
J Cryptogr Eng (2017) 7:245–253
DOI 10.1007/s13389-016-0134-5

SHORT COMMUNICATION

Efficient regular modular exponentiation using multiplicative
half-size splitting

Christophe Negre1,2 · Thomas Plantard3,4

Received: 14 August 2015 / Accepted: 23 June 2016 / Published online: 13 July 2016
© Springer-Verlag Berlin Heidelberg 2016

Abstract In this paper, we consider efficient RSA modular
exponentiations xK mod N which are regular and con-
stant time. We first review the multiplicative splitting of an
integer x modulo N into two half-size integers. We then
take advantage of this splitting to modify the square-and-
multiply exponentiation as a regular sequence of squarings
always followed by a multiplication by a half-size inte-
ger. The proposed method requires around 16% less word
operations compared to Montgomery-ladder, square-always
and square-and-multiply-always exponentiations. These the-
oretical results are validated by our implementation results
which show an improvement by more than 12% compared
approaches which are both regular and constant time.

Keywords RSA · Regular exponentiation · Constant time
exponentiation · Multiplicative splitting

1 Introduction

Currently, RSA [1] is themost used public key cryptosystem.
The main operation in RSA protocols is an exponentiation

B Christophe Negre
christophe.negre@univ-perp.fr

Thomas Plantard
thomaspl@uow.edu.au

1 DALI, Universite de Perpignan, Perpignan, France

2 LIRMM, Université de Montpellier and National Center for
Scientific Research (CNRS), 161 Rue Ada, 34090
Montpellier, France

3 Centre for Computer and Information Security Research
(CCISR), University of Wollongong, Wollongong, Australia

4 School of Computer Science and Software Engineering
(SCSSE), University of Wollongong, Wollongong, Australia

xK mod N where N = pq with p and q prime. The private
data are the two prime factors of N and the private exponent
K used to decrypt or sign a message. In order to insure a
sufficient security level, N and K are chosen large enough
to render the factorization of N infeasible: they are typically
2048-bit integers. The basic approach to efficiently perform
the modular exponentiation is the square-and-multiply algo-
rithm which scans the bits ki of the exponent K and perform
a sequence of squarings followed by a multiplication when
ki is equal to one.

When the cryptographic computations are performed on
an embedded device, an adversary can monitor power con-
sumption [2] or electronic emanation [3]. If the power or
electromagnetic traces of a multiplication and a squaring
differ sufficiently, an adversary can read the sequence of
squarings and multiplications directly on a single power or
electromagnetic trace of a modular exponentiation. In the lit-
erature these attacks are referred to as simple power analysis
(SPA) and simple electromagnetic analysis (SEMA), respec-
tively.

Consequently, modular exponentiations have to be imple-
mented in order to prevent such side channel analysis.
The first direct approach which prevents this attack is the
multiply-always exponentiation which performs all squar-
ings as multiplications. But, unfortunately, it has been shown
in [4] that this multiply-always strategy is still weak against
an SPA or SEMA: an operation r × r and r × r ′ have dif-
ferent output Hamming weight. The authors in [5] proposed
a square-always approach which performs a multiplication
as the combination of two squarings. They then noticed
that in this case the attack of [4] does not apply. But both
multiply-always and square-always approaches still leak
some information about the exponent: the computation time
is correlated with the Hamming weight of the exponent,
which is then leaked out.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s13389-016-0134-5&domain=pdf
http://orcid.org/0000-0002-1222-7662

246 J Cryptogr Eng (2017) 7:245–253

Table 1 Complexity in terms of word operations per iteration of loop body for a modular exponentiation

Algorithm Regular Constant time Complexity per loop body for t-word integers

Word add. # Word mult.

Square-and-multiply ✗ ✗ 5t2 + O(t) 5
2 t

2 + O(t)

Multiply-always [5] � ✗ 6t2 + O(t) 3t2 + O(t)

Square-always [5] � ✗ 6t2 + O(t) 3t2 + O(t)

Square-and-multiply-always [6] � � 7t2 + O(t) 7
2 t

2 + O(t)

Montgomery-ladder [7] � � 7t2 + O(t) 7
2 t

2 + O(t)

Montgomery-ladder with CM [9] � � 6t2 + O(t) 3t2 + O(t)

Proposed approach � � 5t2 + O(t) 5
2 t

2 + O(t)

A prerequisite to be SPA resistant is then to be regu-
lar and constant time. A first method which satisfies both
of these properties is the square-and-multiply-always expo-
nentiation proposed by Coron [6]. Its principle is to always
perform amultiplication after a squaring, i.e., if the bit ki = 0
then a dummy multiplication is performed. Another popular
strategy is the Montgomery-ladder [7] which also performs
an exponentiation through a regular sequence of squarings
always followed by a multiplication.

Wepresent in this paper an alternative approach for regular
and constant time exponentiation xK mod N . Our method
uses a multiplicative splitting of x into two halves. We mod-
ify the square-and-multiply algorithm as a regular sequence
of squarings always followed by a multiplication with a
half-size integer. The half-size multiplications and squarings
modulo N are computedwith themethod ofMontgomery [8],
and we then also provide a version of the proposed exponen-
tiation with Montgomery modular multiplications adapted
to the size of the operands. We provide a complexity analy-
sis when modular operations are computed with word-level
algorithm: computer words are w-bit long and considered
integers modulo N have a size of t computer words. The
complexity of the proposed approach is given in Table 1
which contains the costs of the loop bodies of the consid-
ered exponentiation algorithms. We notice that the proposed
approach always reaches the best complexity while having
the higher security level compared to best known methods of
the literature.

The remainder of the paper is organized as follows. Sec-
tion2 summarizes state of the artmethods for regularmodular
exponentiation. In Sect. 2.1 we review techniques to com-
pute a multiplicative splitting of an integer modulo N . In
Sect. 3 we present a new modular exponentiation algorithm
which uses this splitting to render regular the square-and-
multiply exponentiation. In Sect. 4, we present a version
of the proposed exponentiation which incorporates Mont-
gomery modular multiplications. Finally, in Sect. 5, we
evaluate the complexity of the proposed algorithm and pro-
vide implementation results.

2 Review of regular modular exponentiation

We review in this section several methods for performing an
exponentiation xK mod N . The simplest and most popular
method is the square-and-multiply exponentiation [10]. The
bits of the exponent K are scanned from left to right, for each
bit a squaring is performed and is followed by a multiplica-
tion by x if the bit is equal to 1. This method is detailed in
Algorithm 1.

Algorithm 1 Square-and-multiply
Require: x ∈ {0, . . . , N − 1} and K = (k�−1, . . . , k0)2
1: r ← 1
2: for i from � − 1 downto 0 do
3: r ← r2 mod N
4: if ki = 1 then
5: r ← r × x mod N
6: end if
7: end for
8: return r

The sequence of squarings and multiplications in the
square-and-multiply method has some irregularities due to
the irregular sequence of bits ki equal to 1. This can be
used to mount a side channel attack by monitoring the power
consumption or the electromagnetic emanation of the circuit
performing the computations. Indeed, if the monitored sig-
nal of a multiplication and a squaring have a different shape,
then we can directly read on the power trace the sequence of
squarings and multiplications. If a trace of a multiplication
appears between two subsequent squarings, then we deduce
that the corresponding bit is 1, otherwise it is 0.

Thismeans that a secure implementation ofmodular expo-
nentiation must be computed through a regular sequence of
squarings and multiplications uncorrelated with the key bits.
In the literature the following strategies were proposed to
prevent SPA:

• Multiply-always [5]. This approach performs all the
squarings of the square-and-multiply exponentiation as

123

J Cryptogr Eng (2017) 7:245–253 247

multiplications. This leads to a sequence of 3�
2 multipli-

cations on average. Unfortunately, this multiply-always
approach can be threatened by the attack of [4]: this attack
differentiates a power trace of a multiplication r × r (i.e.
a hidden squaring) by a multiplication r × x with x �= r
based on a difference of the Hamming weight of the out-
put bits.

• Square-always [5]. This approach is an improvement of
the Multiply-always and prevents the attack of [4]. The
authors in [5] use the fact that a multiplication can be
performed with two squarings:

r × x = (r + x)2 − (r − x)2

4
. (1)

They re-express all the multiplications of the square-
and-multiply exponentiation in order to get a square-
always exponentiation. This square-always exponentia-
tion requires 2� squarings in average. Unfortunately, both
multiply-always and square-always approaches suffer
from a weakness: they do not process the exponentia-
tion in a constant time, and then the Hamming weight of
the key can be leaked out by the computation time.

• Square-and-multiply-always [6]. The first method which
is regular and constant time is the square-and-multiply-
always exponentiationproposedbyCoron in [6]. The idea
of Coron is to perform a dummy multiplication when we
read a bit that is equal to 0. This results in a power trace of
a regular sequence of traces of squarings always followed
by a trace of a multiplication.

• Montgomery-ladder [7]. The square-and-multiply-always
exponentiation is effective to counteract SPA and SEMA
along with timing attacks. But it is still under the threat
of another kind of side channel attack: the safe error fault
injection attack [11,12]. This problem was fixed by the
Montgomery-ladder approach for modular exponentia-
tion [7]. The Montgomery-ladder is regular and constant
time and any error injected during the computation will
affect the final results, yielding a natural resilience to safe
error fault injection attack.

Both square-and-multiply-always and Montgomery-
ladder exponentiations have a complexity of � squarings and
� multiplications for an �-bit exponent K .

Remark 1 In this paper we focus on methods that require
at most two intermediate variables. But the reader might be
aware that there are some alternative methods in the litera-
ture ensuring a regularity of the operationswhile reducing the
number of multiplications. These methods use a larger num-
ber of intermediate variable. This is for example the case of
the methods reported in [13] which use a regular windowing
recoding of the exponent K .

2.1 Multiplicative splitting of an integer x modulo N

We consider an RSA modulus N and an integer x ∈ [0, N]
that corresponds to the message we want to decrypt or sign
by computing xK mod N . We will show in this section that
x can be split into two parts as follows

x = x−1
0 × x1 mod N with |x0|, |x1| ≤ �N 1/2�. (2)

The idea to split multiplicatively is not new, we can find it in
a number of references of the literature: for example in [14]
the authors use it to randomize an RSA exponent.

In order to get a multiplicative splitting of x modulo N ,
we use the method presented in [15] which consists in a
partial execution of the extended Euclidean algorithm. The
Euclidean algorithm computes the greatest common divisor
of x and N through a sequence of reductions: we start with
r0 = N , r1 = x and perform the following iteration

ri+1 = ri−1 mod ri for i = 1, 2, . . . (3)

The sequence r0, r1, . . . , ri is a decreasing sequence of posi-
tive integers and the last non zero ri satisfies ri = gcd(x, N).

The extended Euclidean algorithm computes, in addition
to gcd(x, N), two integers a, b satisfying

ax + bN = gcd(x, N), (4)

which is called aBezout identity. In order to compute a and b,
the extended Euclidean algorithm maintains two sequences
ai and bi satisfying

ai x + bi N = ri (5)

where the integers ri , i = 0, 1, . . . , are the consecutive
remainders in (3) computed in the Euclidean algorithm. The
integers ai , bi , i = 1, 2, . . . , are computed as follows

qi = 	ri−1/ri
 ,

ri+1 = ri−1 − qiri ,

ai+1 = ai−1 − qiai ,

bi+1 = bi−1 − qibi ,

(6)

starting from r0 = N , r1 = x and a0 = 0, a1 = 1 and b0 =
1, b1 = 0. Then,when ri is equal to gcd(x, N) the identity (5)
is a valid Bezout relation (4). For a detailed presentation of
this method the reader may refer to [16].

In order to obtain amultiplicative splitting of x , the authors
in [15] stop the extended Euclidean algorithm when ri ∼=
N 1/2 and ai ∼= N 1/2: indeed, due to (5), for any i we have
x = a−1

i ri mod N . This method computing the splitting of
an integer x is reviewed in Algorithm 2.

123

248 J Cryptogr Eng (2017) 7:245–253

Algorithm 2 Multiplicative splitting modulo N [15]
Require: 0 ≤ x < N < c2 ∈ N with gcd(x, N) < c.
Ensure: x0 and x1 such that x = x−1

0 x1 mod N and |x0|, |x1| < c.
1: a0 ← 0; a1 ← 1; r0 ← N ; r1 ← x, i ← 1
2: while |ri | ≥ c do
3: qi ← 	ri−1/ri

4: ri+1 ← ri−1 − qi ri
5: ai+1 ← ai−1 − qi ai
6: i ← i + 1
7: end while
8: return ai , ri

In order to prove the correctness of Algorithm 2, we need
to recall some properties of the extended Euclidean algo-
rithm. These properties are well known, but, since we could
not find references presenting them we recall them for the
sake of completeness and readability.

Lemma 1 Let ai and ri be the two sequences of coefficients
computed in Algorithm 2. They satisfy the following proper-
ties:

(i) (−1)i−1ai ≥ 1 for all i ≥ 1.
(ii) ai+1ri − airi = (−1)i N for all i ≥ 1.

The proof of Lemma 1 is reviewed in the Appendix.
The following lemma asserts that Algorithm 2 outputs a

pair aic and ric which satisfy |aic |, |ric | < c.

Lemma 2 Let c ∈ N such that c > N 1/2 and let
a0, a1, . . . , aic and r0, r1, . . . , ric be the sequences computed
in Algorithm 2. Then Algorithm 2 correctly outputs a pair
aic , ric such that

x = a−1
ic

× ric mod N with |aic | < c and |ric | < c.

Proof The proof is a direct consequence of Lemma 1: state-
ments (i) and (i i) imply that for i ≥ 1

ri−1|ai | + ri |ai−1| = N . (7)

So if ric−1 is the last remainder such that ric−1 ≥ c >
√
N

then we have ric < c. Then taking i = ic in (7) we have
ric−1|aic | + ric |aic−1| = N then one must have |aic | ≤
N/ric−1 ≤ N/c < c. ��

A direct consequence of Lemma 2 is the following. If
N 1/2 is not an integer and if Algorithm 2 is executed with
c = �N 1/2� then the multiplicative splitting aic , ric output
by the algorithm satisfies

|aic | < �N 1/2� and |ric | < �N 1/2�.

In other words, it is a half-size multiplicative splitting.

Complexity. For the sake of simplicity, we will only give an
upper boundon the cost of themultiplicative splitting. Specif-
ically, since computing a multiplicative splitting consists in a
partial executionof the extendedEuclidean algorithm,wecan

bound its cost above with an upper bound of the complexity
of the extended Euclidean algorithm. We use the following
lemma inspired from [16].

Lemma 3 (Complexity of the extended Euclidean algo-
rithm) The extended Euclidean algorithm (i.e. Algorithm 2
with c = 1), with two positive integers x ≤ N of w-bit word
length t as input, requires at most 4wt2 word additions.

Proof We will consider a modified version of Algorithm 2:
we assume that the quotients qi are of the form qi = 2αi . In
other words, we expand the Euclidean division through sev-
eral shift and subtraction operations. The cost of thismodified
algorithm is equal to

(number of iterations) × (cost of one loop body)

We have:

• Cost of one loop body. If we assume that the integers ai
and ri in Algorithm 2 are stored on t words, each loop
body requires 2t word subtractions.

• Number of iterations. At each iteration we remove the
most significant bit of ri or ri−1 by at least one bit. This
reduces the bit length �log2(ri)� + �log2(ri−1)� by one.
This implies that the number of iterations before we get
ri = 0 is at most �log2(x)� + �log2(N)� ≤ 2tw.

At the end the total number of operations is at most 2tw ×
2t = 4t2w word subtractions. ��

3 Regular exponentiation with half-size
multiplicative splitting

Given a multiplicative splitting (2) of x into two half-size
integers, we can modify the square-and-multiply method in
order to distribute a full multiplication by x to one half-size
multiplication by x0 when ki = 0 and one half-size multi-
plication by x1 when ki = 1. This approach is depicted in
Algorithm 3. This algorithm reaches our goal since it is regu-
lar: each iteration of the loop body is a squaring followed by
a half-size multiplication. It is also robust against safe error
fault injection attack: each error in one half-size multiplica-
tion will affect the final result.

Algorithm 3Regular exponentiation with half-size multipli-
cations
Require: x ∈ {0, . . . , N − 1} and K = (k�−1, . . . , k0)2
Ensure: r = xk mod N
1: Split. x = x−1

0 × x1 mod N with x0, x1 ∼= N 1/2.
2: r ← x−1

0
3: for i from � − 1 downto 0 do
4: temp ← ki x1 + (1 − ki)x0
5: r ← r2 × temp mod N
6: end for
7: r ← r × x0 mod N
8: return r

123

J Cryptogr Eng (2017) 7:245–253 249

The following lemma establishes the validity of Algo-
rithm 3, i.e., that it correctly computes r = xK mod N .

Lemma 4 Let K = (k�−1, . . . , k0)2 with ki ∈ {0, 1} be an
�-bit integer and let N and x be two positive integers such
that x < N. If we set Ki = (k�−1, . . . , ki)2, then the value
of r after the iteration i satisfies:

r = xKi x−1
0 mod N .

Proof We prove the assertion by a decreasing induction on
i : we assume it is true for i and we prove it for i − 1. We
denote ri the value of r after the execution of iteration i in
Algorithm 3 and we assume that it satisfies ri = xKi × x−1

0 .
Then if ki−1 = 1 the execution of iteration i − 1 gives:

ri−1 = r2i × x1

= x2Ki × x−2
0 × x1

= x2Ki+1 × x−1
0

= xKi−1 × x−1
0 .

since Ki−1 = 2Ki + 1. And, if ki−1 = 0, the execution of
iteration i − 1 gives:

ri−1 = r2i × x0

= x2Ki × x−2
0 × x0

= x2Ki × x−1
0

= xKi−1 × x−1
0 .

since in this case Ki−1 = 2Ki . ��

4 Exponentiation with half-size splitting and
Montgomery multiplication

An RSA modulus N looks like a random integer: the binary
representation is not sparse and has no other underlying struc-
ture which can be used to speed-up a reduction modulo N .
Themost commonly usedmethod to perform amultiplication
modulo a random integer is theMontgomery method [8]. We
modify Algorithm 3 in order to use the Montgomery multi-
plication for the squarings and multiplications modulo N . A
squaring in Algorithm 3 involves integers of size �log2(N)�
bits, while a multiplication involves two kinds of multipli-
cand: one integer of size �log2(N)� bits and one integer of
size ∼= �log2(N)/2� bits. This compels us to use two kinds
of Montgomery multiplications:

• Full Montgomery Multiplication (FMM): Let M be an
integer such that M > N and gcd(N , M) = 1. Let y and
x be two integers of size �log2(N)� bits. Then the FMM
works as follows:

q ← (−x × y × N−1) mod M
z ← (x × y + q × N)/M

and z satisfies z = (xyM−1) mod N and z < 2N . In
practice takingM = 2n+1 withn = �log2(N)� simplifies
the reduction and the division by M . This method also
applies for a squaring, i.e., x = y and, in the sequel this
will be referred to asFMSforFullMontgomerySquaring.

• Half Montgomery Multiplication (HMM): Let m be an
integer such thatm >

√
N and gcd(N ,m) = 1. Let y be a

�log2(N)�-bit integer and x be a �log2(N)/2�-bit integer.
Then theHMMworks as follows:

q ← (−x × y × N−1) mod m
z ← (x × y + q × N)/m

and z satisfies z = (xym−1) mod N and z < 2N . Then,
in practice, taking m = 2�n/2�+1 where n = �log2(N)�
simplifies the computation of a reduction and a division
by m.

The proposed regular exponentiation which incorporates
FMS and HMM is depicted in Algorithm 4.

Algorithm 4 Regular exponentiation with half-size Mont-
gomery modular multiplications
Require: x ∈ {0, . . . , N − 1} and K = (k�−1, . . . , k0)2
Ensure: r = xK mod N
1: Split x = x−1

0 × x1 mod N with x0, x1 ∼= N 1/2.
2: r = x−1

0 ×m × M mod N // Montgomery repre-
sentation

3: for i from � − 1 downto 0 do
4: r ← FMS(r, r)
5: temp ← ki x1 + (1 − ki)x0
6: r ← HMM(r, temp)
7: end for
8: r ← (

r × x0 × m−1 × M−1
)

mod N
9: return r

Lemma 5 Let K = (k�−1, . . . , k0)2 with ki ∈ {0, 1} be an �-
bit integer, and let N be a positive integer and x ∈ [0, N−1].
If we set Ki = (k�−1, . . . , ki)2 then the value r after the
iteration i in Algorithm 4 satisfies:

r = (xKi x−1
0 Mm) mod N .

Proof Weprove it by induction on i . If we denote ri the value
of r after the iteration i , then it satisfies ri = (xKi x−1

0 Mm)

mod N . Then the squaring with FMS provides:

FMS(ri) = x2Ki x−2
0 M2m2M−1 mod N

= x2Ki x−2
0 Mm2 mod N .

Now if ki−1 = 0 the algorithm computes:

ri−1 = HMM(x2Ki x−2
0 Mm2, x0)

= (x2Ki x−2
0 Mm2)x0m

−1 mod N

= x2Ki x−1
0 Mm mod N

123

250 J Cryptogr Eng (2017) 7:245–253

which satisfies the induction hypothesis since Ki−1 = 2Ki .
Now if ki−1 = 1 the algorithm computes:

ri−1 = HMM(x2Ki x−2
0 Mm2, x1)

= (x2Ki x−2
0 Mm2)x1m

−1 mod N

= x2Ki+1x−1
0 Mm mod N

which satisfies the induction hypothesis since Ki−1 = 2Ki +
1. ��

5 Complexity comparison and implementation
results

In this section we first briefly review word-level forms of
Montgomery multiplication and squaring along with their
complexities.We then deduce the complexity of the proposed
exponentiation and compare it with the approaches reviewed
in Sect. 2.

5.1 Word-level Montgomery multiplication and
squaring

The proposed exponentiation in Algorithm 4 involves Mont-
gomery modular squarings and multiplications with adapted
sizes to the operands, i.e., of size either �log2(N)� or
�log2(N)/2� bits. The subsequent word-level form of Mont-
gomery multiplication can take as input two integers of
different sizes.

Word-level Montgomery multiplication.We consider two
integers x = (xt−1, . . . , x0)2w where t = �N/2w� and y =
(ys−1, . . . , y0)2wwith s = t or s = �t/2�. The word-level
form of the Montgomery multiplication interleaves multi-
precision multiplication and small Montgomery reduction
by sequentially performing for i = 0, 1, . . . , s − 1:

z ← z + x × yi

q ← −z × N−1 mod 2w

z ← (z + qN)/2w

where z is initially set to 0 and, at the end, it is equal to x ×
y × 2−sw mod N . This method is detailed in Algorithm 5.

The complexity of Algorithm 5 is evaluated step by step
in Table 2. The cost of each step is expressed in terms of the
complexity of a t-word addition or of a 1 × t multiplication
which costs t word multiplications and t word additions with
carry.

Word-levelMontgomery squaring.TheMontgomery squar-
ing of a t-word integer x can be computedwith theword-level

Algorithm 5Word-level Montgomery multiplication [17]
Require: N < 2wt−1 the modulus, w the word size, x =

(xt−1, . . . , x0)2w and y = (ys−1, . . . , y0)2w integers in [0, N [and
N ′ = (−N−1) mod 2w

Ensure: z = x · y · 2−ws mod N
1: z ← 0
2: for i from 0 to s − 1 do
3: z ← z + yi · x
4: q ← |z|2w · N ′ mod 2w

5: z ← (z + q · N)/2w

6: end for
7: if z ≥ N then
8: z ← z − N
9: end if
10: return z

Table 2 Step by step complexity evaluation ofword-levelMontgomery
multiplication (Algorithm 5)

Operations # Word add. # Word mul.

s Step 3 xi × y st st

z + (xi y) s(t + 1) 0

s Step 4 |z|2w · N ′ 0 s

s Step 5 q × N st st

z + (qN) s(t + 1) 0

Step 7 z − N t 0

Total s(4t + 2) + t s(2t + 1)

Montgomery multiplication. However, a squaring can be
optimized by considering that we may save some redundant
word multiplications xi · x j and x j · xi . We review here the
formulation of the Montgomery squaring provided in [9].
The squaring x2 is rewritten as follows:

x2 =
t−1∑

i=0

t−1∑

j=0

xi x j2
w(i+ j)

= 2
t−2∑

i=0

t−1∑

j=i+1

xi x j2
w(i+ j) +

t−1∑

i=0

x2i 2
2iw

=
t−1∑

i=0

xi2
w(2i)(xi + 2

t−i−1∑

j=1

xi+ j2
w j)

=
t−1∑

i=0

xi2
w(2i) x̃i . (8)

The integer x̃i = (xi + 2
∑t−i−1

j=1 xi+ j2w j) can be deduced
from x ′ = 2x = (x ′

t−1, . . . , x
′
0)2w as

x̃i = (x ′
t−1, . . . , x

′
i+2, |2xi+1|2w , xi)2w .

With the formulation (8) the authors in [9] could derive a
word-level Montgomery squaring as shown in Algorithm 6.

123

J Cryptogr Eng (2017) 7:245–253 251

Algorithm 6 Word-level Montgomery squaring [9]
Require: N < 2wt−1 the modulus, x , with x = (xt−1, . . . , x0)2w with

0 ≤ xi < 2w where w is the word size, N ′ = −N−1 mod 2w

Ensure: z ≡ x2 × 2−wt mod N and z < N
1: x ′ ← x + x
2: z ← 0
3: for i from 0 to (t − 1) do
4: x̃i ← (x ′

t−1, . . . , x
′
i+2, |2xi+1|2w , xi)2w

5: z ← z + x̃i · xi · 2wi

6: q ← |z|2w · N ′ mod 2w

7: z ← (z + q · N)/2w

8: end for
9: if z ≥ N then
10: z ← z − N
11: end if
12: return z

The complexity of Algorithm 6 is evaluated step by step
in Table 3. Only the complexity evaluation of Step 5 needs
to be detailed. We first notice that:

• x̃i × xi requires t − i word multiplications and t − i word
additions.

• z + 2wi (̃xi xi) requires t − i + 1 word additions.

Weadd the contributions of all iterations andweget
∑t−1

i=0(t−
i) = t (t+1)

2 word multiplications and
∑t−1

i=0(2t − 2i + 1) =
t (t + 1) + t = t2 + 2t word additions for t Step 5, as stated
in Table 3.

5.2 Complexity comparison

Now, we can deduce the cost of a FMM, a FMS and a HMM
from the complexity of the word-level Montgomery multi-
plication and squaring. Specifically, the cost of a FMS with
M = 2tw is the same as the one shown in Table 3. To obtain
the complexity of FMM with M = 2tw, we take s = t in the
formula of Table 2 and to get the complexity of a HMMwith
m = 2tw/2 we take s = t/2 in the formula of Table 2. This
leads to the complexities shown in the upper part of Table 4.

Table 3 Step by Step complexity evaluation of a word-level Mont-
gomery squaring (Algorithm 5)

Operations # Word add. # Word mul.

Step 1 x + x t 0

t Step 4 |2xi+1|2w t 0

t Step 5 z + 2wi x̃i xi t2 + 2t t (t+1)
2

t Step 6 |z|2w · N ′ 0 t

t Step 7 q × N t2 t2

z + (qN) t (t + 1) 0

Step 10 z − N t 0

Total 3t2 + 6t 3t2
2 + 3t

2

Now, we deduce the cost of the following approaches for
an � bit exponent for a modular exponentiation:

• The square-and-multiplication exponentiation requires �

FMS and �/2 FMM in average.
• The multiply-always exponentiation necessitates 3�/2
FMM in average.

• The square-always exponentiation necessitates 2� FMS
in average.

• The square-and-multiply-always andMontgomery-ladder
exponentiation require � FMS and � FMM.

• The Montgomery-ladder exponentiation with common
multiplicand [9]: this necessitates � word-level com-
binedMontgomery multiplications AB, AC , which have
a reduced complexity by sharing some computations
involved in reductions modulo N (cf. [9] for details).

The complexities of these approaches in terms of the num-
ber of word additions and multiplications are given in
Table 4.

For the proposed regular exponentiation with half-size
Montgomery multiplication (Algorithm 4), we need � FMS
and �HMM in the � iterations of the loop body. For the com-
putation of the multiplicative splitting x0 with Algorithm 2,
the cost is, using Lemma 3, bounded above by 4t2w word
additions. The computation of x−1

0 has also a cost bounded
above by 4t2w word additions since it is computed with the
extended Euclidean algorithm. The resulting overall com-
plexity of the proposed regular exponentiation is given in
terms of the number of word additions and multiplications in
Table 4.

We notice that the fastest approach is the non-secure
square-and-multiply exponentiation. We also notice that our
approach has complexity really close to the one of the
square-and-multiply: only the precomputation costs make it
less efficient. Moreover, our approach is better by roughly
16 % than all regular approaches: the square-always and
multiply-always exponentiations and also the Montgomery-
ladder and square-and-multiply always approaches.

5.3 Implementation results

We implemented in C language the different approaches and
compiled them on an Intel Core i7 Broadwell 5600U with
gcc-4.8.4 and on a quad-core ARMv7 Cortex-A7 with gcc-
4.9.2. For modular multiplication and modular squaring, we
implemented Algorithm 6 and Algorithm 5 using low-level
functions of GMP library (cf. GMP 6.0.0, https://gmplib.
org) for 1× t multiplications and t-word additions. We could
then implement all the exponentiation algorithms considered
in this paper. The multiplicative splitting of our approach
was implemented using the low-level function of GMP for
Euclidean division. The timings obtained for a number of

123

https://gmplib.org
https://gmplib.org

252 J Cryptogr Eng (2017) 7:245–253

Table 4 Complexity comparison

Algorithm # Word add. # Word mul.

Multiplication and
squaring modulo
N

FMM 4t2 + 3t 2t2 + t

FMS 3t2 + 6t 3t2
2 + 3t

2

HMM 2t2 + 2t t2 + t
2

Exponentiation mod
N with no side
channel protection

Square-and-multiply �(5t2 + 15t
2) + 8t2 + 6t �(5t

2

2 + 4t
2) + 4t2 + 2t

Non constant time
regular
exponentiation

Multiply-always �(6t2 + 9t
2) + 8t2 + 6t �(3t2 + 3t

2) + 4t2 + 2t

Square-always �(6t2 + 12t) + 8t2 + 6t �(3t2 + 3t) + 4t2 + 2t

Regular and constant
time
exponentiation

Square-and-multiply-always �(7t2 + 9t) + 8t2 + 6t �(7t
2

2 + 5t
2) + 4t2 + 2t

Montgomery-ladder �(7t2 + 9t) + 8t2 + 6t �(7t
2

2 + 5t
2) + 4t2 + 2t

Montgomery-ladder CM [9] �(6t2 + 9t + 1) + 8t2 + 8t �(3t2 + 4t + 3) + 4t2 + 4t + 2

Proposed (Algorithm 4) �(5t2 + 8t) + 10t2 + 8t �(5t
2

2 + 2t) + 8wt2 + 5t2 + 5t
2

Table 5 Timings in 103 clock-cycles of modular exponentiation

Algorithm Timings on a Core i7 Timings on an ARMv7

2048 bits 3072 bits 4096 bits 2048 bits 3072 bits 4096 bits

Exponentiation
without side
channel protection

Square-and-multiply 12,811 40,207 93,094 155,005 502,142 1,175,073

Non constant time
regular
exponentiations

Multiply-always [5] 13,896 45,407 106,177 175,946 575,859 1,373,075

Square-always [5] 16,751 52,120 118,744 193,493 620,804 1,450,404

Regular and constant
time
exponentiations

Montgomery-ladder [7] 17,669 56,449 130,436 214,077 702,270 1,633,957

Montgomery-ladder with CM [9] 15,478 48,963 113,133 183,707 598,020 1,398,734

Square-and-multiply-always [6] 17,619 56,137 130,043 214,249 697,046 1,634,550

Proposed (Algorithm 4) 13,616 42,139 96,547 158,805 509,769 1,188,119

practical bit lengths of N (i.e., 2048, 3072 and 4096) are
reported in Table 5. We used Papi library [18] to get cycle
counts on both platforms. These timings are the average of
1000 timings obtained with random input messages x and
random exponents K .

We notice that the reported timings relate to the complex-
ity results shown in Table 4. Indeed, the fastest approach
is the square-and-multiply exponentiation which is not pro-
tected against simple side channel analysis. Our approach is
less than 6.3 slower than square-and-multiply for any key
size. Our approach is better than all other approaches: by 1–
13.4% compared to the multiply-always approach, which is

not entirely secure against SPA, and more than 12% com-
pared to the other regular approaches.

6 Conclusion

We presented in this paper a new approach for regular
modular exponentiation. We first introduced a multiplica-
tive splitting of an integer x modulo N . We showed that
this splitting can be used to modify the square-and-multiply
algorithm in order to have a regular sequence of squarings
always followed by a multiplication with a half-size integer.
We then modified this algorithm in order to performmodular

123

J Cryptogr Eng (2017) 7:245–253 253

multiplication with the Montgomery method. Compared to
the usual regular and constant timemodular exponentiations,
the proposed method involves only multiplications by half-
size integers instead of full multiplications. This leads to a
reduction of the complexity by 16% and an improvement of
the timing by 12% compared to other approach which are
both regular and constant time.

Acknowledgements This work was supported by PAVOIS ANR 12
BS02 002 02.

Appendix

Proof of Lemma 1 • Proof of (i). We prove by induction
on i that (−1)i−1ai ≥ 1 for all i ≥ 1. For i = 1 we have
a1 = 1 which implies (−1)i−1ai = 1 as required. For
i = 2 we have a2 = −q1a1 which implies (−1)1a2 =
q1a1 ≥ 1. Now, we suppose that the inequality holds for
i − 1 and i , i.e.,

(−1)i−2ai−1 ≥ 1 and (−1)i−1ai ≥ 1, (9)

and we prove that the inequality is also true for i +1. We
starts with (−1)i ai+1 and replace ai+1 by its expression
in terms of ai , ai−1, ri and ri−1 inAlgorithm2.Weobtain
the following:

(−1)i ai+1 = (−1)i (ai−1 − 	ri−1/ri
 ai)
= (−1)i ai−1 − 	ri−1/ri
 (−1)i ai

= (−1)i−2ai−1 + 	ri−1/ri
 (−1)i−1ai

≥ 1 + 	ri−1/ri
 (Using (9))

Therefore, we have proven by induction that (−1)i ai ≥ 1
for all i .

• Proof of (ii). We follow the proof of [16]: we express
the inductive expression of ai and ri as a 2 × 2 matrix
product:
(
ai+1 ri+1
ai ri

)
=

(− 	ri−1/ri
 1
1 0

) (
ai ri
ai−1 ri−1

)
.

Now since for all i we have det

(− 	ri−1/ri
 1
1 0

)
= −1, we

obtain by induction that

det

(
ai+1 ri+1
ai ri

)
= (−1)i det

(
a1 r1
a0 r0

)

= (−1)i det

(
1 x
0 N

)

= (−1)i N .

Finally we obtain that

∀i ≥ 0, ai+1ri − airi+1 = (−1)i N .

References

1. Rivest, R., Shamir, A., Adleman, L.: Amethod for obtaining digital
signatures and public-key cryptosystems. Commun.ACM 21, 120–
126 (1978)

2. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In:
Wiener, M.J. (ed.): Advances in Cryptology–CRYPTO ’99, 19th
Annual International Cryptology Conference, Santa Barbara, Cal-
ifornia, USA, August 15–19, 1999, Proceedings, Lecture Notes in
Computer Science, vol. 1666, pp. 388–397. Springer, Berlin (1999)

3. Mangard, S.: Exploiting Radiated Emissions - EM Attacks on
Cryptographic ICs. In: Austrochip 2003, Linz, Austria, October
1st, pp. 13–16 (2003)

4. Amiel, F., Feix, B., Tunstall, M., Whelan, C., Marnane, W.: Distin-
guishingMultiplications from Squaring Operations. In: SAC 2008,
ser. LNCS, vol. 5381, pp. 346–360. Springer (2009)

5. Clavier, C., Feix, B., Gagnerot, G., Roussellet, M., Verneuil,
V.: Square Always Exponentiation. In: Progress in Cryptology -
INDOCRYPT, 2011 ser. LNCS, vol. 7107, pp. 40–57. Springer
(2011)

6. Coron, J.-S.: Resistance against differential power analysis for
elliptic curve cryptosystems. In: Koç, Ç.K., Paar, C. (eds.): Cryp-
tographic Hardware and Embedded Systems. First International-
Workshop, CHES’99 Worcester, MA, USA, August 12–13, 1999,
Proceedings, Lecture Notes in Computer Science, vol. 1717, pp.
292–302. Springer, Berlin (1999)

7. Joye, M., Yen, S.: The Montgomery Powering Ladder. In: CHES,
20002 ser. LNCS, vol. 2523, pp. 291–302. Springer (2002)

8. Montgomery, P.: Modular multiplication without trial division.
Math. Comput. 44, 519–521 (1985)

9. Negre, C., Plantard, T., Robert, J.: Efficient Modular Exponentia-
tion Based onMultiple Multiplications by a Common Operand. In:
22nd IEEE Symposium on Computer Arithmetic 2015, pp. 144–
151 (2015)

10. Menezes, A., van Oorschot, P., Vanstone, S.: Handbook of Applied
Cryptography. CRC Press, Boca Raton (1996)

11. Yen, S.-M., Joye, M.: Checking before output may not be enough
against fault-based cryptanalysis. IEEE Trans. Comput. 49(9),
967–970 (2000)

12. Yen, S.-M., Kim, S., Lim, S., Moon, S.-J.: A Countermeasure
against One Physical Cryptanalysis May Benefit Another Attack.
In: ICISC, 2001 ser. LNCS, vol. 2288, pp. 414–427. Springer
(2001)

13. Joye, M., Tunstall, M.: Exponent Recoding and Regular Exponen-
tiation Algorithms. In: Progress in Cryptology - AFRICACRYPT,
2009 ser. LNCS, vol. 5580, pp. 334–349. Springer (2009)

14. Bryant, E., Rambhia, A., Atallah,M. and Rice, J.: Software Trusted
Platform Module and Application Security Wrapper,” Jan 2011,
US Patent 7,870,399. [Online]. https://www.google.ch/patents/
US7870399

15. Gallant, R., Lambert, R., Vanstone, S.: Faster Point Multiplication
on Elliptic Curves with Efficient Endomorphisms. In: Advances
in Cryptology-CRYPTO, 2001 ser. LNCS, vol. 2139, pp. 190–200
Springer (2001)

16. von zurGathen, J.:ModernComputerAlgebra, 3rd edn.Cambridge
University Press, Cambridge (2013)

17. Bosselaers, A., Govaerts, R. and Vandewalle, J.: “Comparison of
Three Modular Reduction Functions,” in Advances in Cryptology-
CRYPTO’93, ser. LNCS, vol. 773. Springer, pp. 175–186 (1993)

18. Papi, M.: “Performance Application Programming Interface
(PAPI).” [Online]. Available: http://icl.cs.utk.edu/papi/

123

https://www.google.ch/patents/US7870399
https://www.google.ch/patents/US7870399
http://icl.cs.utk.edu/papi/

	Efficient regular modular exponentiation using multiplicative half-size splitting
	Abstract
	1 Introduction
	2 Review of regular modular exponentiation
	2.1 Multiplicative splitting of an integer x modulo N

	3 Regular exponentiation with half-size multiplicative splitting
	4 Exponentiation with half-size splitting and Montgomery multiplication
	5 Complexity comparison and implementation results
	5.1 Word-level Montgomery multiplication and squaring
	5.2 Complexity comparison
	5.3 Implementation results

	6 Conclusion
	Acknowledgements
	Appendix
	References

