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Abstract. In this paper, we first critically analyze two existing lattice-
based cryptosystems, namely GGH and Micciancio, and identify their
drawbacks. Then, we introduce a method for improving the implemen-
tation of GGH using the Chinese Remainder Theorem (CRT). Further-
more, we also propose another cryptosystem optimized for CRT, drawing
on the strengths of both cryptosystems. We provide a fair comparison
between our scheme and the existing ones.

1 Introduction and Motivation

With the continuous advancements in the field of quantum computing, the se-
curity of many existing asymmetric key cryptosystems has been demonstrated
to be broken in the theoretical sense, with computational insecurity of these
schemes being dependent only on technological advancements. As a result, new
one-way trapdoor functions must be developed that will remain secure after
quantum computers become available. One promising avenue of research in this
direction is lattice-based cryptography.

Recent advancements in the field of lattice-based cryptography have brought
a sustained interest in producing a lattice-based cryptosystem that runs in a sim-
ilar space and time complexity as existing conventional asymmetric key cryp-
tosystems. Two specific related cryptosystems showing much promise are the
cryptosystems introduced by Goldreich, Goldwasser and Halevi [5] (GGH), and
its modification and improvement by Micciancio [9].

While the security of any cryptosystem in an information theoretic sense re-
lies on the space and time complexity of the ‘trapdoor function’ being used, we
need a stronger definition to have the cryptosystem implemented and deemed
practical for use. It is insufficient to define operations in polynomial time and
non-polynomial time when discussing practical implementations of the cryp-
tosystem.

Even though the cryptosystem may be provably secure, if the implementation
speeds involved are too slow for an acceptable security parameter, then it is clear
that alternatives must be sought. After careful analysis of both lattice-based
cryptosystems analyzed in this paper, we found that both have significant space
or time complexity drawbacks, possibly preventing widespread adoption.
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In this paper we propose a method for improving the speed of Babai’s Round-
Off CVP approximation algorithm [1] in lattices using the Chinese Remainder
Theorem (CRT). We then formulate a new lattice-based cryptosystem with im-
plementation as a prime consideration. This new cryptosystem is based on the
work done by Goldreich et al. and Micciancio but has much faster encryption
and decryption speeds when implemented on common hardware platforms.

2 Lattice Theory and Lattice-based Cryptography

Definition 1 (Lattice). A lattice L is a discrete sub-group of Rn, or equiv-
alently the set of all the integral combinations of d ≤ n linearly independent
vectors over R.

L = Z b1 + · · ·+ Z bd, bi ∈ Rn.

B = (b1, ..., bd) is called a basis of L and d, the dimension of L.
We will refer LB as a lattice of basis B.

For a given lattice L, there exists an infinite number of bases. However, the
Hermite Normal Form basis (Definition 2) is unique [2].

Definition 2 (HNF). Let L be an integer lattice of dimension d and H ∈ Zd,n

a basis of L. H is a Hermite Normal Form basis of L if and only if

∀1 ≤ i, j ≤ d Hi,j

= 0 if i > j
≥ 0 if i ≤ j
< Hj,j if i < j

The HNF basis can be computed from a given basis in a polynomial time [6].
Many lattice theory problems are based on distance minimization, as deter-

mined via the euclidean norm.

Definition 3 (Euclidean norm). Let w be a vector of Rn. The euclidean norm
is the function ‖.‖ defined by ‖w‖ =

√∑n
i=1 w

2
i .

There are many different problems based on the minimization of distance in
lattice theory. In this paper we focus on the one used by the cryptosystem we
analyzed, namely the Closest Vector Problem.

Definition 4 (γ-CVP). Let w be a vector in a lattice L. The Closest Vector
Problem is to find a vector u ∈ L,∀v ∈ L, v 6= u, ‖w − u‖ ≤ γ‖v − u‖.

CVP (for γ = 1) has been demonstrated to be NP-hard by Emde Boas [3].
However, by limiting ourselves to a special instance of CVP, we will be able
to use a good basis to solve CVP using two existing algorithms proposed by
Babai [1]. In 1986, Babai proposed two polynomial methods to solve CVP: the
nearest plane and the round-off methods. These algorithms solve CVP within
γ = 2d/2 and γ = 1 + 2d

(
9
2

)d/2, respectively. Babai’s algorithms use an LLL-
reduced basis [7].
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2.1 Lattice-based Cryptography

In 1996, Goldreich, Goldwasser and Halevi (GGH) [5] proposed an efficient way
to use lattice theory to build a cryptosystem inspired by McEliece cryptosystem
[8] and based on the Closest Vector Problem (CVP). Their practical proposition
of a cryptosystem was attacked and broken severely by Nguyen in 1999 [10].
However, the general idea is still viable. Until then, the other propositions were
made using the same principle [9]. In the following, we briefly review the GGH
cryptosystem. A GGH cryptosystem comprises the following algorithms.

• KeyGenerate: Compute a “good basis” A and a “bad basis” B of a lattice
L, L(A) = L(B). Provide B as public and keep A secret.
• Encrypt: To encrypt a plaintext vector p ∈ Zn: use the bad basis to create a

vector v in the lattice L, v = pB. Publish the encrypted message which is the
addition of this vector with a random error vector e ∈ Zn: c = v + e.
• Decrypt: Use the good basis to find the closest vector in the lattice of the

encrypted message c. The closest vector of the encrypted message c is the
message vector v1. Using this, obtain the plaintext vector p.

The important points for the security and efficiency of those cryptosystems are
defined as follows.

i) It is easy to compute a “bad basis” from a “good basis”, but it is difficult
to compute a “good basis” from a “bad basis”.

ii) It is easy to create a random vector of a lattice even with a “bad basis”.
iii) It is easy to find the closest vector with a “good basis” but difficult to do

so with a “bad basis”.

In 2001, Micciancio [9] proposed some major improvements of the speed and the
security of GGH. In this scheme, the public key uses a Hermite Normal Form
(HNF) for the bad basis. In this scheme, to encrypt a message, we perform a
modulo lattice reduction on the plaintext vector (Algorithm 1). In effect, this is
done by using the small plaintext vector as the error vector in the GGH scheme,
i.e., c = rB + p where r is some minimal vector. The advantage of this scheme
is that we are able to use any basis inverse to recover the plaintext and hence
do not need to store a transformation matrix, unlike GGH’s scheme.
To perform decryption, Micciancio’s scheme uses Babai’s nearest-plane CVP
approximation, as this provides a better approximation than the Round-Off
algorithm [1].

2.2 Drawbacks of existing schemes

GGH A thorough test implementation of the GGH cryptosystem revealed two
major shortcomings. Firstly, GGH suffers from slow decryption speeds. Using
a theorized computationally secure dimension of 1000, decryption speeds on
a conventional, modern PC were around 2 seconds, compared to conventional
1 under the supposition that the norm of e is sufficiently small.
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Algorithm 1: Vector Reduction modulo a HNF Basis

Input : B ∈ Zn,n a HNF basis and p ∈ Zn a vector.
Output: c ∈ Zn such that (c− p) ∈ L(B) and ∀i, 0 ≤ ci < Bi,i

begin
c← p
for i← n− 1 to 0 do

q ← bci/Bi,ic
c← c− q ×Bi

end
end

cryptosystems operating orders of magnitude faster. This significantly limits the
practical applicability of this cryptosystem. Secondly, the storage requirements
of public keys for GGH are enormous. In a presumed computationally secure
dimension of 1000, public key sizes were seen to be over 290Mb. This is imprac-
tical in a public key infrastructure with a large number of clients, such as the
Internet or large internal networks.

Micciancio We found that implementing the Micciancio cryptosystem also re-
vealed some shortcomings. Firstly, the use of Nearest-Plane CVP recovery in
the Micciancio cryptosystem’s decryption phase gave a much lower decryption
speed than GGH’s round-off CVP recovery method (Figure 1). Secondly, we
found that Micciancio requires a large amount of memory to perform key gen-
eration, which became larger than the 4Gb maximum on our 32-bit test PC at
higher dimensions, preventing key generation at these dimensions on common,
consumer hardware.

2.3 Chinese Remainder Theorem

The Chinese Remainder Theorem allows the representation of a large, variable-
precision integer by its residue modulo some small moduli. This technique is
often used to replace arithmetic on large integers with operations over these
small moduli.

Theorem 1 (Chinese Remainder Theorem). Let pi ∈ N n coprimes inte-
gers, P =

∏n
i=1 pi and Pi = P/pi. Then, for any n-tuple ai there exists an

unique integer 0 ≤ A < P such that ai = A mod pi,

A =
n∑

i=1

ai(P−1
i mod pi)Pi mod P.

Motivation We apply the Chinese Remainder Theorem to lattice-based cryp-
tosystems by operating the cryptosystem in an integer ring with an order greater
than the largest element, for several reasons. Firstly, performing our calculations
in these ‘small’ finite fields allows us to take advantage of the various platform
optimizations for integer arithmetic, since working with variable precision inte-
gers larger than the implementation machine’s word-size imposes a significant
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overhead. Secondly, we reduce the need to rely on using a highly optimized
implementation of variable-precision integer and matrix arithmetic, specific for
each particular platform. While such libraries are readily available for common
PC computing platforms, we felt that providing a platform-independent variable
precision optimization would be valuable, especially for embedded platforms such
as smart cards and cellular telephones. Thirdly, since each finite field calculation
is independent of the others it is indeed possible to perform each finite field
operation in parallel. While this has not been implemented in this library due
to the lack of thread support in Shoup’s NTL library [11], we see no intrinsic
property of the cryptosystems discussed that would prevent this from operating
as intended.

Construction We can construct a sufficiently sized ring in the following way.
First, we assess the bound of the size of the coefficients to be calculated. If the
coefficients involved include negative coefficients, we must double this bound
in order to cover these values. Next, we construct many small finite fields of
prime order p < 2b, where b is our target platform’s word size, until the product
of these primes is above our coefficient bound. We perform our calculations
independently in these fields and once these have completed, we perform a simple
CRT reconstruction to calculate the final value.

A significant hurdle to adopting this approach for all lattice problems, how-
ever, is that it is often difficult to find an appropriate tight bound of the size
of the coefficients involved. Due to this, we design our new scheme around this
problem, creating a private basis with which we are able to calculate a satisfac-
torily tight bound on the coefficients to allow for faster key generation.

Memory usage Since each finite field is independent, it is possible to decrypt a
plaintext via CRT serially with respect to the key, i.e., only loading each matrix
over some finite field into memory as we require it. This has great benefits for
memory utilization especially for embedded systems as we are only required
to store a matrix of standard integers in primary memory at any given time
rather than a matrix of much larger variable-precision integers. In the case of
lattice dimension 1000, it can be seen that the memory usage would only be
approximately 4Mb at any given time. Obviously in such a case, decryption
speeds would be I/O bound in the case of loading each matrix in from a hard
drive or flash-based storage.

2.4 Improvement of GGH using CRT

We were able to optimize GGH via CRT by placing R−1 into small finite fields
and performing the multiplication inside Babai’s Round-Off step over these
fields. This not only yielded significantly faster decryption speeds, but also pro-
vided the platform flexibility discussed above.

Firstly, we define the following scalar function which will be used in our CRT
reconstruction.

Q(pi) =
P

pi
, P =

∏
pi
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Secondly, to avoid rational arithmetic, we multiply R−1 ∈ Qn,n by detR to
obtain S ∈ Zn,n (R−1 = S/ detR). We define a function R′ to represent the
following:

R′(pi) = R−1 × detR×Q(pi)−1 mod pi

Since we will be multiplying by Q(p)−1 in the reconstruction phase, we are able
to save crucial decryption time by precomputing this value in the Key Generation
phase.

Algorithm 2: CVP Round-Off using CRT

Input : v ∈ Zn the input vector, R ∈ Zn,n a basis of L ⊆ Zn,n.
Output: w ∈ L a close vector of v in the lattice L
begin

x← 0
foreach pi do x← x + Q(pi)× (c×R′(pi) mod pi) mod P
w ← bx/det(R)e ×R

end

Due to the complexity of Micciancio’s Nearest-Plane CVP decryption method,
we were unable to modify this to work in a CRT environment.

3 New Scheme

We design this new scheme specifically to provide faster operations, in a particu-
lar faster implementation, while still maintaining a similar structure to existing
cryptosystems. Specifically, this involved consideration in the design for decryp-
tion using the CRT round-off method discussed earlier.

3.1 Key generation

Private Basis To create the private basis, we use GGH’s private basis construc-
tion, namely R←− bI +M . This was chosen over Micciancio’s basis construction
for two reasons. Firstly, it allows us to make generalizations about the bound on
the size of ||R||∞ which allows for much faster key generation as we do not need
to perform a full matrix inversion. Secondly, and perhaps more importantly,
it provides a more orthogonal basis with which to perform decryption, which
in turn, decreases the size necessary to ensure correct decryption using CVP
Round-off. This in turn allows us to decrease the size of the coefficients while
keeping the same security parameter, saving storage and transmission space and
increasing efficiency.

Public Basis To create the public basis, we use Micciancio’s method of ap-
plying a HNF reduction on the private basis, as this provided a greater level of
security, simplified key storage and much smaller public keys. Optionally, an LLL
reduction can also be applied to this key to reduce the size of the coefficients,
however we found this step to be unnecessary.
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Precomputation We are able to significantly speed up the decryption phase
by precomputing all the required values of the functions Q(p) and R′(p) in the
key generation phase and storing these values in a look-up table. This increases
the speed of the decryption step, at the expense of a lower key generation speed.

Algorithm 3: KeyGenerate

Input : n ∈ N the security parameter.
Output: B ∈ Zn,n the public key, R ∈ Zn,n the private key.
begin

M ← 0 for i, j ← 0 to n− 1 do Mi,j ← Rand(−1, 1)

b←
l
2

p
2n/3

m
repeat b← b + 1 until ||(bI + M)−1||∞ ≤ 1/2

R← bI + M
B ← HNF (R)

end

3.2 Encryption

For encryption, we use Micciancio’s method of modulo lattice reduction with
the public basis. We felt that this provided excellent speed and provided strong
notions of security. We modified Micciancio’s construction by limiting the en-
cryption vector domain to {-1, 0, 1} and by using ‖R−1‖∞ < 1/2, we can ensure
(See [5]) that there will not be any decryption error.

3.3 Decryption

Decryption is of a similar form to the improved GGH decryption method using
CRT except with a minor change to reflect the encoded message being in the
error vector rather than the lattice point. i.e. given the lattice vector w, we
calculate the plaintext p = c− w.

4 Implementation and Performance Analysis

Since we are primarily concerned with the implementation aspects of the cryp-
tosystems discussed, we have coded both existing cryptosystems as well as our
new scheme in C++ using Victor Shoup’s NTL [11] compiled against GNU
MultiPrecision Library (GMP) [4]. We feel that these libraries are the most ap-
propriate choice for implementation as they are created with runtime speed a
major factor in the design while maintaining numerical stability and correctness.
With this in mind, the authors feel that this choice of implementation forms a
good basis for comparison. These values were obtained on a 2.1Ghz Intel Core
2 Duo platform with 4Gb RAM.
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Fig. 1. Performance Results

Dimension 400 800

Enc. Dec. Pub. Key Priv. Key Enc. Dec. Pub. Key Priv. Key

GGH 0.04s 0.86s 18.7 MB 43.0 MB 0.23s 11.57s 153.0 MB 374.4 MB

Micciancio 0.01s 27.69s 241.4 kB 95.4 MB 0.02s 259.94s 1.1 MB 861.6 MB

GGH (CRT) 0.04s 0.18s 19.3 MB 72.3 MB 0.23s 1.63s 150.9 MB 606.4 MB

New Scheme 0.01s 0.11s 109.8 kB 97.0 MB 0.02s 1.05s 476.3 kB 848.0 MB

Table 1. Speeds and keysizes
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