
Journal of Cryptographic Engineering (2019) 9:115–136
https://doi.org/10.1007/s13389-018-0196-7

REGULAR PAPER

Efficient Fixed-base exponentiation and scalar multiplication based on
amultiplicative splitting exponent recoding

Jean-Marc Robert2,3 · Christophe Negre2,3 · Thomas Plantard1

Received: 7 June 2017 / Accepted: 29 October 2018 / Published online: 12 November 2018
© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract
Digital signature algorithm (DSA) (resp. ECDSA) involves modular exponentiation (resp. scalar multiplication) of a public
and known base by a randomone-time exponent. In order to speed up this operation, well-knownmethods take advantage of the
memorization of base powers (resp. base multiples). Best approaches are the Fixed-base radix-R method and the Fixed-base
Comb method. In this paper, we present a new approach for storage/online computation trade-off, by using a multiplicative
splitting of the digits of the exponent radix-R representation. We adapt classical algorithms for modular exponentiation and
scalar multiplication in order to take advantage of the proposed exponent recoding. An analysis of the complexity for practical
size shows that our proposed approach involves a lower storage for a given level of online computation. This is confirmed
by implementation results showing significant memory saving, up to 3 times for the largest NIST standardized key sizes,
compared to the state-of-the-art approaches.

Keywords RNS · Multiplicative splitting · Digital signature · Fixed-base · Modular exponentiation · Scalar multiplication ·
Memory storage · Efficient software implementation

1 Introduction

In the digital signature standard (DSS), digital signature algo-
rithm (DSA) is a popular authentication protocol. According
to the NIST standard (see [11]), the public parameters are
p, q and g. The parameter g is a generator of a multiplicative
subgroup ofF∗

p of size q. The integers p and q are two primes
with sizes corresponding to the required security level: for
the recommended security level 80–256 bits, q has to be a
160–512 bit integer. When a server needs to sign a batch of
documents, the most costly operations are modular exponen-
tiations gk mod p (one per signature), where g, p are fixed
and k is a one-time random integer.

Another popular standard for electronic signature is
ECDSA which uses the group of point on an elliptic curve

B Jean-Marc Robert
jean-marc.robert@univ-perp.fr

1 CCISR, SCIT, University of Wollongong, Wollongong,
Australia

2 Team DALI, Université de Perpignan Via Domitia, Perpignan,
France

3 LIRMM, UMR 5506, Université de Montpellier and CNRS,
Montpellier, France

(E(Fp),+) instead of (F∗
p,×). The signature algorithm

ECDSA is very similar to the DSA, and its main operation is
a scalar multiplication k · P for P ∈ E(Fp). In order to cover
both cases DSA and ECDSA we consider a multiplicative
abelian group (G,×) in which we have to compute gk for
g ∈ G and k ∈ N.

In this article we consider the following practical case: a
server has to compute a large number of signatures, which
involves a large number of exponentiations gk with the same
g ∈ G and several random k. We assume that the server
has a large cache and RAM (random-access memory) so that
we can therefore store a large amount of precomputed data
to speed up these exponentiations. In the sequel, by ‘offline
computation’wemean the data computed only once and used
in every signature generation; by ‘online computation’ we
mean the operations required only in a single exponentiation
gk for a given k.

The main known methods of the state of the art which
take advantage of large amount of precomputed data are the
Fixed-base Radix R presented by Gordon [7] and the Fixed-
baseComb presented byLim andLee in [13]. TheFixed-base
Radix R method of [7] precomputes gaR

i
for 0 ≤ a < R and

then, using the radix-R expression of k, we obtain the expo-
nentiation gk with logR(k) multiplications. The Fixed-base

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s13389-018-0196-7&domain=pdf
http://orcid.org/0000-0002-9634-5729

116 Journal of Cryptographic Engineering (2019) 9:115–136

Combmethod uses a Comb decomposition of k (instead of a
radix-R representation) and requires less precomputed data
at the cost of some extra squarings. In [16] the authors provide
a variant of the Radix-R approach using the NAFw recoding
resulting in a reduced number of online multiplications than
for the radix-R approach but with a penalty of some extra
squarings.

ContributionsWe investigate some new strategies for a better
trade-off between storage and online computation in Fixed-
base exponentiation. To reach this goal, we propose to use the
representation of the exponent in radix R as k = ∑�−1

i=0 ki R
i

and then compute a multiplicative splitting of each digit ki .
Specifically, we use a radix R = m0m1 with pairwise prime
m0,m1. An RNS representation of a digit ki ∈ [0, R[in
{m0,m1} leads to a splitting into two parts: one part k(0)

i

which value is at mostm0 and the other k
(1)
i which value is at

mostm1.We apply this process to all the digits of the radix R
representation of the exponent. While processing the expo-
nentiation, the digits k(1)

i are handled with a look-up table

and the digits k(0)
i are handled with online computation. This

approach was part of a preliminary version of this paper pub-
lished in the proceedings of theWAIFI 2016 conference [19].

We present a novel approach for the multiplicative split-
ting of the digits of the exponent: if we choose the radix R
as a prime integer, then processing a partial execution of the
extended euclidean algorithm, one can re-express a digit ki
as product ki = k(0)

i (k(1)
i)−1 mod R where |k(1)

i | < c and

|k(0)
i | < R/c for a fixed c. Again, this splitting can be applied

to all digits of the radix R representation of the exponent. The
exponentiation algorithms can then be computed with mem-
orizations related to the (k(1)

i)−1 part of the digit splitting

and online computation to handle the part k(0)
i of the digit

splitting. The main advantage of this version with a prime
R is that the resulting exponentiation algorithm is constant
time, which means that it is robust against timing attacks.

We study the corresponding complexities and storage
amounts, and compare the results with the best approaches of
the literature for Fixed-base modular exponentiation (resp.
scalar multiplication) for NIST recommended fields (resp.
curves). The metric chosen for a comparison between the
proposed algorithms is the following: for a given level of
online computation the best approach is the one which has
the lowest amount of precomputed data. Using this metric
we show that the proposed approach is the more efficient
for a large range of practical case. We also implement these
approaches in software and we perform tests in order to val-
idate the complexity analysis. Our approaches provide also
some flexibility in terms of required storage amount: one can
choose the storage amount according to the device resources
available and compatible to the global computation load of
the system.

Organization of the paper In Sect. 2, we review the best
approaches of the literature for Fixed-base exponentiation
and we give their complexities and storage requirements.
In Sect. 3, we present a multiplicative splitting recoding
of the exponent in radix R = m0m1 and a Fixed-base
exponentiation using this recoding. In Sect. 4, we present
a multiplicative splitting recoding for R prime and the corre-
sponding exponentiation algorithm. In Sect. 5, we compare
the complexity results and software implementations of the
proposed approach to the best approaches of the literature for
modular exponentiation and scalar multiplication. Finally, in
Sect. 6, we give some concluding remarks and perspectives.

2 State of the art of Fixed-base
exponentiation

We consider digital signature algorithms based on discrete
logarithm in a finite group. The main ones are DSA where
the considered group is a subgroup of prime order q in the
multiplicative group F

∗
p and ECDSA where the group is the

set of point on an elliptic curve E(Fp) [12,15]. For the sake of
simplicity, in the sequel, we use a generic abelian multiplica-
tive group (G,×) of order q. The algorithms presented later
in this paper extend directly to abelian groups with additive
group law like E(Fp). Generating a digital signature consists
in computing (s1, s2) from a message m ∈ {0, 1}∗, a secret
integer x and a random integer k as follows

s1 ← H1(gk),
s2 ← (H2(m) + s1x)k−1 mod q.

Here, H1 is a function G → Z/qZ and H2 is a crypto-
graphic hash function {0, 1}∗ → Z/qZ. One can see that the
most costly operation in a signature generation is the expo-
nentiation gk of a fixed g ∈ G and where k is a one-time
random exponent of size ∼= q. This exponentiation can be
done with the classical Square-and-multiply algorithm.

Square-and-multiply exponentiationThe left-to-right version
of the square-and-multiply exponentiation scans the bits ki
of k from left to right and performs a squaring followed by a
multiplicationwhen ki = 1. In terms of complexity, given the
bit length t of k, the number of squarings is t−1 and the num-
ber of multiplications to be computed is t /2 on average for a
randomly chosen exponent. There is no storage in this case.

Side-channel analysis The above method is threatened by
side-channel analysis. These attacks extract part of the expo-
nent by monitoring and analyzing the computation time, the
power consumption or the electromagnetic emanations. In
this paper, we focus on servers which generate large amounts
of signature very quickly and are physically not accessible
to an attacker. The main threat in this case is the timing
attack. This attack attempts to find the sequence of opera-
tions (multiplication and squaring) of an exponentiation by

123

Journal of Cryptographic Engineering (2019) 9:115–136 117

Algorithm 1 Left-to-Right Square-and-multiply Exponenti-
ation
Require: Let an integer k = (kt−1, . . . , k0)2, and g an element of G.
Ensure: X = gk

1: X ← 1
2: for i from t − 1 downto 0 do
3: X ← X2

4: if ki = 1 then
5: X ← X · g
6: return (X)

a statistical analysis of several timings of an exponentiation.
If the assumed sequence of operations is correct, the attacker
can deduce the key bits of the exponent since each multipli-
cation corresponds to a bit equal to 1, otherwise the bit is 0. A
general solution to thwart this attack is to render the sequence
of operations not correlated to key bits, which means that we
need to remove any if test on the key bits or digits in the
exponentiation algorithm.

Fixed-base exponentiation When the base g is fixed, one
can precompute in advance some data in order to reduce the
number of operations in the online computation of the expo-
nentiation. This is the case when a server has to intensively
compute a number of signatures with the same g. For exam-
ple, the method presented by Gordon in [7] is a modified
square-and-multiply algorithm: one first stores the t succes-
sive squarings of g (that is the sequence of g2

i
), then for a

given computation of gk , one has to multiply the g2
i
cor-

responding to ki = 1. In terms of complexity, given the
bit length t of the exponent, one has now no squarings and
the number of multiplications is t /2, in average. As counter-
part, one has to store t elements of G. We can even further
reduce the amount of online computation by increasing the
precomputed data. This is the strategy followed by the main
approaches of the literature.

Radix-R method Gordon in [7] mentions the generalization
of his first idea to radix R = 2w representation of the expo-
nent k = ∑�−1

i=0 ki R
i . This consists in the memorization of

the values ga·R j
, with a ∈ [0, . . . , R − 1] and 0 ≤ j < �

where � is the length of the exponent in radix R representa-
tion. If we denote w = �log2(R)	, then we have � = �t/w	.
In this case, the online computation consists of � − 1 multi-
plications, for a storage amount of � · R values in G. In the
sequel, we will call this approach the Fixed-base Radix-R
exponentiation method (see Algorithm 2). This algorithm is
constant time as soon as the multiplications by 1 (i.e., when
ki = 0) are performed as any other multiplication or, alter-
natively, by using the radix R recoding of [10] which avoids
ki = 0.

Comb method Another classical method is the so-called
Fixed-base Comb method which was initially proposed by
Lim and Lee in [13]. This method attempts to trade some

Algorithm 2 Fixed-Base Radix-R Exponentiation
Require: k = (k�−1, . . . , k0)R, g a generator of G.
Ensure: X = gk

1: Offline precomputation. Store T [a][j] ← ga·R j
, with a ∈

[0, ..., R − 1] and 0 ≤ j < �.
2: X ← 1
3: for i from � − 1 downto 0 do
4: X ← X · T [ki][i]
5: return (X)

Algorithm 3 Fixed-Base Comb Exponentiation [13]
Require: k = (kt−1, . . . , k1, k0)2, a generator g of G, a window width

2w and d = �t/w	.
Ensure: X = gk mod p
1: Offline precomputation. For all (aw−1, . . . , a0) ∈ {0, 1}w we set

a = aw−12(w−1)d +· · ·+a12d +a0 and T [(aw−1, . . . , a0)2] = ga .

2: Split k = ∑d−1
j=0 K j2 j as in (1)

3: X ← 1
4: for j from d − 1 downto 0 do
5: X ← X2

6: X ← X · T [K j]
7: return (X)

of the storage of Algorithm 2 with a few online computed
squarings. It is based on the following decomposition of the
exponent k

k =
d−1∑

j=0

(
w−1∑

i=0

kid+ j2
id

)

︸ ︷︷ ︸
K j

2 j where d = �t/w	. (1)

Each integer K j can be seen as a comb as described in the
following diagram.

The integerw is the number of comb-teeth in each K j and
d = �t/w	 is the distance in bits between two consecutive
teeth. When all the possible values gK j are precomputed and
stored in table indexed by

IK j = [k(w−1)d+ j k(w−2)d+ j . . . , k j]2,
one can compute gk with a 2w size look-up table, �t/w	 −
1 multiplications and �t/w	 − 1 squarings using (1). This
method is shown in Algorithm 3. As in the case of Radix-R
method, this approach can be implemented in constant time if
themultiplications by 1 (which occurs K j = 0) are computed
as an arbitrary multiplication or by using the recoding of [9]
which renders all comb coefficients
= 0.

Fixed-base exponentiation with NAFw In [16], the authors
proposed an alternative approach when inverting an ele-
ment in the group G is almost free of computation and

123

118 Journal of Cryptographic Engineering (2019) 9:115–136

multi-squarings can be computed efficiently. Their main
application is the group of points on a elliptic curves where
computing the inverse of a point is really cheap. They use a
NAFw representation of k in order to reduce the number of
multiplications (this generalizes the approach of [21] which
uses a NAF representation of k). Specifically, they start by
computing the NAFw representation of the exponent k

k = k′
t−12

t−1 + k′
t−22

t−2 + · · · + k′
0

where k′
i ∈ {±1,±3, . . . ,±2w−1 − 1} and there are at least

w zero between two non zero coefficients. For more details
on NAFw the reader may refer to [8]. Then they rewrite this
N AFw(k) into � = �t/w	 consecutive windows of w coef-
ficients:

k =
�∑

i=0

⎛

⎜
⎜
⎜
⎜
⎜
⎝

w−1∑

j=0

k′
iw+ j2

j

︸ ︷︷ ︸
Ki

⎞

⎟
⎟
⎟
⎟
⎟
⎠

2iw. (2)

In [16] the authors noticed that, in each Ki , there is at most
one nonzero coefficient k′

iw+ j , which means that Ki = s ×
a × 2 j for some s ∈ {− 1, 1}, a ∈ {1, 3, . . . , 2w−1 − 1} and
0 ≤ j < w. They then reorder the terms in expression (2) by
splitting the parameter i into two parts i = i1e+ i0 for some
fixed integer e:

k = ∑e−1
i0=0

∑d−1
i1=0 Ki1e+i02

i1ew+i0w where d = ��/e	
= ∑e−1

i0=0

(∑d−1
i1=0 Ki1e+i02

i1ew
)
2i0w.

(3)

For all possible values for Ki1e+i02
i1ew with Ki1e+i0 = sa2 j

the term ga2
j+i1ew is stored in a Table T [a][i1][j]. Then

Algorithm 4 computes gk based on (3) as a sequence of mul-
tiplications/divisions (in Step 9 depending on s = 1 or s−1)
and w consecutive squarings (in Step 5).

Algorithm 4 Fixed-Base Exponentiation with NAFw [16]
Require: A scalar k = (k′

t−1, . . . , k
′
1, k

′
0)N AFw and g in an abelian

group G, and positive integers c, w.
Ensure: X = gk

1: � = � t
w

	 and d = � �
e 	

2: Offline precomputation. T [a][i1][j] = ga2
j+ewi1 for all a ∈

{1, 3, . . . , 2w−1 − 1}, i1 ∈ {0, . . . , d − 1} and j ∈ {0, . . . , w − 1}.
3: X ← 1
4: for i0 from e − 1 downto 0 do
5: X ← X2w

6: for i1 from d − 1 downto 0 do
7: (s, a, j) s.t. (k′

jb+t,w−1 . . . k′
jb+t,0)N AFw = s · a · 2 j

8: if a
= 0 then
9: X ← X × (T [a][i1][j])s
10: return (X)

In Algorithm 4 the number of precomputed elements is
equal to dw2w−2 ∼= � t

e 	2w−2. The online computation con-
sists of w(e− 1) squarings and ed(1− (w

w+1)
w) ∼= � t

w
	(1−

(w
w+1)

w) multiplications/divisions (cf. [16] for details).

3 Fixed-base exponentiation with
multiplicative splitting with R = m0m1

We now present our approach of a Fixed-base exponentiation
with multiplicative splitting with R = m0m1. In this section,
we review the method presented in a preliminary work at
WAIFI 2016 [19]. The goal is to use a multiplicative splitting
of the digits of k in order to provide a better trade-off between
storage and online computation in the exponentiation.

3.1 Digit multiplicative splitting for radix R = m0m1

A natural way to get a splitting of the digits is to use the RNS
representation in radix R = m0 · m1 which splits any digit
into two parts. When all the digits of an exponent are split,
we can process the exponentiation as follows: the first part of
the digits will be used to select the precomputed values and
the second part will be processed by online computation.

We first remind the RNS representation in a base B =
{m0,m1}. Let R = m0 ·m1 and x ∈ Z such that 0 ≤ x < R.
Let us also assume m0 is prime, since this allows us to invert
all nonzero integers < m0 modulo m0, and we choose m1 <

m0. In the sequel, we denote |x |m = x mod m.
One represents x with the residues

{
x (0) = |x |m0 ,

x (1) = |x |m1 ,

and x can be retrieved using theChineseRemainder Theorem
as follows:

x =
∣
∣
∣x (0) · m1 · |m−1

1 |m0 + x (1) · m0 · |m−1
0 |m1

∣
∣
∣
R

. (4)

We now present our recoding approach. We consider an
exponent k expressed in radix R = m0 · m1

k =
�−1∑

i=0

ki R
i with � = �t/ log2(R)	.

We represent every radix-R digit in RNS with the RNS base
B = {m0,m1}: if ki is the i-th digit of k in radix-R, we denote
by (k(0)

i , k(1)
i) its RNS representation in base B

{
k(0)
i = |ki |m0 ,

k(1)
i = |ki |m1 .

123

Journal of Cryptographic Engineering (2019) 9:115–136 119

Let us denote

m′
0 = m1 · |m−1

1 |m0 ,

m′
1 = m0 · |m−1

0 |m1 .

We recode the digits of k in B = {m0,m1} as follows

• If k(1)
i
= 0: we denote

{
k′(0)
i = |k(0)

i · (k(1)
i)−1|m0 ,

k′(1)
i = k(1)

i .

One keeps

k′
i = k′(1)

i |k′(0)
i · m′

0 + m′
1|R (5)

as a representation of ki in a multiplicative splitting form
and we have ki = |k′

i |R with (4). When modifying the
digits of k as above, one needs to take into account the
correcting term due to the reduction modulo R:

ki = k′(1)
i |k′(0)

i · m′
0 + m′

1|R
−�k′(1)

i · |k′(0)
i · m′

0 + m′
1|R/R · R.

Let us denoteC = �k′(1)
i ·(k′(0)

i ·m′
0+m′

1)/Rwhich sat-
isfies 0 ≤ C < m1.We considerC as a carry that one can
subtract to ki+1. This leads to the following computation

if ki+1 ≥ C then
ki+1 ← ki+1 − C
C ← 0

else
ki+1 ← ki+1 + R − C,

C ← 1

and one gets ki+1 ≥ 0.
• If k(1)

i = 0: we define k′
i as follows

k′
i =

∣
∣
∣|k(0)

i + 1|m0 · m′
0 + m′

1

∣
∣
∣
R︸ ︷︷ ︸

(∗)

− |m′
0 + m′

1|R︸ ︷︷ ︸
=1

. (6)

and k′
i satisfies |k′

i |R = ki This expression is meant to
have the part (∗) as in (5): the goal is to use the same
precomputed data in the exponentiation algorithm. The
term −|m′

0 + m′
1|R = −1 is meant to get back to ki

while reducing k′
i modulo R. We then set the following

coefficients:

{
k′(0)
i = |k(0)

i + 1|m0 ,

k′(1)
i = 0.

Setting k′(1)
i = 0 tells us that this is a special case and we

get ki from k′(0)
i as

ki =
∣
∣
∣|k′(0)

i · m′
0 + m′

1)|R − 1
∣
∣
∣
R

.

We deal with the carry as it was done when k(1)
i
= 0, this

is detailed in the algorithm.

One notices it might be necessary to handle the last carry
C generated by the recoding of k�−1 with a final correction.
This gives a final coefficient k′

� = −C which satisfies |k′
�| <

m1. Finally, this leads to the recoding algorithm shown in
Algorithm 5.

Algorithm 5 Multiplicative Splitting Recoding with R =
m0m1
Require: AnRNS base {m0,m1}, a radix R = m0 ·m1 and an exponent

k = ∑�−1
i=0 ki R

i .

Ensure: {(k′(0)
i , k′(1)

i), 0 ≤ i < �, (C)} the multiplicative splitting
recoding of k in radix R = m0m1.

1: C ← 0
2: for i from 0 to � − 1 do
3: ki ← ki − C,C ← 0
4: if ki < 0 then
5: ki ← ki + R, C ← 1
6: k(0)

i ← |ki |m0 , k
(1)
i ← |ki |m1 .

7: if k(1)
i = 0 then

8: (k′(0)
i , k′(1)

i) ← (|k(0)
i + 1|m0 , 0)

9: C ← C +
⌊(

|k′(0)
i · m′

0 + m′
1|R − 1

)
/R

⌋

10: else
11: k′(0)

i ← |k(0)
i · (k(1)

i)−1|m0

12: k′(1)
i ← k(1)

i

13: C ← C + �k′(1)
i · |k′(0)

i · m′
0 + m′

1|R/R
14: return {(k′(0)

i , k′(1)
i), 0 ≤ i < �, k′

� = −C}

At the end the recoded exponent k = ∑�
i=0 k

′
i R

i has most

of its digits k′
i expressed as a product k

′(1)
i ×|k′(0)

i ·m′
0+m′

1|R
and k′(1)

i is of size m1 while |k′(0)
i · m′

0 + m′
1|R is indexed

with k′(0)
i which is of size m0.

Example 1 Wepresent here an example of them0m1 recoding
with an exponent size t of 20 bits (0 < k < 220), and B =
{11, 8} (i.e., m0 = 11,m1 = 8). Thus, in this case, one has
the radix R = m0 · m1 = 88, � = �20/ log2(88)	 = 4, and
also

m′
0 = 8 · |8−1|11 = 56,

m′
1 = 11 · |11−1|8 = 33.

Let us take k = 93619210, the randomexponent.By rewriting
k in radix-R, one has

k = 48 + 78 · 88 + 32 · 882 + 1 · 883.

123

120 Journal of Cryptographic Engineering (2019) 9:115–136

We now use Algorithm 5, which consists of a for loop
(Steps 2 to 13).

• In the first iteration (i = 0), one has k0 = 48.

– One has C ← 0 and one skips the if-test steps 4 to
5 since k0 ≥ 0.

– Step 6, one computes the RNS representation in base
B of k0 = 48:

k(0)
0 = |k0|11 = 4, k(1)

0 = |k0|8 = 0.

– Steps 7 to 9, since k(1)
0 = 0, one sets

(k′(0)
0 , k′(1)

0) ← (|k(0)
0 + 1|11, 0) = (5, 0).

and the carry

C ← C +
⌊(

|k′(0)
0 · 56 + 33|88 − 1

)
/88

⌋
= 0

• In the second iteration (i = 1), one has k1 = 78.

– One has C ← 0 and one skips the if-test of Steps 4
to 5 since k1 ≥ 0.

– Step 6, one computes the RNS representation in base
B of k1 = 78:

k(0)
1 = |k1|11 = 1, k(1)

1 = |k1|8 = 6.

– Steps 10 to 13, since k(1)
1
= 0, one has

|(k(1)
1)−1|11 ← 2

k′(0)
1 = |k(0)

1 · (k(1)
1)−1|11 ← 2

k′(1)
1 = k(1)

1 ← 6

C ← �(k′(1)
1 · |k′(0)

1 · 56 + 33|88)/88 ← 3

• In the third iteration (i = 2), one has now k2 ← k2−C =
29.

– The RNS representation in base B of k2 is k(0)
2 =

7, k(1)
2 = 5.

– The Steps 10-13 give C ← 2, and

(k′(0)
2 , k′(1)

2) ← (8, 5).

Without providing all the remaining details, one finally
obtains the values returned by the algorithm:

((5, 0), (2, 6), (8, 5), (3, 7)), and k′
4 = −C = −2.

3.2 Exponentiation with amultiplicative splitting
recoding in radix R = m0m1

We first rewrite the exponentiation using the recoding of k =
∑�

i=0 k
′
i R

i of the previous subsection as follows:

gk mod p = g
∑�

i=0 k
′
i ·Ri

= gk
′
�·R� · ∏�−1

i=0 g
k′
i ·Ri (7)

where each term gk
′
i ·Ri

satisfies one of the following three
cases:

• When k′(1)
i
= 0 and i < �:

gk
′
i ·Ri = gk

′(1)
i ·Ri ·|k′(0)

i ·m′
0+m′

1|R

• When k′(1)
i = 0 and i < �:

gk
′
i ·Ri = gRi ·|k′(0)

i ·m′
0+m′

1|R · g−Ri
.

• when i = � we have k′
� ≤ 0 which implies that gk

′
�R

� =
(g−R�

)|k′
�|.

In order to compute the Fixed-base exponentiation gk , one
stores the following values:

T [i][j] = gRi ·| j ·m′
0+m′

1|R , with

{
0 ≤ i ≤ � − 1,
0 ≤ j < m0.

and one also stores the following inverses:

T [i][−1] = g−Ri
with 0 ≤ i ≤ �.

We use Y j to denote the product of gRi ·|k′(0)
i ·m′

0+m′
1|R for each

i such that k′(1)
i = j . In other words for j
= 0

Y j =
⎧
⎨

⎩

(∏
for k′(1)

i = j,i<�
T [i][k′(0)

i]
)

· T [�][−1] if |k′
�| = j,

(∏
for k′(1)

i = j,i<�
T [i][k′(0)

i]
)

,

and

Y0 =
∏

for all k′(1)
i =0,i<�

T [i][k′(0)
i] × T [i][−1].

We can then rewrite the expression of gk in (7) in terms of
Y j for j = 0, . . . ,m1 − 1 as follows:

gk = Y0 ×
m1−1∏

j=1

Y j
j .

123

Journal of Cryptographic Engineering (2019) 9:115–136 121

Table 1 Example of an
execution trace for an
exponentiation based on
multiplicative splitting recoding
with R = m0m1

Iter. (loop 3:) Exp. coef. Step Value

i = 0 k′(0)
0 = 5 6: Y0 ← T [0][k′(0)

0] × T [0][−1] = g49 × g−1 = g48

k′(1)
0 = 0

i = 1 k′(0)
1 = 2 11: Y6 ← T [1][k′(0)

1] = g88·57 = g5016

k′(1)
1 = 6

i = 2 k′(0)
2 = 8 11: Y5 ← T [2][k′(0)

2] = g88
2·41 = g317504

k′(1)
2 = 5

i = 3 k′(0)
3 = 3 11: Y7 ← T [3][k′(0)

3] = g88
3·25 = g17036800

k′(1)
3 = 7

- - 15: T2 ← T [4][−1] = g88
4·(−1) = g−59969536

- - 17: to 22: gk = Y0 × ∏m1−1
j=1 Y j

j = g48g2·(−59969536) × g5·317504

×g6·5016g7·17036800 = g936192

Each individual exponentiation Y j
j is performed with a

square-and-multiply approach, which is more efficient than
performing j − 1 multiplications, even for small m1. This
approach is depicted in Algorithm 6.

Algorithm 6 Fixed-base exponentiation with multiplicative
splitting with radix R = m0m1

Require: AnRNSbase {m0,m1}, a radix R = m0m1, the exponent k =
∑�−1

i=0 ki R
i and {(k′(0)

i , k′(1)
i), 0 ≤ i < �, (k′

�)} the m0m1 recoding
of k and g ∈ G.

Ensure: A = gk

1: Offline precomputation. Store T [i][j] ← gR
i ·| j ·m′

0+m′
1|R with 0 ≤

i < �, 0 ≤ j < m0, T [i][−1] ← g−Ri
, 0 ≤ i ≤ �

2: X ← 1, Y j ← 1 for 0 ≤ j < m1
3: for i from 0 to � − 1 do
4: if k′(1)

i = 0 then
5: if Y0 = 1 then
6: Y0 ← T [i][k′(0)

i] × T [i][−1]
7: else
8: Y0 ← Y0 × T [i][k′(0)

i] × T [i][−1]
9: else
10: if Y

k′(1)
i

= 1 then

11: Y
k′(1)
i

← T [i][k′(0)
i]

12: else
13: Y

k′(1)
i

← Y
k′(1)
i

× T [i][k′(0)
i]

14: if k′
�
= 0 then

15: Y|k′
�| ← Y|k′

�| × T [�][−1]
16: W ← size of m1 in bits
17: for i from W − 1 downto 0 do
18: X ← X2

19: for j from m1 − 1 downto 1 do
20: if bit i of j is non zero then
21: X ← X × Y j
22: return (X × Y0)

One important drawback of the above algorithm is that it
is not constant time, due to the if branching attached to the
condition k′(1)

i = 0.

Table 2 Hamming weights
account for 0 ≤ j < m1

m1 2 3 4 5 6 7 8 9

H 1 2 4 5 7 9 12 13

Example 2 We present the computation of gk mod p using
Algorithm 6, we take B = {11, 8} (i.e., m0 = 11,m1 = 8).
In terms of storage, one computes the values

T [i][j] = gRi ·| j ·m′
0+m′

1|R mod p with 0 ≤ i ≤ � − 1.

One has the values {33, 1, 57, 25, 81, 49, 17, 73, 41, 9, 65}
for

∣
∣ j · m′

0 + m′
1

∣
∣
R when 0 ≤ j < 11. This leads to

T [i][0..10] = {g88i ·33, g88i , g88i ·57, g88i ·25, g88i ·81,
g88

i ·49, g88i ·17, g88i ·73, g88i ·41, g88i ·9, g88i ·65}.

The trace of Algorithm 6 for the computation of gk and k =
936192 using the recoding obtained in Example 1 is provided
in Table 1.

3.3 Complexity

For the amount of precomputed data, one can notice that it
is equal to (m0 + 1) × � + 1 elements.

The complexity of online computation in Algorithm 6 is
evaluated step by step in Table 3 for the average case. The
number of multiplications (M) is evaluated as follows:

– The costs of Steps 6 to 15 follow directly from Algo-
rithm 6 and are detailed in Table 3.

– Thefirst squaring inStep 18 skipped since X = 1, leading
to a cost of W − 1 squarings.

– The multiplications in Steps 21 and 22 are performed
only in case of Y j
= 1. This means that in the worst case

123

122 Journal of Cryptographic Engineering (2019) 9:115–136

we save the first multiplication which is an affectation :
this is the case considered in Table 3.

For the sake of simplicity, we denote by H the sum of the j
Hamming weights for each j from m1 − 1 downto 1 (for
loop in Step 19). The value of H is shown in Table 2 for
different practical values of m1.

4 Fixed-base exponentiation with
multiplicative splitting with R prime

In this sectionwepresent a novel recoding algorithmbasedon
multiplicative splitting modulo R prime. We will show that
the resulting exponentiation algorithm can be made constant
time (Table 3).

4.1 Digit multiplicative splitting for prime radix R

We present in this subsection a variant of the multiplicative
splitting to the case of a prime radix R. When R is a prime,
we can use a multiplicative splitting modulo R based on an
extension of the half-size multiplicative splitting of [18]. Our
goal is to get the following splitting

ki = k(0)
i (k(1)

i)−1 mod R with

{
|k(0)
i | < c

|k(1)
i | ≤ R/c

(8)

for a fixed bound 0 < c < R.

4.1.1 Multiplicative splitting modulo a prime R

The multiplicative splitting modulo a prime radix R is based
on the extended Euclidean algorithm. We briefly review this
algorithm. We consider a prime integer R and 0 < k <

R. Then k and R are pairwise prime gcd(k, R) = 1. The

Euclidean algorithm computes gcd(k, R) through a sequence
of modular reductions:

r0 = R, r1 = k, r2 = r0 mod r1, . . .
. . . , r j+1 = r j−1 mod r j , . . .

The sequence of remainders r j satisfies

gcd(r j , r j+1) = gcd(R, k)

and is strictly decreasing and thus reaches 0 after some iter-
ations. The last r�
= 0 satisfies r� = gcd(k, R) = 1. The
extended Euclidean algorithm computes a Bezout relation

uR + vk = gcd(k, R)

by maintaining two sequences of integers u j and v j satisfy-
ing:

u j R + v j k = r j , for j = 0, 1, . . . , �. (9)

The sequencev j is an increasing sequence inmagnitude start-
ing from v0 = 0 and v1 = 1. The multiplicative splitting
of (8) can then be obtained from (9) where we take j such
that r j ∈ [0, c[and v j ∈ [0, R/c] and by taking k(0)

i = r j and

k(1)
i = v j . The following lemma establishes this property.

Lemma 1 If one chooses c ∈ [0, R[, there exists j such that
|r j | ≥ c and r j+1 < c and at the same time |v j | ≤ R/c and
|v j+1| ≥ R/c.

The proof of the lemma is given in the appendix.
This leads to the method shown in Algorithm 7 for multi-

plicative splitting modulo a prime radix R. In this algorithm,
a third variable s is used for the sign of the multiplicative
splitting.

Table 3 Complexity of
exponentiation based on
multiplicative splitting recoding
with R = m0m1

Complexity

Step Operation Cost

1× Step 6 T [i][k′(0)
i] × T [i][−1] 1 M

(�/m1 − 1)× Step 8 Y0 × T [i][k′(0)
i] × T [i][−1] 2 M

(m1 − 1)× Step 11 – –

(�m1−1
m1

− (m1 − 1)) × Step 13 Y
k′(1)
i

× T [i][k′(0)
i] 1 M

1× Step 15 Y|k′
�| × T [�][−1] 1 M

(W − 1)× Step 18 X ← X2 1 S

(H − 1)× Step 21 X × Y j 1 M

1× Step 22 (X × Y0) 1 M

Total (�m1+1
m1

− m1 + H + 1) M +(W − 1) S

Total storage (m0 + 1) × � + 1 elements of G

123

Journal of Cryptographic Engineering (2019) 9:115–136 123

Algorithm 7 Truncated Extended Euclidean Algorithm
(TruncatedEEA(k, R, c))

Require: k ∈ Z, the prime radix R, and c, the upper bound for k(1)
i .

Ensure: (s, k(0), k(1)), such as k = |s × k(0) × (k(1))−1|R with 0 ≤
k(0) < c and 0 ≤ k(1) ≤ �R/c	 and s ∈ {−1, 1} when gcd(k, R) =
1.

1: if gcd(k, R) = R then
2: return (1, 0, 0)
3: else
4: u0 ← 1, v0 ← 0, r0 ← R, u1 ← 0, v1 ← 1, r1 ← |k|R
5: while (r1 ≥ c) do
6: q ← �r0/r1, r2 ← |r0|r1
7: u2 ← u0 − q · u1, v2 ← v0 − q · v1
8: (u0, v0, r0) ← (u1, v1, r1)
9: (u1, v1, r1) ← (u2, v2, r2)
10: s ← sign(v1), k(0) ← r1, k(1) ← |v1|
11: return (s, k(0), k(1))

4.1.2 Recoding the exponent

We now present our recoding approach for an integer k given
in radix-R representation:

k =
�−1∑

i=0

ki R
i , with � = �t/ log2(R)	.

We choose a splitting bound c andwe consider a digit ki
= 0.
Using Algorithm 7 we get si , k

(0)
i and k(1)

i such that

ki = si k
(0)
i (k(1)

i)−1 mod R with

⎧
⎪⎨

⎪⎩

si ∈ {−1, 1}
k(0)
i ∈ [0, c[,
k(1)
i ∈ [0, R/c].

(10)

We put apart the case ki = 0 which is recoded as (1, 0, 0)
(cf. Step 2 of Algorithm 7). We handle the reduction modulo
R as follows:

C = (si k
(0)
i |(k(1)

i)−1|R − ki)/R (exact quotient),

ki = si k
(0)
i |(k(1)

i)−1|R − CR.

One notices that C satisfies −c ≤ C < c. We then consider
C as a carry that we subtract to ki+1.

We obtain an expression k = ∑�
i=0 k

′
i R

i of k in radix

R such that each digit k′
i = si k

(0)
i |(k(1)

i)−1|R is given in a
multiplicative splitting form. The last coefficient k′

� = −C
is necessary to handle the last carry. The resulting recoding
algorithm is shown in Algorithm 8.

Example 3 We present an example of multiplicative split-
ting recoding for a prime radix R = 89 with an exponent
size t of 20 bits (0 < k < 220). In this case, one has
� = �20/ log2(89)	 = 4. One also sets c = 23 = 8, and

Algorithm 8Multiplicative Splitting Recoding for R Prime

Require: R prime, k = ∑�−1
i=0 ki R

i , and c the splitting bound.

Ensure: {(si , k(0)
i , k(1)

i), 0 ≤ i < �, (k′
�)} the multiplicative splitting

recoding of k.
1: C ← 0
2: for i from 0 to � − 1 do
3: ki ← ki − C
4: si , k

(0)
i , k(1)

i ← TruncatedEEA(ki , R, c).

5: C ← (si k
(0)
i |(k(1)

i)−1|R − ki)/R //exact quotient

6: return {(si , k(0)
i , k(1)

i), 0 ≤ i < �, (k′
� = −C)}

then, �R/c	 = 12. Let us take k = 90164410, the random
exponent. By rewriting k in radix-R, one has

k = 74 + 73 · 89 + 24 · 892 + 1 · 893.

The execution trace of Algorithm 8 is provided in Table 4.

4.2 Exponentiation algorithmwithmultiplicative
splitting recoding in a prime radix R

We now present an exponentiation algorithm which takes
advantage of the exponent recoding given in Sect. 4.1.2. One
wants to compute

gk = g
∑�

i=0 k
′
i ·Ri

= gk
′
�·R� · ∏�−1

i=0 g
k′
i ·Ri (11)

with

gk
′
i ·Ri = gsi ·k

(0)
i ·|(k(1)

i)−1|R ·Ri
, if k(1)

i
= 0,

gk
′
i ·Ri = 1, if k(1)

i = 0(this corresponds to ki = 0).

Table 4 Example of an execution trace of Algorithm 8

Iter. Step Value

i = 0 3: k0 = 74 does not change since C = 0

4: s0 = −1, k(0)
0 = 1, k(1)

0 = 6.

5: C ← (s0 · k(0)
0 · |(k(1)

0)−1|R − k0)/R = −1

i = 1 3: k1 ← 73 + 1 = 74 since C = −1

4: s1 = −1, k(0)
1 = 1, k(1)

1 = 6.

5: C ← (s1 · k(0)
1 · |(k(1)

1)−1|R − k1)/R = −1

i = 2 3: k2 ← 24 + 1 = 25 since C = −1

4: s2 = −1, k(0)
2 = 3, k(1)

2 = 7.

5: C ← (s2 · k(0)
2 · |(k(1)

2)−1|R − k2)/R = −2

i = 3 3: k3 ← 1 + 2 = 3 since C = −2

4: s3 = 1, k(0)
3 = 3, k(1)

3 = 1.

5: C ← (s3 · k(0)
3 · |(k(1)

3)−1|R − k3)/R = 0

((−1, 1, 6), (−1, 1, 6), (−1, 3, 7), (1, 3, 1)) and k′
4 = C = 0

123

124 Journal of Cryptographic Engineering (2019) 9:115–136

In order to compute theFixed-base exponentiation gk mod
p, one stores the following values:

T [i][s][j] = gRi ·s·∣∣ j−1
∣
∣
R , with

⎧
⎨

⎩

0 ≤ i ≤ � − 1,
1 ≤ j ≤ �R/c	,
s ∈ {−1, 1}.

T [i][s][0] = 1 with s ∈ {−1, 1}.
T [�][s] = gsR

�
with s ∈ {−1, 1}.

One denotes Y j the product of the terms gsi ·|(k
(1)
i)−1|R ·Ri

such

that of k(0)
i = j . This means that for j
= |k′

�|

Y j =
⎛

⎜
⎝

∏

k(0)
i = j

T [i][si][k(1)
i]

⎞

⎟
⎠ .

and for j = |k′
�| one has

Y j =
⎛

⎜
⎝

∏

k(0)
i = j

T [i][si][k(1)
i]

⎞

⎟
⎠ × T [�][sign(k′

�)].

We can then rewrite the products in (11) in terms of Y j as
follows:

gk =
∏

j∈{1,...,c−1}
Y j
j .

Every individual exponentiation Y j
j is performed with a

square-and-multiply approach, which is more efficient than
performing j − 1 multiplications, even for small c. This
finally leads to the exponentiation shown in
Algorithm 9.

The above algorithm can be implemented in a constant-
time fashion. Indeed there is no if control attached to the
digits of the exponent. Then, the algorithm consists in a con-
stant and regular sequence of multiplications and squarings
as soon as a multiplication with a 1 is computed as any other
multiplication.

Example 4 We consider the exponent k = 90164410 along
with themultiplicative splitting recoding computed in Exam-
ple 3.

((−1, 1, 6), (−1, 1, 6), (−1, 3, 7), (1, 3, 1)) and k′
4 = 0.

(12)

Wepresent the computation of gk usingAlgorithm9. In terms
of storage, one computes the values

T [i][s][j] = gRi ·s·| j−1|R with

⎧
⎨

⎩

0 ≤ i ≤ � − 1,
1 ≤ j ≤ �R/c	 = 12,
s ∈ {−1, 1}.

Algorithm 9 Fixed-base exponentiation with multiplicative
splitting for prime radix R

Require: R a prime integer, an exponent k = ∑�−1
i=0 ki R

i and

{(si , k(0)
i , k(1)

i), 0 ≤ i < �, k′
�} the multiplicative splitting recod-

ing in radix R of k and g ∈ G.
Ensure: X = gk

1: Offline precomputation. For 0 ≤ i ≤ � − 1, 1 ≤ j ≤ �R/c	, s ∈
{−1, 1} store T [i][s][j] ← gR

i ·s·∣∣ j−1
∣
∣
R and T [i][s][0] ← 1 for

0 ≤ i ≤ � − 1, s ∈ {−1, 1} and T [�][s] ← gsR
�
for s ∈ {−1, 1}.

2: X ← 1, Y j ← 1 for 0 ≤ j ≤ c
3: for i from 0 to � − 1 do
4: Y

k(0)
i

← Y
k(0)
i

× T [i][si][k(1)
i]

5: Y|k′
�| ← Y|k′

�| × T [�][sign(k′
�)]

6: W ← size of c in bits
7: for i from W − 1 downto 0 do
8: X ← X2

9: for j from c − 1 downto 1 do
10: if bit i of j is non zero then
11: X ← X × Y j
12: return (X)

One has the following values of
∣
∣ j−1

∣
∣
R for 1 ≤ j ≤ 12

{1, 45, 30, 67, 18, 15, 51, 78, 10, 9, 81, 52}.

This brings us to store the following values in G:

T [i][1] = {g89i , g89i ·45, g89i ·30, g89i ·67, g89i ·18, g89i ·15,
g89

i ·51, g89i ·78, g89i ·10, g89i ·9, g89i ·81, g89i ·52}
T [i][−1] = {g−89i , g−89i ·45, g−89i ·30, g−89i ·67, g−89i ·18,

g−89i ·15, g−89i ·51, g−89i ·78, g−89i ·10, g−89i ·9,
g−89i ·81, g−89i ·52}.

The execution of Algorithm 9 is shown step by step in
Table 5

4.3 Complexity

Let us now evaluate the complexity of Algorithm 9. Concern-
ing the amount of storage it consists in 2(�R/c	 × +1)� + 2
elements of G.

For the online complexity, we evaluate the cost of each
step of Algorithm 9 based on the following:

– the multiplications in Step 4 are performed even in case
of Y

k(0)
i

= 1, in order to ensure the constant time of the

computation;
– the same applies for Step 5.

The number of operations in the final reconstruction is eval-
uated as follows:

– the squaring in Step 8 is not performed in the first loop
iteration (X = 1);

123

Journal of Cryptographic Engineering (2019) 9:115–136 125

Table 5 Example of an
execution trace for an
exponentiation based on
multiplicative splitting recoding
with R prime

Iter. Step Coeff Value

i = 0 4:
s0 = −1

k(0)
0 = 1
k(0)
0 = 6

Y1 ← Y1 × T [0][s0][k(1)
0] = 1 × g−15

i = 1 4:
s1 = −1

k(0)
1 = 1
k(1)
1 = 6

Y1 ← Y1 × T [1][s1][k(1)
1] = g−15 × g−89·15 = g−1350

i = 2 4:
s2 = −1

k(0)
2 = 3
k(1)
2 = 7

Y3 ← Y3 × T [2][s3][k(1)
2] = 1 × g−892·51 = g−403971

i = 3 4:
s3 = 1

k(0)
3 = 3
k(1)
3 = 1

Y3 ← Y3 × T [3][s3][k(1)
3] = g−403971 × g89

3·1 = g300998

– 5: k′
4 = 0 Y0 ← Y0 × T [�][sign(k′

4)] = g59969536

– 7: to 11: – gk = ∏c−1
j=1 Y

j
j = g3·300998−1350 = g901644

Table 6 Exponentiation complexity and storage for the proposed
approach with a prime radix R recoding

Complexity

Step Operation Complexity

�× Step 4 Y
k(0)
i

× T [i][si][k(1)
i] 1 M

1× Step 5 Y|k′
�| × T [�][sign(k′

�)] 1 M

(W − 1)× Step 12 X2 1 S

(H − 1)× Step 15 X × Y j 1 M

Total (� + H) M +(W − 1) S

Total storage 2(�R/c	 + 1)� + 2 elements of G

– This first multiplication in Step 11 is skipped since it is
an affectation. The other multiplications in Step 11 are
performed even in case of Y j = 1, again to ensure a
constant computation time.

We denote by H the sum of the j Hamming weights for
each j from c− 1 downto 1 (for loop in Step 7). The value
of H is as follows for the different values of c can be found
in Table 2.

The contribution of each step is given in Table 6 along
with the total complexity.

5 Complexity and experimentation
comparison

5.1 Complexity comparison

In Table 7 we give the complexities in terms of the number
of online operations and storage amount of the state-of-the-

art approaches (Sect. 2) and the two proposed approaches
in Sects. 3 and 4. All the approaches presented in the above
table can be implemented in constant time except the Square-
and-multiply, Fixed-base NAFw and the proposed approach
with R = m0m1.

Let us first seewhen the Fixed-baseCombmethod is better
than the Fixed-base Radix-R exponentiation. We denote wC

the window size of the Comb method and wR the one of
the Radix-R method. In order to have both methods with the
same number of online operations in G, we takewC = 2wR :
in this case, both methods require t/wR online operations
in G. Then, considering the storage amount when wC =
2wR , one can see that the Comb method requires 22wR while
the Radix-R method needs t

wR
2wR elements of G. In other

words, for a fixed number t/wR of online computation, the
Comb method is better than the Radix-R as soon as 2wR <
t

wR
which is the case for small wR , i.e., for small amount of

storage.
If we now consider the Fixed-base NAFw, we can notice

that it does not compare favorablywith the radix-R approach.
Indeed for e = 1 we would have almost the same number
of online multiplications, whereas the amount of data in the
NAFw is larger by a factor of w. For larger value of e the
number of squarings would increase quickly rendering the
approach not competitive. Moreover the Fixed-base NAFw

has the major drawback to not be constant time.
It is more difficult to formally compare the proposed

approaches with the Comb and Radix-R approaches. Indeed,
they involve a third parameter (c or m1), which means that
for a fixed number of online operations, we would have to
find the proper parameter which minimizes the amount of
storage. We can still notice that for a given c (resp. m1) we
divide by c (resp.m1) the amount of storage compared to the
Radix-R approachwhile having an increase in online compu-

123

126 Journal of Cryptographic Engineering (2019) 9:115–136

Table 7 Complexities and storage amounts of exponentiation algorithm, average case, binary exponent length t

Constant time #Mul #Squ. Storage (#values in G)

Square-and-mult. (Algorithm 1) No t
2 t − 1 0

Fixed-base Radix-R(∗) (Algorithm 2) Yes t
w

− 1 0 t
w
2w

Fixed-base Comb (Algorithm 3) Yes t
w

− 1 t
w

− 1 2w

Fixed-base NAFw (Algorithm 3) No t
w

(1 −
(

w
w+1

)w

) (e − 1)w t
e 2

w−2

Proposed(∗) with R = m0m1 (Algorithm 6) No t
w

m1+1
m1

− m1 + H + 1 W − 1 (2w/m1 + 1) t
w

+ 1

Proposed(∗) with R prime (Algorithm 9) Yes t
w

+ H W − 1 (2w+1/c + 1) t
w

+ 1

(∗) We assume that R is a w bit integer

tation (H and W). This means that the proposed approaches
can be competitive only for small c and m1.

To have a clearer idea of the impact of the proposed
approach so we follow the strategy used in [16]. Indeed, for
practical sizes of group and exponent and for different level
of online operations, we evaluate the best choice of parame-
ters which minimizes the amount of precomputation. In the
sequel we give the results for DSA and ECDSA, for the fields
and curves recommended by the NIST.

5.2 Complexities and timings for modular
exponentiation

In this subsection we focus on exponentiation in
((Z/pZ)∗,×) used in DSA. We evaluate and compare the
complexities of the best method of the literature, i.e., Fixed-
base Comb (Algorithm 3) and Fixed-base Radix-R (Algo-
rithm 2), with the complexity of our proposed approaches
based on a multiplicative splitting recoding of the expo-
nent (Algorithm 6 for R = m0m1 and Algorithm 9 for
R prime).

In the sequel of this subsection, we provide complexity
evaluations in terms of modular multiplications MM, under
the assumption of modular squaring MS = 0.86 MM, which
is the average value of our implementations for the NIST
DSA recommended field sizes. We warn the reader to keep
in mind that the Fixed-base Comb, Radix-R and Algorithm 9
are constant time, and that Algorithm 6 is not, i.e., the only
one weak against timing attacks.

The NIST provides recommended key sizes and corre-
sponding field sizes (respectively, the size of the primes q
and p, see NIST SP800-57 [2]). This standardized sizes are
as follows:

Figure 1 gives the general behavior of the four algorithms
in terms of storage (y axis) with respect to the number of
online operations (x axis). In the figure, we present three of
the field sizes recommended in the NIST standards (see [2])
and the behavior is roughly the same for all sizes, although
the benefit of our approach with R = m0m1 is lower for

smaller sizes. One can see that the Fixed-base Comb method
is the best for small storage amount. Our m0m1 approach
(Algorithm 6) is better for larger amount of storage; however,
the Fixed-base Radix-R method is the best when the storage
is increasing. One can see that the R prime multiplicative
splitting approach (Algorithm 9) is less efficient than the
R = m0m1 for small storage amounts. The reason is that this
requires some additional computations to get a constant time
execution, while them0m1 approach is not constant time and
is thus slightly more efficient. Nevertheless, one can see a
range of storage/complexity trades-off where the R prime
multiplicative splitting approach is the best of the constant-
time ones (Table 8).

Table 9 shows numerical application of the complexity
comparison between the Fixed-base Comb (Algorithm 3),
the Fixed-base Radix-R (Algorithm 2) and the approaches
based on our multiplicative splitting recodings (Algorithm 6
and Algorithm 9). For an equivalent number of MMs, we
provide the minimum amount of storage. We can notice the
following:

– For all key sizes, we do not provide the results for small
amount of storage (values for w < 8). For such storage,
the Fixed-base Combmethod is the best. One may notice
that theFixed-baseRadix-R approach involves the largest
storage amount at this complexity level.

– Comparison of the twoproposed approaches: R = m0m1

vs R prime.We would like to evaluate the improvements
provided by the new approach (Algorithm 9) compared
to (Algorithm 6) which was presented at WAIFI 2016.
The results in Table 9 show that the exponentiation with
multiplicative splitting with R = m0m1 and R prime are
close from each other. But the approach with R = m0m1

is generally slightly better than the one with R prime.
But, as noticed earlier, this is the price to pay to get a
constant-time algorithm.

– Comparison of constant-time approaches. We consider
the Fixed-base Comb, Radix-R and multiplicative split-
ting with R prime approaches. A thorough analysis of

123

Journal of Cryptographic Engineering (2019) 9:115–136 127

Fig. 1 Complexity comparison, Fixed-base modular exponentiation
NIST DSA, key size 256, 384 and 512 bits (field size 3072, 7360 and
15,360 bits)

the complexities shows that the proposed approach is
interesting for intermediate level of online computation.
Specifically from Table 9, for a 224 bit key size, one
notices that there are not many cases where the pro-
posed multiplicative splitting approach is interesting.
However, for the other key sizes t = 256, 384 and 512,
one can see a lot of cases where the amount of stor-
age is reduced by 50% compared to Comb and Radix-R
approaches.

Remark 1 One may notice that the largest memory storage
sizes exceed the common values of random-access memory,
and in some cases, the maximum allowed for the malloc
function of the standard C library for memory allocation.

Table 8 NIST recommended key and field sizes

Security level 80 112 128 192 256

Key size (bits) 160 224 256 384 512

Field size (bits) 1024 2048 3072 7680 15,360

Nevertheless, the storage savings proposed by our method
and Fixed-base Radix-R ones allow to keep the level of stor-
age under the limit for lower complexities.

5.2.1 Implementation results

Implementation strategies We review hereafter the main
implementation strategies and test process for modular expo-
nentiation for NIST recommended sizes. This applies for the
four considered exponentiation algorithms. The algorithms
were coded in C, compiled with gcc 4.8.3 and run on the
same platform.

• Multi-precision multiplication and squaringWe used the
low level functions performing multi-precision multi-
plication and squaring of the GMP library as building
blocks of our codes (GMP 6.0.0, see GMP library
[20]). According to the GMP documentation, the clas-
sical schoolbook algorithm is used for small sizes, and
Karatsuba andToom-Cook subquadraticmethods for size
≥ 2048 bits.

• Modular reduction This operation implements theMont-
gomery representation and modular reduction method,
which avoid multi-precision division in the computation
of the modular reduction. This approach was presented
by Montgomery in [17]. We use the block Montgomery
algorithm suggested by Bosselaers et al. [3]. In this algo-
rithm, the multi-precision operations combine full size
operand with one word operand and are also available in
the GMP library [20].

• Multiplicative splitting recoding with R = m0m1 and R
prime The conversion in radix-R needs multi-precision
divisions. These operations are implemented using the
GMP library [20]. The size of these operations is decreas-
ing along the algorithm, and this is managed through
GMP. The other operations are classical long integer
operations. At Step 11 in Algorithm 5 (resp. Step 5
in Algorithm 8), an inversion modulo m0 (resp. R) is
required. This operation is performed using the Extended
Euclidean Algorithm, over long integer data. For the
considered exponent sizes, the cost of the recoding is neg-
ligible. This is explained by the small size of the exponent
in comparison with the size of the data processed during
the modular exponentiation (see Table 8). The timings
given in the next subsection include this recoding.

123

128 Journal of Cryptographic Engineering (2019) 9:115–136

Table 9 Storage amount
comparison for Fixed-base
Comb, Fixed-base Radix-R and
modular exponentiation with
multiplicative splitting recoding
for NIST recommended
exponent sizes

#MM Fixed-base Comb Fixed-base Radix-R Multiplicative splitting

R = m0m1 R-prime

Key size t = 224 bits

45 127.5 kB 345 kB 108 kB 240 kB

w = 9 R = 31 (m0,m1) = (R, c) =
(11, 9) (97, 7)

37 511.5 kB 594 kB 242 kB 541 kB

w = 11 R = 61 (31, 7) (179, 5)

30 4095.5 kB 1386 kB 770 kB 1205 kB

w = 14 R = 179 (127, 7) (179, 5)

24 32,767.5 kB 4230 kB 4173 kB 4489 kB

w = 17 R = 677 (877, 7) (1223, 3)

19 524,287.5 kB 27,084 kB 50,409 kB 27,954 kB

w = 21 R = 5417 (13,441, 5) (6211, 2)

Key size t = 256 bits

46 383 kB 845 kB 241 kB 494 kB

w = 10 R = 47 (m0,m1) = (R, c) =
(17, 11) (97, 5)

39 1535 kB 1454 kB 579 kB 1116 kB

w = 12 R = 97 47; 7 223; 5
32 12,287 kB 3179 kB 2070 kB 3084 kB

w = 15 R = 257 211; 6 409; 3
26 98,303 kB 9846 kB 9642 kB 10207 kB

w = 18 R = 937 1223; 6 1699; 3
20 15,728,63 kB 66,676 kB 225,482 kB 85,558 kB

w = 22 R = 8467 37,579; 5 12,007; 2
Key size t = 384 bits

63 1918 kB 4081 kB 969 kB 2274 kB

w = 11 R = 67 (m0,m1) = (R, c) =
(19, 11) (127, 6)

50 15,358 kB 10,087 kB 3742 kB 7182 kB

w = 14 R = 191 101; 11 433; 5
41 122,878 kB 26655 kB 17,284 kB 22,891 kB

w = 17 R = 677 541; 6 937; 3
35 983,038 kB 80,357 kB 647,68 kB 65,837 kB

w = 20 R = 2381 2381; 6 3191; 3
30 78,643,18 kB 246,070 kB 315,053 kB 235,255 kB

w = 23 R = 8467 13,441; 5 13,441; 3
26 62,914,558 kB 951,217 kB 32,562,78 kB 10,306,42 kB

w = 26 R = 37,579 165,397; 5 43,973; 2
24 50,331,647,8 kB 17,507,56 kB – kB – kB

w = 29 R = 74,699 – –

123

Journal of Cryptographic Engineering (2019) 9:115–136 129

Table 9 continued #MM Fixed-base Comb Fixed-base Radix-R Multiplicative splitting

R = m0m1 R-prime

Key size t = 512 bits

86 3836 kB 9841 kB 1940 kB 5004 kB

w = 11 R = 59 (m0,m1) = (R, c) =
(13, 11) (163, 9)

73 15356 kB 17,855 kB 4747 kB 10,005 kB

w = 13 R = 127 (41, 10) (241, 6)

60 122,876 kB 46775 kB 162,24 kB 29,979 kB

w = 16 R = 409 (179, 11) (739, 5)

52 491,516 kB 93,110 kB 54,680 kB 76,505 kB

w = 18 R = 937 (677, 7) (1223, 3)

48 983,036 kB 156,091 kB 106,185 kB 136,971 kB

w = 19 R = 1699 (1489, 10) (2381, 3)

41 78,643,16 kB 489,112 kB 355,573 kB 477,551 kB

w = 22 R = 6211 (5417, 7) (6211, 2)

35 62,914,556 kB 20,484,19 kB 21,138,90 kB 19,499,34 kB

w = 25 R = 30,347 (37,579, 7) (47,269, 3)

Bold values indicate the corresponding storage is better than the one of the state-of-the-art approaches

• Test processing.The tests involve a few hundred datasets,
which consist of random exponent inputs and an expo-
nentiation base with the precomputed stored values. We
compute 2000 times the corresponding exponentiation
for each dataset and keep the minimum number of clock
cycles. This avoids the cold-cache effect and system
issues. The timings are obtained by averaging the tim-
ings of all datasets.

Tests results and comparison The four considered exponen-
tiation algorithms were coded in C, compiled with gcc
4.8.3 and run on the following platform: the CPU is
an Intel XEON� E5-2650 (Ivy bridge), and the operat-
ing system is CENTOS 7.0.1406. On this platform, the
random-access memory is 12.6 GBytes. One notices that the
performance results include the Radix-R recoding and the
multiplicative splitting of the digits for R = m0,m1 and R
prime.

We show the performance results in Fig. 2 which gives
a global overview. The implementation results confirm the
complexity evaluation, for key sizes of 224, 256, 384, and
512 bits. However, the best results are for 384 and 512 bits.

In Table 10, we provide the most significant results. The
gains shownare roughly in the sameorder ofmagnitude as the
one of the complexity evaluation. In particular, for the largest
key size (512 bits), the storage of our approach with R =
m0m1 is nearly ten times less than the one required with the
Fixed-base Comb method, and nearly 14% less than the one
required for the Fixed-base Radix-R method, for the same
level of clock cycles. In the same time, our approach with R

prime gives equivalent results for low levels of storage, and
better results for higher levels of storage.

5.3 Complexities and timings for scalar
multiplication

In this subsection, we present complexity results and timings
of the Fixed-base scalar multiplication over elliptic curves
recommended by NIST.

5.3.1 Complexity comparison

In the Fixed-base elliptic curve scalarmultiplication case, the
main difference with themodular exponentiation is the negli-
gible cost of the inversion of a group element (i.e., an elliptic
curve point). This allows to half the memory requirements,
by only storing the points corresponding of the positive sign
si in the recoded coefficients. We provide in appendix C the
version of the scalar multiplication algorithm with multi-
plicative splitting with R prime which takes advantage of a
cheap point subtraction.

When computing the complexities, we noticed that the
approach using a multiplicative splitting recoding with R =
m0m1 was never better than the one with R prime. In addi-
tion, the approach with R = m0m1 does not provide a
constant-time computation. That is why we do not consider
the approachwith R = m0m1 in remainder of this subsection.
Specifically, we only deal with constant-time approaches:
Fixed-base Comb, Radix-R and multiplicative splitting with
R prime.

123

130 Journal of Cryptographic Engineering (2019) 9:115–136

Ta
bl
e
10

Im
pl
em

en
ta
tio

n
re
su
lts

fo
r
m
od

ul
ar

ex
po

ne
nt
ia
tio

n
in

te
rm

s
of

cl
oc
k
cy
cl
es

an
d
st
or
ag
e
(k
B
)

Se
cu
ri
ty

le
ve
l

L
ev
el
of

cl
oc
k–
cy
cl
es

Sc
al
ar

m
ul
tip

lic
at
io
n

St
at
e-
of
-t
he
-a
rt
m
et
ho
ds

Pr
op
os
ed

ap
pr
oa
ch

Fi
xe
d-
ba
se

C
om

b
R
ad
ix

R
R

=
m

0
m

1
R
pr
im

e

T
im

e
St
or
ag
e

w
T
im

e
St
or
ag
e

R
T
im

e
St
or
ag
e

(m
0
,
m

1
)

T
im

e
St
or
ag
e

(
R
,
c)

(#
C
C
)

(k
B
)

(#
C
C
)

(k
B
)

(#
C
C
)

(k
B

)
(#
C
C
)

(k
B
)

11
2
bi
ts
(k
ey

22
4
bi
ts
,fi

el
d
20
48

bi
ts
)

22
0,
00
0

22
1,
10
8

10
23
.5

12
22
7,
83
8

82
9

91
21
9,
86
4

58
0

(8
9,
6)

21
7,
10
4

11
91

(2
57
,3

)

20
7,
00
0

21
0,
07
4

20
47
.5

13
20
6,
88
8

13
24

16
3

20
7,
07
2

76
6

(1
27
,7

)
20
6,
81
3

15
53

(3
47
,3

)

14
8,
00
0

14
9,
69
0

65
,5
35

18
14
7,
87
7

72
89

12
23

14
6,
15
6

21
,5
99

(5
41
7,

6)
14
9,
49
0

17
,6
61

(3
71
9,

2)

12
8
bi
ts
(k
ey

25
6
bi
ts
,fi

el
d
30
72

bi
ts
)

50
5,
00
0

52
4,
53
9

15
35

12
50
2,
98
1

14
11

91
50
1,
46
6

89
7

(7
9,
6)

50
9,
58
1

14
20

(3
07
,5

)

45
0,
00
0

44
9,
39
7

61
43

14
44
5,
87
1

22
51

16
3

44
6,
44
4

20
56

(2
11
,6
)

45
8,
93
6

23
72

(3
07
,3

)

35
4,
00
0

35
6,
89
2

98
,3
03

18
35
4,
64
0

64
14

57
1

35
4,
07
1

12
,8
43

(1
72
1,

7)
35
3,
66
2

15
,2
83

(1
69
9,

2)

19
2
bi
ts
(k
ey

38
4
bi
ts
,fi

el
d
76
80

bi
ts
)

4,
44
0,
00

44
,4
25

,9
0

19
18

11
44

,9
21

,9
1

34
30

53
44

,0
95

,8
4

11
34

(2
3,
10

)
44

,9
44

,7
1

21
71

(1
27

,
6)

35
3,
00
0

35
,5
43

,3
9

15
,3
58

14
35

,2
48

,9
6

82
90

16
3

35
,5
14

,3
7

41
64

(1
13

,
10

)
35

,3
46

,2
0

71
00

(4
33

,
5)

27
0,
00
0

27
,3
63

,4
1

24
5,
75
8

18
25

,4
34

,8
0

45
,2
21

12
23

27
,4
33

,9
9

29
,9
61

(1
03
1,
7)

27
,9
53

,6
3

31
,9
15

(1
38
1,
3)

25
6
bi
ts
(k
ey

51
2
bi
ts
,fi

el
d
15
,3
60

bi
ts
)

18
,6
00

,0
0

18
,6
32

,4
29

15
,5
36

13
19

,2
60

,7
31

13
,7
65

91
18

,5
50

,2
38

47
45

(4
1,
10

)
18

,6
83

,5
47

86
53

(2
57

,
7)

15
,0
00

,0
0

14
,8
48

,2
61

12
2,
87
6

16
15

,4
01

,0
02

34
41
8

16
3

14
,8
12

,6
16

22
,1
11

(2
57

,
11

)
15

,5
41

,4
82

27
,8
53

(6
41

,
5)

12
,4
00

,0
0

12
,4
77

,8
16

98
3,
03
6

19
12

,1
93

,2
32

11
90
61

12
23

12
,4
99

,6
00

10
2,
82
0

(1
38
1,
7)

12
,8
02

,9
26

10
1,
88
6

(1
69
9,
3)

Te
st
pe
rf
or
m
ed

on
an

In
te
lX

E
O
N
E
5-
26
50

(I
vy

br
id
ge
),
gc
c
4.
8.
3,

C
E
N
T
O
S
7.
0.
14
06

123

Journal of Cryptographic Engineering (2019) 9:115–136 131

Fig. 2 Performance comparison, Fixed-base modular exponentiation NIST DSA, key size 224, 256, 384 and 512 bits (field size 2048, 3072, 7360
and 15360 bits)

We compare explicit complexities for practical situations,
which are the three elliptic curves standardized by NIST:
P256, P384, P521. One can find in [11] theWeierstrass curve
equations of these three NIST curves which are reviewed in
the appendix. For the arithmetic on these curves, we use the
Jacobian coordinate system, which provides the fastest curve
operations. We use the complexities in terms of operations
in Fp of point addition and doubling for aWeierstrass curves
of [6] to derive the complexity of the considered Fixed-base
scalar multiplication. The complexities of the curve oper-
ations in terms of the number of modular multiplications
(MM) and squarings (MS) are as follows:

Addition: 12MM + 4MS,

Doubling: 4MM + 4MS,

Mixed-Addition: 7MM + 4MS.

The resulting complexities of the considered scalar multi-
plication approaches are reported in Table 11 and Fig. 3
assuming that MS = 0.8MM .

Figure 3 gives the general behavior of the storage for
a given amount of online computation. This figure shows
that, as expected, for small amount of storage the Fixed-base
Comb is always the best approach. For larger complexi-
ties the proposed approach with a prime radix R is the best
choice.

Considering the results in Table 11, one notices that for
the four considered methods, one has a slight difference in
comparison with the modular exponentiation case. Indeed,
for all key sizes and for most of the levels of online com-
putation the proposed approach shows the lowest amount
of storage. This is due to the relative cost of the dou-
bling of point and the mixed and full Jacobian addition of
points:

• Since the doubling is much cheaper than the additions,
this is beneficial to the Fixed-base Comb method and the
proposed approach with R prime. Specifically, Fixed-
base Comb is the best approach for small amount of

123

132 Journal of Cryptographic Engineering (2019) 9:115–136

Table 11 Storage amount comparison for constant-time Fixed-base
scalar multiplication over NIST curves P256, P384, P521

#MM Fixed-base Fixed-base Multiplicative splitting
Comb Radix-R Regular R-prime

NIST curve P256

441 64 kB 162 kB 73 kB

w = 10 R = 59 R = 163;C = 5

405 128 kB 222.5 kB 100 kB

w = 11 R = 89 127; 3
317 1024 kB 566 kB 334 kB

w = 14 R = 283 571; 3
264 8192 kB 1522.5 kB 1142 kB

w = 17 R = 937 2381; 3
211 65,536 kB 6235 kB 5581 kB

w = 20 R = 4751 8929; 2
176 10,485,76 kB 22192 kB 22156 kB

w = 24 R = 19727 66467; 3
NIST curve P384

669 96 kB 365 kB 127 kB

w = 12 R = 59 R = 149;C = 6

475 1536 kB 1352.5 kB 661 kB

w = 14 R = 307 491; 3
370 24,576 kB 5734 kB 2901 kB

w = 18 R = 1699 2729; 3
299 393,216 kB 26,693 kB 17,643 kB

w = 22 R = 9491 13,441; 2
264 31,457,28 kB 71,250 kB 51,532 kB

w = 25 R = 29,231 43,973; 2
NIST curve P521

915 144 kB 678 kB 234 kB

w = 10 R = 53 R = 157;C = 7

651 2304 kB 2547 kB 1146 kB

w = 14 R = 283 739; 5
493 36,864 kB 12,750.5 kB 6733 kB

w = 18 R = 1889 3191; 3
405 589,824 kB 47,627 kB 35,915 kB

w = 22 R = 8467 13,441; 2
352 47,185,92 kB 153,675 kB 133,905 kB

w = 25 R = 31,223 57,709; 2

storage, that is up to several tens of kilobytes, for the
three curves P256, P384 and P521. For larger amounts of
storage, the other methods remain more efficient.

• The proposed approach which uses a multiplicative split-
ting recoding with a prime radix R is the best for
the following levels of online computations: for P256
and #MM ∈ {176, ..., 405}, for P384 and #MM ∈
{264, ..., 475} and forP521and#MM ∈∈ {352, ..., 651}.

Fig. 3 Complexity comparison for constant-time Fixed-base scalar
multiplication on elliptic Weierstrass curves P256, P384 and P521

5.3.2 Implementation results

We now present implementation strategies and results for
the constant-time Fixed-base scalarmultiplication overNIST
prime curves P256, P384, P521.

Implementation strategiesThe implementation strategies and
test processes are the same as the ones presented in Sect. 5.2.1
formodular exponentiation.We reviewmost of themandpro-
vide the specific strategies adapted to the considered elliptic
curves (Table 12).

• Curve operationsWeuse the curve operations in Jacobian
coordinate system, which provides the lowest com-

123

Journal of Cryptographic Engineering (2019) 9:115–136 133

Table 12 Implementation results for Fixed-base scalar multiplication for constant-time algorithms

Security level Level of
Clock cycles

Scalar multiplication

State-of-the-art methods Proposed approach

Fixed-base Comb radix R R-splitting rec.

Time Storage w Time Storage R Time Storage (R, c)
(#CC) (kB) (#CC) (kB) (#CC) (kB)

128 bits (NIST curve P256) 370,000 378,184 64 12 376,370 74 19 366,057 37 (71,5)

276,000 275,230 1024 14 276,917 231 89 276,660 170 (257,3)

205,000 207,456 32,768 19 206,777 1120 641 203,414 1012 (1699,2)

192 bits (NIST curve P384) 575,000 575,854 192 11 571,975 283 41 583,590 86 (79,5)

460,000 461,271 1536 14 470,537 547 97 451,846 354 (233,3)

375,000 376,114 24,576 18 372,952 1861 433 378,733 1214 (997,3)

349,000 359,578 49,151 19 360,786 2069 491 354,919 1911 (1699,3)

256 bits (NIST curve P521) 450,000 446,633 288 11 451,280 572 41 449,550 146 (97,7)

364,000 363,615 2304 14 362,166 1621 157 367,299 726 (433,5)

289,000 289,085 73,728 19 288,394 7217 937 290,146 6243 (2897,3)

Test performed on an Intel XEON E5-2650 (Ivy bridge), gcc 4.8.3, CENTOS 7.0.1406

Table 13 Recoding tests, for
sizes 256, 384 and 521 bits:
worst case computation time in
clock cycles

Recoding

Scalar size 256 bits #CC 384 bits #CC 521 bits #CC

Radix R conversion 1200 1640 2250

R-splitting conversion 14,400 21,600 27,500

plexities for the considered NIST curves. The doubling
formula is from [1], the mixed addition is from [14] and
the full-addition is from [6].

• Field operationsWe use the low level functions perform-
ing multi-precision addition, subtraction, multiplication
and squaring of the GMP library as building blocks of
our codes (GMP 6.0.0, seeGMP library [20]). Accord-
ing to the GMP documentation, the classical schoolbook
algorithm is used for small sizes. For the inversion,weuse
the binary extended Euclidean algorithm, with some spe-
cific assembly code portion,which is presented byBrown
et al. in [4]. The field reductions use also the algorithms
presented by Brown et al. [4].

• Radix R conversion and recoding The algorithm and the
code is the same as the one previously used for modular
exponentiation case.However, the size of the scalar in this
case is the same as the one of the field elements represent-
ing the elliptic curve point coordinates. The computation
time of the recoding is no more negligible in this case, as
shown by the tests of the conversion alone, and the mul-
tiplicative splitting recoding computation (including the
conversion). We provide in Table 13 the results of these
tests. One sees that the impact of the recoding is at most

8% of the scalar multiplication computation timewithout
recoding, in the worst cases. The most important part of
the recoding time is the computation of themultiplicative
splittings of the scalar digits, with the repeated use of the
Truncated EEA.
Due to the relative cost of the recoding in the multi-
plicative splitting with R prime, and to the fact that
the recoding itself is not regular as implemented, we
provide timings without the recoding, considering that
in ECDSA, one can directly generate a random scalar
k in a multiplicative splitting form and then process
the digital signature (this strategy was proposed in
[5] to avoid costly scalar recoding in double base
representation).

• Test processing The test processing is the same as the
one used for the modular exponentiation. This involves
a few hundred of datasets, which are random scalars and
a Fixed-base with precomputed data. To get the tim-
ings, we perform 2000 times the scalar multiplication
and keep the minimal number of clock cycles. This is
meant to avoid the cold-cache effect and system inter-
ruptions. The final timings are the average of the dataset
timings.

123

134 Journal of Cryptographic Engineering (2019) 9:115–136

Test results and comparison The algorithms were coded in
C, compiled with gcc 4.8.3. The test were performed on
a platform which has the following characteristics: an Intel
XEON E5-2650 (Ivy bridge), a RAM of 12.6 GBytes and a
CENTOS 7.0.1406 operating system.

In Table 12, we report some of the most significant results
obtained for the three following approaches: Fixed-base
Comb, Fixed-base radix-R and the one based on multiplica-
tive splitting recoding with a prime radix R. These results
show that, except in the last case (P521 and 290,000 clock
cycles), our approach provides the smallest storage amount
for each considered level of clock cycles. This is consistent
with the complexity evaluation shown in Table 11 and Fig. 3.
Specifically, for a fixed amount of online computation the
proposed approach reduce by roughly 50% the amount of
storage.

6 Conclusion

In this paper, we considered Fixed-base modular exponentia-
tion and elliptic curve scalarmultiplication. These operations
are intensively used in NIST standards for digital signature
algorithm. In particular, they are used for remote authenti-
cation of web server. We proposed algorithms for modular
exponentiation and scalar multiplication based on a multi-
plicative splitting recoding of the digits of the exponent or
scalar. The multiplicative splitting provides more freedom in
the distribution of the computational cost into storage and
online computation. We evaluated the complexities of the
proposed approaches for the security levels recommended
by the NIST. We could show that, for a fixed level of compu-
tation, the proposed approaches reduce the amount of stored
data in most of the considered practical cases. Specifically
the storage requirement is reduced by at least 50% in most
cases and up to 3 times for the largest NIST standardized
key sizes. These complexity results were confirmed by the
implementation tests done on an Intel XEON E5-2650.

A: NIST recommended elliptic curves

We review here the NIST recommended curves (see [11])
used in our implementations. Over a finite field Fp, one has:

– Equation of Weierstrass curve:

y2 = x3 + ax + b

with a = −3 and b ∈ Fp.

The NIST curves used :

– P256:
One has p = 2256 − 2224 + 2192 + 296 − 1, that is
p = 0xffffffff 00000001 00000000
00000000 00000000 ffffffff ffffffff
ffffffff
and
b = 0x5ac635d8 aa3a93e7 b3ebbd55
769886bc 651d06b0 cc53b0f6 3bce3c3e
27d2604b
Curve subgroup generator:
XG = 0x6b17d1f2 e12c4247 f8bce6e5
63a440f2 77037d81 2deb33a0 f4a13945
d898c296
YG = 0x4fe342e2 fe1a7f9b 8ee7eb4a
7c0f9e16 2bce3357 6b315ece cbb64068
37bf51f5

– P384:
One has p = 2384 − 2128 − 296 + 232 − 1, that is
p = 0xffffffff ffffffff ffffffff
ffffffff ffffffff ffffffff ffffffff
fffffffe ffffffff 00000000 00000000
ffffffff
and
b = 0xb3312fa7 e23ee7e4 988e056b
e3f82d19 181d9c6e fe814112 0314088f
5013875a c656398d 8a2ed19d 2a85c8ed
d3ec2aef

Curve subgroup generator:
XG = 0xaa87ca22 be8b0537 8eb1c71e
f320ad74 6e1d3b62 8ba79b98 59f741e0
82542a38 5502f25d bf55296c 3a545e38
72760ab7
YG = 0x3617de4a 96262c6f 5d9e98bf
9292dc29 f8f41dbd 289a147c e9da3113
b5f0b8c0 0a60b1ce 1d7e819d 7a431d7c
90ea0e5f

– P521:
One has p = 2521 − 1, that is
p = 0x01ff ffffffff ffffffff ffffffff
ffffffff ffffffff ffffffff ffffffff
ffffffff ffffffff ffffffff ffffffff
ffffffff ffffffff ffffffff ffffffff
ffffffff
and
b = 0x0051 953eb961 8e1c9a1f
929a21a0 b68540ee a2da725b 99b315f3
b8b48991 8ef109e1 56193951 ec7e937b
1652c0bd 3bb1bf07 3573df88 3d2c34f1
ef451fd4 6b503f00
Curve subgroup generator:
XG = 0x00c6 858e06b7 0404e9cd

123

Journal of Cryptographic Engineering (2019) 9:115–136 135

9e3ecb66 2395b442 9c648139 053fb521
f828af60 6b4d3dba a14b5e77 efe75928
fe1dc127 a2ffa8de 3348b3c1 856a429b
f97e7e31 c2e5bd66
YG = 0x0118 39296a78 9a3bc004
5c8a5fb4 2c7d1bd9 98f54449 579b4468
17afbd17 273e662c 97ee7299 5ef42640
c550b901 3fad0761 353c7086 a272c240
88be9476 9fd16650

B: Proof of Lemma 1

Before proceeding to the proof of Lemma 1 we need to recall
the following lemma which states some classical properties
of the Extended Euclidean Algorithm. A proof of this lemma
can be found in [18].

Lemma 2 Let vi and ri be the two sequences of coefficients
computed in Algorithm 7. They satisfy the following proper-
ties:

(i) (−1)i−1vi ≥ 1 for all i ≥ 1.
(ii) vi+1ri − vi ri = (−1)i R for all i ≥ 1.

The proof is a direct consequence of Lemma 2: statements
i) and i i) imply that for i ≥ 1

ri−1|vi | + ri |vi−1| = R. (13)

So if ric−1 is the last remainder such that ric−1 ≥ c then we
have ric < c. Then taking i = ic in (13) leads to ric−1|vic | +
ric |vic−1| = R then one gets |vic | ≤ R/ric−1 ≤ R/c.

C: Fixed-base scalar multiplication based on
amultiplicative splitting recodingwith prime
R

We consider an elliptic curve E(Fp) a point P on the
curve and a scalar k. The scalar multiplication based on a
multiplicative splitting recoding with prime R is shown in
Algorithm 10. Table 14 gives the complexity evaluation.

Algorithm 10 Fixed-base scalar multiplication based on
multiplicative splitting recoding with prime radix R

Require: A prime integer R ,a scalar k = ∑�−1
i=0 ki R

i with =
{(si , k(0)

i , k(1)
i), 0 ≤ i < �, (k′

�)} its multiplicative splitting recoding
using W -bit split c and a fixed point P ∈ E(Fp).

Ensure: X = k · P
1: Precomputation.

Store T [i][j] ← (
∣
∣ j−1

∣
∣
R · Ri) · P for i = 0, . . . , � − 1, j =

1, . . . , �R/c	 and T [�][1] ← R� · P and T [i][0] ← O for i =
0, . . . , � − 1.

2: X ← O, Y j ← O for 1 ≤ j ≤ c
3: for i from 0 to � − 1 do
4: Y

k(0)
i

← Y
k(0)
i

+ (si) · T [i][k(1)
i]

5: Y|k′
�| ← Y|k′

�| + (sign(k′
�)) · T [�][1]

6: for i from W downto 0 do
7: X ← 2 × X
8: for j from c − 1 downto 1 do
9: if bit i of j is non zero then
10: X ← X + Y j
11: return (X)

Table 14 Complexity evaluation of scalar multiplication based onmul-
tiplicative splitting recoding with R prime

Complexity

Step Operation Cost

�× Step 3 Y
k(0)
i

+ si ·
T [i][k(1)

i]
1Mixed Add

1× Step 5 Y|k′
�| +

sign(k′
�) ·

T [�][1]

1Mixed Add

(W − 1)× Step 7 X ← 2 × X 1Doubling

(H − 1)× Step 10 X ← X + Y j 1Addition

TOTAL (� + 1) × Mixed Add

+(W − 1) × Doubling + (H − 1) ×
Addition

Total storage � × (�R/c	 + 1) + 1 points on E(Fp)

References

1. Bernstein, D.J., Lange, T.: Faster addition and doubling on elliptic
curves. In: Kurosawa, K. (ed.) Advances in Cryptology – ASI-
ACRYPT 2007, 13th International Conference on the Theory and
Application of Cryptology and Information Security, Kuching,
Malaysia, December 2–6, 2007, Proceedings. Lecture Notes in
Computer Science, vol. 4833, pp 29–50, Springer (2007). https://
doi.org/10.1007/978-3-540-76900-2

123

https://doi.org/10.1007/978-3-540-76900-2
https://doi.org/10.1007/978-3-540-76900-2

136 Journal of Cryptographic Engineering (2019) 9:115–136

2. Barker, E., Barker, W., Burr, W., Polk, W., Smid, M.: Recommen-
dation for Key Management. In: Computer Security, vol. Part 1,
Rev 3, NIST, pp 62–64 (2012). https://doi.org/10.6028/NIST.SP.
800-57p1r3

3. Bosselaers, A., Govaerts, R., Vandewalle, J.: Comparison of three
modular reduction functions. In: CRYPTO ’93, pp. 175–186 (1993)

4. Brown M., Hankerson D., López J., Menezes A.: Software imple-
mentation of the NIST elliptic curves over prime fields. In:
Naccache D. (ed.) Topics in Cryptology—CT-RSA 2001. CT-RSA
2001. Lecture Notes in Computer Science, vol. 2020. Springer,
Berlin, Heidelberg (2001). https://doi.org/10.1007/3-540-45353-
9_19

5. Christophe, D.: On the enumeration of double-base chains with
applications to elliptic curve cryptography. In: Advances in
Cryptology—ASIACRYPT 2014, vol. 8873 of LNCS, pp. 297–
316. Springer (2014)

6. Explicit Formula Database (2014). http://www.hyperelliptic.org/
EFD/

7. Gordon, D.M.: A survey of fast exponentiation methods. J. Algo-
rithms 27(1), 129–146 (1998). https://doi.org/10.1006/jagm.1997.
0913

8. Hankerson, D., Hernandez, J., Menezes, A.: Software implemen-
tation of elliptic curve cryptography over binary fields. In: CHES
2000, vol. 1965 of LNCS, pp. 1–24. Springer (2000)

9. Hedabou, M., Pinel, P., Bénéteau, L.: A comb method to render
ECC resistant against Side Channel Attacks. IACR Cryptology
ePrint Archive 2004, 342 (2004). https://eprint.iacr.org/2004/34

10. Joye, M., Tunstall, M.: Exponent recoding and regular exponenti-
ation algorithms. In: Proceedings of Africacrypt 2009, LNCS, pp.
334–349. Springer (2009)

11. Kerry, C., Gallagher, P.: Digital signature standard (DSS) FIPS
PUB, pp. 186–194. Gaithersburg, MD (2013). https://doi.org/10.
6028/NIST.FIPS.186-4

12. Koblitz, N.: Elliptic curve cryptosystems. Math. Comput. 48(177),
203–209 (1987)

13. Lim, C.H., Lee, P.J.: More flexible exponentiation with precom-
putation. In: Desmedt, Y. (ed.) Advances in Cryptology–CRYPTO
’94, 14th Annual International Cryptology Conference, Santa Bar-
bara, California, USA, August 21–25, 1994, Proceedings. Lecture
Notes in Computer Science„ vol. 839, pp. 95–107. Springer (1994).
https://doi.org/10.1007/3-540-48658-5_11

14. Menezes, A., Hankerson, D., Vanstone, S.: Guide to Elliptic Curve
Cryptography. Springer, Berlin (2004). https://www.springer.com/
fr/book/9780387952734

15. Miller V.S. (1986) Use of Elliptic Curves in Cryptography. In:
Williams H.C. (eds.) Advances in Cryptology—CRYPTO ’85 Pro-
ceedings. CRYPTO 1985. Lecture Notes in Computer Science, vol
218. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-
39799-X_31

16. Mohamed, N.A.F., Hashim, M.H.A., Hutter, M.: Improved Fixed-
base combmethod for fast scalarmultiplication. In:Mitrokotsa, A.,
Vaudenay, S. (eds.) Progress in Cryptology–AFRICACRYPT 2012
- 5th International Conference on Cryptology in Africa, Ifrance,
Morocco, July 10–12, 2012. Proceedings. Lecture Notes in Com-
puter Science, vol. 7374, pp. 342–359. Springer (2012). https://doi.
org/10.1007/978-3-642-31410-0

17. Montgomery, P.L.: Modular multiplication without trial division.
Math. Comput. 44(170), 519–521 (1985). https://doi.org/10.1090/
S0025-5718-1985-0777282-X

18. Negre, C., Plantard, T.: Efficient regular modular exponentiation
using multiplicative half-size splitting. J. Cryptogr. Eng. 7, 245–
253 (2017)

19. Plantard, T., Robert, J.-M.: Enhanced digital signature using RNS
digit exponent representation. In: Duquesne, S., Petkova-Nikova,
S. (eds.) Arithmetic of Finite Fields – 6th International Workshop,
WAIFI 2016, Ghent, Belgium, July 13–15, 2016, Revised Selected
Papers. Lecture Notes in Computer Science, vol. 10064, pp. 177–
192 (2016). https://doi.org/10.1007/978-3-319-55227-9

20. The GNU Multiple Precision Arithmetic Library (GMP). http://
gmplib.org/

21. Tsaur, W.-J., Chou, C.-H.: Efficient algorithms for speeding up the
computations of elliptic curve cryptosystems.Appl.Math.Comput.
168(2), 1045–1064 (2005)

123

https://doi.org/10.6028/NIST.SP.800-57p1r3
https://doi.org/10.6028/NIST.SP.800-57p1r3
https://doi.org/10.1007/3-540-45353-9_19
https://doi.org/10.1007/3-540-45353-9_19
http://www.hyperelliptic.org/EFD/
http://www.hyperelliptic.org/EFD/
https://doi.org/10.1006/jagm.1997.0913
https://doi.org/10.1006/jagm.1997.0913
https://eprint.iacr.org/2004/34
https://doi.org/10.6028/NIST.FIPS.186-4
https://doi.org/10.6028/NIST.FIPS.186-4
https://doi.org/10.1007/3-540-48658-5_11
https://www.springer.com/fr/book/9780387952734
https://www.springer.com/fr/book/9780387952734
https://doi.org/10.1007/3-540-39799-X_31
https://doi.org/10.1007/3-540-39799-X_31
https://doi.org/10.1007/978-3-642-31410-0
https://doi.org/10.1007/978-3-642-31410-0
https://doi.org/10.1090/S0025-5718-1985-0777282-X
https://doi.org/10.1090/S0025-5718-1985-0777282-X
https://doi.org/10.1007/978-3-319-55227-9
http://gmplib.org/
http://gmplib.org/

	Efficient Fixed-base exponentiation and scalar multiplication based on a multiplicative splitting exponent recoding
	Abstract
	1 Introduction
	2 State of the art of Fixed-base exponentiation
	3 Fixed-base exponentiation with multiplicative splitting with R=m0m1
	3.1 Digit multiplicative splitting for radix R=m0m1
	3.2 Exponentiation with a multiplicative splitting recoding in radix R=m0m1
	3.3 Complexity

	4 Fixed-base exponentiation with multiplicative splitting with R prime
	4.1 Digit multiplicative splitting for prime radix R
	4.1.1 Multiplicative splitting modulo a prime R
	4.1.2 Recoding the exponent

	4.2 Exponentiation algorithm with multiplicative splitting recoding in a prime radix R
	4.3 Complexity

	5 Complexity and experimentation comparison
	5.1 Complexity comparison
	5.2 Complexities and timings for modular exponentiation
	5.2.1 Implementation results

	5.3 Complexities and timings for scalar multiplication
	5.3.1 Complexity comparison
	5.3.2 Implementation results

	6 Conclusion
	A: NIST recommended elliptic curves
	B: Proof of Lemma 1
	C: Fixed-base scalar multiplication based on a multiplicative splitting recoding with prime R
	References

