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Abstract. In 2004, Bajard, Imbert and Plantard introduced a new sys-
tem of representation to perform arithmetic modulo a prime integer p,
the Adapted Modular Number System (AMNS). In this system, the el-
ements are seen as polynomial of degree n − 1 with the coefficients of
size p1/n. The best method for multiplication in AMNS works only for
some specific moduli p. In this paper, we propose a novel algorithm to
perform the modular multiplication in the AMNS. This method works
for any AMNS, and does not use a special form of the modulo p. We also
present a version of this algorithm in Lagrange Representation which per-
forms the polynomial multiplication part of the first algorithm efficiently
using Fast Fourier Transform.
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1 Introduction

Several cryptographic applications like the Diffie-Hellman key exchange proto-
col [12], ECC [16,14], RSA [19] or pairing based protocol require efficient modular
integer arithmetic. Specifically, for Diffie-Hellman key exchange the main oper-
ation is an exponentiation modulo a prime integer p: this operation is generally
done using a chain of squaring and multiplication modulo p. For ECC, the main
operation is the scalar multiplication which requires also a chain of additions
and multiplications modulo a prime integer p.

The multiplication modulo p consists to multiply two integers A and B and
after that to compute the remainder modulo p. The methods to perform this
operation differ if the integer p has a special form or not. If p is arbitrary,
the most used methods are the method of Montgomery [18] and the method of
Barrett [9]. But the cost of these two methods is roughly equal to the cost of
three integer multiplications.

When the integer p has a sparse binary representation [23] the reduction
modulo p can be done really efficiently. This last case is, for now, the most



efficient, consequently standards recommends these types of prime integer [1].
On the other hand these types of prime are rare, and it thus interesting have
efficient modular arithmetic modulo any prime.

Recently Bajard, Imbert and Plantard [6] proposed a new method to perform
modular arithmetic by using a new representation of the elements. An integer
A modulo p is expressed as A =

∑n−1
i=0 aiγ

i with γn ≡ λ mod p with λ a
very small constant. The coefficients ai are small relatively to p and γ (roughly
|ai| ≤ ρ ∼= p1/n and γ ∼= p).

In this representation the multiplication of A and B is done in two steps: the
first step consists to multiply the polynomials A and B in γ modulo γn− λ, the
second step consists to reduce the coefficients.

In this paper, we will present a modified version of the multiplier of [6]. The
initial proposition in [6] use lookup table which can’t be used for big size modu-
lus. Our approach is similar to Montgomery’s [18,3] to perform the reduction of
the coefficients. We add a multiple of the moduli p to kill the lower part of the
coefficients of the polynomial product C = A×B mod (γn − λ).

To use Fast Fourier Transform, to perform the polynomial multiplication,
we slightly modify the first algorithm, and use a Lagrange approach to perform
arithmetic modulo (γn − λ). We then obtain an algorithm with a sub-quadratic
complexity.

This article is organized as follows: in the first section we will briefly recall
the AMNS representation, we will present our new multiplication in AMNS
representation, and we will study the construction of the shortest polynomial
which is required in the multiplication. After that, we will recall the Lagrange
representation (LR) approach [5,4] to perform polynomial modular arithmetic,
and present the Lagrange form of our algorithm. We conclude by a study of its
cost and by a presentation of an implementation.

2 Modular Number System

2.1 Definition

Efficient arithmetic modulo a prime integer p is generally deeply related to the
system of representation used to represent the elements. Generally integers are
expressed as a sum A =

∑n
i=0 aiβ

i where 0 ≤ ai < β (in practice β is often
chosen as a power of 2). Here we are interested in integer multiplication modulo
a prime integer p, and specifically for p of cryptographic size 2160 ≤ p.

We will use a modified version of this classical representation: the Modular
Number System [6] to represent the elements modulo p.

Definition 1 (MNS [6]). A Modular Number System (MNS) B, is a quadruple
(p, n, γ, ρ), such that for all positive integers 0 ≤ a < p there exists a polynomial
A(X) =

∑n−1
=0 aiX

i such that

A(γ) = a mod p,
deg(A(X)) < n,
‖A‖∞ < ρ.

(1)



The polynomial A(X) is a representation of a in B.

The Modular Number System is a system of representation which includes
the modulo p used in the modular arithmetic. Generally the MNS have a basis
γ ∼= p and small coefficients |ai| < ρ ∼= p1/n.

Example 1. In the table 1, we prove that the quadruplet (17, 3, 7, 2) is a MNS.

Table 1. The elements of Z17 in B = MNS(17, 3, 7, 2)

0 1 2 3 4 5

0 1 −X2 1−X2 −1 +X +X2 X +X2

6 7 8 9 10 11

−1 +X X 1 +X −X − 1 −X −X + 1

12 13 14 15 16
−X −X2 1−X −X2 −1 +X2 X2 −1

In particular, we can verify that if we evaluate (−1 +X +X2) in γ, we have
−1 + γ+ γ2 = −1 + 7 + 49 = 55 ≡ 4 mod 17. We have also deg(−1 +X +X2) =
2 < 3 and ‖ − 1 +X +X2‖∞ = 1 < 2.

The second definition of this section corresponds to a sub-family of the Mod-
ular Number System. We use the possibility to choose freely the basis γ to
have advantageous properties for the modular arithmetic. That’s why Bajard et
al. said that these systems are adapted to the modular arithmetic: this is the
Adapted Modular Number System.

Definition 2 (AMNS [6] ). A Modular Number System B = (p, n, γ, ρ) is
called Adapted (AMNS) if there exists a small integer λ such that γn = λ mod p.
We call E the polynomial Xn−λ. γ is a root of the polynomial E in Z/pZ: E(γ) ≡
0 (mod p). We also note (p, n, γ, ρ)E the Modular Number System (p, n, γ, ρ)
which is adapted to the polynomial E.

The difficulty in the construction of AMNS is to find an n-th roots of a fixed
element λ in Z/pZ. Since p is prime the problem can be easily solved [11] (when
such root exists) and in this paper we will focus on AMNS associated to p prime.
If p were a composite number, for example an RSA number, the problem could
be solved using the factorization of p. This means that the method presented in
this paper, could be extended to multiply two integers modulo an RSA number
which admits such n-th roots.

2.2 Multiplication in AMNS

As described in [6] the multiplication of two elements A and B in AMNS is done
through the three following steps



1. Polynomial multiplication C(X) = A(X)×B(X).
2. Polynomial reduction C ′(X) = C(X) mod E(X).
3. Coefficient reduction R = CoeffRed(C ′) : the coefficients of C ′ lie in the

interval ]− nρ2λ, nρ2λ[, they must be reduced such that they have absolute
value smaller than ρ.

The first step can be done using usual methods: polynomial school-book ,
Karatsuba, or FFT methods. The second step is quite easy because of the form
of E: we have only to add the lower part of C with λ times the high part of C
to get C ′. The last part, is for now the most complicated: in [7] Bajard, Imbert
and Plantard proposed a method using look up table, the performance of such
algorithm is not easy to evaluate, it depends on the size of the table, and the
memory access delay.

Consequently some improvements need to be done to have efficient coefficient
reduction and thus efficient multiplication in AMNS.

3 Novel AMNS Multiplication

In this section, we will present a new AMNS-multiplication algorithm. Let us fix
an AMNS (p, n, γ, ρ) and M(X) a polynomial such that M(γ) = 0 mod p and
gcd(M,E) = 1. As we will see later, M must be chosen in practice with small
coefficients.

To perform the multiplication in the AMNS, we use a trick similar to Mont-
gomery’s method [18]. We will use the polynomial M to kill the lower part of
the coefficients of the product C = A×B mod E. This method work as follows.

Algorithm 1: AMNS Multiplication (Polynomial version)
Input : A,B ∈ B = AMNS(p, n, γ, ρ)E with E = Xn − λ
Data : M such that M(γ) ≡ 0 (mod p)

an integer m and M ′ = −M−1 mod (E,m)
Output: R such that R(γ) = A(γ)B(γ)m−1 mod p
begin

C ← A×B mod E;
Q← C ×M ′ mod (E,m);
R← (C +Q×M mod E)/m;

end

We remark that if we take m = 2k, in the third step we add some multiple
of the modulo p (i.e. Q ×M is a multiple of p since Q(γ)M(γ) ≡ 0 mod p) to
annihilate the lest significant bit of the coefficients of C in the same way as in
classical Montgomery Multiplication.

Let us check that Algorithm 1 is exact: we have to verify that R(γ) =
A(γ)B(γ)m−1 mod p. We know that E(γ) ≡ 0 (mod p) (See Definition 2), thus
we have C(γ) ≡ A(γ)B(γ) mod p. We know also that M(γ) ≡ 0 (mod p) thus
we have

C(γ) +Q(γ)M(γ) ≡ C(γ) ≡ A(γ)B(γ) mod p



We now prove that the division by m is exact. This is equivalent to prove
that (C+Q×M mod E) ≡ 0 mod m. We have by definition that Q ≡ Q mod m
and also that Q = C × P mod E and that P = −M−1 mod E. We obtain that

C +Q×M mod E ≡ (C + C × (−M−1 ×M) mod E) mod m
≡ (C − C mod E) mod m
≡ 0 mod m

as required. At the end, we have R(γ) ≡ A(γ)B(γ)m−1 mod p since an exact
division (the division by m) is equal to the multiplication by an inverse modulo
p. �

At this step we know that the resulting polynomial R of the previous algo-
rithm satisfies R(γ) = A(γ)B(γ)m−1 mod p, but we do not know whether it is
expressed in the AMNS, i.e., when the coefficients of R are smaller than ρ. This
is the goal of the following theorem.

Theorem 1. Let B = AMNS(p, n, γ, ρ)E an Adapted Modular Number System,
M a polynomial of B such that M(γ) ≡ 0 (mod p) and σ = ‖M‖∞, and A,B
two elements of B, if we have ρ and an integer m such that ρ > 2|λ|nσ and m >
2|λ|nρ then the polynomial R output by the Algorithm 1 with input B,M ,m,A
and B is in the Adapted Modular Number System B.

Proof. From the Definition 1, the polynomial R is in the Modular Number Sys-
tem B = (p, n, γ, ρ)E , if degR < n and if ‖R‖∞ < ρ. The fact that degR < n
is easy to see since all the computation in the Algorithm 1 are done modulo
E = Xn − λ.

Thus we have only to prove that ‖R‖∞ < ρ. We first have the following
inequalities

‖R‖∞ = ‖A×B +Q×M mod E‖∞/m
≤ |λ|n(‖A‖∞‖B‖∞ + ‖Q‖∞‖M‖∞)/m
≤ |λ|n(ρ2 +mσ)/m = |λ|n(ρ

2

m + σ)

using that ‖A‖∞, ‖B‖∞ ≤ ρ.
But, by hypothesis, we have ρ > 2|λ|nσ, m > 2|λ|nρ. Thus if we use the

fact that m > 2|λ|nρ, we obtain:

‖R‖∞ < |λ|n( ρ2

2|λ|nρ + σ) ≤ ρ
2 + |λ|nσ.

And with ρ > 2|λ|nσ, i.e., σ < ρ
2|λ|n , we get the required result

‖R‖∞ <
ρ

2
+ |λ|n ρ

2|λ|n
≤ ρ

2
+
ρ

2
= ρ.

An important remark on the Theorem 1 is that the length of the coefficients
of the representation depends on the length ‖M‖∞ of the polynomial M , specif-
ically if σ is small then ρ can be also taken small. So now we will focus on the
construction of such short polynomial M .



3.1 The Shortest Polynomial

To construct such polynomial we will use technique provided by lattice theory.
Indeed the Modular Number System has an interesting link with lattice theory.
We recall the definition of Lattice.

Definition 3 (Lattice).
A lattice L is a discrete sub-group of Rn, or equivalently the set of all the

integral combinations of d ≤ n linearly independent vectors over R.

L = Z b1 + · · ·+ Z bd = {λ1b1 + · · ·+ λdbd : λi ∈ Z}.

The set of vector B = (b1, . . . , bd) is called a basis of L.

The lattice associated to an MNS is a subset of the polynomials Z[X] of
degree n− 1

L = {A ∈ Z[X] such that degA ≤ n− 1 and A(γ) ≡ 0 mod p} .

It is easy to check that such set form a subgroup of Zn[X] = {Q ∈ Z[X] with degQ ≤
n − 1} ∼= Zn. Indeed let A,B ∈ L, then A ± B ∈ L since (A ± B)(γ) ≡
A(γ)±B(γ) ≡ 0 mod p.

If we associate each polynomial in Zn[X] a vector with entries in Z, we get
the following set vectors of the lattice L

B =



p 0 0 0 . . . 0
−γ 1 0 0 . . . 0
−γ2 0 1 0 . . . 0

...
. . .

...
−γn−2 0 0 . . . 1 0
−γn−1 0 0 . . . 0 1



← p
← X − γ
← X2 − γ2

...
← Xn−2 − γn−2

← Xn−1 − γn−1

.

If we define by L′ the lattice spanned by these n vectors, we can easily note
that the vectors b ∈ B are clearly linearly independent and thus the dimension
of L′ (and thus of L) is equal to n: L and L′ are full dimensional lattices.

In Algorithm 1 we need a polynomial M such that M(γ) ≡ 0 mod p and
‖M‖∞ is small. This is related to the classical problem in lattice to find the
shortest vector since, M ∈ L′: the best choice for M is the shortest polynomial
in L′.

Definition 4 (Shortest Polynomial). A polynomial M is called Shortest Poly-
nomial of a MNS B = (p, n, γ, ρ) if we have

M 6= 0
M(γ) = 0 mod p
deg(M) < n

 and ∀A ∈ Z[X], if

A 6= 0
A(γ) = 0 mod p
deg(A) < n

 then ‖M‖∞ ≤ ‖A‖∞

(2)
We note σ the length of M : σ = ‖M‖∞.



In 1896 [17], Minkowski gave a bound for the length of the shortest vector
of a lattice L for all norm, precisely in the case of the norm ‖ · ‖∞ the shortest
vector v satisfies ‖v‖∞ ≤ |detL′|1/d if d = dimL.

A straightforward consequence of the Theorem of Minkowski is the following
corollary which gives an upper bound on σ = ‖M‖∞ the length of the shortest
polynomial.

Corollary 1. If the polynomial M is the Shortest Polynomial of the MNS B =
(p, n, γ, ρ), we have ‖M‖∞ ≤ p1/n.

Proof. This is trivial if we note that det(L′) = p.

For practical application we will need to compute efficiently an approxima-
tion of the shortest polynomial M of a given AMNS (only an approximation is
sufficient since we only need an M with small ‖M‖∞). There is several algorithm
to compute such M (cf. [20,21,13,8]), but LLL [15] might be the most efficient
in our case.

In practice, in actual computers, LLL could not compute an LLL basis (and
thus the M) for lattices of dimension bigger than 250. This restrict the use
of AMNS to small range of n, we will discuss the consequences of this fact in
Section 6.

4 Improved AMNS Multiplication

The AMNS multiplication (Algorithm 1) requires several polynomial multiplica-
tions modulo E = Xn−λ. There is different strategies to perform this operation
efficiently: the polynomial multiplication can be done with classical methods
(schoolbook method, Karatsuba, Toom-Cook or FFT algorithm), followed by a
reduction modulo E.

Here we will study a modified version of Algorithm 1 by using a Lagrange
representation of the polynomials. Our method performs the polynomial multi-
plication and the reduction modulo E at the same time. We begin by a brief
review on Lagrange representation [5].

4.1 Lagrange representation

The Lagrange representation represents a polynomial by its values at n points,
the roots of E =

∏n
i=1(X − αi) modulo an integer m. In an arithmetic point of

view, this is related to the Chinese Remainder Theorem which asserts that the
following application is an isomorphism.

Z/mZ[X]/(E) −→ Z/mZ[X]/(X − α1)× · · · × Z/mZ[X]/(X − αn)
A 7−→ (A mod (X − α1), . . . , A mod (X − αn)) . (3)

We remark that the computation of A mod (X−αi) is simply the computation
of A(αi). In other words the image of A(X) by the isomorphism (3) is nothing
other than the multi-points evaluation of A at the roots of E.



Definition 5 (Lagrange representation). Let A ∈ Z[X] with degA < n,
and α1, . . . , αn be the n distinct roots modulo m of E(X).

E(X) =
r∏
i=1

(X − αi) mod m

If ai = A(αi) mod m for 1 ≤ i ≤ k, the Lagrange representation (LR) of A(X)
modulo m is defined by LR(A(X),m) = (a1, . . . , an).

The advantage of the LR representation to perform operations modulo E is
a consequence of the Chinese Remainder Theorem. Specifically the arithmetic
modulo E in classical polynomial representation can be costly if E has a high
degree, in LR representation this arithmetic is decomposed into n independent
arithmetic units, each does arithmetic modulo a very simple polynomial (X−αi).
But arithmetic modulo (X − αi) is the arithmetic modulo m since the product
of two degree zero polynomials is just the product modulo m of the two constant
coefficients.

4.2 Improved AMNS algorithm using Lagrange representation

Let us go back to the Algorithm 1 and let us see how to use Lagrange represen-
tation to perform polynomial arithmetic in each step of the algorithm.

In view to use Lagrange representation, we select two integers m1 and m2

such that the polynomial E = (Xn − λ) splits in Z/miZ[X]

E =
n∏
i=1

(X − αi) mod m1, E =
n∏
i=1

(X − α′i) mod m2.

We can then represent the polynomials A and B in Algorithm 1 in Lagrange
representation modulo m1 and m2.

Notation 1 We will use in the sequel the following notation : for a polynomial
A of degree n−1 we will denote A the Lagrange representation in αi modulo m1

and A the Lagrange representation in α′i modulo m2.

In this situation we can do the following modification in the Algorithm 1:

– the computation of C in the Algorithm 1 can be done in Lagrange represen-
tation modulo m1;

– the last step of the Algorithm 1 can be done in Lagrange representation
modulo m2, providing that m2 ≥ 2ρ.

We have to deal with some troubleshooting provided by this strategy. Indeed,
at the end of the first step we only know Q, but we do not know Q which is
required in the modified step 3 of the AMNS multiplication. So we must perform
a change of Lagrange representation to compute Q from Q. Similarly, to get



a complete multiplication algorithm, we need to know the R at the end of the
AMNS multiplication to get the Lagrange representation of R modulo m1 and
m2.

Let us call ChangeLR the routine which performs the change between two
Lagrange representations. We will show later how this ChangeLR works. For
now we can set the Lagrange version of the Algorithm 1.

Algorithm 2: Lagrange-AMNS Multiplication

Input : A,A,B,B the Lagrange representation modulo m1 and m2 of A
and B

Data : M the LR representation of the shortest polynomial M ,
M ′ the LR representation of M ′ = −M−1 mod E.

Output: R,R such that R ∈ B and R(γ) = A(γ)B(γ)m−1
1 mod p

begin
Q← A×B ×M ′;
Q← ChangeLRm1→m2(Q));
R← (A×B) +Q×M)×m−1

1 ;
R← ChangeLRm2→m1(R);

end

4.3 The change of Lagrange representation

Let us fix A a polynomial of degree (n−1) and A, A its Lagrange representations
modulo m1 and m2. The basic method to perform the change of representation
from A to A consists

1. to first reconstruct the polynomial form A(X) from its Lagrange represen-
tation A

2. secondly, to evaluate the polynomial A(X) at the root of E modulo m2.

• We first deal with the problem to compute the Lagrange representation A
from the polynomial representation of A. Recall that E = Xn−λ split totally
modulo m, thus the roots αj of E modulo m are of the form αj = µωj where
µ is an arbitrary roots of E modulo m and ω is a primitive n-th roots.
To compute A(µωj) for j = 1, . . . , n we first determine

Ã(X) = A(µX) =
n−1∑
i=0

aiµ
iXi.

After that we get A = (Ã(1), Ã(ω), . . . , Ã(ωn−1)) = DFT (m,n, Ã, ω).
• For the reverse problem which consists to reconstruct the polynomial A(X)

from its Lagrange representation A we simply reverse the previous process:
1. we first compute Ã = DFT−1(m,n,A, ω),
2. and after that A(X) = Ã(µ−1X) =

∑n−1
i=0 ãiµ

−iXi.



So now, by joining these two methods we get the overall algorithm to perform
the change of Lagrange representation A→ A.

Algorithm 3: ChangeLR

Input : A
Output: A
Ã← DFT−1(m1, n, ω1, A) ;
A(X)← A(µ−1

1 X) mod m1 ;
Ã(X)← A(µ2X) mod m2 ;
A← DFT (m2, n, ω2, Ã(X));

Finally the change of the representation is mainly reduced to the computa-
tion of one DFT and one DFT−1. This is really interesting when the integer n
is a power of 2 since is in this case we can use the so-called Fast Fourier Trans-
form which performs this efficiently. This algorithm compute the DFT using
n
2 log2(n) multiplications modulo m and n log2(n) additions modulo m. (see [24]
for a complete presentation of this algorithm).

Example 2. In the table 2, we present an example of the Lagrange-AMNS multi-
plication for the prime p = 247649 and for the two elements A and B expressed
in the AMNS

A = 236 + 176X − 66X2 − 248X3, B = −199 + 122X + 73X2 − 148X3.

To verify that the result is exact, we have to build the polynomial form R =
−2− 8X − 17X2 + 9X3 and then we can easily check that R(γ) = ABm−1

1 mod
p = 114760.

See [7], for other needed operations in a AMNS.

5 Complexity evaluation and comparison

Let us now evaluate the cost of AMNS multiplication in Lagrange Representa-
tion. We evaluate the cost of the algorithm in term of the number of additions
and multiplications modulo m1 and m2. We assume that that m1 and m2 have
the same size (generally m1 is bigger since m1 ≥ 2λρ and m2 ≥ 2ρ). Conse-
quently an operation modulo m1 and m2 is assumed to have the same cost. In
the table below we give the cost of each step of the Lagrange AMNS multipli-
cation and the cost of the overall algorithm, in the case n is a power of 2 and
FFT is used in the ChangeLR routine.

Let us briefly compare our scheme with a strategy Montgomery Multiplication
using Schönage-Strassen for integer multiplication, which seems to be the best
strategy for large integer arithmetic. Recall that Montgomery algorithm has a
cost of 3 integer multiplications of size ∼= p.



Table 2. Example of AMNS Multiplication

AMNS/Lagrange System

B = (p = 247649, n = 4, γ = 106581, ρ = 28),
m2 = 28 + 1,m1 = 212 + 1,

E = X4 + 1

E =
Q3

i=0(X − µ1ω
i
1) mod m2,

E =
Q3

i=0(X − µ2ω
i
2) mod m1.

M = −8− 5X − 17X2 + 11X3

M ′ mod m1 = 497 + 3175X + 338X2 + 895X3

Entries

Lag.E,m1 LagE,m2

A (1548, 2454, 2767, 2369) (203, 256, 213, 15)
B (3419, 3148, 1430, 3498) (209, 195, 187, 155)
M (147, 245, 64, 26)
M ′ (1838, 1504, 1450, 1293)

AMNS Multiplication

Step 1. Q = ABM ′ = (2384, 2371, 1252, 1591)

Step 2. Q = ChangeLRm1→m2(Q) = (23, 176, 248, 182)

Step 3. R = (AB +QM)m−1
1 = (13, 51, 210, 232)

Step 4. Q = ChangeLRm2→m1(R) = (3454, 1159, 2560, 1013)

Table 3. Complexity of basic operations

Computation # Multiplications # Additions

ABM ′ n 0

ChangeLRm1→m2(Q) n log2(n) + 2(n− 1) 2n log2(n)

(AB +QM)m−1
1 3n n

ChangeLRm2→m1(Q) n log2(n) + 2(n− 1) 2n log2(n)

Total 2n log2(n) + 6n− 2 4n log2(n) + n



In Schönage-Strassen [22] integer a are expressed in the first step of the
recursive algorithm as a =

∑n−1
i=0 aiX

i where n ∼= log2(p)/2 and ai ≤ p1/n.
Interpolation using FFT modulo an integer m ∼= p2/n is done to compute ab

mod X2n − 1. Thus each integer multiplication requires 3FFT (counting only
the first step of the recursion) at 2n points with a modulo m with size p2/n.

Consequently: we have 9FFT in 2n points computations at for the overall
Montgomery algorithm, with coefficients size p2/n in FFT compared to 4FFT
in n points with coefficient size p1/n for AMNS.

We must mention that in Schönage-Strassen products with roots of unity in
the FFT has a cost of one addition because of the choice of m, but such strategy
could also be also applied in AMNS.

6 Practical aspects and Implementation

Let us discuss some troubleshouting which can appear in the implementation of
AMNS-Lagrange multiplication.

First of all, due to the discussion on the construction of M in Section 2, and
the fact that n must be a power of 2 to have efficient ChangeRep, n must be
taken be taken in the set {2, 4, 8, 16, 32, 64, 128}.

For these special values of n, we prove that we can always find for any prime
p a integer γ which is a root of a polynomial Xn − λ modulo p with λ not too
big (see Lemma 1)

Lemma 1. Let m be an odd integer, and n an integer such that there exits an
integer k > 0 with n = 2k, there exists a polynomial Xn − λ such that:

i) Xn − λ is irreducible in Z
ii) there exist a root γ of Xn − λ in Z/mZ

iii) |λ| ≤ 2
n
2

Proof. Let be g a generator of the group of the invertible of Z/pZ and φ(p) be
the length of this group.

We decompose φ(p) with a positive integer k1 and an odd integer p1 such
that φ(p) = 2k1p1.

2 is invertible in Z/pZ, so there exist an integer i such that gi mod φ(p) =
2 mod p. We decompose i with an positive integer k2 and an odd integer p2 such
that i = 2k2p2.

p is odd, so we have φ(p) even (k1 ≥ 1). We also know that g2k1−1p1 =
−1 mod p.

We have now four case:

1. If k < k1, we choose λ = −1 and γ = gx with x = 2k1−1−kp1 and we have
i) Xn + 1 is irreducible in Z

ii) γn = gxn = g2k1−1−kp12
k

= g2k1−1p1 = −1 mod p
iii) |λ| = 1 < 2

n
2



We can easily verify that x is an integer.

2. If k ≤ k2, we choose λ = 2 and γ = gx x = 2k2−kp2, then we have
i) Xn − 2 is irreducible in Z

ii) γn = gxn = g2k2−kp22
k

= g2k2p2 = λ mod p
iii) |λ| = 2 ≤ 2

n
2

We can easily verify that x is an integer.

3. If k > k2 ≥ k1, we choose λ = 2 and γ = gx with x = 2k2−k1p2+yp1
2k1−k with

y = −2k2−k1p2p
−1
1 mod 2k−k1

i) Xn − 2 is irreducible in Z
ii) γn = gxn = g(2k2−k1p2+yp1)2

k1−k2k

= g2k2p2+yp12
k1 = 2

iii) |λ| = 2 ≤ 2
n
2

We verify that x is an integer, that s the case if 2k2−kp2 + yp12k1−k can be
divide by 2k−k1 .

2k2−kp2 + yp12k1−k ≡ (2k2−k1p2 + (−2k2−k1p2p
−1
1 mod 2k−k1)p1) mod 2k−k1

≡ 2k2−k1p2 − 2k2−k1p2p
−1
1 p1) mod 2k−k1

≡ 2k2−k1p2 − 2k2−k1p2) mod 2k−k1
≡ 0 mod 2k−k1

4. If k ≥ k1 > k2 then we choose λ = −22k1−k2−1
and γ = gx with x =

p1+p2
2 +yp1
2k1−k with y = −p1+p22 p−1

1 mod 2k−k1

i) Xn + 22k1−k2 is irreducible in Z
ii) γn = gxn = g(

p1+p2
2 +yp1)2

k1−k2k

= g(p1+p2)2
k1−1+yp12

k
1 = g(p12

k1−1+p22
k1−1+yφ(p)

= −gp22k1−1
= −gp22k2+k1−k2−1

= −22k1−k2−1

iii) |λ| = 22k1−k2−1 ≤ 22k−1 ≤ 2
n
2

We verify that x is an integer, that’s the case if p1+p2
2 + yp1 is divisible by

2k−k1
p1+p2

2 + yp1 ≡ p1+p2
2 + yp1 mod 2k−k1

≡ p1+p2
2 + (−p1+p22 p−1

1 )p1 mod 2k−k1
≡ p1+p2

2 − p1+p2
2 mod 2k−k1

≡ 0 mod 2k−k1

�

So, we can construct AMNS for all prime with good conditions on n and λ.
There is an alternative strategy on the drawback due to the restriction of the

size of n : in AMNS-Lagrange multiplication if m1 and m2 are Fermat number,
we can use Schönage-Strassen [10] method to perform arithmetic modulo m1

and m2, and keep the advantageous of the method.
Let us now present a result on the implementation of AMNS-LR multiplica-

tion. Figure 1 give the time in function of the modulus size of an implementation
of Algorithm 2 in the special case n = 2 and λ = −1 on a Pentium 4, 2 GHz. The



case n = 2 and λ = −1 is an interesting case, since AMNS can be constructed
for prime p when p− 1 is divisible by 4 (this is the case for 50% of prime p).

We compare this implementation of Algorithm 2 with GMP 4.2.1 [2] modular
multiplication. For GMP, we use the modular multiplication of the modular
exponentiation, to have its best one. Our implementation use also GMP [2]
tools to construct AMNS-Lagrange system, and to perform the multiplication
itself. Our code, could be highly optimized, for example, by using astuciously
the fact that m1 and m2 are Fermat numbers.

Fig. 1. Comparison between GMP’s modular multiplication and Algorithm 2
with E = X2 + 1.
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We can see that even if we don’t use the advantageous form of Fermat moduli,
Algorithm 2 begin to be faster when p have a size around 5000 bits. We expect
that we could get better result with bigger n, since the complexity decrease with
n.

7 Conclusion

In this paper we have presented a novel algorithm to perform integer modular
arithmetic. Primarily, we gave a polynomial formulation of our algorithm which
uses the AMNS [6] representation of integer and a Montgomery-like method
to reduce the coefficients. Secondly we modify this algorithm in view to use a
Lagrange representation to speed-up the polynomial multiplication part of the
algorithm. From practical implementation, we expect that it should improve
classical algorithm (Montgomery, Barrett) to perform modular multiplication
modulo arbitrary for prime p of size several thousand bits.
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