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Abstract. The LLL algorithm is one of the most studied lattice basis
reduction algorithms in the literature. Among all of its variants, the
floating point version, also known as L2, is the most popular one, due to
its efficiency and its practicality. In its classic setting, the floating point
precision is a fixed value, determined by the dimension of the input
basis at the initiation of the algorithm. We observe that a fixed precision
overkills the problem, since one does not require a huge precision to
handle the process at the beginning of the reduction. In this paper, we
propose an adaptive way to handle the precision, where the precision
is adaptive during the procedure. Although this optimization does not
change the worst-case complexity, it reduces the average-case complexity
by a constant factor. In practice, we observe an average 20% acceleration
in our implementation.
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1 Introduction

A lattice L is a discrete subgroup of Rn. It is usually represented by a set of
integer linear combinations of vectors B = (b1, . . . ,bd), bi ∈ Rn, d ≤ n. B is a
basis of L, if bi-s are linearly independent, and d is known as the dimension of
the L. For a given lattice L, there exists an infinite number of bases for d ≥ 2.
Given a “bad” basis (i.e., a basis with large coefficients), to find a short vector
of the lattice (a vector with small coefficients), or a “good” basis (i.e., a basis
with small coefficients and the vectors are almost orthogonal), is known as the
lattice reduction.

The LLL algorithm, named after its inventors, Lenstra, Lenstra and Lovász
[11], is a polynomial time lattice reduction algorithm. For a basis B = (b1, . . . ,bd),
the LLL algorithm is proven to terminate within O(d6β3) time, where β is the
maximum bit length of all the Euclidean norm of input vectors. This algorithm
is of great importance in cryptanalysis, since finding vectors with exponential
approximation (in d) to the shortest non-zero vector will break some of the cryp-
tosystems, such as the Coppersmith’s method [6, 5] against RSA cryptosystem
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[21]. For this reason, one of the working direction is to increase the time efficiency
of the algorithm.

One of the greatest achievements towards this end was due to [16, 18], which
incorporates the floating point arithmetics. It is the first algorithm that achieves
quadratic complexity in terms of β, hence it was named L2. In practice, there
exist two main versions, a standard version (referred to as “L2”) that delivers
the proven complexity and a heuristic version (referred to as “FP”) that adopts
some heuristics to boost the reduction.

L2 uses floating points instead of integers, where the precision is set to O(d)
to deliver error free arithmetics. The precision was determined at the beginning
of the procedure. However, we notice that this setting indeed is an overkill. LLL
deals with vectors progressively. During the process, when k < d vectors are
involved, it only requires O(k) bit precision to deliver correct reduction. In fact,
the only time that the algorithm requires O(d) precision is when all the vectors
are involved. This inspires us to propose the adaptive precision floating point
LLL algorithm.

Our Contribution. We present an adaptive precision floating point LLL algo-
rithm, the ap-fplll. We consider both the proven version, L2, and the most effi-
cient version, FP. We test our ap-fplll with random lattices. In practice, we are
always faster than the standard version of L2. When the dimension and/or deter-
minant are sufficiently large, we are also faster than the fastest implementation
of L2. In general, we accelerate the reduction by 20%.

Roadmap. In the next section, we will discuss the background knowledge and
terminology required throughout the paper and briefly recall the L2 algorithm.
In Section 3, we show our adaptive precision floating point LLL algorithm and
analyze its performance. In Section 4, we show the implementation result of our
proposed algorithm. Finally, Section 5 concludes the paper.

2 Background

It this section, we briefly review the related area. We refer readers to [12, 14] for
a more complex account of lattice theory, and [4, 19] for the LLL algorithm.

2.1 Lattice Basics

The lattice theory, also known as the geometry of numbers, was introduced by
Minkowski in 1896 [15].

Definition 1 (Lattice). A lattice L is a discrete sub-group of Rn, or equiv-
alently the set of all the integral combinations of d ≤ n linearly independent
vectors over R.

L = Zb1 + Zb2 + · · ·+ Zbd,bi ∈ Rn

B = (b1, . . . ,bd) is called a basis of L and d is the dimension of L, denoted as
dim(L). L is a full rank lattice if d equals to n.
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Definition 2 (Successive Minima). Let L be an integer lattice of dimension
d. Let i be a positive integer. The i-th successive minima with respect to L,
denoted by λi, is the smallest real number, such that there exist i non-zero linearly
independent vectors v1,v2, . . . ,vi ∈ L with

‖v1‖, ‖v2‖, . . . , ‖vi‖ ≤ λi.

The norm of i-th minima of a random lattice is estimated by

λi(L) ∼
√

d

2πe
det(L)

1
d . (1)

Definition 3 (Gram-Schmidt Orthogonalization). Let B = (b1, . . . ,bd) be
a basis of L. The Gram-Schmidt Orthogonalization (GSO) of B is the following
basis B∗ = (b∗

1, . . . ,b
∗
d)

b∗
1 = b1,

b∗
i = bi −

i−1∑
j=1

µi,jb
∗
j , (2 ≤ i ≤ d),

µi,j =
bi · b∗

j

b∗
j · b∗

j

.

Definition 4 (Gram determinants). Let B = (b1, . . . ,bd) be a basis of L.
Let B∗ = (b∗

1, . . . ,b
∗
d) be the corresponding GSO. The Gram determinants of B,

noted {∆∗
1, . . . ,∆

∗
d} is defined as

∆∗
i = det(b∗

1, . . . ,b
∗
i ).

The loop invariant is defined as the product of all Gram determinants as: D =∏d−1
i=1 ∆

∗
i . For any basis, D is upper-bounded by 2βd(d−1) [4].

2.2 The LLL algorithm

The LLL algorithm was proposed by Lenstra, Lenstra and Lovasz [11] in 1982.
We briefly sketch the algorithm as in Algorithm 1 and 2. LLL produces a (δ, 0.5)-
reduced basis for a given basis (see definitions below).

Definition 5 (η-size reduced[18]). Let B = (b1, . . . ,bd) be a basis of L. B is
η-size reduced, if |µi,j | ≤ η for 1 ≤ j < i ≤ d. η ≥ 0.5 is the reduction parameter.

Definition 6 ((δ, η)-reduced basis[18]). Let B = (b1, . . . ,bd) be a basis of L.
B is (δ, η)-reduced, if the basis is η-size reduced and it satisfies Lovász condition
as follows: δ‖b∗

i−1‖2 ≤ ‖b∗
i + µ2

i,i−1b
∗
i−1‖2 for 2 ≤ i ≤ d. 1

4 < δ ≤ 1 and
1
2 ≤ η <

√
δ are two reduction parameters.
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For a lattice L with dimension d, and a basis B, where the Euclidean norm of
all spanning vectors in B is ≤ 2β , the worst-case time complexity is polynomial
O(d6β3).

This complexity comes from the following. Firstly, there exists O(d2β) loop
iterations. It has been shown that the loop invariant D is not changed except
during the swap procedure, while during the swap, D is decreased by a factor
of δ. Hence, the total number of swaps is upper bounded by the absolute value

of βd(d−1)
log2 δ

. Therefore there are maximum O(d2β) loop iterations. As a result,

the total number of size reduction is O(d2β). Secondly, for each size reduction,
there are O(d2) arithmetic operations. Finally, each operation involves integer
multiplications with a cost of M(dβ) due to rational arithmetics.1 Hence, the
original LLL algorithm terminates in polynomial time O(d6β3).

Algorithm 1 Size Reduction

Input: B = (b1,b2, . . . ,bd), its GSO and an index k.
Output: A new basis B, where bk is size reduced, and the updated GSO.

for i = (k − 1)→ 1 do
bk ← bk − dµk,ic · bi.
Update GSO

end for
return B.

Note that for the bases of a random lattices that are using in our analysis
and implementation, the number of loop iterations is O(dβ) instead of O(d2β)
(see Remark 3, [16]). So the complexity will be reduced by O(d).

2.3 Floating point LLL algorithm

The most costly part in an LLL procedure is the size reduction. When one
performs a size reduction, the GSO needs to be regularly updated. During the
update, the classic LLL needs to operate on integers with length of O(dβ). As a
result, the multiplication of those integers incurs a cost of O(M(dβ)).

The first floating point LLL algorithm. In [22] and [23], Schnorr showed
that using floating points instead of integers for LLL can reduce the cost of
multiplications from M(dβ) to M(d + β). To the best of our knowledge, this
is the first time where floating points make a significant difference in the LLL
algorithm. However, it is obseved that the hidden constant in the bit complexity
remains huge.

1 M(d) represents the cost of multiplication between two O(d) length integers. In
this paper, we follow the LLL algorithm by using M(d) to be O(d2) assuming a
naive integer multiplication. One can replace it with O(d1+ε) to obtain the exact bit
complexity in practice.
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Algorithm 2 LLL

Input: B = (b1,b2, . . . ,bd) and a reduction parameter η
Output: A (δ, 0.5)-reduced basis B.

Compute GSO.
k ← 2.
while k ≤ d do

size reduce (B, k);
if δ‖b∗

k−1‖2 ≤ ‖bk‖2 + µ2
k,k−1‖b∗

k−1‖2 (Lovász condition) then
k ← k + 1

else
swap bk and bk−1;
k ← max(k − 1, 2);
Update GSO;

end if
end while
return B.

The L2 algorithm. To further improve the efficiency, the L2 algorithm was
proposed by Nguyen and Stehlé [16] in 2005. It is the first variant whose worst-
case time complexity is quadratic with respect to β. It uses a worst-case time
complexity of O(d5β2 +d6β) to produce a (δ, η)-reduced basis for 1

4 < δ ≤ 1 and
1
2 < η <

√
δ.

The L2 algorithm incorporates the lazy reduction as follows: firstly, the size
reduction consists of many floating point reductions (fp-reduction). Then, within
each fp-reduction, one works on floating point whose precision is O(d). The factor
within O(·) is influenced by the reduction parameters. A default setting in the
fplll is approximately 1.6d. As a consequence, the multiplication cost is reduced
to O(M(d)). However, the trade-off is that, each fp-reduction may be incomplete,
and one is required to perform O(1 + β

d ) fp-reductions to ensure that the vectors
is size reduced.

L2 in practice. In practice, the fplll library [20] and MAGMA [3] are two well
known implementations. Within both implementations, there exist two main
versions, “L2” and “FP” (it is known as “LM WRAPPER” in the fplll). The L2
is described as above. It is the proved version of L2. Meanwhile, in practice, one
can further improve the average performance with some heuristics. To the best
of our knowledge, the most efficient implementation of L2 is FP. As far as the
floating point is concerned, FP is L2 plus some early reductions.

In FP, the basis is early reduced as follows: the algorithm will choose several
fixed precisions subject to the following conditions:

– The arithmetics are fast with those precisions, for instance, 53 for C double
precision.

– Reductions with those precisions are likely to produce a correct basis, for
instance, d rather than 1.6d (see Remark 4, [17]).
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Reductions with above precisions are cheaper, while they produce somewhat
reduced bases. So the algorithm will try all early reductions with different fixed
precisions, and finally perform an L2 to ensure the quality of reduction. We
note that those early reductions do not change the overall complexity, since in
theory the last L2 is still the most costly one. Nevertheless, in practice, the early
reductions are very effective to accelerate the whole procedure.

3 Our adaptive precision floating point LLL algorithm

3.1 The algorithm

The LLL algorithm uses a stepping method. For a basis B = (b1, . . . ,bd), it
starts with the first 2 vectors, and then adds 1 vector into the procedure during
each step. We notice that, one does not require a floating point precision of O(d)
to reduce in the first d−1 steps. In fact, for any k vectors, one only requires O(k)
precisions. Hence, a possible improvement is to adaptively select the precision
according to the number of vectors that are involved. This leads to the adaptive
precision floating point LLL algorithm (ap-fplll) as shown in Algorithm 3.

Algorithm 3 Adaptive precision floating point LLL algorithm

Input: B = (b1,b2, . . . ,bd), reduction parameters (δ, η) and a starting index γ.
Output: An (δ, η)-reduced basis B.
k ← 2, kmax ← γ.
SetPrecision(γ) and Compute GSO accordingly.
while k ≤ d do

Size reduce (B, k);
if δ‖b∗

k−1‖2 ≤ ‖bk + µk,k−1‖b∗
k−1‖2 (Lovász condition) then

k ← k + 1;
if k > kmax then
kmax ← k;
if kmax > γ then

SetPrecision(kmax) and Compute GSO accordingly.
end if

end if
else

Swap bk and bk−1;
k ← max(k − 1, 2);
Update GSO;

end if
end while
return B.

Algorithm 3 describes the L2 version of our ap-fplll algorithm. k indicates the
current vector the algorithm is working on, while kmax indicates the maximum
number of the vectors that are involved. When kmax changes, one is required
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to reset the precision. To obtain the FP version of the algorithm, one conducts
early reductions as in fplll when kmax increases.

We also introduce an index parameter γ due to implementation issue. For
some of the library, there exists a minimum precision for floating point. If the
required precision is smaller than this bound, the algorithm will automatically
use the bound. In this case, the precision is not O(d), rather it is a fixed value
subject to the system. Hence, using an adaptive precision will not reduce the
cost of multiplication, rather it will repetitively recompute the GSO. We set γ
such that when more than γ vectors are involved, the algorithm will need to use
a precision subject to the dimension.

Remark 1. In our algorithm, we follow the L2 by setting the precision to be the
exact value that is required, i.e., 1.6d, to deliver a fair comparison. Nevertheless,
it is worth pointing out that the mpfr library [1] that the fplll depends on operates
a floating number as a linked list of blocks of 32 bits (or 64 bits), therefore, it
is possible that increasing precisions with respect to the size of the block (the
actual size may be smaller than 32 or 64 due to the overhead of storing a floating
number) may derive a better performance, since in this case, the GSO will be
updated less often.

3.2 Worst-case complexity

In this part, we prove that our algorithm uses the same worst-case complexity
with L2.

The reduction part of L2 algorithm can be seen as our algorithm with a fixed
precision of O(d). Therefore, during the reduction part we can never be more
costly than L2. However, our algorithm needs to recompute the GSO for each
step, where the GSO is updated partially in L2. On the worst-case, we can be
more costly than L2 by the cost of computing the GSO.

For each step, the cost of computing GSO is O(d2k2β). This brings an overall
cost of O(d5β), hence it will not affect the worst-case complexity of O(d6β +
d5β2). As a result, the ap-fplll uses a same worst-case complexity with L2.

3.3 Average behaviors

We construct the random lattices as in [9]. There exist bases of those lattices
that are of the following form:

B =


X1 0 0 . . . 0
X2 1 0 . . . 0
X3 0 1 . . . 0
...

...
... · · ·

...
Xd 0 0 . . . 1

 ,

where X1 is a large prime with β bits. Xi-s (i 6= 1) are chosen uniformly between
0 and p.
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These bases are somewhat standard to analyze lattice reductions. They are
believed to leak the least information for the corresponding lattice, since it can
be obtained by any lattice basis within polynomial time. They are adopted in [8,
17] where the LLL behavior is widely analyzed. Further, when setting β ∼ 10d,
these bases are also used for the shortest vector problem (SVP) challanges in [2].

We analyze the average case complexity of our algorithm with the above
bases. Since the lattice is a random one, then its minimas λi follow Equation 1.

Bk =



x1,1 x1,2 . . . x1,k 0 . . . 0
x2,1 x2,2 . . . x2,k 0 . . . 0

...
... · · ·

...
... · · ·

...
xk,1 xk,2 . . . xk,k 0 . . . 0
Xk+1 0 . . . 0 1 . . . 0

...
... · · ·

...
... · · ·

...
Xd 0 . . . 0 0 . . . 1


For the k-th step (k > 2), the basis is shown as above, where ‖bi‖ . 2

k−1
2 2

β
k−1

for i < k and ‖bk‖ . 2
k−2
2 2

β
k−2 . Hence, the loop invariant for the current step

Dk is then bounded by

k∏
i=1

‖bi‖2(k−i+1) = 2k(k−1)2−122βk+
β

(k−1)(k−2) .

When the k-th step terminates, bi will be reduced to 2
k
2 2

β
k for i ≤ k. Hence, one

obtains O(β) loop iterations on average cases. We note that this observation is
quite natural, since there are O(dβ) loop iterations in total, hence, on average
there are O(β) loop iterations for each k.

Let l be the precision to be used in the algorithms. Then for each loop
iteration, one needs to perform O(1+ β

l ) floating point reductions, each at a cost

of O(d2M(l)). Since l = O(k), so it will cost O(d2β
∑d
i=γ(1 + β

i )M(i))) that is
1
6c1d

5β + 1
2c2d

4β2 for some constants c1 and c2, if we assume M(d) = O(d2).

For comparison, we also show the complexity of L2: O(d2β
∑d
i=1(1+ β

d )M(d))
which is c1d

5β + c2d
4β2 for the same constants.

It is straightforward to see that our algorithm uses the same bit complexity
with L2. Further, our algorithm wins on both terms. However, the factor 1

6 on
the first term does not make a difference, which is due to the following. Firstly, in
this case, β < d which indicates that for each lazy reduction, only requires O(1)
fp-reductions, while our advantage is in fact a faster fp-reduction. Hence, our
advantage diminishes. Secondly, the cost of recompute the GSO is also O(d5β)
on worst cases as well.

Nevertheless, when β > d, we anticipate a lot of reductions. In this case, we
should be able to accelerate the reduction by a factor between 0 and 50% for L2
(due to the fact that in practice M(d) ≤ O(d1+ε)).
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As for FP, in practice, it is possible that the early reduction already produces
a good basis. It happens a lot when the dimension is small and β

d is small. In this
case, the adaptive precision will not boost the reduction, since our advantage
works on the final procedure, while in the final procedure, the basis is already
in a good shape. Nevertheless, when one increases the dimension and/or the β

d ,
the adaptive precision will still accelerate the reduction.

4 Implementation

In this section we show the implementation results of our algorithm. The tests
were conducted with fplll library version 4.0 on Xeon E5640 CPUs @ 2.66GHz.
The memory was always sufficient since the algorithm only requires a polyno-
mial space. We used the random lattice basis as shown in the last section. We
set the dimension to 64 and increase it by 32 each time. For each dimension,
we set β = 10d, 20d, · · · , and generated the bases accordingly. For each dimen-
sion/determinant, we tested 10 different bases where the random numbers are
generated from different seeds 0 ∼ 9 using the pseudo-random generator of the
NTL library [24].

We set the index γ = 40 so that the required precision is strictly greater than
53. In deed, one can change γ to improve ap-fplll. However, to show a more fair
comparison, we use a same value for all the tests. The reduction parameter pair
is set to (0.99, 0.51) as the default value of fplll. This results in a very strongly
reduced basis which is in general most useful for cryptanalysis.

We show the implementation results as follows. As one can see from Table 1,
one can merely observe any difference between two algorithms at the beginning
of the tests, although ap-fplll-L2 is slightly faster than fplll-L2. We believe the
reason is that the cost of recompute the GSO is more or less the same of the
advantage of using smaller precisions. However, when the dimension grows, the
reductions influence the total complexity more importantly compared with the
GSO computation, and as a result, the ap-fplll starts to be a lot faster. Figure 1
illustrated the winning percentage of ap-fplll-L2 versus fplll-L2. When d = 64, we
accelerate the reduction by 10%, since it is closer to the starting index γ = 40.
When d ≥ 96, the influence of γ diminishes, and we start to see the phenomenon
where the dimension and/or determinant grow, the advantage increases as well.
When the dimension and the determinant are sufficiently large, we can expect
an advantage up to 40%. Overall, our algorithm is always faster in all cases, and
we anticipate a boost of over 20% in general.

The results for the FP version are shown in Table 2. The results are not as
stable as L2 due to the early reductions. As we anticipated, with small determi-
nant/dimension, i.e., β = 10d, our algorithm does not accelerate the reduction.
The early reduction technique works extremely efficient in those cases. Never-
theless, the disadvantage is still acceptable considering that even in dimension
448, the disadvantage is less than several of minutes.

Meanwhile, for the other cases, when the dimension grows, we start to ob-
serve advantages. Further, the advantage rises with the increase of dimension
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Fig. 1: Test Results: winning percentage of ap-fplll vs fplll using L2

-30

-20

-10

 0

 10

 20

 30

 40

 64  96  128  160  192  224  256  288  320  352  384  416  448
-30

-20

-10

 0

 10

 20

 30

 40

ra
ti
o
 (

in
 p

e
rc

e
n
ta

g
e
)

dimension

β = 10d
β = 20d
β = 30d
β = 40d
β = 50d

Fig. 2: Test Results: winning percentage of ap-fplll vs fplll using FP



Adaptive Precision Floating Point LLL 13

and determinant, just like L2. However, we notice the advantage is not stable.
This is because the early reduction affects differently for different dimensions.
Overall, as shown in Figure 2, with dimension grows, we accelerate the reduc-
tion by approximately 20% for β ≥ 20d. In cryptanalysis, one usually needs to
deal with lattice with massive dimension and/or determinants, for instance, the
Coppersmith-Shamir’s technique [7] against an NTRU cryptosystem [10], so it
is still helpful to use adaptive precisions when d ≥ 128 and β ≥ 20d.

5 Conclusion

In this paper, we presented an adaptive floating point precision LLL algorithm.
The cost of reduction relies heavily on the precision of the floating point, and
the precision used in L2 in fact overkills the problem. Therefore, we presented
an approach that adaptively handles the precision. In practice, our algorithm
is always faster than the proved version of L2. It also out-performs the fastest
implementation so far in most cases.

References

1. mpfr library. online. http://www.mpfr.org/.
2. SVP CHALLENGE. online. http://www.latticechallenge.org/

svp-challenge/index.php.
3. W. Bosma, J. Cannon, and C. Playoust. The Magma algebra system. I. the user

language. J. Symbolic Comput., 24(3-4):235–265, 1997.
4. M. Bremner. Lattice Basis Reduction: An Introduction to the LLL Algorithm and

Its Applications. Pure and Applied Mathematics. CRC PressINC, 2012.
5. D. Coppersmith. Finding a small root of a bivariate integer equation; factoring

with high bits known. In Maurer [13], pages 178–189.
6. D. Coppersmith. Finding a small root of a univariate modular equation. In Maurer

[13], pages 155–165.
7. D. Coppersmith and A. Shamir. Lattice attacks on ntru. In W. Fumy, editor,

EUROCRYPT, volume 1233 of Lecture Notes in Computer Science, pages 52–61.
Springer, 1997.

8. N. Gama and P. Q. Nguyen. Predicting lattice reduction. In Proceedings of the
theory and applications of cryptographic techniques 27th annual international con-
ference on Advances in cryptology, EUROCRYPT’08, pages 31–51, Berlin, Heidel-
berg, 2008. Springer-Verlag.

9. D. Goldstein and A. Mayer. On the equidistribution of hecke points. In Forum
Mathematicum., volume 15, pages 165–189, 2006.

10. J. Hoffstein, J. Pipher, and J. H. Silverman. Ntru: A ring-based public key cryp-
tosystem. In J. Buhler, editor, ANTS, volume 1423 of Lecture Notes in Computer
Science, pages 267–288. Springer, 1998.

11. A. K. Lenstra, H. W. Lenstra, and L. Lovász. Factoring polynomials with rational
coefficients. Mathematische Annalen, Springer-Verlag, 261:513–534, 1982.

12. L. Lovász. An Algorithmic Theory of Numbers, Graphs and Convexity, volume 50
of CBMS-NSF Regional Conference Series in Applied Mathematics. SIAM Publi-
cations, 1986.



14 Thomas Plantard, Willy Susilo, and Zhenfei Zhang

13. U. M. Maurer, editor. Advances in Cryptology - EUROCRYPT ’96, International
Conference on the Theory and Application of Cryptographic Techniques, Saragossa,
Spain, May 12-16, 1996, Proceeding, volume 1070 of Lecture Notes in Computer
Science. Springer, 1996.

14. D. Micciancio and S. Goldwasser. Complexity of Lattice Problems, A Cryptographic
Perspective. Kluwer Academic Publishers, 2002.

15. H. Minkowski. Geometrie der Zahlen. B. G. Teubner, Leipzig, 1896.
16. P. Q. Nguyen and D. Stehle. Floating-point LLL revisited. In Advances in Cryptol-

ogy - Eurocrypt 2005, Lecture Notes in Computer Science 3494, Springer-Verlag,
pages 215–233, 2005.

17. P. Q. Nguyen and D. Stehle. LLL on the average. In 7th International Symposium
on Algorithmic Number Theory (ANTS 2006), pages 238–256, 2006.
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