in [12] to have fast operations.

Remark 3: The complexity of finding w(x) depends on d.
If d is prime, one can execute XGCD(v, f) to find w, where
XGCD is the extended GCD algorithm [31]. However, this
is only feasible on a small dimension. In a large dimension,
having d to be prime is costly. One needs to use Gentry and
Halevi’s technique, where d needs to be odd.

ENCRYPT(m, pk)
• Pick τ + 1 integer vectors {s1, . . . , sτ , sτ+1} satisfying:

–
∑n
j=1 si,j mod 2 = 0, 1 ≤ i ≤ τ − 1

–
∑n
j=1 sτ,j mod 2 = m,

∑n
j=1 sτ+1,j mod 2 = 0;

– Denote s← 〈s1, . . . , sτ , sτ+1〉, ‖s‖ ≤ ζ.
• Output ψ ←

∑τ
i=1 si × πi + sτ+1

DECRYPT(ψ, sk)
• ψ′ ← bψ ×w/de;
• Return m← ψ′(1) mod 2.

EVALUATE (ψ1, . . . , ψt, C, pk)
• For each addition or multiplication gate in C, call ADD

or MULT algorithm;
• Return the output of C.

ADD(ψ1, ψ2)
• Return ψ ← ψ1 +ψ2.

MULT(ψ1, ψ2)
• Return ψ ← ψ1 ×ψ2.

B. Correctness

Below we review two definitions provided by Gentry’s that
will be used in our proof.

Definition 15 (rEnc): rEnc represents the maximum possi-
ble distance between a ciphertext ψ generated by ENCRYPT
algorithm and the hidden lattice L.

Definition 16 (rDec): rDec represents the decryption radius:
the minimum distance such that any ψ (generated by ENCRYPT
or EVALUATE) can be decrypted correctly, if dist(ψ,L) ≤
rDec.

These definitions are also applicable to rpk, i.e., the maximum
distance between a public key πi and the hidden lattice. As per
definition, we have rpk = ρ. Our noise of a ciphertext comes
from the production of s and ri. Hence, we have rEnc ≤ θρζ.1

Meanwhile, the result of [12] shows that rDec ∼ 2η . So we
prove the following under the assumption that θρζ � 2η .

We firstly show the correctness of the DECRYPT algorithm.
Essentially, any ciphertext ψ is a vector close to L(V), and
can be decrypted correctly as long as rEnc < rDec. Without
losing generality, we assume ψ = a + b, for certain a ∈ Zn,
b ∈ L, ‖a‖ ≤ θρζ, where a =

∑τ
i=1 ri×si+sτ+1. We firstly

prove ψ′ = a (mod 2) as follows: Because b ∈ L, hence,
a = ψ mod V = ψ − bψ · V−1e · V. Since V−1 = W/d, and
L(V) and L(〈2〉) are co-prime, we obtain a mod 2 = bψ ·
W/de mod 2 = bψ × w/de mod 2. Therefore, ψ′ mod 2 =∑τ
i=1 ri×si+sτ+1 mod 2. Then we show ψ′(1) mod 2 = m

as follows: ψ′(1) mod 2 =
∑τ
i=1 ri(1)si(1) + sτ+1(1) mod

2 = rτ (1)sτ (1) = m (mod 2). Therefore, the DECRYPT
algorithm is correct.

Then we prove the correctness of MULT. We omit the proof
of ADD. Assume ψ1 = a1 + b1 and ψ1 = a2 + b2 for certain
a1, a2 ∈ Zn, b1, b2 ∈ L, ‖a1‖, ‖a2‖ ≤ θρζ, where aj(x) =∑τ
i=1 rj,i(x)sj,i(x) + sj,τ+1(x) mod f(x). Hence, ψ(x) ←

ψ1(x) × ψ2(x) mod f(x) = a1(x)a2(x) + a1(x)b2(x) +

1This value is indeed an upper bound. The actual rEnc is expected to be
much smaller. We provide more details in Section VIII.
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a2(x)b1(x) + b1(x)b2(x) mod f(x). Since the vector form of
ψ(x) − a1(x)a2(x) is in L, as long as ‖a1(x)a2(x)‖ < rDec,
decrypting ψ will return a1(1)a2(1) = m1×m2. Hence, MULT
is correct.

C. Comparison of the SHE with other schemes

We note that our SHE scheme is a generalization of the
integer based scheme [33] as well as the ideal lattice based
scheme [8].

By setting τ = 1 and let ri = 0, we obtain the ideal lattice
based scheme. In this case, the lattice is not hidden anymore
because the noise is zero. The public key of our scheme is
a vector of the lattice, and the rotation of the vector forms a
bad basis of the lattice, which will be used in the lattice based
scheme. The rest of the construction follows the ideal lattice
based scheme.

To obtain the integer based scheme, we set n = 1. Then the
hidden lattice is a lattice with dimension 1. Its determinant is
the secret key p used in the integer based scheme, while the
public keys are τ number of integers gip+ ri.

We note that the LWE based schemes are still by far the most
efficient ones. As mentioned earlier, it allows one to change the
determinant of the lattice (modulus switching), and therefore,
the growth of the noise is much slower than the lattice based
scheme. Hence, essentially this technique boosts the system
exponentially. Unfortunately, this technique cannot be directly
applied to the lattice-based scheme. Therefore we omit the
comparison with the LWE-based FHE schemes.

V. SEMANTIC SECURITY

The semantic security [17] of the scheme is defined as follows.
2

Definition 17 (Semantic Security): The semantic security
model is defined as follows:

1) The challenger runs KEYGEN algorithm and outputs a
secret key sk and a public key pk;

2) The attacker is given an encryption oracle that computes
the functionality ENCRYPT(m,pk);

3) The attacker then generates two ciphertexts m0 and m1;
4) The challenger generates c = ENCRYPT(mb, pk), where

b ∈ {0, 1};
5) The attacker outputs b′.

An encryption scheme is semantically secure if the advantage
of the attacker to win the game (Pr[b = b′]−1/2) is negligible.

Theorem 4: If an algorithm A breaks the semantic security
with advantage ε, then there exist an algorithm B that solves
the Dec α, β-BDDHin,τ with advantage of ε

8 . The running time
of B is polynomial in the running time of A.

Proof: Fix parameters ρ, η, γ, τ, ζ, n as in KEYGEN. Set
α ← ρ, β ← θζρ. Let {vi} and u a decisional α, β-
BDDHin,τ problem. Assume vi = giB + ri, where B is
a basis of L, ‖ri‖ ≤ α, gi, ri ∈ Zn. Call algorithm A
with mb, b ∈ {0, 1} and {vi}. For vτ , it has one chance on

2As in Gentry’s work [8], the definition is without the reference to the
EVALUATE algorithm.

four that
∑n
j=0 ri,j mod 2 = 1 and

∑n
j=0 gi,j mod 2 = 1.

We do not have parity requirement for
∑n
j=0 ri,j mod 2 and∑n

j=0 gi,j mod 2 when i 6= τ . Therefore, the input vectors have
at least 1

4 probability of being in the correct form of the public
key if det({vi}) is odd. As a result, the overall probability is
1
8 .

Algorithm A then returns m∗b . Algorithm B outputs m∗b +
mb + 1. If the vectors are in the correct form of the public
keys (meaning that for vτ , we require

∑n
j=0 rτ,j = 1 and∑n

j=0 gτ,j = 1), m∗b = mb with a probability of 1
2 + ε.

Meanwhile, if {vi} is not in the correct form, A will return
a random bits. Which implies the probability of m∗b = mb is
1/2. Overall, B has an probability of 1

8 ( 1
2 + ε) + 7

8 ·
1
2 = 1

2 + ε
8

to obtain correct result. Hence, the overall advantage is ε
8 .

VI. ATTACKS

A. Practical Public Key Attack

In this section, we present the best known attack, which is
an adaptation of the attack proposed in [33] to solve the AGCD
of k integers. We simply generalize the attack from a lattice
dimension equal to 1 to any n. We note that the attack in [33]
was already a generalization of the AGCDk attack in [19] from
2 integers to any number of integers.

B =

∣∣∣∣∣∣∣∣∣∣∣

Id(θρ) Rot(π2) Rot(π3) . . . Rot(πk)
0 Rot(π1) 0 . . . 0
0 0 Rot(π1) . . . 0
...

...
...

. . .
...

0 0 0 . . . Rot(π1)

∣∣∣∣∣∣∣∣∣∣∣
Let L(B) be a lattice with a basis matrix with k ≤ τ public

keys as above. Id(a) = a · In where In is an n × n identity
matrix. For π1 = r1 + g1V and any of πi = ri + giV where
2 ≤ i ≤ k, we have π1gi−πig1 = r1gi−rig1. Therefore, the
lattice L(B) contains a vector u such that u = 〈θρg1, r2g1 −
r1g2, r3g1 − r1g3, . . . , rkg1 − r1gk〉. Finding such a vector
breaks the public key security, since one can recover r1 form
g1 and π1.

In lattice reductions, it has been shown that the best lattice
reduction algorithm cannot find u if λ2(L(B))

‖u‖ < cnk for some
constant c. A recent work in [4] shows that the smallest c that
a reduction algorithm is reachable is 1.009.3

Since λ2(L) ≤
√
nk

nk
nk−1 (det(L)

‖u‖ )
1

nk−1 (see Equation 2), we
obtain that u should not be found using a lattice reduction

if
√
nk

nk
nk−1 det(B)

1
nk−1 < cnk‖u‖

nk
nk−1 . Therefore, we need

to guarantee that det(B) < cnk(nk−1)‖u‖nk. We know that
det(B) = ρn det(Rot(π1))k−1. Using the Hadamard upper
bound [18], we obtain det(Rot(π1)) ≤ ‖π1‖n, therefore, we
have det(B) ≤ ρn‖π1‖n(k−1) ≤ ρn(θ‖g1‖‖v‖)n(k−1).

Meanwhile, we have ‖u‖ > θρ‖g1‖, and therefore we can
expect the attack to be successful if ρn(θ‖g1‖‖v‖)n(k−1) ≥
cnk(nk−1)(θρ‖g1‖)nk. To relax the condition a bit further,

3In [4], the authors also provided an enumeration technique, that allows
one to obtain c = 1.009 with 235 operations, however, the enumeration
technique only works for small dimensions, while in our case the dimension
is approximately τn. Hence, enumeration technique is not applicable in our
scenario.
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the attack will be successful if ρn(θ‖g1‖‖v‖)n(k−1) ≥
cn

2k2(θρ‖g1‖)nk. As a result, we have the following equation:

η(k − 1) ≥ log2 θ + nk2 log2 c+ γ + (k − 1) log2 ρ, (3)

which is

log2 c ≤ −
γ + log2 θ + (k − 1)(log2 ρ− η)

nk2
.

To allow the best advantage of the attacker (where the attacker
can use c as great as possible), we need to maximize the right
hand side of the inequation. Denote A the right hand side of
the inequation, and let κ = 1

k , then

A = −γ + log2 θ + log2 ρ− η
n

κ2 − log2 ρ− η
n

κ

Since the coefficient of κ2 term is negative (because γ > η),
the maximum value of A is achieved when

κ =
η − log2 ρ

2(γ + log2 θ + log2 ρ− η)
,

which is
k =

2(γ + log2 θ + log2 ρ− η)

η − log2 ρ
.

Considering that log2 ρ is neglible compared with η, hence we
know that the best attack occurs when k ∼ O(γη ).

Remark 4: The best attack occurs when O(γη ) public keys
are used. This is also the case with the AGCD attack against
the integer based fully homomorphic encryption scheme.

To sum up, we need Equation 3 to be false for all k between
2 and τ . Moreover, in our parameter settings, we have γ

η > τ .
Hence, to allow the greatest advantage to the attacker, he/she
should use all public keys in this attack. Therefore, taking
γ ∼ O(nη) and τ ∼ O(n), we conjecture that the best attack
requires a lattice dimension that is quadratic with n.

B. Best Known Message Attack

The best known message attack come from the idea of
attacking a GGH type cryptosystem in [25], i.e., converting
a BDD problem into finding the shortest vector in a certain
lattice.

Let u← 〈1, s1, . . . , sτ , sτ+1〉.We know that u is the shortest
vector in the lattice whose basis is shown as follows:

B =

∣∣∣∣∣∣∣∣∣∣∣

1 0 0 0 . . . 0 ψ
0 In 0 0 . . . 0 Rot(π1)
0 0 In 0 . . . 0 Rot(π2)
...

...
...

...
. . .

...
...

0 0 0 0 . . . In Rot(πτ )

∣∣∣∣∣∣∣∣∣∣∣
Therefore, using an equivalent estimation as in the best known
public key attack, we estimate that no lattice reduction will be
able to find u from the lattice if the following equation holds:

log2 θ + γ + η < τ(nτ − 1) log2 c+ τ log2 ζ. (4)

It is worthing pointing out that for the message attack, the
attacker is obliged to put all the public key in the lattice, which
implies that the dimension of the attacking lattice is strictly
nτ + 1, which is slightly different from the public key attack.

C. Other Attacks

1) Birthday Paradox on Public Keys: For two public keys
πi and πj , one can guess the corresponding noise ri and
rj , and construct two lattices L1 ← L(Rot(πi − ri)) and
L2 ← L(Rot(πj − rj)). A collision will be found when
L1 = L2, which implies L1= L2 is the hidden lattice. To
stop the birthday paradox attack, it requires that the number of
possible ri in a single public key is greater than 2λ/2.

2) Brute Force on Ciphertext: The ciphertext is protected by
the noise s. To attack the ciphertext, one guesses s. Therefore,
our scheme requires that the number of possible s to be greater
than 2λ.

3) AGCD Attack: There is also another AGCD attack in [7],
which is a generalization of the partial AGCD attack presented
in [5]. For two integers c1 = g1p+ r1 and c2 = g2p+ r2, the
attack is to find the greatest common divisor of

∏2γ−1
i=0 (c1− i)

and
∏2γ−1
i=0 (c2 − i), where γ is the maximum bit-length of

ri. Then, one can recover p from this divisor. This attack
runs in O(2γ) time. We note that this attack is not directly
applicable to our scheme, since we are dealing with vectors
instead of integers. The best adaption of this attack is to replace
ci with det(Rot(πi)), and guess ri with all possible noise.
Nevertheless, this attack will be no better than a birthday
paradox attack, due to the extra cost of computing the product
of the determinant.

D. Security Conjecture1

In Subsection III-B, we have shown that a BDDHn,τ is
harder than a BDDn problem. In the previous part of this
section we also show that if there exists a BDDO(nτ) solver,
then one is able to solve BDDHn,τ . Generally speaking, we
have the following relations between these problem, assuming
τ ≥ n,

BDDn ≥ BDDHn,τ ≥ BDDO(n2),

where A ≥ B means B is harder than A.
Thus, we know that BDDHn,τ is equivalent to a BDDO(nξ)

where 1 ≤ ξ ≤ 2, and our construction is based on BDDO(nξ).
Conjecure 1: If a BDDO(n2) problem is secure, then

BDDHn,τ is also secure, if τ ≥ n.
In Section VIII we will present two parameter settings.

We note that the first parameter setting does not rely on this
security conjecture. However, using this conjuecture will further
improve the performance of the scheme as will be demonstrated
in the second part of our parameter setting.

VII. BOOTSTRAPPING

In this section, we show how to bootstrap our scheme. We
firstly squash the decryption algorithm to obtain a low degree
decryption polynomial. Then we show that our cryptosystem is
able to evaluate this polynomial homomorphically.

A. Squashed scheme

In order to bootstrap our scheme, we adopt the squashing
technique used in Gentry’s scheme. Essentially, we need
to evaluate ψ × Rot(w). The multiplication circuit in the
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decryption algorithm is squashed into several additions. The
squashed scheme takes as follows:

KEYGEN∗(pk, sk)
• Generate a vector w∗ = 〈w∗1 , . . . , w∗n〉, where w∗i ←
d2η∗ × wi/dc, and η∗ = η + γ + 1 is an integer.

• For each coefficient w∗i of vector w∗ = 〈w∗1 , . . . , w∗n〉,
generate an l dimentional integer vector yi =
〈yi,1, . . . , yi,l〉 and a binary vector zi = 〈zi,1, . . . , zi,l〉,
such that w∗i =

∑l
k=1 yk,izk,i, and the hamming weight

of zi is t.
• Repeat the last step for all coefficients of w∗;
• Output pk∗ ← {yk}n−1k=0 and sk∗ ← {zk}n−1k=0 .
Remark 5: In our parameter setting, we use t = 1, which

indicates that one of coefficients of yi = 〈yi,1, . . . , yi,l〉 is w∗i .
To do so, one can randomly assign w∗i to one of the coefficient
of yi and fill in the rest of the coefficients with approximately
same length.

SQUASH(ψ, pk∗)
• Given a ciphertext ψ = 〈ψ0, . . . , ψn−1〉, for each coeffi-

cient, generate xi = ψiyi/2
η∗ for 0 ≤ i ≤ n − 1, and

keep ω precisions behind the decimal point;
• Output {xi}ni=1.

DECRYPT∗({xi}, sk∗)
• ψ∗i ← [xizi];
• ψ∗ ← 〈ψ∗1 , . . . , ψ∗n〉;
• ψ′ ← row sum of the matrix Rot(ψ∗)
• Output m← ψ′(1) mod 2.

1) Correctness: Our proof takes two stages. We firstly prove
that the decryption is correct under the assumption that the
roundoff will not introduce errors. Under this assumption, we
have ψ∗i = xizi = ψiyizi/2

η∗ = ψiw
∗
i /2

η∗ = ψiwi/d.
Hence, the decryption is correct.

Now we show the requirement of our assumption. For the i-th
coefficient, let ∆← w∗i −2η

∗×wi/d, then w∗i = ∆+2η
∗
wi/d.

Therefore ψ∗i = [ψi × w∗i /2η
∗
] = [ψi ×∆/2η

∗
+ ψi × wi/d].

The first term needs to be smaller than 1/2. Since ∆ < 1/2
by definition, setting 2η

∗
> ψi for all i < n will guarantee

there is no error in the decryption. As a result, our decryption
algorithm is correct when η∗ ≥ η + γ + 1.

2) Security of the Squashed Scheme: On a high level, for
each coefficient of the secret key w∗i , 0 ≤ i ≤ n − 1, we
squash it into a subset with l elements. To recover the secret
key, an attacker is required to recover all w′i-s. This is mainly
due to the hidden ideal lattice we used. Since the attacker does
not know the lattice, it is incapable of verifying if the w∗i it
recovered is correct. The only method that can be conducted is
to recover all w∗i -s and then to use them to decrypt a certain
ciphertext and check the decryption correctness. As a result,
the security of our squashed scheme is f(t, l)n, where f(t, l)
is the number of operations that required to solve a t, l-SSP,
which equals to

(
l
t

)
for a small set.

Conjecure 2: The best attack to solve n different t, l-SSP is
via a brute force attack. The complexity is

(
l
t

)n
.

In fact, as stated earlier, this is another main advantage
of hiding the lattice other than using smaller dimensions. In

contrast, in Gentry and Halevi’s implementation, one is required
to provide security for each SSP. If one have recovered one
coefficient, it is able to recover the whole secret key. This
resulted into a big set of at least 1024 element for each w∗i
that has been adopted.

As we shall see in the next section, since we have increased
the security by an exponential factor of n, we are able to use
exponentially smaller sets (in terms of number of elements).
For instance, we squash w∗i into a set of only 6 elements, with
only one of them being w∗i . The attacker will have to decide
which one out of the six is picked. As a result we obtain a
security of 6n.

However, for each coefficient of ψ′, we will need to perform
t× n additions, compared with only t additions in Gentry and
Halevi’s scheme. In this case, since the decryption is additions
of t×n floating points, we need log2(t×n)+1 digits precision
after the decimal point, as shown in Table I. As a result, the
degree of decryption polynomial, denoted by q, is increased.

B. Bootstrapability

The bootstrapability of the squashed scheme depends on the
degree of the binary form of the decryption polynomial. The
result of [12] shows that to evaluate m monomials with a degree
q polynomial homomorphically, the noise of the resulting
ciphertext is around

√
m(rEnc)

q . Since we have previously
shown that rEnc ≤ θρζ, now we evaluate the number of
monomials.

Since our decryption algorithm has essentially the same
structure with Gentry and Halevi’s scheme, the following result
of the squashed the decryption follows their observation. The
number of degree-` monomials in the squashed decryption
algorithm is

m =

blog2 `c∏
i=0

(
`

2i

)
.

For instance, if ` = 31, then m =
(
31
1

)(
31
2

)(
31
4

)(
31
8

)(
31
16

)
∼ 275.

Then the squashed decryption requires a multiplication be-
tween xi and zi. However, it is not necessary to encrypt xi.
Therefore, this multiplication does not increase the number of
monomials. Finally, since we need to support a product of
two homomorphically-decrypted bits, our scheme must support
polynomials with m degree-` monomials. As a result, our
scheme is expected to be able to handle a homomorphic
decryption plus one more multiplication/addition if Equation
5 holds.

2η ≥
√
m(θρζ)`. (5)

VIII. PARAMETERS

In this section, we provide two sets of parameters. In the first
set we have ξ = 1. In this case, we provide a theoretical result
where We do not rely on the security conjecture 1. In this case,
we work on hidden lattices which dimension are quite large,
and as a result, we only need a constant number of public
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Number of Precisions of Degree of Decryption Number of
Additions (t× n) Floating Point (ω) Polynomial (q) Monomials (m)

2 ∼ 3 2 3 9
4 ∼ 7 3 7 5145
8 ∼ 15 4 15 ∼ 234

16 ∼ 31 5 31 ∼ 275

32 ∼ 63 6 63 ∼ 2176

. . . . . . . . . . . .
512 ∼ 1023 10 1023 ∼ 23180

TABLE I: Relations between the # Additions and the Decryption Polynomial

keys. Essentially it is quite close to Gentry-Halevi’s scheme.
The major difference is that our lattice is hidden, so we do not
rely on the SSP.

However, since the lattice is hidden, we need to do n times
more additions compared with Gentry-Halevi’s scheme, which
increases our circuit depth dramatically, and makes our scheme
impractical. We remark that it is natural that our scheme is less
efficient, since our scheme is based on a harder problem, where
the dimension of the lattice is remaining the same with Gentry-
Halevi’s scheme.

For the second set, we rely on our conjectures. We work
on hidden lattices with small dimensions, and the number of
public keys is approximately the same as the dimension. In
the configuration, we use c = 1.007, which implies that no
efficient reduction algorithm should be able to find vectors
smaller than cn det

1
n with sufficiently large n. Nevertheless,

one should adapt c with the development of new reduction
algorithms.

A. Parameters without relying on Conjecture 1
From subsection III-B it is straightforward to see that the

BDDH problem is harder than the corresponding BDD prob-
lem over the lattices with the same dimension for the same
parameters. Therefore, we propose a set of parameters of our
FHE scheme where even to solve the BDD problem is hard.

Similar to [12], we do not provide an asymptotic complexity.
Table II highlights the parameters for security levels 280. Since
our parameters are bounded by several requirements, and most
parameters are interconnected, we tested all the possible secure
combinations to achieve the smallest public key size.

We use λ = 80 as an example. It requires a lattice with
dimension 1024, with 2 public keys. To stop the birthday
paradox attack, we allow 5 coefficients of each noise for each πi
to be −1, or 1, while the rest are 0. Hence, the maximum norm
of the noise is

√
5. This allows

(
1024
5

)
> 2λ/2 possibilities. As

for the security of the encryption noise s, s maintains τ + 1
blocks. Each block has n coefficients. Further, the parity of
each block (i.e., the sum of all bits) follows the requirement of
the ENCRYPT algorithm. We set maximum 5 coefficients to be
1 or −1 (4 coefficients if the encrypted message is 0), with the
rest 0-s. As a result, there are maximum 5 blocks with non-zero
entries besides the τ -th block. The total possibility is at least(
τ+1
5

)
(
(
n
2

)
22)5 > 280. Hence, we are secure against the brute

force attack. We also use a 1, 2-SSP setting to achieve a 21024

security level of the squashed secret keys. This setting gives us
a decryption polynomial of degree 3 as we stated eailer.

Now we look into more details of rEnc. Recall that ψ(x) =∑τ
i=1 si(x)πi(x) + sτ+1(x) mod f(x). Therefore, the maxi-

mum noise of each ψi is 5, since s contains only 5 non-zero

coefficients. As a result, the worst case rEnc =
√

1024
√

5
√

5,
although in most cases, it will be much smaller.

To bootstrap, we need 2η ≥
√
m(rEnc)

1023, where m =(
1023
1

)(
1023
2

)
· · ·
(
1023
512

)
∼ 23180. Therefore, the setting η =

9080 will allow us to bootstrap. Having set all parameters as
above, we choose the smallest γ allowed according to Equation
3 and 4. As a result, we obtain parameters in the second row
of Table II. For the completeness, we also list the parameters
for security level λ = 128 and 160.

B. Parameters assuming Conjecture 1

As for the conjectured security, we assume that the best
known attack works on a lattice which dimension is quadratic
with the hidden lattice. Therefore, we build our hidden lattice
which dimension is square root of the dimension where a
normal lattice problem is secure. However, due to the fact that
the dimension is smaller than the proved scheme, the noise in
each vector has to be increased to deliver the same security.

We also use λ = 80 as an example. The parameters for
security level λ = 128 and 160 are listed in Table II. For
λ = 80 it requires a lattice with dimension 31, with 57
public keys. To stop the birthday paradox attack, we allow the
coefficient of each noise for each πi to be −1, 0, or 1, so the
maximum norm of the noise is

√
32. This allows 332 > 2λ/2

possibilities. Further, s maintains τ + 1 blocks. Each block has
32 coefficients. We set maximum 11 coefficients to be 1 or
−1 (10 coefficients if the encrypted message is 0), with the
rest 0-s. As a result, there are maximum 5 blocks with non-
zero entries besides the τ -th block. The total possibility is at
least

(
τ+1
5

)
(
(
n
2

)
22)5 > 280. Hence, we are secure against the

brute force attack. We also use a 1, 6-SSP setting to achieve
a 632 ∼ 282 security level of the squashed secret keys.

As for the rEnc, the maximum noise of each ψi is 11,
since s contains only 11 non-zero coefficients. As a result,
the worst case rEnc = 11

√
32. To bootstrap, it requires

2η ≥
√

275(11
√

31)31, which gives us η = 222. Finally, we
choose the smallest γ allowed according to Equation 3 and 4.
As a result, we obtain parameters in the third row of Table II.

C. Comparison of Parameters

Here we focus on the performance of our second parameter
setting. We omit the comparison with parameter setting 1, as
this setting is highly inefficient as stated earlier.

For our conjectured cryptosystem, our SHE scheme uses a
ciphertext size of (222+18255)×31 ∼ 573 kbits. The SHE also
uses a public key space of 111× 573 kbits ∼ 63.6 Mbits. The
squashed scheme uses a public key of size 6 × 31 × (222 +
18255) bits ∼ 3.4 Mbits. Finally, one needs to encrypt the
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ρ η γ τ ζ n t l Conjecture 1
λ = 80

√
5 9080 1280000 310

√
5 1023 1 2 N

λ = 80
√
10 222 18255 111

√
11 31 1 6 Y

λ = 128 8 595 88411 301
√
17 63 1 5 Y

λ = 160 8 604 91127 307
√
21 63 1 6 Y

TABLE II: Parameters

GH Scheme Our Parameter Setting 2
λ = 72 λ = 80

Lattice dimension 2048 31
Lattice determinant 2780,000 2573,000

Set size 1024 6
Subset size 15 1
Public key size (Mbits) 552 173.5
Ciphertext size (kbits) 780 573

TABLE III: Comparisons with Gentry and Halevi’s implementation

squashed secret key, which further adds another 6× 31× 573
kbits ∼ 106.5 Mbits. As a result, our whole system uses a
public key size of 63.6 + 3.4 + 106.5 ∼ 173.5 Mbits.

To compare with the van Dijk et al.’s scheme, it is almost
straightforward to see that we are more efficient, since their
scheme works with approx 231.6 integers, each of the length
231.6 bits, to obtain a security level of λ = 80. Therefore
we mainly compare our scheme with Gentry and Halevi’s
implementation.

To compare with Gentry and Halevi’s implementation, our
first parameter setting uses similar parameters with their SHE
scheme. Nevertheless, due to the fact that the lattice is hidden,
we achieve a better bootstappability by removing the necessity
of relying on the SSP problem. While for our conjectured
version of the scheme, we improve the efficiency by both the
reducing the dimension and removing the SSP. To complete
this subsection, we list the parameters used in Gentry and
Halevi’s implementation with λ = 72 (see [12]). It is easy
to see that ours is more efficient than Gentry and Halevi’s
scheme in terms of space. The running time of the system is
mainly influenced by the size of the ciphertext and the squashed
decryption polynomial (both degree and number of monomials).
We also note that those parameters in our scheme are smaller
than Gentry and Halevi’s system, therefore, it is straightforward
to see that the running time of our scheme is better.

IX. CONCLUSION

To date, the existing fully homomorphic encryption schemes
are based on three family of problems. In this paper, we
introduced a new family of lattice problems based on hidden
ideal lattice that unifies the two of these families. We show that
the ideal lattice version of those problems are reducible from
both the bounded distance decoding problem over ideal lattice
and the approximate greatest common divisor problem.

Based on this new problem, we proposed a new fully
homomorphic encryption scheme using hidden ideal lattice.
Our scheme can be seen as a hybrid between Gentry and
Halevi’s scheme with ideal lattice, and the van Dijk et al.’s
scheme with integers, if we view the integer scheme as an ideal
lattice with dimension equals to 1. We combined the strength
of both schemes. On one hand, by hiding the lattice (as in the
integer scheme), we showed that the dimension of lattice of

the best attack to this cryptosystem is at least quadratic in the
dimension of the generating ideal lattice, therefore, our scheme
can operate with an ideal lattice with a smaller dimension. On
the other hand, by using a lattice with dimension greater than 1
(as in Gentry and Halevi’s scheme), we improved the security
and efficiency of the scheme.

To sum up, our scheme makes the best alternative to the
state-of-the-art fully homomorphic encryptions schemes based
on ring learning with errors.
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