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Post-quantum cryptography

? Two main mathematical problems : Factorization and Discrete
Logarithm.

? Quantum computers break these problems (Shor 1994)

? The American National Security Agency (NSA) announced they were
considering quantum computers as a real threat and were moving
towards post-quantum cryptography.

? April 2016 : The American National Institute for Standards and
Technology (NIST) announced it will launch a call for standardization
for post-quantum cryptosystems.
−→ now in Round 2.
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Lattice-based cryptography

? One family of post-quantum cryptography is based on euclidean
lattices.

? For efficiency reasons we use structured lattices e.g. ideal lattices.
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Related art

We are interested in the following problem : Given a principal ideal of a
number field K find a short generator of K . (SG-PIP)

? Cramer, Ducas, Peikert, Regev (2016): quantum polynomial-time or
classical 2n

2/3+ε
-time algorithm to solve Short Generator Principal Ideal

Problem (SG-PIP) on cyclotomic fields

? Bauch, Bernstein, de Valence, Lange, van Vredendaal (2017): classical
polynomial-time algorithm to solve SG-PIP on a class of
multiquadratic fields
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General Context

Definition
We call lattice any discrete subgroup L of Rn where n is a positive integer
i.e. a free Z-submodule of Rn

Any set B of free vector
which generates L is called a
basis.

There are infinitely many
basis

Some are consider better
than others : orthogonality,
short vectors
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Problems on lattices

γ
×
λ1(
L)

t

Andrea LESAVOUREY Multicubic fields 9 / 39



Problems on lattices

γ
×
λ1(
L)

t

Shortest Vector Problem (SVP) : Find the shortest vector of L.
Note λ1(L) its norm.
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Problems on lattices

γ
×
λ1(
L)

t

γ-Approximate Shortest Vector Problem (γ-SVP) : Find a vector of L with
norm less than γ × λ1(L)
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Problems on lattices

γ
×
λ1(
L)

t

Closest Vector Problem (CVP): Given t a target vector, find a vector of L
closest to t
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Problems on lattices

γ
×
λ1(
L)

t

Approximate Closest Vector Problem (γ-CVP): Given t a target vector, find
a vector of L within distance γ × d(t,L) of t
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Ideal lattices

We consider here several objects :

? K a number field i.e. a finite extension of Q

K ' Q[X ]

(P(X ))

? OK , the ring of integers of K
OK = {x ∈ K | ∃Q(X ) ∈ Z[X ] monic ,Q(x) = 0}

? O×
K the group of units of OK (or K )
O×

K =
{
u ∈ OK | u−1 ∈ OK

}
? I an ideal of O×

K i.e. an additive subgroup stable by multiplication.
� principal ideals : generated by an element i.e gOK
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Log-unit lattice

Let r1 be the number of real embeddings of K and 2r2 be the number of
complex embeddings. We have n = r1 + 2r2.

Consider the Log morphism defined on K \ {0} by

Log(x) := (log|σi (x)|)i=1,...,n .

O×
K '

Z
mZ
× Zr1+r2−1.

Log(O×
K ) is a lattice of rank r1 + r2 − 1.

Andrea LESAVOUREY Multicubic fields 11 / 39



Log-unit lattice

Let r1 be the number of real embeddings of K and 2r2 be the number of
complex embeddings. We have n = r1 + 2r2.

Consider the Log morphism defined on K \ {0} by

Log(x) := (log|σi (x)|)i=1,...,n .

O×
K '

Z
mZ
× Zr1+r2−1.

Log(O×
K ) is a lattice of rank r1 + r2 − 1.

Andrea LESAVOUREY Multicubic fields 11 / 39



Log-unit lattice

Let r1 be the number of real embeddings of K and 2r2 be the number of
complex embeddings. We have n = r1 + 2r2.

Consider the Log morphism defined on K \ {0} by

Log(x) := (log|σi (x)|)i=1,...,n .

O×
K '

Z
mZ
× Zr1+r2−1.

Log(O×
K ) is a lattice of rank r1 + r2 − 1.

Andrea LESAVOUREY Multicubic fields 11 / 39



Log-unit lattice

Let r1 be the number of real embeddings of K and 2r2 be the number of
complex embeddings. We have n = r1 + 2r2.

Consider the Log morphism defined on K \ {0} by

Log(x) := (log|σi (x)|)i=1,...,n .

O×
K '

Z
mZ
× Zr1+r2−1.

Log(O×
K ) is a lattice of rank r1 + r2 − 1.

Andrea LESAVOUREY Multicubic fields 11 / 39



Cryptography and ideal lattices

Consider K and OK as before. Moreover let I = gOK be a principal ideal
where g is supposed to be short as a vector.

We are focusing on cryptosystems such that :
? I is public, given by integral basis for example

? g is private.
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Cryptography and ideal lattices

An attack on such a cryptosystem can be decomposed in two steps :

1. Find a generator h = gu of I (u ∈ O×
K )

Can be done in polynomial
time with a quantum computer

2. Find g given h.

The second step can be viewed as a search for a unit v such that hv is
short : it is a reducing phase

Kind of problem which seems to resist more
to quantum computers
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Cryptography and ideal lattices

In order to solve this problem, a standard approach is to use the Log-unit
lattice :

Log (h) = Log (gu) = Log (g) + Log (u) ∈ Log (g) + Log(O×
K ).

Log(g) small : error

Can be seen as a CVP.
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Cyclotomic fields

The cyclotomic field K = Q (ζm)
Not use the full group O×

K but subgroup of so called cyclotomic units

C =< ±ζm; cj :=
ζ jm − 1
ζm − 1

| gcd(j ,m) = 1 >

LogC is a sublattice LogO×
K : close enough

[O×
K : C ] very small
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Multiquadratic fields

The multiquadratic field associated with d1, . . . , dn is
K := Q

(√
d1, . . . ,

√
dn
)
.

Subgroup generated by the units of all the quadratic subfields : full rank
sublattice with an Orthogonal Basis but Too far away

Compute the full unit group
Compute the generator of a principal ideal
Attack a cryptosystem
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Field Structure
Number Field

? K = Q( 3
√
d1, . . . ,

3
√
dn)

? [K : Q] = 3n ⇐⇒
∏n

i=1 d
αi
i is not a cube, for all (αi )i ∈ J0, 2Kn

? K is not Galois, every complex embedding σ is given by its action on
3
√
di 7→ ζβi3

3
√
di with (βi )i ∈ J0, 2Kn
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Field Structure
Complex embeddings and Galois closure

K is a multicubic field as before.

The Galois closure of K is K̃ = K (ζ3)

Gal(K̃/Q) ' 〈τ〉n 〈σ̃ | σ ∈ Hom(K ,C)〉 ' Z
2Z n

( Z
3Z
)n

� τ is the complex conjugaison
� σ̃ is the extension of σ which action is trivial on ζ3.

With the Galois correspondence : if F is a subfield of K then
H(F ) ' 〈τ〉n 〈σ̃(1), . . . , σ̃(r)〉

Andrea LESAVOUREY Multicubic fields 19 / 39



Action of morphisms

? σ ∈ Hom(K ,C) ⇐⇒ β ∈ Fn
3

? Cubic subfield ⇐⇒ α ∈ Fn
3 \ {0}mod[2]

⇐⇒ hyperplane in Fn
3

? σ action on CF (α) given by
∑n

i=1 αiβi in F3 i.e. β ∈ Hα(t) for
t ∈ F3.
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Units

Multiquadratic Fields
? O×

K ' Z2n−1

? For Quadratic subfields : one
fundamental unit εα

? U = 〈−1, εα | α〉 subgroup of
finite index

? {Log(εα) | α} is an orthogonal
basis of Log(U)

Multicubic Fields
? O×

K ' Z
3n−1
2

? For Cubic subfields : one
fundamental unit εα

? U = 〈−1, εα | α〉 subgroup of
finite index

? {Log(εα) | α} is an orthogonal
basis of Log(U)
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Computing the units

Compute units from the Multiquadratic or Multicubic units :
more efficient procedure and better geometry

How is it done though?
Use relative norms.
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Computing the units
Going under

Multiquadratic Fields

Lemma
Let σ and τ two independant
elements of Gal(K ,C). For all
x ∈ K ∗ we have x2 ∈ KσKτKστ .

(O×
K )2 ⊆ O×

Kσ
O×

Kτ
O×

Kστ

Multicubic Fields

Lemma
Let σ1 and σ2 two independant
elements of Hom(K ,C). For all
x ∈ K ∗ we have
x3 ∈ Kσ̃1Kσ̃2Kσ̃1σ̃2Kσ̃12σ̃2 .

(O×
K )3 ⊆ O×

Kσ̃
O×

Kτ̃
O×

Kσ̃τ̃
O×
σ̃2τ̃
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Computing the units
General Procedure

Multiquadratic Fields
1. Compute a subgroup such
that (O×

K )2 ⊂ U ⊂ O×
K

Recursive computation

2. Compute O×
K from U

Detection of squares
and computation of
square-roots

Multicubic Fields
1. Compute a subgroup such
that (O×

K )3 ⊂ U ⊂ O×
K

Recursive computation

2. Compute O×
K from U

Detection of cubes and
computation of
cube-roots
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Solving the PIP
General Procedure

Recall that we consider I = gOK a principal ideal. We want to find a
generator h.
Multiquadratic Fields

1. Compute a generator of
I 2

Recursive computation
on relative norms of I

2. Deduce a generator of I
Detection of an
associate which is a
square and
computation of
square-roots

Multicubic Fields
1. Compute a generator of
I 3

Recursive computation
on relative norms of I .

2. Deduce a generator of I
Detection of an
associate which is a
cube and computation
of cube-roots
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Detecting cubes
A good character

Given S = 〈x1, . . . , xm〉 < K ∗ find (e1, . . . , em) s.t. xe11 xe22 · · · xemm is a cube.

1. Find p such that :
� p ≡ 1 mod 3
� every di has a cube root in Fp

� coefficients of every xj can be reduced modulo p

=⇒ φp : S −→ F∗
p reduction morphism

2. Compose φp with t 7−→ t
p−1
3 obtaining χp : S −→ F3
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Detecting cubes

Consider S = 〈x1, . . . , xm〉 < K ∗.

1. Find χ1, . . . , χr sufficiently enough characters.

2. Compute M the character matrix [χj(xi )]i ,j .

3. Find K the kernel of M in F3.

Andrea LESAVOUREY Multicubic fields 27 / 39



Computing roots
Multiquadratic fields

Consider K = Q(
√
d1, . . . ,

√
dn) and L = Q(

√
d1, . . . ,

√
dn−1). Let

h = g2. Then if we write g = g0 + g1
√
dn and h = h0 + h1

√
dn we have :

h0 = g2
0 + dng

2
1

h1 = 2g0g1

NK/L(g) =
√

NK/L(h) = g2
0 − g2

1d

Compute recursively in L and solve the a sign problem.
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Computing roots
Multicubic fields

Consider K = Q( 3
√
d1, . . . ,

3
√
dn) and L = Q( 3

√
d1, . . . ,

3
√
dn−1). Let

h = g3. Then if we write g = g0 + g1
3
√
dn + g2

3
√
dn

2 and
h = h0 + h1

3
√
dn + h2

3
√
dn

2 we have :

h0 = g3
0 + g3

1dn + g3
2d

2
n + 6g0g1g2dn

y1 = 3(g2
0 g1 + g2

1 g2dn + g2
2 g0dn)

y2 = 3(g2
0 g2 + g2

1 g0 + g2
2 g1dn)

NK/L(g) = g3
0 + g3

1dn + g3
2d

2
n − 3g0g1g2dn.
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Cube Roots
How we do it

Consider vl the column vector of (bi )i computed in R up to a given
precision l .

Let Ml = [vl | C · IN ] and Ll ,Ul = LLL(Ml).

Consider x = [xl | 0 | B] with B an upper bound of the norms of the
row vectors of Ll .

Compute R = LLL
([

Ll | 0
x

])

Cube root candidate :
1
C
(RN+1,2, . . . ,RN+1,N+1)
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Cube Roots

Precision needed : experiments suggest N‖y‖2

Complexity : polynomial in N and length of ‖y‖2.

Cons : heuristic method.
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Experimental Results
Computation of units

First prime 2 3 5 7 11 13 17 19 23 29
O×

K (times in s) 0.260 0.260 0.260 0.270 0.290 0.350 0.330 0.360 0.480 0.320
CubeRoot (times in s) 0.010 0.010 0.010 0.010 0.000 0.050 0.060 0.070 0.180 0.010

# cube roots 3 3 1 1 1 1 1 2 3 1
Average logarithm of the Norm of cubes 3 18 31 45 24 215 270 175 162 70

First prime 2 3 5 7 11 13 17 19 23 29
O×

K (times in s) 2.110 2.250 2.490 4.500 2.780 18.780 4.060 24.810 9.230 24.420
CubeRoot (times in s) 0.060 0.180 0.350 2.310 0.350 15.980 1.020 16.540 5.950 16.490

# cube roots 3 4 3 4 2 5 4 5 4 3
Average logarithm of the Norm of cubes 13 29 46 127 83 404 112 398 313 781

Table: Times and data for Algorithm for number fields defined by consecutive
primes for n = 2 and 3
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Experimental Results
Computing units

First prime 2 3 5 7 11 13 17
O×

K (times in s) 39.670 71.160 157.460 873.670 7479.250 9862.540 29308.850
CubeRoot (times in s) 19.220 47.270 130.240 832.780 7370.470 9271.600 28425.140

# cube roots 14 12 10 11 11 11 13
Average logarithm of the Norm of cubes 29 75 168 533 1090 2178 3295

First prime 2 3 5
O×

K (times in s) 16026.410 87701.680 566029.130
CubeRoot (times in s) 15246.560 85036.150 562127.470

# cube roots 36 36 48
Average logarithm of the Norm of cubes 63 199 531

Table: Times and data for Algorithm for number fields defined by consecutive
primes for n = 4 and 5
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Figure: Times in seconds to compute O×
K in function of the product of the

regulators of the cubic subfields of K for n = 2. (Axes are in logarithmic scales.)
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Figure: Times in seconds to compute O×
K in function of the product of the

regulators of the cubic subfields of K for n = 3. (Axes are in logarithmic scales.)
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Figure: Times in seconds to compute O×
K in function of the product of the

regulators of the cubic subfields of K for n = 4. (Axes are in logarithmic scales.)
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Experimental Results
Solving the SGPIP

First prime 2 3 5 7 11 13 17 19 23 29
Consecutive 35.20 90.80 98.40 98.20 100.0 100.0 99.70 99.80 100.0 100.0

46.20 91.50 98.40 98.20 100.0 100.0 99.70 99.80 100.0 100.0
Arithmetic 69.90 95.10 98.60 97.40 100.0 99.80 100.0 99.80 100.0 100.0

75.20 95.10 98.60 97.40 100.0 99.80 100.0 99.80 100.0 100.0

First prime 2 3 5 7 11 13 17 19 23 29
Consecutive 46.00 93.30 100.0 99.91 100.0 100.0 100.0 100.0 100.0 100.0

46.40 93.30 100.0 99.91 100.0 100.0 100.0 100.0 100.0 100.0
Arithmetic 84.10 99.59 100.0 99.50 100.0 n/a n/a n/a n/a n/a

84.10 99.59 100.0 99.50 100.0 n/a n/a n/a n/a n/a

First prime 2 3 5 7 11 13 17 19
Consecutive 64.20 99.91 100.0 100.0 100.0 100.0 100.0 100.0

64.20 99.91 100.0 100.0 100.0 100.0 100.0 100.0
Arithmetic 95.00 100.0 100.0 100.0 100.0 n/a n/a n/a

95.00 100.0 100.0 100.0 100.0 n/a n/a n/a

Table: Percentages of keys recovered for n = 2, 3 and 4
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Leads for future work

� Biasse, van Vredendaal (2018): Same general framework to compute
S−units and class groups in multiquadratic fields

� If we consider exponents p bigger than 3 : the unit group of subfields
of degree p will not be computed by a single fundamental unit
anymore =⇒ we do not start with an orthogonal basis

� Can we find other algebraic relations to take advantage of?

Andrea LESAVOUREY Multicubic fields 38 / 39



Thank you for your attention.
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