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Abstract. Lattice reduction is known to be a very powerful tool in modern crypt-
analysis. In the literature, there are many lattice reduction algorithms that have
been proposed with various time complexity (from quadratic to subexponential).
These algorithms can be utilized to find a short vector of a lattice with a small
norm. Over time, shorter vector will be found by incorporating these methods. In
this paper, we take a different approach by presenting a methodology that can be
applied to any lattice reduction algorithms, with the implication that enables us to
find a shorter vector (i.e. a smaller solution) while requiring shorter computation
time. Instead of applying a lattice reduction algorithm to a complete lattice, we
work on a sublattice with a smaller dimension chosen in the function of the lattice
reduction algorithm that is being used. This way, the lattice reduction algorithm
will be fully utilized and hence, it will produce a better solution. Furthermore,
as the dimension of the lattice becomes smaller, the time complexity will be bet-
ter. Hence, our methodology provides us with a new direction to build a lattice
that is resistant to lattice reduction attacks. Moreover, based on this methodol-
ogy, we also propose a recursive method for producing an optimal approach for
lattice reduction with optimal computational time, regardless of the lattice reduc-
tion algorithm used. We evaluate our technique by applying it to break the lattice
challenge1 by producing the shortest vector known so far. Our results outperform
the existing known results and hence, our results achieve the record in the lattice
challenge problem.

Keywords: Geometry of numbers, Lattice reduction, Hermite factor, Recursive
reduction.

1 Introduction

Lattice reduction algorithms have been proposed to solve or approximate the shortest
vector problem. In the literature, it has been demonstrated that many cryptosystems can
be cryptanalyzed successfully using lattice reduction algorithms. Some of the historical
examples include the following2.

� This work is partially supported by The Department of Prime Minister and Cabinet’s Research
Support for Counter-Terrorism: PR06-0006.

1 http://latticechallenge.org/
2 We will refer to [51] for a more specific survey.
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Knapsack Cryptosystems
In 1978, Merkle and Hellman [43] proposed the first public key cryptosystem based on
an NP-hard problem, namely the knapsack problem. This is the first practical public
key cryptosystem which is the concrete construction of the proposed seminal notion of
public key cryptography by Diffie and Hellman [26]. Unfortunately, Merkle-Hellman’s
first proposition was attacked severely and broken using two different methods: the first
attack on the trapdoor itself that was proposed by Shamir [67,68] and the second at-
tack on the knapsack problem using lattice theory that was proposed by Adleman [2].
In 1985, Lagarias and Odlyzko [39] proposed a general attack against knapsack cryp-
tosystems using a lattice reduction algorithm. Their attack does not incorporate the
weakness on the trapdoor itself, rather than only using the fact that the knapsack prob-
lems produced are generally weaker that a random one. This result was subsequently
improved in [25,24,66,58]. Nevertheless, some improvements of knapsack cryptosys-
tems were also proposed (e.g. [16,57]). We refer the reader to [56] for these two faces of
knapsack cryptology. Despite many variants that have been proposed in the literature,
as mentioned in [55], the knapsack cryptosystem proposed by Okamoto, Tanaka and
Uchiyama in 2000 [57] seems to be the only remaining secure knapsack cryptosystem.

SVP-based Cryptosystems
In 1996, Ajtai and Dwork [8] proposed the first lattice cryptosystem where its secu-
rity is based on a variant of the Shortest Vector Problem (SVP). This cryptosystem
received wide attention due to a surprising security proof based on worst-case assump-
tions. Nonetheless, this cryptosystem is merely a theoretical proposition and it cannot
be used in practice. Furthermore, Nguyen and Stern presented a heuristic attack against
this cryptosystem [54]. Until then, this initial proposition has been improved [29,14,38]
and this result has inspired other cryptosystems based on SVP [60,61,6]. These cryp-
tosystems are based on SVP and are naturally concerned by lattice reduction algorithm.

CVP-based Cryptosystems
There exists a heuristic way introduced by Kannan [36] to solve CVP (Closest Vec-
tor Problem) using a lattice reduction algorithm that was originally proposed to solve
SVP, namely the embedding method. Instead of solving CVP, we solve SVP in a dif-
ferent lattice. Finding the closest vector of v in LB can be done by solving the short-

est vector of LB′ with B′ =
(

B 0
v 1

)
. This method has been successfully applied by

Nguyen [50] to develop his first attack against GGH cryptosystem and it seems prac-
tically the best way to attack a CVP-based cryptosystem. In 1997, Goldreich, Gold-
wasser and Halevi (GGH) [30] proposed an efficient way to use lattice theory to build a
cryptosystem inspired by McEliece cryptosystem [42] and based on the Closest Vector
Problem (CVP). Their practical proposition of a cryptosystem was attacked and broken
severely by Nguyen in 1999 [50]. Nonetheless, the general idea is still viable. Until
then, the other propositions were made using the same principle [27,44,59].

After the first Nguyen’s attack [50], utilization of the initial GGH proposition re-
quires lattices with a big dimension (> 500), to ensure its security. Consequently, the
computation of the closest vector even with a “good basis” becomes very expensive. In
2000, Fischlin and Seifert [27] proposed a very intuitive way to build lattices with good
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basis which can solve the closest vector problem. They used a tensor product of lattice
to obtain a divide and conquer approach to solve CVP. In 2001, Micciancio [44] pro-
posed some major improvements of the speed and the security of GGH. In this scheme,
the public key uses a Hermite Normal Form (HNF) for the “bad” basis. The HNF ba-
sis is better to answer the inclusion question and it also seems to be more difficult to
transform to a “good basis” compared to another basis. In 2003, Paeng, Jung and Ha
[59] proposed to use some lattices built on a polynomial ring. However, in 2007, Han,
Kim, and Yeom [32] used lattice reduction to cryptanalyze this scheme. Their attack can
successfully recover the secret key even in a huge dimension (> 1000) and make the
Paeng-Jung-Ha scheme [59] unusable. However, there exists a secure (and yet ‘unbro-
ken’) cryptosystem using polynomial representation, namely the NTRU cryptosystem,
for N th degree truncated polynomial ring units. NTRU was originally proposed in 1998
by Hoffstein, Pipher and Silverman [34]. Even this cryptosystem was not modelled ini-
tially as a GGH-type cryptosystem, it can actually be represented as one. This has been
useful specially for analyzing its security [23].

RSA
In 1996, Coppersmith [20] presented some methods to attack RSA [62] in a special
case using lattice reduction. Similar method has been proposed to attack RSA with low
exponent [11], RSA with short padding [22] and to factor the RSA public key with or
without knowing any partial information [21,12].

Our Contribution
In this paper, we present a methodology that can be applied to any lattice reduction
algorithms. Our methodology will enable us to find a shorter vector (i.e. a smaller so-
lution) while requiring shorter computation time. The idea of our methodology is as
follows. Instead of applying a lattice reduction algorithm to a complete lattice, we work
on a sublattice with a smaller dimension obtained in the function of the lattice reduc-
tion algorithm that is being used. This way, the lattice reduction algorithm will be fully
utilized and hence, it will produce a better solution. Furthermore, as the dimension of
the lattice becomes smaller, the time complexity will be better. Hence, our methodol-
ogy provides us with new direction to build a lattice that is resistant to lattice reduction
attacks. Moreover, we also propose a recursive method for producing an optimal ap-
proach for lattice reduction with optimal computational time, regardless of the lattice
reduction algorithm used. We evaluate our technique by applying it to break the lattice
challenge by producing the shortest vector known so far. Our results outperform the
existing known results and hence, our results achieve the record in the lattice challenge
problem.

Organization of the Paper
The paper is organized as follows. In the next section, we will recall definitions, prop-
erties, problems and algorithms of lattice theory required throughout this paper. In
Section 3, we will present our methodology. In Section 4, we will present our recur-
sive reduction, followed by analysis of practical tests in Section 5. Finally, Section 6
concludes the paper by showing some results and future works.
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2 Lattice Theory

In this section, we will review some concepts of the lattice theory that will be used
throughout this paper. For a more complex account, we refer the readers to [45,46].

2.1 Basics of Lattice Theory

The lattice theory, also known as the geometry of numbers, has been introduced by
Minkowski in 1896 [49]. A complete discussion on the basic of lattice theory can be
found from [15,41,19].

Definition 1 (Lattice). A lattice L is a discrete sub-group of R
n, or equivalently the

set of all the integral combinations of d ≤ n linearly independent vectors over R.

L = Z b1 + · · · + Z bd, bi ∈ R
n.

B = (b1, ..., bd) is called a basis of L and d, the dimension of L, noted dim(L).
We will refer LB as a lattice of basis B.

Definition 2 (Full-rank Lattice). Let L ⊂ R
n be a lattice. If its dimension d is equal

to n then the lattice L is called full-rank.

Theorem 1 (Determinant). Let L be a lattice. There exists a real value, denoted as
det(L), such that for any basis B of L, we have det(L) =

√
det (BBT ). det(L) is

called the determinant of L.

For a given lattice L, there exists an infinite number of basis. However, the Hermite
Normal Form basis (Definition 3) is unique [17].

Definition 3 (HNF). Let L be an integer lattice of dimension d and H ∈ Z
d,n be a

basis of L. H is a Hermite Normal Form basis of L if and only if

∀1 ≤ i, j ≤ d Hi,j

⎧⎨
⎩

= 0 if i > j
≥ 0 if i ≤ j
< Hj,j if i < j

The HNF basis can be computed from a given basis in a polynomial time [37]. For
efficient solutions, we refer the readers to [47].

The lattice theory problem is based on distance minimization. The natural norm used
in lattice theory is the euclidean norm.

Definition 4 (Euclidean norm). Let w be a vector of R
n. The euclidean norm is the

function ‖.‖ defined by ‖w‖ =
√

< w, w > =
√

wwT =
√∑n

i=1 w2
i .

Using a norm, we can define some other invariants that are crucial in lattice theory.

Definition 5 (Successive Minima). Let L be a lattice and an integer i. The ith Succes-
sive Minima, denoted as λi, is the smallest real number such that there exist i non zero
linear independent vector v1, . . . , vi ∈ L with ‖v1‖, . . . , ‖vi‖ ≤ λi.
If i = 1, to find such v1 is called the Shortest Vector Problem (SVP).
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The determinant and the successive minima of a lattice are connected by an important
theorem as follows.

Theorem 2 (Minkowski [49]). Let d ∈ N
+. There exists a smallest real, γd, such that

for any lattice L of dimension d, λ1(L) ≤ √
γd det(L)1/d. γd is called the Hermite

Constant.

The exact value of the Hermite constant is only known for 1 ≤ d ≤ 8 and d = 24.
However, some upper bound are known γd ≤ 1 + d

4 . We refer to [18] for a better
numerical upper bound and to [48,19] for a lower and an upper asymptotical bounds.

2.2 Lattice Reduction Algorithms

Theorem 3 (Ajtai [4]). SVP is NP-Hard under randomized reductions.

In 2007, Hanrot and Stehle [33] gave the best known deterministic algorithm to solve
SVP in time O(d

d
2e ) where d is the dimension: they used the algorithm proposed by

Kannan in 1983 [35] and improved the anlaysis of the worst-case complexity. In 2007,
Blömer and Naewe [10] proposed the best known probabilistic algorithm to solve SVP
in time (2 + 1

ε )d. It is an improvement of the initial proposition of Ajtai, Kumar, and
Sivakumar in 2001 [9].

As SVP is NP-hard, a relaxation factor has been introduced in the initial SVP to be
able to propose and evaluate the quality of polynomial algorithms.

Definition 6 (Hermite-SVP). Let L be a lattice of dimension d and α ∈ R+ be a real
positive number. Then, the Hermite-SVP is to find a vector u ∈ L such that 0 < ‖u‖ ≤
α det(L)1/d. α is called the Hermite Factor.

Theorem 2 ensures a solution for Hermite-SVP if α ≥ √
γd.

In 1982 Lenstra, Lenstra and Lovasz [40] proposed a powerful polynomial algorithm,
known as the LLL algorithm, which solve Hermite-SVP for a Hermite factor αLLL =(

4
3

) d−1
4 . However, in practice LLL seems to be much more efficient [53]. In addition, a

lot of improvements have been proposed on LLL to obtain a better approximation factor
and/or a better time complexity. For the recent result on LLL, refer to [52,65].

In 1987, Schnorr [63,64] proposed a method which can be seen as a generalization of
LLL, known as LLL with deep insertion (DEEP) and Block Korkin-Zolotarev (BKZ).
BKZ allows some exponential computations but only on some block. The length k of
the block itself is a parameter. LLL can been seen as BKZ with block length of k = 2,
whereas the Kannan method can be seen as a BKZ with block length of k = d. BKZ−k

solves Hermite-SVP for αBKZ−k =
√

γk
1+

√
d−1
k−1 in theory but the BKZ variant used

in practice are difficult to evaluate. Theoretically, DEEP has no best upper bound (cf.

LLL), αDEEP−k =
(

4
3

) d−1
4 .

BKZ is a very powerful way to attack a cryptosystem and it can be extended to
provide a level of security with the block length needed to break a cryptosystem. In [50],
Nguyen has successfully broken GGH cryptosystem of dimension 200, 250, 300 using
a BKZ-20 and a GGH cryptosystem of dimension 350 using a BKZ-60.
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In a recent work [28], Gama and Nguyen presented some tests showing that all of
the existing methods seem to solve Hermite-SVP with an average hermite factor α of
the form

α = bcd. (1)

They also showed that the difference between the theoretical and the practical Hermite
factor is huge. We review here those estimations of α = bcd for different lattice reduc-
tion algorithms:

– For LLL, we have c ∼ 1.0219 < 1.0754.
– For BKZ-20, we have c ∼ 1.0128 < 1.0337.
– For BKZ-28, we have c ∼ 1.0109 < 1.0282.
– For DEEP-50, we have c ∼ 1.011 < 1.0754.

To compare all of these methods practically, Buchmann, Lindner and Rückert [13] pro-
posed a benchmark of lattices created following the paper of Ajtai [3]. Those lattices,
denoted as Lm,n,q , are characterized using 3 parameters m, n, q. Their basis are as
follows

(
qI 0
A I

)

with I the identity matrix and A ∈ Z
m−n,n a random matrix. The dimension is

dim(Lm,n,q) = m and the determinant is det(Lm,n,q) = qn.
Those lattices are created such that there exists a vector v ∈ L such that 0 <

‖v‖ ≤ √
m. Finding such a vector is the goal of the challenge. However, to find a

vector with a norm strictly smaller that q is already difficult3. The results of the short-
est vector respecting this second condition are presented in the challenge web page
http://latticechallenge.org/. There exists a challenge for each dimension with interval
25 between 200 and 2000. However, solutions are accepted only for challenges bigger
that 500 (which correspond more to useful dimensions for cryptography).

Remark 1 (Random Lattice). The lattice proposed in this challenge can not be con-
sidered as random lattice. Ajtai lattices [3] are lattices for which the solution of SVP
implies a solution of SVP in all lattices of a certain smaller dimension. This means that
the lattice reduction algorithm solving SVP on those lattice can solve even the worst
case of SVP lattices.

Random lattice is a complex notion [5,31,7]. Goldstein and Mayer’s characterization
of random lattices [31] allows to create random lattices for experiment for example [53].
We will use the same method in our practical section (Section 5) to evaluate our method
in the case of random lattices. Practically to respect those criteria, we will create random
lattices as Lm,n,q with n = 1 and q prime.

3 A Methodology for Lattice Reduction

In this section, we do not propose an algorithm for lattice reduction but rather a method-
ology applicable to all lattice reduction algorithms with the impact of improving quality
and timing of those algorithms.

3 We note that there exist already some obvious vectors with this norm.
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Methodology

Let A be an algorithm solving Hermite-SVP for a lattice L of dimension d with a
Hermite Factor α = bcd. This means that this algorithm A will find a vector v ∈ L
such that 0 < ‖v‖ ≤ bcd det(L)1/d.

The main idea of this methodology can be explained simply in three points as follows.

1. Find d′ such that bcd′
det(L)1/d′

is minimal.
2. Choose a sublattice L′ ⊆ L such that det(L′) ≤ det(L) and dim(L′) = d′.
3. Apply A on L′.

This simple methodology provides several advantages as follows.

a) The quality of the result will be better as α det(L)1/d′
will be smaller.

b) The time and space used will be smaller as d′ ≤ d.

How to Choose a Sublattice L′ ⊆ L
Prior to explaining how to pick d′, firstly we develop a simple way to build a sublat-
tice L′ ⊆ L such that det(L′) ≤ det(L) and dim(L′) = d′. For simplicity, we deal
here with a full-rank integer lattice. Nonetheless, this method can be easily modified to
accommodate non full-rank and/or non integer lattices.

The first general way is to build a lattice generated by

U =

⎛
⎜⎜⎜⎜⎜⎝

u1 0 · · · 0 0
0 u2 · · · 0 0
...

. . .
...

0 0 · · · ud−1 0
0 0 · · · 0 ud

⎞
⎟⎟⎟⎟⎟⎠

where ui = {0, 1} and
∑d

i=1 ui = d′. To create L′, we intersect4 L and LU , L′ =
L ∩ LU .

As det(LU ) = 1 and dim(LU ) = d′, we obtain dim(L′) = d′ and det(L′) ≤
det(L)5.

Another simple and practical way is to build the Hermite Normal Form basis of L,
and use only the d′ last vectors of L as a basis of L′. Moreover, as all of those vectors
will start with zero, we can eventually use only the d′ last columns to accelerate some
computations. We will need to re-transform the vector to the correct length once the
reduction is completed. This method can be generalized using any permutation of the
Hermite Normal Form Basis.

How to Find an Optimal d′ for a Given Lattice Reduction Algorithm

In this situation, suppose we have a given algorithmA solving Hermite-SVP for a lattice
L of dimension d with a Hermite Factor α = bcd. This means that this algorithm A will
find a vector v ∈ L such that 0 < ‖v‖ ≤ bcd det(L)1/d.

4 We refer to [45], for the polynomial technique to intersect two lattices.
5 det(L′) will be a factor of det(L) × det(LU ) = det(L).



336 T. Plantard and W. Susilo

We would like to find d′ such that bcd′
det(L)1/d′

is minimal or equivalently log(b) +
d′ log(c) + log(det(L))

d′ is minimal. To find the minimum value of the function f(d′) =
log(b) + d′ log(c) + log(det(L))

d′ , we compute its derivative f ′(d′) = log c − log det(L)
d′2

and find d′ such that f ′(d′) = 0.

log(c) − log(det(L))
d′2

= 0

log(c) =
log(det(L))

d′2

d′2 =
log(det(L))

log(c)

Finally, we obtain that the best evaluated d′ as

d′ =

√
log(det(L))

log(c)
. (2)

How to Choose Optimally d′ to Find a Vector with a Given Norm

In this situation, suppose we have a given lattice in which we want to find a short
vector v with a given norm ‖v‖. Hence, we need an algorithm and a sublattice such that
‖v‖ = bcd′

det(L)1/d′
.

In this case, we want to maximize c and therefore, we will use the quicker lattice reduc-
tion algorithm.

cd′
=

‖v‖
b det(L)1/d′

c =
( ‖v‖

b det(L)1/d′

)1/d′

. (3)

We can apply an equivalent method.

log(c) =
log(‖v‖) − log(b)

d′
− log(det(L))

d′2

To find the maximum of the function g(d′) = log(‖v‖)
d′ − log(det(L))

d′2 , we need to evaluate
its derivative as follows

g′(d′) = − log(‖v‖) − log(b)
d′2

+ 2d
log(det(L))

d′4

g′(d′) = − log(‖v‖) − log(b)
d′2

+ 2
log(det(L))

d′3

and find d′ such that g′(d′) = 0.

− log(‖v‖) − log(b)
d′2

+ 2
log(det(L))

d′3
= 0
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log(‖v‖) − log(b)
d′2

= 2
log(det(L))

d′3

log(‖v‖) − log(b) = 2
log(det(L))

d′

Finally, we obtain the best evaluated d′ for a maximal c as follows

d′ = 2
(

log(det(L))
log(‖v‖) − log(b)

)
. (4)

Practically, we can ignore log(b).
This result is important as it demonstrates which are the most difficult lattices for a

given bound. Consequently, this result has a great impact on lattice based cryptography.

4 Recursive Lattice Reduction

When attempting to reduce lattices using the two previous methods, some knowledge on
the lattices are required, as well as some knowledge on the lattice reduction algorithm.
Nevertheless, these knowledge may be imprecise or even missing. For instance, a small
error on c can have a huge implication on d′. Henceforth, in this section, we will propose
a new technique that incorporates sublattices without requiring any prior knowledge.

Let A be an algorithm solving Hermite-SVP for a lattice L. We use a recursive
reduction method as follows.
The main idea of this technique can be explained as follows.

1. Choose d sublattices Li such that L1 ⊂ · · · ⊂ Li · · · ⊂ Ld = L and dim(Li) = i.
2. L1 is already reduced.
3. To reduce each Li+1, apply A to Li+1 ∪ Li where Li has already been reduced6.

This technique incorporates the work that has been performed to reduce the previous
sublattice, and hence, it simplifies the reduction of the lattice. This will allow reduction
on Ld′ where d′ is optimal, by trying all the possible dimensions without any extra
timing cost. We will demonstrate this in our practical test in Section 5 where this method
will improve the time complexity, using time computation whenever appropriate.

5 Practical Test

In this section, we present some tests that have been conducted using NTL5.5.2 and
GMP4.3.1 libraries [69,1]. We used random lattices that are built according to the defi-
nition [31] as used in [53,28] (Remark 1). However, there is no definition for a random
basis of a given lattice.

Figure 1 demonstrates some results using ‘random’ bases that are built with some
techniques similar to [30]7. Each curve represents an average of 10 tests. The determi-
nant is always equivalent to have a proper comparison; only the dimension changes.

6 Lattice reduction on a lattice corresponds to lattice reduction on its basis.
7 We multiplied the hermite normal form basis of the lattice by a random unimodular matrix.
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Fig. 1. Result and estimation for LLL and BKZ20

We observed that even if the estimation is not always correct due to the absence of b
in its computation, the estimation of the best dimension to use is correct.

After conducting some tests, we observed that instead of using ‘random’ bases, HNF
bases (Definition 3) produce better timing results and avoid the problem to produce a
worse result in a bigger dimension as shown in Figure 1. However, the use of HNF basis
will still be consistent with the estimation of the best dimension to use (Figure 2).

Figure 2 shows that the recursive reduction will also be consistent with the best
dimension to use. Figure 2 clearly demonstrates that the results obtained with the three
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Fig. 3. Time in seconds for BKZ28

different methods are close to each other. However, the main difference is in the timing
as shown in Figure 3.

Figure 3 demonstrates that the cost of the recursive method is just a bit higher than
the HNF basis if the estimation is correct. However, if the estimation is not precise or
unknown, then the non-recursive method will have to do a complete lattice reduction
again. In contrast, the recursive method does not need to do so.
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Fig. 4. Result, estimation and time in seconds for DEEP50 with recursive reduction on
challenge-650

To finish this section, we present a test performed on lattice of the challenge
http://latticechallenge.org/.

Figure 4 demonstrates that the time grows for the recursive reduction only when the
quality is improved, and therefore computation is optimally used.

It appears at the end of these practical tests that the recursive technique clearly out-
performs the classic application of lattice reduction algorithms, even with a good knowl-
edge of the lattice reduction tool itself. It really simplifies lattice reduction operations
as it can be used even if the dimension is not optimal.



Recursive Lattice Reduction 341

6 Conclusion

In this paper, we presented further analysis of lattice reduction algorithms, by present-
ing a methodology. This methodology offers different consequences, namely better uti-
lization of these algorithms and better level of security of cryptosystems based on or
connected to lattices. Using our recursive lattice reduction, we obtained new results in
http://latticechallenge.org/ that outperform the previously known results.

Table 1 presents the results we have performed so far on the lattice challenge and
outperformed all the previous one. This has been possible only due do the recursive
reduction as we have used some reduction techniques (DEEP60,DEEP70, BKZ30, . . . )
where the estimation is unknown and very difficult to produce with the precision re-
quired for such huge lattices.

Table 1. Lattice Challenge Result

Challenge Previous Best Result Recurcive Reduction Result
500 25.8457 25.2587
525 35.6651 30.7409
550 39.7995 38.2884
575 50.7149 42.7083
600 57.2975 52.0096
625 61.8061 59.4138
650 69.4478 66.7158
675 82.6015 80.0937
700 89.4315 89.3924
725 103.7208 100.8960
750 - -
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