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Abstract: In Crypto 1997, Goldreich, Goldwasser and Halevi (GGH) proposed a lattice analogue 
of McEliece public key cryptosystem, in which security is related to the hardness of 
approximating the Closest Vector Problem in a lattice. Furthermore, they also described how to 
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the l -norm and propose a digital signature scheme based on it. Our scheme takes advantage of 
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1 Introduction 
After the seminal work by Ajtai and Dwork (1997) and the 
first lattice-based cryptosystem from Goldreich, 
Goldwasser and Halevi (1997), many cryptosystems based 
on lattice theory have been proposed. These systems use 

the Shortest Vector Problem (SVP) or the Closest Vector 
Problem (CVP) as their underlying hard problem to 
construct the trapdoor functions. For a recent survey on 
the SVP based cryptosystem, we refer the readers to 
Regev (2006). 
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Table 1 List of acronyms and notations 

Acronyms 
BKZ Block Korkin–Zolotarev Schnorr (1987, 1988)
CVP Closest Vector Problem Definition 6 
GGH The Goldreich, Goldwasser 

and Halevi cryptosystem 
Goldreich, 
Goldwasser and 
Halevi (1997) 

GGHSign The Goldreich, Goldwasser 
and Halevi digital signature 
scheme 

Goldreich, 
Goldwasser and 
Halevi (1997) 

HNF Hermite Normal Form Definition 4 
LLL The Lenstra, Lenstra and 

Lovasz algorithm 
Lenstra, Lenstra and 
Lovász (1982) 

l2-norm The Euclidean norm Definition 7 

l -norm The infinity norm Definition 7 

SVP Shortest Vector Problem 
under the l2-norm 

Definition 5 

Notations 

| |x x The absolute value of x

| |x nx The vector 

0 1 1[| |,| |, , | |]nx x x

x x The closest integer of x

x nx The vector 
0 1 1[| |,| |, ,| |]nx x x

px nx The lp-norm Definition 7 

pA ,n nA The matrix norm 
consistent with the lp-
norm 

Definition 9 

Px nx The polytope norm 

P , where ,n nP
Definition 10 

PA ,n nA The matrix norm 
consistent with the 
polytope norm 

Definition 10 

Dx nx The polytope norm 
under D

Definition 10 

DA ,n nA The matrix norm 
consistent with the 
polytope norm 
under D

Definition 10 

 (A) ,n nA The spectral radius 
of A

Definition 13 

 (MD 1) The spectral radius of 
MD 1, where 

,, n nM D
( )A ,n nA The condition number 

of A
Definition 12 

In Crypto 1997, Goldreich, Goldwasser and Halevi (GGH) 
proposed a cryptosystem based on the lattice theory 
(Goldreich, Goldwasser and Halevi, 1997), which is a 
lattice analogue of McEliece cryptosystem (1978). The 
security of GGH is related to the hardness of 
approximating the CVP in a lattice. Furthermore, they also 
noted that using the underlying principle of their 
encryption scheme, a signature scheme can be 
constructed. Nonetheless, the resulting signature scheme 

did not attract much interest in the research community 
until a relatively efficient signature scheme called the 
NTRUSign was proposed (Hoffstein et al., 2003). The 
GGH signature system can be described using three 
algorithms: 

Setup: Compute a ‘good basis’ G and a ‘bad basis’ B of a 
lattice . (G) = (B). Provide B as public and keep G
secret. 

Sign: Use the good basis to have an efficient 
approximation of the closest vector of a vector. The initial 
vector is the message and the approximation is the 
signature. GGH uses the first Babai's method (1986) to 
approximate 1CVP : =s mG G . (Please refer to 
Table 1 for the notation .)

Verify: Check if the approximation is in the lattice of basis 

(B):
?

nx , such that s = xB. The vector-signature 
should be also a good approximation of the vector-
message. 

The important points for the security and efficiency of 
this cryptosystem are defined as follows. 

1 It is easy to compute a ‘bad basis’ from a ‘good 
basis’, but it is difficult to compute a ‘good basis’ 
from a ‘bad basis’. 

2 It is easy to compute a good approximation of CVP 
with a ‘good basis’, but difficult to do so with a ‘bad 
basis’. 

3 It is easy to check the inclusion of a vector in a 
lattice even with a ‘bad basis’. 

Nguyen (1999) proposed the first attack against the GGH 
cryptosystem. This attack is based on the utilisation by 
GGH of a non-singular matrix with a small norm for a 
good basis to use Babai’s method. Due to this attack, the 
utilisation of GGH requires a lattice with big dimension 
(>500), to ensure its security. Nonetheless, the 
computation of the Babai’s approximation becomes very 
expensive. Micciancio (2001) proposed some major 
improvements of the speed and the security of GGH. In 
this scheme, the public key uses the Hermite Normal Form 
(HNF) basis for the ‘bad basis’. The HNF basis is better to 
answer the inclusion question and it also seems to be more 
difficult to transform to a ‘good basis’ compared to 
another basis. For the signature scheme, Micciancio used 
the reduced-vector instead of a closest vector. The reduced 
vector is in fact the difference between a vector and its 
closest vector. Using this method, the length of the 
signature is shorter. Gentry and Szydlo (2002) found a 
problem in GGH signature scheme which seems to be not 
zero-knowledge. Szydlo (2003) gave an algorithm to 
elaborate this problem further. This method uses several 
vector-signatures given by the Babai’s method to attack 
GGH. However, this method seems to be not very 
efficient. NTRUSign (Hoffstein et al., 2003) was created 
based on a very similar method to GGH but with most 
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improvements on the utilisation of NTRU basis 
(Hoffstein, Pipher and Silverman, 1998) for the ‘good 
basis’. Those basis seem to be more resistant against the 
previously known attacks. Nevertheless, Nguyen and 
Regev (2006) proposed a general attack against both GGH 
signature scheme and NTRUSign. This clever attack used 
the large CVP approximations naturally given by the 
signature of messages to design the fundamental 
parallelepiped of the ‘good basis’. 

Regev (2006) provided an invited talk at Crypto 2006 
on the progress of lattice-based cryptography. At the end 
of his paper, Regev questioned whether one could 
construct signature schemes from lattices that do not 
suffer from the known problem in the literature. 

Our results. In this article, we use the l -norm instead of 
the l2-norm to construct a digital signature scheme which 
is similar with GGH signature scheme. By using the l -
norm, we aim to increase the security of the resulting 
cryptosystems, together with its efficiency in terms of 
signature length and computation time. 

Paper organisation. This article is organised as follows. 
We start the article by providing some preliminary work 
and knowledge on lattice theory for cryptography. Then, 
we proceed with the eigenvalue theory and other useful 
definitions used throughout this article. Then, we present 
the main part of the work, which is the reduction vector in 
l -norm and the related theorems, followed by a 
signature scheme and its further improvements. Finally, 
we conclude the article by comparing our scheme with the 
GGH signature scheme. 

2 Lattice theory for cryptography 
In this section, we will review some basic concepts of the 
lattice theory, and in particular addressing the NP-
hardness of the trapdoor problems used. For a more 
complex account, we refer the readers to Nguyen and 
Stern (2001). 

2.1 Notations 
Throughout the article, we denote a matrix by an 
uppercase bold letter, i.e. B, and its ith row and jth column 
entry by an uppercase plain letter with a subscript, i.e. Bi, j.
We denote a vector by a lowercase bold letter, i.e. b, and 
its ith entry by a lowercase plain letter with a subscript, 
i.e. bi. A single (real/integer) number is denoted by a 
lowercase plain letter, i.e. b.

For completeness, we provide a list of acronyms and 
definitions that will be used throughout this article in 
Table 1. 

2.2 Lattice theory 
The lattice theory, also known as the geometry of 
numbers, was introduced by Minkowski (1896). The 
complete discussion on the basic of lattice theory can be 

found from Cassels (1959), Lovász (1986) and Conway 
and Sloane (1988). 

Definition 1 (Lattice). A lattice  is a discrete sub-group 

of n , or equivalently the set of all the integral 
combinations of d n linearly independent vectors 
over .

1= , .n
d ib b b

B = (b1, , bd) is called a basis of  and d, the dimension 
of .

Definition 2 (Full-rank Lattice). Let n  be a lattice. 
If its dimension d is equal to n then the lattice  is called 
full-rank.

Definition 3 (Fundamental Parallelepiped). Let be 
B = (b1, , bn) a basis of a full-rank lattice n  then 
the set 

1
=1

= , ( , , ) [0,1[
n

n
i i n

i

x x xb

is called a fundamental parallelepiped. 
The volume of a fundamental parallelepiped is 

invariant regardless of the chosen basis. This invariant is 
called the determinant of  and can be computed as 
det =| det |B .

Remark 1. There also exists a definition of the determinant 
for a non-full-rank lattice. However, in this article, we 
only focus on the basic of lattice theory that is required 
throughout the article. Since we only deal with full-rank 
integer lattice, consequently with a basis ,n nB ,
therefore, we simplify the definition as above. 

For a given lattice , there exists an infinity of 
basis. However, the HNF basis (Definition 4) is unique 
(Cohen, 1993). 

Definition 4 (HNF). Let  be a full-rank lattice and 
H a basis of . H is a HNF basis of  if and only if 

,

,

0 if
, , 0 if

if
i j

j j

i j
i j H i j

H i j

The HNF basis can be computed from a given basis in a 
polynomial time (Kannan and Bachem, 1979). For 
efficient solutions, we refer the readers to Micciancio and 
Warinschi (2001). 

Remark 2. The HNF basis is a ‘good basis’ for solving the 
problem of inclusion of a vector in a lattice (Cohen, 1993). 
As it was successfully used by Micciancio (2001), we will 
also incorporate it in this article with some further 
improvements. 

Many algorithmic problems of the lattice theory are 
built upon two other problems which are clearly more 
difficult, namely, the SVP and the CVP. 
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Definition 5 (SVP). Let B be a given basis of a lattice .
The SVP is to find a vector u  0 such that 

\{ },v 0 u v  for a given norm . .

Definition 6 (CVP). Let B be a given basis of a lattice 
and w a target vector. The CVP is to find a vector u such 
that ,v w u w v  for a given norm . .

CVP is NP-hard for all norms lp (Definition 7) 
including l -norm Boas (1981). 

Definition 7 (lp-norm). Let w be a vector of n . The 
lp-norm is the function . p  such that 

1/1

=0

= | | .
pn

p
p i

i

ww

The l2-norm is also known as the Euclidean norm. The 
l -norm, also known as the infinity norm, is computed as 

0 1= max {| |}i n iww .
The l2 and l  norms have been studied and used in the 

lattice theory. The NP-hardness of the two problems for 
these two norms has been proven. In 1981, Emde Boas 
proved the NP-hardness of CVP , SVP  and CVP2 in 
Boas (1981). Subsequently, Ajtai (1998) proved the NP-
hardness of SVP2. Consequently, there exist only some 
exponential algorithms to completely solve those 
problems. We summarise this result in Table 2. However, 
some approximation versions of these two problems exist 
in the literature. 

Table 2 Exponential algorithms for Shortest Vector 
Problem and Closest Vector Problem 

Deterministic Probabilistic 
SVP / 2d ed  Kannan (1983), 

Helfrich (1985) and Hanrot 
and Stehle (2007) 

(2 (1/ ))d  Ajtai, 
Kumar and Sivakumar 
(2001) and Blömer and 
Naewe (2007) 

CVP / 2dd  Kannan (1983), 
Helfrich (1985) and Hanrot 
and Stehle (2007) 

(2 (1/ ))d  Ajtai, 
Kumar and Sivakumar 
(2002) and Blömer and 
Naewe (2007) 

Table 3 The approximation factor  for the NP-hardness of 
AppSVP and AppCVP with l2 and l  norms 

Euclidean norm Infinity norm 
Problems AppSVP2 AppSVP2 AppSVP  AppCVP
NP-hard 1log2 d

(Haviv and 
Regev, 
2007) 

1log2 d

(Dinur, 
Kindler and 
Safra, 1998) 

1/ log log dd
(Dinur, 
2000) 

1/ log log dd
(Dinur, 
2000) 

Not NP-
hard 

/ logd d
(Goldreich 
and 
Goldwasser, 
1998) 

/ logd d
(Goldreich 
and 
Goldwasser, 
1998) 

/ logd d
(Goldreich 
and 
Goldwasser, 
1998) 

/ logd d
(Goldreich 
and 
Goldwasser, 
1998) 

Definition 8. AppSVP (resp. AppCVP) Let B be a given 
basis of a lattice , w a vector and a real  1. The 
AppSVP (resp. AppCVP) is to find a vector u such that 

,v u v  (resp. w u w v ) for a 
given norm . .

The NP-hardness of these two approximation 
problems has also been well-studied (for more detail, see 
Cai, 1999 or more recently Peikert, 2007). Table 3 
summarises some main results on the NP-hardness of 
these two approximation problems for the Euclidean and 
the infinity norms for the approximation factor  in 
function of the dimension d of the studied lattice. 

Goldreich et al. (1999) proved that SVP is not harder 
than CVP. 

Remark 3. Table 3 seems to show that the approximation 
problems seem to be more difficult for the l -norm 
compared to the l2-norm. This impression is supported by 
a recent paper by Khot (2003) which presented a result 
that proved that SVP will be more and more difficult in lp

if p grows. A more recent paper of Regev and Rosen 
(2006) proved that a lot of classic problems, including 
SVP and CVP, are easier under the l2-norm than under 
every other lp-norm, including l -norm. 

Remark 3 is supported by the fact that most of the 
polynomial and efficient algorithm to approximate SVP 
and CVP are for the l2-norm. 

For SVP, Lenstra, Lenstra and Lovasz (1982) 
proposed a powerful polynomial algorithm, known as 
the Lenstra, Lenstra and Lovasz (LLL) algorithm, to 
efficiently approximate SVP and more generally the 
length of the basis itself. This algorithm approximate 
SVP for the l2-norm within an approximation factor 
 = 2(d 1)/2 in theory, but seems to be much more 

efficient in practice (Nguyen and Stehlé, 2006). In 
addition, a lot of improvements have been proposed 
on LLL to obtain a better approximation factor and/or 
a better time complexity. For the recent result on 
LLL, refer to Nguyen and Stehlé (2005) and Schnorr 
(2006). Combining this approach with the Block 
Korkin–Zolotarev (BKZ) method (Schnorr, 1987, 
1988), which can be seen as a generalisation of LLL, 
is a very powerful way to attack a cryptosystem-based 
or linked to SVP2.

For CVP, Babai (1986) proposed two polynomial 
methods. Those algorithms approximate CVP for the 
l2-norm within a factor  = 1 + 2d(9/2)d/2 and  = 2d/2,
respectively. Babai’s algorithms use an LLL-reduced 
basis. Consequently all the variants of LLL, including 
BKZ utilisation proposed by Schnorr (1996), are 
naturally the improvement of Babai’s methods. 
Moreover, there exists an heuristic way to directly 
approximate CVP using an approximate algorithm for 
SVP Nguyen (1999). See Agrell et al. (2002) for a 
general survey of AppCVP. 
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All the existing algorithms have been created for the 
Euclidean norm. Nevertheless, the l2-norm algorithm can 
be used to approximate SVP and CVP for the 
l -norm using the equivalence of norms, 

2,n nv v v v  (Golub and Loan, 1983). 
The final approximation for l  will be clearly worst 

than for l2 and this method cannot be used to solve exactly 
the SVP and CVP under l .

Remark 4. In this article, we aim to construct a lattice-
based cryptosystem which is more resistant than the 
existing ones in the literature using the l -norm. A recent 
work by Chen and Meng (2006) clearly went this way. 
They proved the NP-hardness of the CVP with 
preprocessing over l -norm. Regev and Rosen (2006) 

gave the factor of 1/2log d  for the NP-hardness of CVP 
with preprocessing under lp-norm, 2 p .

3 Basic definitions 
In this section, we briefly review some definitions of the 
eigenvalue theory that will be required throughout this 
article. Most of the following definitions and properties 
can been found in Householder (1964), Wilkinson (1965) 
and Collatz (1966). In the following definitions, 
let n .

Definition 9 (Matrix Norm). Let A be a square matrix in 
,n n . A matrix norm denoted as A  is said to be 

consistent to a vector norm . , if we have 

= sup{ , , = 1}nA xA x x .

The matrix norm . p , consistent to the vector norm 

defined in Definition 7, can be easily computed for 
= 1,2 andp . For other values of p, see Higham (1992) 

for estimating methods of . p .

Definition 10 (Polytope Norm). We denote . P  as the 
matrix norm consistent to the vector norm . P  defined as 

1, =n
Pv v vP  where P is a non-singular 

matrix.

To compute the polytope norm . P  of a matrix, we have 
, 1, =n n

PA A PAP .

Definition 11 (Eigenvalue). Let A be a square matrix in 
,n n , a complex number  is called a eigenvalue of A if 

there exists a column-vector h  0 such that Ah = h. The 
column-vector h is called an eigenvector of A.

If h is an eigenvector then for any real number  0, h
is also an eigenvector. A matrix composed by n
eigenvectors of n eigenvalues is an eigenmatrix. There is 
an infinity of eigenmatrix. We specially focus on the 

eigenmatrix H which minimises the condition number
(Definition 12) of the infinity norm. 

Definition 12 (Condition Number). Let .  be a matrix 
norm and A a non-singular matrix. The condition number 
of A, denoted as ( )A , is such that 1( ) =A A A .
In this article, ( )A  use the l -norm: 

1( ) =A A A .

Definition 13 (Spectral Radius). Let A be a square matrix 
in ,n n . We denote  (A) as the spectral radius of A
defined as the maximum of the absolute value of the 
eigenvalues of A: ( ) = max{| |, = }A Ax x .

Theorem 1. For any matrix norm . ,
, , ( )n nA A A .

In fact, the spectral radius can be seen as the lower bound 
of all the matrix norm of a matrix: ( ) = inf{ }A A .

The spectral radius has some useful properties as 
follows. 

Theorem 2. For any matrix norm .  and any square 
matrix A, lim = ( )k k

k A A .

Using this property, we can obtain the following property. 

Theorem 3. Let ,n nA  be a square matrix, the series 
1 + A + A2 + A3 +  converge to (1/1–A) if and only if 

 (A) < 1 where  (A) is the spectral radius of A.

See Wilkinson (1965) for the proofs of Theorems 1–3. 
The last property of the spectral radius that will be 

used in this article is provided in Theorem 4. 

Theorem 4. For any square matrix A and any real number 
 > 0, there exists a polytope norm . P  such that 

( ) .PA A

The proof of Theorem 4 is given in Householder (1964) 
by providing a way to compute the matrix P. In fact, there 
exists an infinity of such matrix P connected by a 
multiplication by a non-singular diagonal matrix. If the 
eigenvalues are distinct, we can use an eigenmatrix for P.
Here, we focus on the matrix P that minimises ( )P .

4 Vector reduction in l -norm 

In this section, we propose a new method of vector 
reduction using a modification of the Babai’s method. 
This new algorithm uses another definition of a ‘good 
basis’ to obtain an approximation of CVP . To 
approximate the closest vector w of a vector v, Babai used 
the approximation given by the equation 1=u vG G .
As explained previously, this approximation has two 
major problems when it is used in cryptography, namely, 
an expensive computation and a mark of the ‘good basis’ 
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on the approximate vector. To solve these two problems, 
we propose a new approximation of the vector v. This 
approximation is inspired by the work of Bajard, Imbert 
and Plantard (2004) which proposed a method to reduce 
some number representation for modular arithmetic. The 
method used in this article can be seen as a generalisation 
of their technique. An important point is the conservation 
of the efficiency which is the main feature in modular 
arithmetic operations. 

Our focus is on the reduced vector, v mod , and not 
on the closest vector. We note that these two problems are 
completely equivalent. The reduced vector w is equal to 
the difference between a vector v and its closest vector u.
So to reduce a vector, the Babai method becomes 

1=w v vG G . We decompose G into two matrices: 
G = D – M. We will see that the choice of D and M
determine if G is a ‘good basis’ or not. We use this 
decomposition to approximate v.

1= ( ) .w v v D M G

We assume that D is non-singular, so we are able to 
compute D 1.

1 1

1 1 1

= ((1 ) )

= (1 ) .

w v v MD D G

v vD MD G

We modify the Babai’s approximation to a new 
approximation. 

1 1 1' = (1 ) .w v vD MD G

Let us analyse more precisely the second part of this 
approximation. If we have the spectral radius 

1( ) < 1MD , we can use Theorem 3 to obtain 

1 1 1 1 2 1 3( ) = ( ) ( ) .1 MD 1 MD MD MD

Since  (MD 1) < 1, this series on the right term 
converges. Here, we make a very quick approximation of 

1 1( )1 MD  to 1. At the end of this analysis, we 
propose a new approximation w of the closest vector 
of v.

1= ( ).w v vD D M

We will consider this approximation to be precise enough
if  (MD 1) < 1. Hence, we propose a new definition of a 
‘good basis’ as follows. 

Definition 14 (Good Basis). Let D and M be two square 
matrices and  be the lattice which has D – M for the 
basis. D – M is called a ‘good basis’ of  if  (MD 1) < 1.

Now, we can propose an algorithm to reduce a vector v
with a ‘good basis’. 

Algorithm 1 has a loop and hence, it repeats its 
approximation several times. This is different from the 
Babai’s algorithm which does not have any loop. In our 

case, the loop is required to replace the approximation of 
1 1( )1 MD  by 1. The loop corresponds to the different 

power of MD 1 that we have omitted. 

Remark 5. Algorithm 1 returns a vector with 
|| || || 1,1

Dw || wD  which is the reason why we 
consider it like an approximation of CVP . However, it is 
only true when D = Id that we have a classic definition 
of l  reduction. The important point is that the 
coefficients ,| |<i i iDw  do not depend upon any average or 
any direct influence from the other coefficients of w. This 
property comes from the polytope norm which includes 
the l -norm. That is the intrinsic difference between the 
l -norm, a polytope norm and the l2-norm, a ellipsoidal 
norm. 

It is trivial to prove that Algorithm 1 is exact. 

1 = ( )w w q D M  with nq . The loop does not 
change the congruence of w mod . So at the end, 
w v mod  holds. 

2 If Algorithm 1 ends then < 1Dw .

However, condition for Algorithm 1 termination has to be 
defined. There exists a very similar problem of successive 
approximation convergence in the literature. To compute a 
vector x with xA = y for some problematic matrix A, a 
complete theory has been developed with some equivalent 
decomposition, A = D – M where A is called M-matrix. 
Some equivalent result for convergence, 1( ) < 1MD  has 
been found. See Varga (1962) and Krasnosel’Skii et al. 
(1972) for more detail on this theory. 

However, even if this theory is very similar, it does not 
solve the question of Algorithm 1 termination. Therefore, 
we propose Theorem 5 which is inspired by such a theory 
to answer this question. 

Theorem 5. Let n , ,, n nD M  be two square 
matrices with D non-singular and diagonal. 

1 For any lp-norm with 1 < 1pMD , Algorithm 1 ends 

if 
1 1/

1 < 1
21

p
p

p

n1 MD

MD
.
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2 For any polytope norm with 1 < 1PMD ,

Algorithm 1 ends if 
1

1
( ) < 1
21

P

P

1 MD P
MD

.

3 For any non-singular eigenmatrix P  of 1MD ,

Algorithm 1 ends if 
1

1
( ) ( ) < 1

21 ( )
1 MD P

MD
.

Proof. Let be iw , the vector W after i  loops: 

1
1 1

,

( )i i- i

0w v

w w w D D M

First, we decompose the successive approximation 
1

1 1
1

1 1

1
1 1 1

1
1

= ( )

( )( )

(Where [ 1/ 2, 1/ 2] )

( )

( )

i i i

i i i
n

i

i i i i

i i

w w w D D M

w w D D M

w w w D M D M

w D M D M

1 1 1 1
1

1 1 1 1
0

=1

1 1 1 1

=1

= ( ) ( )

= ( ) ( )( )

= ( ) ( )( ) .

i i i
i

i i j
j

j

i
i i j

j
j

Dw w D MD 1 MD

w D MD 1 MD MD

vD MD 1 MD MD

Thus, 

1 1 1 1 1

=1

1 1 1 1

=1

( ) ( )

.

i
i i j

i j
j

i
i i j

j
j

w D vD MD 1 MD MD

vD MD 1 MD MD

Let be  the max of i , we obtain 

1 1 1 1 1

=1

1
1 1 1 1

=0

1
1 1 1

1

1
1 1

1

1
1

< .
1

i
i i j

i
j

i
i j

j

i
i

i

w D vD MD 1 MD MD

vD MD 1 MD MD

MDvD MD 1 MD
MD

1 MDvD MD
MD

To finish this proof, we have to adapt this result to 
different norm. 
1 If .  is a lp-norm, we have 

1
1 1 1

1<
1

pi
i p p p

p

1 MD
w D vD MD

MD

We can evaluate 1/= / 2pn .
1 1/

1 1 1
1< .

21

p
pi

i p p p
p

n1 MD
w D vD MD

MD

We know also that for any vector v , pv v .

1 1/
1 1 1

1< .
21

p
pi

i p p
p

n1 MD
w D vD MD

MD

With the definition of the . D  norm, we obtain 

1 1/
1 1

1< .
21

p
pi

i p p
p

n
D

1 MD
w vD MD

MD

If 
1 1/

1

( )
< 1

21

p
p

p

n1 MD

MD
, we need to have 

1 1/
1 1

1< 1
21

p
pi

p p
p

n1 MD
vD MD

MD

to obtain < 1i Dw  and the end of Algorithm 1. 

1 1

1

1

log(|| || ) log(|| || )

|| (1 ) ||
log 1

1 || || 2

p p

p

p

i

n

vD MD

MD

MD

1 1/
1

1

1

( )
log 1 log ( )

21
< .

log ( )

p
p

p
p

p

n

i

1 MD
vD

MD

MD

So, when 

1 1/
1

1

1

( )
log 1 log ( )

21

log ( )

p
p

p
p

p

n

i

1 MD
vD

MD

MD
,

then Algorithm 1 ends. 

2 If .  is a polytope norm . P , we obtain 

1
1 1 1

1
( )

< .
1

i
i

P
P P P

P

1 MDw D vD MD
MD

We can evaluate 1= (1/ 2) P .

1 1 1

1 1

1

<

( )
21

i
i P P P

P

P

w D vD MD

1 MD P
MD

By definition, we have 1 1 1=PwD wD P .

To evaluate Dw , we have 
1 1 1

1 1

= =Dw wD wD P P

wD P P
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Now, we can evaluate the limit of i Dw .
1 1

1 1

1

1 1

1

1

<

( )
21

( ) ( ) .
21

i
i

i

D P P

P

P

P P

P

P

w P vD MD

1 MD P P
MD

P vD MD

1 MD P
MD

If 
1

1
( ) < 1
21

P

P

1 MD P
MD

, we need to have 

1 1

1

1
( )< 1
21

i
P P

P

P

P vD MD

1 MD P
MD

to obtain < 1i Dw  and the end of Algorithm 1. 
1 1

1

1

1

1

1

1

1

log ( ) log ( ) log ( )

( )< log 1
21

( )log 1
21

<
log ( )

log ( ) log ( )
log ( )

i

i

P P

P

P

P

P

P

P

P

vD P MD

1 MD P
MD

1 MD P
MD
MD

vD P
MD

So when 
1

1

||1 || ( )log 1
21 ||

log ||

log || || log || ||

log ||

i

P

P

P

MD p
D

D

vD P

D

then Algorithm 1 ends. 
3 If .  is a polytope norm . P , where P is an non-

singular eigenmatrix of 1MD , we obtain the same 
result with 1 1= ( )PMD MD . We have also 

1 1= ( )P1 MD 1 MD  because an eigenmatrix 
of A is also an eigenmatrix of any polynomial 
composition of A. If 

1

1
( ) ( ) < 1

21 ( )
1 MD P

MD

then Algorithm 1 ends. 
We note that this proof is very similar and inspired by 

some proofs found in Krasnosel’Skii et al. (1972) to solve 
close problem of successive approximation convergence. 

Corollary 1 The proof of Theorem 5 also gives the 
number of loops needed to end Algorithm 1. If all the 

parameters are polynomial in n, then we will have a 
O(log (n)) number of loops. In such condition, we obtain 
O(n2 log (n)) for the time complexity of Algorithm 1.

Remark 6. Theorem 5 clearly provides some conditions to 
terminate Algorithm 1. These three conditions are 
complementary. 

1 The lp-norm can be used to have a fast approximation. 
See Higham (1992) for some methods to compute lp
norm for a matrix if p is not simple = 1,2, ,p .

2 The polytope norm provides a way to be closer to 
1 1( )PMD MD  which is the lower bound. But, 

its computation can be long to minimise ( )P .

3 The non-singular eigenmatrix are the best evaluation 
but it requires us to have distinct eigenvalues, which 
we do not always have. 

In fact, after several practical tests and theoretical 
analysis, we are able to make a conjecture. 

Conjecture 1 Let n , ,, n nD M  be two square 
matrices with D non-singular and diagonal. The 
successive approximation wi of a vector w  given by 

0 =w w  and 1
1 1= ( )i i iw w w D D M  for > 0i

converge if 1( ) < (1/ 2)MD .

This conjecture will be used for the practical 
implementation of Algorithm 1. For the rest of this article, 
sometimes we refer to 1( )MD  only with , when the 
context is clear. 

5 Signature scheme 
5.1 Scheme 

In this section, we describe our new signature scheme, 
which comprises of the three algorithms: Setup, Sign and 
Verify. 

Setup 

1 choose an integer n

2 compute a randomly integer matrix ,{ 1,0,1}n nM

3 compute = 2 ( ) 1D M Id

4 compute the HNF H of the basis D – M

5 the public key is (D, H), and the secret key is M.

Sign. To sign a message m  {0, 1}*, one does the 
following. 

1 Compute the vector = ( ) nhv m , where h  is a 
hash function such that 

2

:

:{0,1}* , < 1 .n

h

D

m v

x x
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2 Using Algorithm 1, compute w , which is a reduced 
vector of v .

3 The signature on m is w.

Remark 7. The three choices of ,{ 1,0,1}n nM , < 1/2
and 2 < 1

D
x  are arbitrary and they can be changed. 

However, these choices seem to be practically reasonable. 
Verify. To verify a message-signature pair, (m, w), one 
does the following. 
1 check if < 1Dw

2 compute the vector ( ) nh m

3 check if the vector ( )h m w  is in the lattice of 
basis H.

6 Improvements 
In this section, we present some improvements to our 
scheme to make it practical. These improvements provide 
some choices to the main algorithm, in order to optimise it 
during the implementation of the algorithm. 

6.1 Signature 
The main part of the signing algorithm is in the reduction 
part as defined in Algorithm 1. The fact that D is a 
diagonal matrix will simplify a lot of computations of 
wD 1. This computation corresponds to the computation 
of the quotient of ,/i i iw D . In fact, the reduction algorithm 
needs the rest of this division as well. Based on this 
observation, we can rewrite Algorithm 1 as shown in 
Algorithm 2. 

Remark 8. Algorithm 2 could be completely optimised by 
the utilisation of =D Id  with  be a power of two. 
This choice transforms the division corresponding to the 
first two lines of the loop to a shift operation. Hence, the 
reduction of a vector can be summarised to shift and 
addition operations, assuming that the matrix has low 
coefficients. 

6.2 Verification 
The main part of the verification algorithm is the time to 
verify the inclusion of w  in the lattice . As we 
described in Remark 2, the utilisation of the HNF 
accelerates this computation and it was successfully used 
in Micciancio (2001). If we choose to keep only some 
special lattices, then we can also do some further 
improvements. 
Definition 15. Let be H the HNF basis of a full-rank lattice 

, we will called H optimal if ,> 1, = 1i ii H .

With an optimal HNF basis H, a vector w is in the lattice 

of basis H if and only if 
1

,0 0 0,0=1
(mod )

n
i ii

w H w H .

With this setting, we can propose a very simple 
algorithm to verify the signature as follows. 

Remark 9. Optimal HNF simplifies the verification 
method and also minimises the size of the public key. We 
note that in this case, we only need to send the first 
column of the matrix H. Consequently, we will use the 
optimal HNF for a ‘bad basis’. 

7 Comparison with Goldreich, Goldwasser and 
Halevi signature 

The advantage that our system has compared to the GGH 
signature scheme is the use of the l -norm, which will 
make the scheme more resistant and difficult to attack. 
Furthermore, a shorter signature length and an efficient 
computation to compute with Algorithm 1 can be achieved 
with the help of fast arithmetic operations. The details of 
these advantages are provided in this section. 

7.1 Resistance 

An approximation of CVP  also provides an 
approximation of CVP2 by the equivalence of norm. 
Theoretically, the complexity of our cryptosystem cannot 
be less than the initial GGH signature scheme and 
Micciancio’s improvements. However, parameter choices 
are essential to achieve a practical high resistance scheme. 
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The best basic way to attack our scheme is by finding 
M using D on ( )H : (mod ( ))D M H . In other words, 

, ,1 ,, (0, , 0, , 0, , 0) ( , , )(mod ( ))i i i i ni D M M H .
The attacker has to find some very good approximations 
(most of the time the exact result) of the CVP for the l -
norm. This attack seems to be the easiest way compared to 
solving CVP  for a given vector-message. If the attacker 
can solve CVP  for every vector of D, he can use 
Algorithm 1 to create a false signature. Therefore, we 
consider an attack to be successful if the attacker can find 
a matrix M  such that '(mod ( ))D M H  with 

1( ' ) < 1M D  and not only if M  = M.
As remarked in Remark 3 the l -norm seems to be 

more resistant. A powerful advantage of its system clearly 
comes from the intrinsic difference between the 2l  and the 
l  norms. Effectively, the utilisation of approximation 
algorithms for the 2l -norm to solve approximation 
problem for l -norm will be worst. Moreover, some 
special matrices M could be used to take advantage of the 
intrinsic difference between those two norms to make 
those algorithms completely inefficient: the row vector Mi
of M are such that ,<i i iDM . If we take 2 ,>i i iDM
or at least 2 ,i i iDM , it will raise some problems to use 

2l  algorithm. 
A brute force attack to find a row vector of M, where 

, { 1,0,1}i jM , is (3 )nO . This brute force attack is faster 

than solving exactly a CVP using Kannan’s method 
(Kannan, 1983), which has the complexity of ( )O nn . Note 
that these two possible attacks are in the exponential 
order. When n is chosen to be large, then these techniques 
cannot be employed. Therefore, in order to attack it, only 
an approximation of CVP that can be computed, rather 
than solving it. Although the approximation of CVP is 
polynomial, the attack is a heuristic attack and therefore, 
there is no assurance that the result is precise enough. 

A theoretical timing attack is also possible as the time 
of the signature depends upon the message-vector. 
However, such an attack seems very unlikely: to obtain 
information on the form of message vector if its reduction 
took 4 or 5 loops instead of 6 seems very hard. There exist 
a simple way to completely prevent this hypothetical 
attack. A simple improvement of Algorithm 2 is the 
utilisation of a random initialisation of 

: r and (0, , 1)i i n  instead of a classic 0i .
Besides the fact that there is no real reason to begin with 
0, this improvement will provide two advantages. First, 
temporary approximation vectors are not the same 
between two reductions of the same vector: that will 
change the number of loops to reduce to the same vector. 
This property gives an advantage against side-channel 
attacks, like timing attack. The most important advantage 
is that this method grows the length of the set of vectors of 
{ , }Dv v  that can be returned. This property provides a 

strong resistance against the attack described in Nguyen 
and Regev (2006). 

Another remark is on the fact that D is public. 
However, GGH basis where taken as nId M  with 

, [ 4, 4]i jM . So D can be easily guessed as well for 

GGH and attacks on GGH didn’t use this fact. 
To finalise the comments on the security, we need to 

comment our scheme against the most successful attack 
against GGH signature scheme and NTRUSign. Nguyen 
and Regev (2006) proposed a clever way to design the 
fundamental parallelepiped using some signature-message 
which represent a CVP approximation. We also note that 
this attack will be ineffective against our system. All the 
signature-message are in { , ] 1,1[ }nxD x . Finding the 
design of this volume is not particularly useful since D is 
already given as a public parameter. In Figure 1, we 
present an example of some signature-message on 2

after reduction with Babai’s method or with our method. 
Even if the dimension 2 is far away of cryptographic 
dimension, we can still see the mark used by Nguyen and 
Regev (2006). In fact, we see that the vectors of the basis 
can be designed after enough Babai reductions, but that 
we can only design D after reduction by Algorithm 2. 

Figure 1 Signature-message on 2 for Babai’s reduction and 
our reduction (see online version for colours) 
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Figure 2 Average number of loops used to reduce a message 
vector to a signature vector (see online version for 
colours) 

Figure 3 Average l  norm of signature-vector using different 
reduction method (see online version for colours) 

7.2 Speed 

For an optimised version of the signature scheme 
(Algorithm 2), Algorithm 1 uses only shift and addition 
operations. However, we need to know the average 
number of loops to reduce a signature vector. Even if the 
proof of Theorem 5 give us a bound on the worst case, the 
average case seems to be difficult to evaluate. In Figure 2, 
we present an average number of iterations from 
Algorithm 2. On every dimension [50,350]n , we have 
compute a 100 random couples D, M following the 
methods used in the Setup algorithm: ,{ 1,0,1}n nM
and = 2 ( ) 1D M Id . With each of this basis D – M,
we have reduced 100 random message vector chosen in 

2[0, 2 ( ) 1 [nM . Figure 2 shows the average of the 
number of loops required to reduce a message vector to a 
signature vector. 

From Figure 2, one can conclude that on average, the 
number of loops required for signing is between 5 and 7 to 
achieve a good security level, which is approximately 
began from 200. Furthermore, Figure 2 confirms that the 
average number of loops are logarithmic on n, (log )O n .

We note that our reduction is applicable only for some 
special lattices. Nevertheless, the resulting efficiency 
obtained from these lattices are very interesting to develop 
efficient and fast digital signature schemes. As explained 
earlier, a loop can be minimised to only shift and addition 
operations. It provides us with a very competitive way to 
reduce a vector when the first Babai’s reduction uses two 
matrix multiplications. The first matrix multiplication in 
Babai’s reduction is the most expensive operation, since it 
requires a high precision on a floating point matrix 
multiplication. In contrast to Babai’s method, our method 
can be used in a huge dimension that will provide higher 
level of security without any time constraint. 

7.3 Space 

In this section, we provide some evaluation on the 
signature space. l -norm is naturally the norm used to 
evaluate the space complexity of a signature. The fact that 
Algorithm 1 deals directly with this norm makes an 
important difference with Babai's method. 

Figure 3 shows result of test on the l -norm of reduce 
vector. We present three curves corresponding to three 
parameters. For every dimension n ( [50,350]n ), we 
compute on 100 random matrices chosen in 

,{ 1,0,1}n nM

1 the average spectral radius of M
2 the average D  that we can pick to have 

1( ) < (1/ 2)MD . This result correspond also on the 
max l -norm of any vector reduced by our method 

3 the average max l -norm of any vector reduced by 
Babai’s method with the same basis D – M.

Figure 3 has been obtained from the same data set used to 
generate Figure 2. 

The important point of this result is that we can 
observe that the l  norm of a reduced vector with this 
type of basis is in ( )O n  after Babai’s reduction and in 

( )O n  after our reduction. This difference clearly comes 
from the difference between 2l  and l -norm. 

To obtain a theoretical limit of this result, we use the 
result of German (1986) which evaluates the limit when 
the dimension n  grow of the spectral radius of a random 
matrix ,n nA  as  

, <
2 2

,2
, =0

1( ) = with =
i j n

i j
i j

n A
n

A .

This limit provides a good approximation of the spectral 
radius of a random matrix. Using this limit, we obtain 
the following result for a random matrix M taken in 

,{ 1,0,1}n n  an average approximation about 

( ) 2 / 3nM . Finally, if we want 1( ) < (1/ 2)MD ,

we need 2 2 / 3 1.63 = ( )n n O nD . The 
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theoretical approximation of ( )M  and D  obtained 
using German’s theorem is very close to our own practical 
test given in Figure 3. 

8 Conclusion and open problem 
In this article, we presented a new method of vector 
reduction under the l -norm. Then, we constructed a 
signature scheme based on this norm. The resulting 
scheme seems very interesting, in terms of security, length 
and speed. We conclude this article by providing an open 
research problem: how to prove Conjecture 1 of 

< (1/ 2) .
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