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Abstract. In 1988, H̊astad proposed the classical broadcast attack against
public key cryptosystems. The scenario of a broadcast attack is as fol-
lows. A single message is encrypted by the sender directed for several
recipients who have different public keys. By observing the ciphertexts
only, an attacker can derive the plaintext without requiring any knowl-
edge of any recipient’s secret key. H̊astad’s attack was demonstrated on
the RSA algorithm, where low exponents are used. In this paper, we
consider the broadcast attack in the lattice-based cryptography, which
interestingly has never been studied in the literature. We present a gen-
eral method to rewrite lattice problems that have the same solution in
one unique easier problem. Our method is obtained by intersecting lat-
tices to gather the required knowledge. These problems are used in lattice
based cryptography and to model attack on knapsack cryptosystems. In
this work, we are able to present some attacks against both lattice and
knapsack cryptosystems. Our attacks are heuristics. Nonetheless, these
attacks are practical and extremely efficient. Interestingly, the merit of
our attacks is not achieved by exploring the weakness of the trapdoor
as usually studied in the literature, but we merely concentrate on the
problem itself. As a result, our attacks have many security implications
on most of the lattice-based or knapsack cryptosystems.

Keywords: Broadcast attack, lattice-based cryptosystem, knapsack cryptosys-
tem, intersecting lattice.

1 Introduction

In 1988, H̊astad [1] proposed the first broadcast attack against public key cryp-
tosystems. The attack enables an attacker to recover the plaintext sent by a
sender to multiple recipients, without requiring any knowledge of the recipient’s
secret key. H̊astad’s attack was originally proposed against the RSA public key
cryptosystem that incorporates low exponents. To prevent this classical attack,
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several researchers have studied the necessity to have a strong security notion in
the single user setting in contrast to the multi user setting [2,3]. For instance,
it is well known that to avoid such an attack, paddings (in the random oracle
model) will need to be incorporated to achieve the IND-CCA security notion
[2,3]. Nevertheless, this type of attacks has never been discussed in the lattice-
based scenario.

Our Contribution
In this paper, we revisit the classical broadcast attack and consider it in the
lattice-based scenario. Interestingly, this is the first work that considers this
type of attack in lattice-based scenario. Our approach is as follows. We present
a general method to rewrite lattice problems that have the same solution in one
unique easier problem. Our method is obtained by intersecting lattices to gather
the required knowledge. These problems are used in lattice based cryptogra-
phy and to model attack on knapsack cryptosystems. We are able to present
some attacks against both lattice and knapsack cryptosystems. Our attacks are
heuristics. Nonetheless, these attacks are practical and extremely efficient, as
demonstrated in our experiment. We also discuss some countermeasures against
such attacks in the context of lattice-based cryptography.

1.1 Related Works

Knapsack Cryptosystems

In 1978 [4], Merkle and Hellman proposed the first public key cryptosystem based
on a NP-hard problem, namely the knapsack problem. This is the first practical
public key cryptosystem as a positive answer to the proposed seminal notion of
public key cryptography by Diffie and Hellman [5]. The knapsack problem is as
follows.

Problem 1 (Knapsack). Let a1, . . . , an ∈ N n positive integers and s ∈ N a
positive integer. The Knapsack Problem is to find, if there exists, αi ∈ {0, 1},
i = 1, · · ·n, (n Boolean) such that

n∑
i=1

αiai = s.

The problem to find whether there exists such αi is called the Knapsack Decision
Problem.

Theorem 1 (Karp [6]). The Knapsack Decision Problem is NP-Complete.

The cryptosystem proposed in [4], and most of other knapsack cryptosystems,
can been illustrated as follows.

• Setup: Create n integers a1, . . . , an with a trapdoor function to solve the
Knapsack Problem on ai. Provide a1, . . . , an as public.
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• Encrypt: To encrypt a message m ∈ [0, 1]n, compute

s =
n∑
i=1

miai.

Publish s as the encrypted message of m.
• Decrypt: Use the trapdoor to solve the knapsack problem on a1, . . . , an and
s and extract m.

Merkle-Hellman’s first proposition was attacked severely and broken using
two different methods: the first attack on the trapdoor itself was proposed by
Shamir [7,8] and the second attack on the knapsack problem using lattice the-
ory was proposed by Adleman [9]. In 1985 [10], Lagarias and Odlyzko proposed
a general attack against knapsack cryptosystems. Their attack do not incorpo-
rate the weakness on the trapdoor itself, rather than only using the fact that
the knapsack problems produced are generally weaker that a random one. This
weakness appears in a lower density of the knapsack problem. The density of a
knapsack problem is defined as

d =
n

maxni=1 log2 ai
.

Density represents a trade-off between the need to be able to decrypt (and hence,
to have a unique solution) using a low density and an acceptable security level
using a bigger density. A lot of improvements have be made in order to attack
lower density knapsack [11,12,13,14]. For instance, in [12], the authors success-
fully cryptanalyzed knapsack cryptosystems with density less than 0.9408. These
low density attacks use lattice reduction tools. However, some improvements of
knapsack cryptosystems were also proposed (e.g. [15,16]) with a bigger density,
generally close to 1. We refer the reader to [17] for these two faces of knapsack
cryptology. Nonetheless, as mentioned in [18], the knapsack cryptosystem pro-
posed by Okamoto, Tanaka and Uchiyama in 2000 [16] seems to be the only
remaining secure knapsack cryptosystem.

Lattice-based cryptosystems

In 1997, Ajtai and Dwork [19] proposed the first lattice cryptosystem where
its security is based on a variant of the Shortest Vector Problem (SVP). This
cryptosystem received wide attention due to a surprising security proof based on
worst-case assumptions. Nonetheless, this cryptosystem is merely a theoretical
proposition and it cannot be used in practice. Furthermore, Nguyen and Stern
presented a heuristic attack against this cryptosystem [20]. Until then, this initial
proposition has been improved [21,22,23] and inspiring for other cryptosystems
based on SVP [24,25,26]. The main drawback in these cryptosystems is a huge
extension factor between the initial message and its encrypted version.

In 1996, Goldreich, Goldwasser and Halevi (GGH) [27] proposed an efficient
way to use lattice theory to build a cryptosystem inspired by McEliece cryp-
tosystem [28] and based on the Closest Vector Problem (CVP). Their practical
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proposition of a cryptosystem was attacked and broken severely by Nguyen in
1999 [29]. However, the general idea is still viable. Until then, the other propo-
sitions were made using the same principle [30,31,32].

In the following, we briefly review the GGH cryptosystem. A GGH cryp-
tosystem comprises of the following algorithms.

• Setup: Compute a “good basis” A and a “bad basis” B of a lattice L,

L(A) = L(B).

Provide B as public and keep A secret.
• Encrypt: To encrypt a vector-message m: use the bad basis to create a

random vector r of L. Publish the encrypted message which is the addition
of the vector message with the random vector:

c = m+ r.

• Decrypt: Use the good basis to find the closest vector in the lattice of the
encrypted message c. The closest vector of the encrypted message c is the
random vector r1. Subtract the random vector of the encrypted message to
obtain the vector message m.

Remark 1. In their initial paper [27], Goldreich, Goldwasser and Halevi also
proposed another cryptosystem where the message is transformed into a lattice
point prior to adding to it a random vector noise.

The important points for the security and efficiency of those cryptosystems are
defined as follows.

i) It is easy to compute a “bad basis” from a “good basis”, but it is difficult
to compute a “good basis” from a “bad basis”.

ii) It is easy to create a random vector of a lattice even with a “bad basis”.
iii) It is easy to find the closest vector with a “good basis” but difficult to do

so with a “bad basis”.

After the first Nguyen’s attack [29], utilization of the initial GGH proposition
requires lattice with big dimension (> 500), to ensure its security. Nonetheless,
the computation of the closest vector even with a “good basis” becomes very ex-
pensive. In 2000, Fischlin and Seifert [30] proposed a very intuitive way to build
lattice with good basis which are able to solve the closest vector problem. They
used a tensor product of lattice to obtain a divide and conquer approach to solve
CVP. In 2001, Micciancio [31] proposed some major improvements of the speed
and the security of GGH. In this scheme, the public key uses a Hermite Normal
Form (HNF) for the bad basis. The HNF basis is better to answer the inclusion
question and it also seems to be more difficult to transform to a “good basis”
compared to another basis. In 2003, Paeng, Jung and Ha [32] proposed to use

1 under the supposition that the norm of m is sufficiently small.
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some lattices build on polynomial ring. However, in 2007, Han, Kim, and Yeom
[33] used lattice reduction to cryptanalysis this scheme. Their attack can suc-
cessfully recover the secret key even in a huge dimension (> 1000) and make the
PJH scheme unusable. However, there exists a secure (and yet ‘unbroken’) cryp-
tosystem using polynomial representation, namely the NTRU cryptosystem, for
N th degree truncated polynomial ring units. NTRU was originally proposed in
1998 by Hoffstein, Pipher and Silverman [34]. Even if this cryptosystem was not
modelled initially as a GGH-type cryptosystem, it can actually be represented
as one. This has been useful specially for analysing its security [35].

Organization of the Paper

The rest of this paper is organized as follows. In the next section, we recall some
basic concepts of lattice theory. Section 3 presents the main theorem which is how
to intersect lattices to simplify lattice problems. Some practical attacks inspired
by this main theorem are proposed in Section 4. Section 5 presents some test
results. We conclude the paper in Section 6 by presenting some solutions against
these new broadcast attacks.

2 Lattice Theory

In this section, we will review some concepts of the lattice theory useful for the
comprehension of this paper. For a more complex account, we refer the readers
to [36].

The lattice theory, also known as the geometry of numbers, has been intro-
duced by Minkowski in 1896 [37]. A complete discussion on the basic of lattice
theory can be found from [38,39,40].

Definition 1 (Lattice). A lattice L is a discrete sub-group of Rn, or equiv-
alently the set of all the integral combinations of d ≤ n linearly independent
vectors over R.

L = Z b1 + · · ·+ Z bd, bi ∈ Rn.

B = (b1, ..., bd) is called a basis of L and d, the dimension of L, noted dim(L).
We will refer L(B) as a lattice of basis B.
We will represent a lattice basis by a matrix B ∈ Rd,n where each rows B[i] of
B correspond to a vector bi of the basis.

Theorem 2 (Determinant). Let L a lattice. There exists a real value, denoted
as detL, such that for any basis B, we have

detL =
√

det (BBT ).

detL is called the determinant of L.

For a given lattice L, there exists an infinity of basis. However, the Hermite
Normal Form basis (Definition 2) is unique [41].
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Definition 2 (HNF). Let L a integer lattice of dimension d and H ∈ Zd,n a
basis of L. H is a Hermite Normal Form basis of L if and only if

∀1 ≤ i, j ≤ d Hi,j

= 0 if i > j
≥ 0 if i ≤ j
< Hj,j if i < j

The HNF basis can be computed from a given basis in a polynomial time [42].
For efficient solutions, we refer the readers to [43].

Remark 2. As it was remarked by [31], the HNF basis is a “good basis” for
solving the problem of inclusion of a vector in a lattice [41] or more generally
finding a basis of a lattice from a set of non-independent vectors generating this
lattice [36].

Intersecting lattice is the main tool used in this paper. Lattices intersection
can easily be done using dual lattices (Definition 3).

Definition 3 (Dual). Let L a lattice and B a basis of L. Then, L∗ is noted as
the dual lattice of L and (BBT )−1B is a basis of L∗2.

Property 1 (Intersection). Let L1,L2 two lattices. Then,

L1 ∩ L2 = (L∗1 ∪ L∗2)∗ .

As L1 ⊆ L = L1 ∩ L2, L1 is called a sublattice of L.

Remark 3 (Union). The lattice union of two lattices is generated by the set
of vectors composed by the union of the two sets of vector of each basis. As
remark before (Remark 2), using HNF for example, we can build from this set
of non-independent vector, a basis.

The lattice theory problem is based on distance minimization. The natural
norm used in lattice theory is the euclidean norm.

Definition 4 (Euclidean norm). Let w a vector of Rn. The euclidean norm
is the function ‖.‖ defined by

‖w‖ =
√
< w,w >

=
√
wwT

=
√∑n

i=1 w
2
i

Using a norm, we can define some other invariants crucial in lattice theory.

2 This definition of the duality is extremely practical and doesn’t represent the full
interest of this notion. However, we will only focus on notion needed for the under-
standing of this paper.
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Definition 5 (Successive Minima). Let L a lattice and i ∈ N an integer. The
ith Successive Minima, noted λi(L) is the smallest real number such there exist
i non-zero linear independent vector v1, . . . , vi ∈ L with

‖v1‖, . . . , ‖vi‖ ≤ λi(L).

The problem to find such a vector v1 is called the Shortest Vector Problem (SVP).

Theorem 3 (Ajtai [44]). SVP is NP-Hard under randomized reductions.

Another important invariant is the Hermite invariant which is defined as
follows.

Definition 6 (Hermite Invariant). Let L a lattice. The Hermite invariant,
denoted as γ(L), is the real number such that

γ(L) =
(

λ1(L)
det(L)1/dim(L)

)2

.

There exist two extremely useful properties around this invariant.

Theorem 4 (Minkowski [37]). For any lattice L of dimension d,

γ(L) ≤ 1 +
d

4
.

The second theorem provides a general property which concerns random lattices.

Theorem 5 (Ajtai [45]). Let L a random lattice of dimension d. Then,

λi(L)
det(L)1/d

'
√

d

2πe
.

Corollary 1. Let L a random lattice of dimension d. Then,

γ(L) ' d

2πe
.

Random lattice is a complex notion [46,47,45]. Goldstein and Mayer’s charac-
terization of random lattices [47] allows to create random lattices for experiment
for example [48]. We will use the same method in our practical section (Section 5)
to evaluate our method in the case of random lattices.

Remark 4. Hermite invariant is a way to evaluate the weakness of a lattice. If
the value is smaller than the average d

2πe on a lattice, then it will be “easier” to
solve SVP or other related problem on it.

Another useful invariant is the lattice gap defined in [49] for practical reason.
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Definition 7 (Lattice Gap). Let L a lattice. The gap, noted α(L), is the real
number such that

α(L) =
λ2(L)
λ1(L)

.

Remark 5 (Unicity). To assure unicity of the solution and hence, removing the
decryption failure, lattice-based cryptosystems generally use gap of at least
α(L) > 2. Moreover, generally the gap of lattice used in cryptosystems are
polynomial in its dimension.

Remark 6. As Hermite invariant is used to evaluate the resistance of a lattice,
the bigger the gap of a lattice, the easier it will be practically to solve SVP or
other problem on it. For a recent analysis of practical attacks against lattice
with a big gap, please refer to [50].

As SVP is NP-hard, a relaxation factor has been introduced in the initial SVP
to be able to propose and evaluate the quality of the polynomial algorithms.

Problem 2 (γ-SVP). Let L a lattice and γ ≥ 1 a real positive number. Then,
the γ-SVP is to find a vector u ∈ L such that

0 < ‖u‖ ≤ γλ1.

In 1982 [51], Lenstra, Lenstra and Lovasz proposed a powerful algorithm
which have a time complexity polynomial in the dimension d . It is known as the
LLL algorithm and this algorithm returns a solution for γ−SVP for γ = 2

d−1
2

where d = dim(L)3. This property leads to break cryptosystems using lattice
with gap bigger than 2

d−1
2 . However, in practice, LLL seems to be much more

efficient [48]. In addition, a lot of improvements have been proposed on LLL to
obtain a better approximation factor and/or a better time complexity. For the
recent result on LLL, we refer the readers to [52,53].

A second category of lattice problems are based on different values that the
successive minima.

Definition 8 (Minimum Distance). Let L a lattice and u a vector. The Min-
imum Distance of u to L, denoted as dist(u,L) is the smallest real number such
that there exists a vector v ∈ L with ‖u − v‖ = dist(u,L). The problem to find
such a vector v is known as the Closest Vector Problem (CVP).

Theorem 6 (Emde Boas, [54]). CVP is NP-Hard.

As for SVP, CVP has a relaxed version as defined as follows.

Problem 3 (γ-CVP). Let L a lattice, w a vector and γ ≥ 1 a real positive number
. The γ-CVP is to find a vector u ∈ L, ‖w − u‖ ≤ γdist(u,L).

3 with δ = 0.75 for LLL utilization parameter.
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In 1986, Babai [55] proposed two polynomial methods to solve γ−CVP: the
nearest plane and the round-off methods. Those algorithms solve γ-CVP within
γ = 2

d
2 and γ = 1+2d

(
9
2

) d
2 , respectively. Babai’s algorithms use an LLL-reduced

basis. Consequently all the variants of LLL, including BKZ utilization [56] pro-
posed by Schnorr, are naturally the improvement of Babai’s methods.

Moreover, there exists an heuristic way introduced by Kannan [57] to directly
solve γ-CVP using algorithm made to solve γ-SVP: the embedding method .
Instead of solving γ-CVP, we solve γ-SVP in a different lattice. Finding the
closest vector of v in L(B) can be done by solving the shortest vector of L(B′)

with B′ =
(
B 0
v 1

)
. This method has been successfully used by Nguyen [29] for

constructing his first attack against GGH cryptosystem and it seems practically
the best way to attack a CVP-based cryptosystem.

3 Intersecting Lattices

Each attack proposed in this paper is inspired by a new general simplification
method of lattice problems.

Theorem 7. Let L1,L2 two lattices and v a vector such that v is a shortest
vector of both L1 and L2. Then, v is a shortest vector of the lattice L1 ∩ L2,

γ(L1 ∩ L2) ≤ γ(L1), γ(L2)
and

α(L1 ∩ L2) ≥ α(L1), α(L2).

Proof.

We prove that v is the shortest vector of L1 ∩ L2.
As v ∈ L1,L2, we have v ∈ L1 ∩ L2. Suppose that there exists a non-zero

vector v′ ∈ L1 ∩ L2 such that 0 < ‖v′‖ < ‖v‖. As v′ ∈ L1 ∩ L2, we have v′ ∈ L1

with 0 < ‖v′‖ < ‖v‖, which is impossible as v is the shortest non-zero vector of
L1. We have proved that for any non-zero vector v′ ∈ L1 ∩ L2, ‖v‖ ≤ ‖v′‖: v is
the shortest vector of L1 ∩ L2.

We prove that γ(L1 ∩ L2) ≤ γ(L1).
Let’s compare γ(L1 ∩ L2) with γ(L1). We have proved that λ1(L1 ∩ L2) =

‖v‖ = λ1(L1). As L1 ∩L2 ⊆ L1, we have dim(L1 ∩L2) ≤ dim(L1) and det(L1 ∩
L2) ≥ det(L1). We obtain

γ(L1 ∩ L2) =
(

λ1(L1 ∩ L2)
det(L1 ∩ L2)1/dim(L1∩L2)

)2

≤
(

λ1(L1)
det(L1)1/dim(L1)

)2

= γ(L1).

The same proof can be performed with L2, and consequently, we obtain
γ(L1 ∩ L2) ≤ γ(L1), γ(L2).
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We prove that α(L1 ∩ L2) ≥ α(L1).
Let’s compare α(L1 ∩ L2) with α(L1). We have proved that λ1(L1 ∩ L2) =

‖v‖ = λ1(L1). Suppose that we have two independent vectors v1, v2 ∈ L1 ∩ L2

such that max(‖v1‖, ‖v2‖) = λ2(L1 ∩ L2). Then, since v1, v2 are also two inde-
pendent vectors of L1, we obtain λ2(L1) ≤ max(‖v1‖, ‖v2‖). We have λ2(L1) ≤
max(‖v1‖, ‖v2‖) = λ2(L1 ∩ L2). Finally, we obtain

α(L1 ∩ L2) =
(
λ2(L1 ∩ L2)
λ1(L1 ∩ L2)

)
≥
(
λ2(L1)
λ1(L1)

)
= α(L1).

The same proof can be performed with L2, and consequently, we obtain
α(L1 ∩ L2) ≥ α(L1), α(L2). �

Theorem 7 is crucial as it demonstrates that to solve the shortest vector
problem on the intersection of lattices will be at least easier that in the initial
lattice. We will see in Section 5 that practical problems become a lot easier.
Nevertheless, the practical efficiency can not be shown in a general theorem as
Theorem 7. This is simply because if L1 = L2, we obtain L1 ∩ L2 = L1 = L2,

γ(L1 ∩ L2) = γ(L1) = γ(L2)
and

α(L1 ∩ L2) = α(L1) = α(L2).

Remark 7. For cryptosystems based on CVP, we will use the embedding method
to model as a SVP before applying Theorem 7.

4 Practical Broadcast Attacks

In this section, we adapt the general method (Theorem 7) to different lattice
or knapsack cryptosystems. For convenience, we will always firstly recall the
‘challenge’ in the cryptosystem involved followed by our proposed attack. All of
our attacks are heuristic.

4.1 A Broadcast Attack on GGH Type A

Problem 4 (GGHA Challenge). Let B ∈ Zn,n a basis and c ∈ Zn a vector such
that there exist two vectors r,m ∈ Zn with c = rB + m. Then, the GGHA

challenge (B, c) is to find m.

Algorithm 1: Broadcast Attack on GGHA Challenges
Input : (Bi, ci) k GGHA challenges.
Output: m ∈ Zn.
begin

Compute B′i =
(
Bi 0
ci 1

)
.

Compute L =
⋂k
i=1 L(B′i).

Find
(
m 1

)
shortest vector of L.

end
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Example 1. The initial proposition in [27] is obviously concerned by this attack.
However, we will refer to Micciancio cryptosystems [31] as a non-broken cryp-
tosystem that will also be susceptible against this attack.

4.2 A Broadcast Attack on GGH Type B

Problem 5 (GGHB Challenge). Let B ∈ Zn,n a basis and c ∈ Zn a vector such
that there exist two vectors m, r ∈ Zn with c = mB + r. Then, the GGHB

challenge (B, c) is to find m.

The idea here is a bit different. As we have mB1+r1 = c1 and mB2+r2 = c2,
we construct a third challenge mB3+r3 = c3 with B3 = B1+B2 and c3 = c1+c2.
Practically, the fact that ‖r‖ grows will be less important than the growth of B.

Algorithm 2: Broadcast Attack on GGHB Challenges
Input : (Bi, ci) k GGHB challenges.
Output: m ∈ Zn.
begin

Compute B =
∑k
i=1Bi.

Compute c =
∑k
i=1 ci.

Find the closest vector v of c in L(B).
Compute m = vB−1.

end

Algorithm 2 do not use Theorem 7 and cannot be proved to have a simpler
problem as the λ1(L(B1 +B2)) can be bigger than λ1(L(B1)). However, we will
see than practically λ1(L(B1 +B2)) will be bigger. Practically, we will also use
the embedding method for the third step of Algorithm 2.

Example 2. Cryptosystems concerned with this attack include [30] and the more
recent work of [32].

4.3 A First Broadcast Attack on Knapsack Cryptosystems

Problem 6 (Knapsack Challenge). Let a ∈ Nn a positive integer vector and s ∈ N
an integer such that there exists m ∈ [0, 1]n a boolean vector such maT = s.
Then, the Knapsack challenge (a, s) is to find m.

The attack proposed here is an adaptation of Algorithm 1 to the knapsack
challenge as it has been already modelled by [10] in a lattice problem. Other
modellings can been also adapted with the same technique.
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Algorithm 3: Broadcast Attack on Knapsack Challenge
Input : (ai, si) k knapsack challenges.
Output: m ∈ [0, 1]n.
begin

Compute Bi =
(
Id aTi 0
0 s 1

)
.

Compute L =
⋂k
i=1 L(Bi).

Find
(
m 0 1

)
shortest vector of L.

end

Example 3. The examples of practical schemes that are susceptible against our
attack are as follows. We refer to the survey of Odlysko [17] for knapsack cryp-
tosystems that are susceptible against this attack. However, we also refer to [16]
for one of the ‘rare’ non-broken knapsack cryptosystems that are also susceptible
against this attack. The recent proposition of [58] is also concerned.

Remark 8. We remark that the dimension of L decreases further when k in-
creases. Practically, we have dim(L) = n − k with a high probability4. It is
because each L(Bi) have a dimension smaller than n, dim(L(Bi)) = n−1 . This
decrease will obviously stop at a dimension of 1 with a lattice of a basis only
composed by

(
m 0 1

)
.

4.4 A Second Broadcast Attack on Knapsack Cryptosystems

Inspired by the previous remark (Remark 8), we notice that if we have n equa-
tions maTi = si, we can concatenate these equations to obtain mA = s with
A ∈ Zn,n and s ∈ Zn. Moreover, these equations can be solved with high prob-
ability.

Algorithm 4: Broadcast Attack on Knapsack Challenges without Lattice
Reduction

Input : (ai, si) n knapsack challenges.
Output: m ∈ [0, 1]n.
begin

Compute A =
(
aT1 . . . aTn

)
.

Compute s =
(
s1 . . . sn

)
.

Compute m = sA−1.
end

The main advantage of our second attack is to avoid the use of any lattice
reduction. The impact of this gain will enable us to use the attack in a huge
dimension where the use of LLL will be computationally expensive. However,
its drawback is the number of challenge required. The first attack will require
practically less challenges to reveal the plaintext.
4 under the probability that ∀1 ≤ i1, i2 ≤ k, 1 ≤ j ≤ n, ai1 [j] 6= ai2 [j].
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This method is also heuristic as A can be singular 5 and A−1 does not exist.
However, probability of such a situation is extremely low and will be less probable
with more knapsack challenges.

5 Practical Result

In this section, we present result of the previously presented techniques to at-
tack different lattice-based cryptosystems. To perform these attacks, we use the
embedding method with a lattice reduction done with LLL6. Cryptosystems and
attacks were implemented under the MAGMA library [59]. Tests were made 20
times, for each 10 dimensions between 10 and 300. For each test, a random
message is encrypted with a different random public basis repetitively until the
attack is successful. Cryptosystems are implemented as close as possible to the
initial paper. The list of different cryptosystems analyzed is as follows:

1. The initial GGH cryptosystem (Type A) attacked with Algorithm 1.
2. The second GGH cryptosystem (Type B) attacked with Algorithm 2.
3. A knapsack problem of density 1.0. This problem does not correspond to

a real cryptosystem but to any knapsack cryptosystem which use such a
problem. This attack is more general that the previous ones.

4. A knapsack problem of density 2.0. This problem is an extreme case. As we
do not know if some trapdoor functions can be created for such a problem,
for instance due to the reason of unicity. However, it gives us a security
bound as problems with lower density will be easier to attack.

5. A random lattice CVP problem. This problem is the one which gives us a
reference. For this one, we have created random lattice and a vector with
dist ∼ λ1

2 to assure that at least the existence of a decryption algorithm. To
create a random lattice, we use the same technique proposed in [48,50] using
the results on random lattice from [47]. This problem corresponds to the
general situation to a lattice-based cryptosystem which have the possibility
to decrypt even if some trapdoors may not exist. This problem corresponds
to a security upper bound for CVP based cryptosystems.

The purpose of those tests is not to give some security parameter bounds (as more
powerfull SV P solver can be used than LLL, BKZ for example) but to show how
evolves the difficulty of those problems with more and more challenges. Figure 1
summarizes our results.

6 Conclusion and Countermeasures

In this paper, we proposed an efficient way to simplify lattice problems which
have the same solution. This technique leads to some heuristic and efficient at-
tacks on the existing lattice or knapsack cryptosystems. However, some lattice-
based cryptosystems naturally resist to those attacks. Ajtai-Dwork cryptosys-
tem [19] and its different improvements, such as [21,22,23] or [24,25,26], are not
5 det(A) = 0
6 with δ = 0.9999 for LLL utilization parameter.
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Fig. 1. Number of needed broadcast challenges to extract message from different
cryptosystems.

concerned by our attacks. This is clearly due to the huge extension factor which
allows those cryptosystems to put a strong part of random and hence, there
is no common vector. For the same reason, the proposition of knapsack-based
probabilistic encryption of [60] will be naturally resistant as well. In the same
direction, we remark that after some tests, NTRU lattices should be extremely
weak against intersecting lattices. However, the fact that half of its message is
random leads to a complete protection against broadcast attacks. Those remarks
inspired an obvious countermeasure. Concerned cryptosystems have just to add
to their messages a random part (e.g. a hash of the public key itself) that is suf-
ficiently big to prevent two messages to be equal under a reasonable probability.
This is inline with the direction suggested in the traditional cryptography (e.g.
[2,3]) to ensure the security in the IND-CCA sense. The cost of such counter
measure is an expansion factor which have repercussion in both space and time
complexity. If the solution was known before, the utility of such counter measure
was never shown to be necessary. This is the result of this work. Nonetheless, if
the solution is ‘simple’, some further techniques should be incorporated as for
cryptosystems which resist to LLL attacks with two messages, after intersec-
tion even of only two messages, the new problem will be easier compared to the
original problem.
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Intersecting lattice has shown to be interesting to perform cryptanalysis.
However, we believe that those kind of techniques can also lead to constructive
utilization as original from other techniques used generally in cryptography.
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