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Post-quantum cryptography

* Two main mathematical problems : Factorization and Discrete
Logarithm.
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Post-quantum cryptography

* Two main mathematical problems : Factorization and Discrete
Logarithm.

* Quantum computers break these problems (Shor 1994)

* The American National Security Agency (NSA) announced they were
considering quantum computers as a real threat and were moving
towards post-quantum cryptography.

* April 2016 : The American National Institute for Standards and
Technology (NIST) announced it will launch a call for standardization
for post-quantum cryptosystems.

— now in Round 2.
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Lattice-based cryptography

* One family of post-quantum cryptography is based on euclidean
lattices.

* For efficiency reasons we use structured lattices e.g. ideal lattices.
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Related art

We are interested in the following problem : Given a principal ideal of a
number field K find a short generator of K. (SG-PIP)

* Cramer, Ducas, Peikert, Regev (2016): quantum polynomial-time or
classical 27*"“time algorithm to solve Short Generator Principal Ideal
Problem (SG-PIP) on cyclotomic fields

* Bauch, Bernstein, de Valence, Lange, van Vredendaal (2017): classical
polynomial-time algorithm to solve SG-PIP on a class of
multiquadratic fields

Andrea LESAVOUREY Multicubic fields 6/39



Outline

© Recalls

Andrea LESAVOUREY Multicubic fields 7/39



General Context

Definition
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i.e. a free Z-submodule of R"
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General Context

Definition
We call lattice any discrete subgroup £ of R"” where n is a positive integer
i.e. a free Z-submodule of R"

Any set B of free vector
] _ which generates L is called a
, ‘ basis.

There are infinitely many
basis

K ' . Some are consider better
) than others : orthogonality,
short vectors
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Problems on lattices
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Problems on lattices

Shortest Vector Problem (SVP) : Find the shortest vector of L.
Note A1(£) its norm.
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Problems on lattices

~-Approximate Shortest Vector Problem (y-SVP) : Find a vector of £ with
norm less than 7y x A1(L)
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Problems on lattices

Closest Vector Problem (CVP): Given t a target vector, find a vector of £
closest to t
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Problems on lattices

Approximate Closest Vector Problem (y-CVP): Given t a target vector, find
a vector of £ within distance v x d(t, L) of t
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We consider here several objects :
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|deal lattices

We consider here several objects :

* K a number field i.e. a finite extension of Q
. Ol
(P(X))

* Ok, the ring of integers of K
Ok = {x € K| 3Q(X) € Z[X] monic , Q(x) = 0}

*x O the group of units of Ok (or K)
(’);:{ue(’)K!ufle(’)K}

* | an ideal of O i.e. an additive subgroup stable by multiplication.
o principal ideals : generated by an element i.e gOk
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Log-unit lattice

Let r; be the number of real embeddings of K and 2r, be the number of
complex embeddings. We have n = r; + 2r.
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Log-unit lattice

Let r; be the number of real embeddings of K and 2r, be the number of
complex embeddings. We have n = r; + 2r.

Consider the Log morphism defined on K\ {0} by

Log(x) := (logloi(x)])i=1,....n-

Log(Op) is a lattice of rank r; +r — 1.
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Cryptography and ideal lattices

Consider K and O as before. Moreover let | = gOk be a principal ideal
where g is supposed to be short as a vector.
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Consider K and O as before. Moreover let | = gOk be a principal ideal
where g is supposed to be short as a vector.

We are focusing on cryptosystems such that :

* | is public, given by integral basis for example

* g is private.
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Cryptography and ideal lattices

An attack on such a cryptosystem can be decomposed in two steps :
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Cryptography and ideal lattices

An attack on such a cryptosystem can be decomposed in two steps :

1. Find a generator h = gu of | (u € Of) Can be done in polynomial
time with a quantum computer

2. Find g given h.

The second step can be viewed as a search for a unit v such that hv is
short : it is a reducing phase Kind of problem which seems to resist more
to quantum computers
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Cryptography and ideal lattices

In order to solve this problem, a standard approach is to use the Log-unit
lattice :
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Cryptography and ideal lattices

In order to solve this problem, a standard approach is to use the Log-unit
lattice :

Log (h) = Log (gu) = Log (g) + Log (u) € Log (g) + Log(Ok).

Log(g) small : error

Can be seen as a CVP.
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Cyclotomic fields

The cyclotomic field K = Q (¢m)
Not use the full group O but subgroup of so called cyclotomic units
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Cyclotomic fields

The cyclotomic field K = Q (¢m)
Not use the full group O but subgroup of so called cyclotomic units

G —1
(m—1

C=<ZE(mic = | ged(j,m)=1>

LogC is a sublattice Log Oy : close enough
[OF : C] very small
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Multiquadratic fields

The multiquadratic field associated with dy,...,d, is

K:z@(ﬁ,...,@).
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Multiquadratic fields

The multiquadratic field associated with dy,...,d, is

Ki=Q(h,.../dy).
Subgroup generated by the units of all the quadratic subfields : full rank
sublattice with an Orthogonal Basis but Too far away

Compute the full unit group
Compute the generator of a principal ideal
Attack a cryptosystem
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Field Structure
Number Field

* K=Q(Vd,...,Vd)
*x [K:Q]=3" <= []]_,d" is not a cube, for all («;); € [0,2]"

* K is not Galois, every complex embedding o is given by its action on

Vdi — ¢§'¥/d; with (8); € [0,2]"
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Field Structure

Complex embeddings and Galois closure

K is a multicubic field as before.

The Galois closure of K is K = K((3)

Gal(K/Q) ~ (7) x (& | o € Hom(K,C)) ~ £ x (£)"
o 7 is the complex conjugaison

© & is the extension of o which action is trivial on (3.

With the Galois correspondence : if F is a subfield of K then
H(F) ~ (r) x (1), ..., 50)
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Action of morphisms

x 0 € Hom(K,C) <= B3

* Cubic subfield <= a € F4 \ {0}mod[2]
<= hyperplane in

* o action on CF(a) given by Y71 o;f3j in F3 i.e. B € Ho(t) for
t € Fs.
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Units

Multiquadratic Fields Multicubic Fields

* OFf ~ 7271 * Of =~ 77

* For Quadratic subfields : one x For Cubic subfields : one
fundamental unit €, fundamental unit e,

* U= (—1,¢eq | @) subgroup of * U= (—1,€eq | @) subgroup of
finite index finite index

* {Log(eq) | @} is an orthogonal * {Log(eq) | @} is an orthogonal
basis of Log(U) basis of Log(U)
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Computing the units

Compute units from the Multiquadratic or Multicubic units :
more efficient procedure and better geometry

How is it done though?
Use relative norms.
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Computing the units

Going under
Multiquadratic Fields Multicubic Fields
Lemma Lemma
Let o and T two independant Let o1 and o3 two independant
elements of Gal(K,C). For all elements of Hom(K, C). For all
x € K* we have x?> € KoK, Ky x € K* we have

3 o K Ko =
X 6 Ka—l KO—ZKGIUZ K07120’"2'

(O; )2 g O;éo' O;é‘r OI'><<0'T
(O;é )3 < O;é& O;é% O;&% 0:2%
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Computing the units

General Procedure

Multiquadratic Fields Multicubic Fields

1. Compute a subgroup such 1. Compute a subgroup such

that (O;)* C U C O that (O;)® c U c Of
Recursive computation Recursive computation

2. Compute O from U 2. Compute Og from U
Detection of squares Detection of cubes and
and computation of computation of
square-roots cube-roots
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Solving the PIP

General Procedure

Recall that we consider | = gOk a principal ideal. We want to find a
generator h.

Multiquadratic Fields Multicubic Fields

1. Compute a generator of 1. Compute a generator of

I? I3
Recursive computation Recursive computation
on relative norms of / on relative norms of /.

2. Deduce a generator of / 2. Deduce a generator of /
Detection of an Detection of an
associate which is a associate which is a
square and cube and computation
computation of of cube-roots

square-roots
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Detecting cubes

A good character

Given S = (x1,...,xm) < K* find (e1, ..., em) s.t. x{*x52 -+ - x5 is a cube.
1. Find p such that :
o p=1mod3
o every d; has a cube root in F,
o coefficients of every x; can be reduced modulo p

= ¢p : S — F}, reduction morphism

—1

2. Compose ¢p, with t — t°3 obtaining xp, : S — 3
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Detecting cubes

Consider S = (x1,...,xm) < K*.

1. Find x1, ..., x, sufficiently enough characters.
2. Compute M the character matrix [x;(x;)]i;.

3. Find K the kernel of M in F3.
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Computing roots
Multiquadratic fields

Consider K = Q(+/d1, .. .,vd,) and L = Q(\/d1,...,/dn_1). Let
h = g?. Then if we write g = go + g1+/d, and h = hg + h1\/d, we have :

ho = &8 + dng?

h1 = 2gog1

Nk/1(g) = \/Nks(h) = g — gid

Compute recursively in L and solve the a sign problem.
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Computing roots
Multicubic fields

Consider K = Q(¥/d1, ..., vd,) and L = Q(¥/dy, ..., 3/dn_1). Let
h = g3. Then if we write g =& + g1\3/d7,,+g2\37d7,,2 and
h= ho + h1\3/d>n+ h2\3/d>n we have :

ho = &5 + 87 dn + 83 d7 + 6808182,

y1 = 3(ge1 + &7 g2dn + g580dn)

2 = 3(g3 82 + 8180 + g3 81dn)

Nk/(g) = &8 + gidn + g3d° — 3g0g1820n.
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Cube Roots

How we do it

Consider v, the column vector of (b;); computed in R up to a given
precision /.

Let M, = [V/ ’ C- /N] and L;, U = LLL(M/).

Consider x = [x; | 0 | B] with B an upper bound of the norms of the
row vectors of L.

Compute R = LLL <[LIO])

X

1
Cube root candidate : E(RN_A'_]_Q, o Rngingr)
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Cube Roots

Precision needed : experiments suggest N||y||2
Complexity : polynomial in N and length of ||y||2.

Cons : heuristic method.

Andrea LESAVOUREY Multicubic fields 31/39



Experimental Results

Computation of units

First prime 2 3 5 7 11 13 17 19 23 29
Ok (times in s) 0.260 | 0.260 | 0.260 | 0.270 | 0.290 | 0.350 | 0.330 | 0.360 | 0.480 | 0.320
CubeRoot (times in s) 0.010 | 0.010 | 0.010 | 0.010 | 0.000 | 0.050 | 0.060 | 0.070 | 0.180 | 0.010
# cube roots 3 3 1 1 1 1 1 2 3 1
Average logarithm of the Norm of cubes 3 18 31 45 24 215 270 175 162 70
First prime 2 3 5 7 11 13 17 19 23 29
Ok (times in s) 2.110 | 2.250 | 2.490 | 4.500 | 2.780 | 18.780 | 4.060 | 24.810 | 9.230 | 24.420
CubeRoot (times in s) 0.060 | 0.180 | 0.350 | 2.310 | 0.350 | 15.980 | 1.020 | 16.540 | 5.950 | 16.490
# cube roots 3 4 3 4 2 5 4 5 4 3
Average logarithm of the Norm of cubes | 13 29 46 127 83 404 112 398 313 781
Table: Times and data for Algorithm for number fields defined by consecutive
primes for n =2 and 3
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Experimental Results

Computing units

First prime 2 3 5 7 11 13 17
OF (times in s) 39.670 | 71.160 | 157.460 | 873.670 | 7479.250 | 9862.540 | 29308.850
CubeRoot (times in s) 19.220 | 47.270 | 130.240 | 832.780 | 7370.470 | 9271.600 | 28425.140
# cube roots 14 ‘ 12 ‘ 10 ‘ 11 ‘ 11 ‘ 11 ‘ 13 ‘
Average logarithm of the Norm of cubes 29 75 168 533 1090 2178 3295
First prime 2 3 5
Ok (times in s) 16026.410 | 87701.680 | 566029.130
CubeRoot (times in s) 15246.560 | 85036.150 | 562127.470
# cube roots 36 36 48
Average logarithm of the Norm of cubes 63 199 531

Table: Times and data for Algorithm for number fields defined by consecutive
primes for n =4 and 5
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Figure: Times in seconds to compute Oy in function of the product of the

regulators of the cubic subfields of K for n = 2. (Axes are in logarithmic scales.)
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Figure: Times in seconds to compute Oy in function of the product of the

regulators of the cubic subfields of K for n = 4. (Axes are in logarithmic scales.)
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Experimental Results

Solving the SGPIP

First prime 2 3 5 7 11 13 17 19 23 29
Consecutive | 35.20 | 90.80 | 98.40 | 98.20 | 100.0 | 100.0 | 99.70 | 99.80 | 100.0 | 100.0
46.20 | 91.50 | 98.40 | 98.20 | 100.0 | 100.0 | 99.70 | 99.80 | 100.0 | 100.0

Arithmetic | 69.90 | 95.10 | 98.60 | 97.40 | 100.0 | 99.80 | 100.0 | 99.80 | 100.0 | 100.0
75.20 | 95.10 | 98.60 | 97.40 | 100.0 | 99.80 | 100.0 | 99.80 | 100.0 | 100.0

First prime 2 3 5 7 11 13 17 19 23 29
Consecutive | 46.00 | 93.30 | 100.0 | 99.91 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0
46.40 | 93.30 | 100.0 | 99.91 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0

Arithmetic | 84.10 | 99.59 | 100.0 | 99.50 | 100.0 | n/a n/a n/a n/a n/a
84.10 | 99.59 | 100.0 | 99.50 | 100.0 | n/a | n/a n/a | n/a n/a

First prime 2 3 5 7 11 13 17 19
Consecutive | 64.20 | 99.91 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0
64.20 | 99.91 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0

Arithmetic | 95.00 | 100.0 | 100.0 | 100.0 | 100.0 | n/a n/a n/a
95.00 | 100.0 | 100.0 | 100.0 | 100.0 | n/a n/a n/a

Table: Percentages of keys
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Leads for future work

© Biasse, van Vredendaal (2018): Same general framework to compute
S—units and class groups in multiquadratic fields

o If we consider exponents p bigger than 3 : the unit group of subfields
of degree p will not be computed by a single fundamental unit
anymore = we do not start with an orthogonal basis

¢ Can we find other algebraic relations to take advantage of?
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Thank you for your attention.
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