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Abstract: One family of candidates to build a post-quantum cryptosystem upon relies on euclidean lattices.
In order to make such cryptosystems more efficient, one can consider special lattices with an additional al-
gebraic structure such as ideal lattices. Ideal lattices can be seen as ideals in a number field. However recent
progress in both quantum and classical computing showed that such cryptosystems can be cryptanalysed
efficiently over some number fields. It is therefore important to study the security of such cryptosystems for
other number fields in order to have a better understanding of the complexity of the underlyingmathematical
problems. We study in this paper the case of multicubic fields.

Keywords: Public-key cryptography, Post-quantum cryptography, Number Fields, Ideal lattice, Cryptanalysis,
Unit Group, Cubic Field

1 Introduction
Given a number field K, an ideal lattice over K is simply an ideal I of OK considered as a Z−module in Rn,
where OK is the ring of integers of K. It can be represented by an integral basis. In the simplest version of
encryption using ideal lattices, such as in [15, 16, 20], we can consider a number field K and I = gOK a
principal ideal with a short g when I is considered as a lattice. Short means that the euclidean norm of g is
small compared to the determinant of I. Then K and I are public – with I which can be given by the Hermite
Normal Form of a basis matrix of I for example – and g is the private key. The security of the cryptosystem
relies on the hardness of finding g or another short generator. Finding a generator is called the Principal
Ideal Problem (PIP) and is referred as one of the main tasks of Computational Number Theory by Cohen in
[11]. Finding a short generator is referred as the Short Principal Ideal Problem (SPIP). The first advantage of
such a system compared to a general lattice based system is that instead of storing a n2matrix to designate the
latticewe can use amore compact representation.We therefore need less space to store the public and private
keys. Moreover the algebraic structure of the fields we are working with allows faster computations. Because
of this efficiency, ideal lattices – and more generally structured lattices – are under a lot of investigation to
evaluate the security of lattice-based cryptosystems. By default an attack to recover the generator g is done
in two steps:

(i) recover a generator h of I;
(ii) find a short generator given h.
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The first step corresponds to the PIP which is considered a hard problem in classical computational number
theory. However it is shown that it can be efficiently done by using quantum computing as in [6]. The second
is a reduction phase which is the kind of tasks that seem difficult even for quantum computers. In order to
solve it, one may use the structure of the set of generators of I and the Log-unit lattice. This strategy was
mentioned in [9] where it was claimed that in the case of cyclotomic fields the group of cyclotomic units has a
good enough geometry in the Log-unit lattice to help recovering a short secret vector. A proper analysis of this
situation has been done in [13] where the authors gave a bound for the norm of the vectors of the dual basis.
More precisely they analysed a subgroup of the unit group which is easily computable and whose index is
small i.e. close to 1. They showed that one can shorten a generator with respect to this subgroup and that an
enumeration process allows to retrieve a short generator with respect to the full unit group. In [4] the authors
studied another family of fields, namely the multiquadratic fields, and were able to recover a short generator
of an ideal in classical polynomial time for a wide range of fields.

Objectives and results
In this paper we study the case of real multicubic fields i.e. fields generated by real cube roots of integers. We
aim to show that such fields should not be used for cryptography in a post-quantum setting i.e. that one can
retrieve a short generator using the Log-unit lattice. For this purpose we prove that their algebraic structure
is similar to the one of multiquadratic fields so that the framework of the attack in [4] can be adapted to
multicubic fields. We are able to compute units of degree 3n number fields for n up to 5. Experiments on the
PIP show a success rate similar to the ones presented in [4].

Future work
Further work can consist in improving the results onmulticubic fields and generalise the approach to number
fields generated by p-root of integers for bigger primes p. This could lead to a better understanding on what
can be done regarding ideal lattices. Moreover it would be interesting to work on other important tasks of
computational number theory over these fields such as computing the class group. Another direction would
be to study number fields withmore complicated structures in order to lookwhether we can again find a good
basis for the Log-unit lattice or not.

2 Background
Notations : The inner product is denoted by

(︀
· | ·
)︀
. When we consider a tuple (λ1, . . . , λn) we can designate

it by λ. An interval in the integers will be written Ja, bK. Given a rational number a we will write 3√a or a 1
3 its

real cube root.

Lattices :

A lattice is a discrete subgroup of Rn where n is a positive integer. A basis of a lattice L is a basis of L when
considered as a Z-module. One way of representing a lattice is then to consider the matrix of a basis of the
lattice. Let us denote by λ1(L) the norm of the shortest non zero vector of L. There is an approximation of
λ1(L) called the Gaussian heuristic which tells that the expected value of λ1(L) is in O(

√
r × r
√︀
det(L)) where

r is the rank of L. This gives an expected value for the norm of what we call a short vector. The classical
problems over lattices are :

(i) the Shortest Vector Problem (SVP) : «Given a a lattice L of dimension n, find u ∈ L \ {0} such that
‖u‖ = λ1(L) »;
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(ii) the Closest Vector Problem (CVP) : «Given a lattice L of dimension n and t ∈ Rn, find u ∈ L such that
∀v ∈ L, ‖t − u‖ 6 ‖t − v‖; »;

(iii) the Bounded Distance Decoding (BDD) : «Given a basis B of a lattice L, a target vector t such that
d(t,L) < λ1(L)/2, find the lattice vector v ∈ L closest to t. ».

In practice we can consider relaxed versions of these problems with respect to an approximation factor. For
general lattices these problems are NP-hard thus at least as hard as factorising for example. Moreover we do
not have any result showing that quantum computers can solve these problems for general lattices. These
problems are easier to solve if we have a good basis at our disposal i.e. a basis built with relatively short
vectors which are nearly orthogonal to each other.

Despite the hardness of these problems over random lattices, high-dimensional lattices are large objects
and slow to handle. A way of copping with that is to work with lattices with extra algebraic structure such as
ideal lattices. However this can introduce a security weakness as it may be easier to find good basis related
to such lattices or to use the algebraic structure to solve lattice problems.

Number Fields :

We will quickly recall some facts about number fields. A number field K is a field which is a finite extension
ofQ. It can always be described as a polynomial quotient ring

Q[X]
(P(X))

where P(X) is irreducible inQ[X]. Equivalently if we choose θ to be any root of P(X)we can see K asQ(θ) the
smallest field containing Q and θ. If we write n the degree of P(X) then the dimension of K over Q – written
[K : Q] – is n.

There are n distinct complex field embeddings K →˓ C denoted by σ1, . . . , σn. They map θ to the other
complex roots of P(X). We will write Hom(K,C) for this set. Among them we have r1 real embeddings and r2
pairs of complex embeddings. The two elements of a given pair are conjugates one from each other. It is the
usage to denote by σ1, . . . , σr1 the real embeddings and to consider that σj+r2 = σj for all j ∈ Jr1 + 1, r1 + r2K.
Given a complex embedding σ ∈ Hom(K,C) the set {x ∈ K | σ(x) = x} is a subfield of K. We will denote it by
Inv(σ) or Kσ to follow notations used in [4].

The Galois Group of a field extension L/K denoted by Gal(L/K) is the group of field automorphisms of
L which are congruent to the identity when restricted to K. It is a subset of Hom(L,C). An extension L/K is
called a Galois extension when the cardinality of Gal(L/K) equals the dimension [L : K]. Moreover the Galois
correspondence states that given a Galois extension L/K there is a one-to-one correspondence between the
subgroups of Gal(L/K) and the subfields of L containing K. Given a subgroup H of Gal(L/K) we will write
Inv(H) the corresponding subfield of L. In the case of a number field K we say it is a Galois field if it is Galois
as an extension ofQ. For example the cyclotomic fields are Galois number fields as well as themultiquadratic
fields. However this property is not verified by a general number field K and we have to consider the Galois
closure of K, denoted by ̃︀K, which is in fact the smallest extension containing all the roots of the irreducible
polynomial P(X).

One ring of particular importance is the ring of integers of K denoted byOK . It consists of the elements of K
which are roots of a monic polynomial of Z[X]. This ring as well as its ideals are full rank sub-Z-module of K.
The imagesofOK andof any ideal I ofOK under the actionof any embeddingofK intoRn are lattices. Theusual
embedding corresponds to view anumber field K as a quotient Q[X]

(f (X)) . Then every element g(X) = g0+· · ·+gnXn

of K can be seen as the vector with coordinates (g0, . . . , gn) in Rn. The other fundamental example is called
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theMinkowski embedding and is

σ : K −→ Rn

x ↦−→ (σi(x))i∈J1,r1+r2K.

The group of units ofOK writtenO×K is the set
{︀
u ∈ OK | u−1 ∈ OK

}︀
. It has a specific structure that we can

take advantage of. Given a number field K of degree n with n = r1 + 2r2 as before, we have

O×K ≃
Z
mZ × Z

r1+r2−1.

This isomorphism which allows to see the units of O×K modulo its torsion group as a lattice is realised by an
important embedding which is the Log-embedding of K. It is defined as

LogK : K* −→ Rr1+r2
x ↦−→

(︀
log(|σi(x)|)

)︀
i∈J1,r1+r2K

.

The set LogK(O×K) is a lattice of the hyperplane orthogonal to the all ones vector. It is called the Log-unit lattice.
Sometimes we define the Log-embedding by using all of the embeddings σi. By doing so the Log-unit lattice
is a lattice of rank r1 + r2 − 1 in Rn.

Given a family (x1, . . . , xn) of a number field K the discriminant D(x1, . . . , xn) is the rational number
det((σj(xi))i,j)2. GivenO a full-rank subring ofOK the discriminant ofO is D(x1, . . . , xn)where (x1, . . . , xn) is
an integral basis of O. The discriminant of K – written D(K) – is the discriminant of its integer ring.

Ideal lattice cryptosystem :

Recall that ideal based cryptosystems such as presented in [15, 16, 20] have in general a private key which is
a short generator of a public ideal I. The security of such cryptosystems relies on the supposed hardness of
finding such a generator given an ideal, problem called the Short Principal Ideal Problem. The Principal Ideal
Problem consists in finding any generator of the principal ideal i.e. given an ideal I = gOK, find some h such
that I = hOK . As mentioned the process done to solve the SPIP relies essentially in two steps : solve the PIP
and then shorten the retrieved generator. The set of generators of I is {gu | u ∈ O×K}. Therefore solving the
PIP yields h = gu with u ∈ O×K . It is then possible to retrieve g from h by finding u. This is where we can
use the Log-unit lattice. If we transpose the situation with the Log-embedding, for every generator h we have
LogK(h) = LogK(g) + LogK(u). Using that remark and finding the element of the Log-unit lattice closest to h it
is possible to retrieve g. This corresponds to solve the Closest Vector Problem (CVP) with respect to the target
h and the lattice Log O×K, and even the BDD because we know the generator g is short. The success of such
a method is therefore dependent on the particular geometry of the Log-unit lattice meaning that we want to
have access to a somehow good basis i.e. orthogonal enough. This attack requires to

(i) solve the PIP : this is considered hard classically and can be done in quantum polynomial time;
(ii) compute O×K : as the PIP this is considered hard classically and can be done in quantum polynomial

time;
(iii) shorten a generator h by solving the BDD with respect to LogK(O×K) : this will depend on the basis ob-

tained.

Multiquadratic fields :

Multiquadratic fields are fields which are generated by a sequence of square roots of integers
√︀
d1, . . . ,

√
dn.

In [4] Bauch and al. proved that it is possible to compute the unitsO×K and solve the PIP efficiently using only
a classical computer. This goes even further than for cyclotomic fields. They use the full unit group to solve
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the SPIP corresponding to the second part of an attack on an ideal lattice. In order to be able to do all of that
they take advantage of the special structure of a multiquadratic field, particularly that it has a lot of subfields
which are multiquadratic fields too. As in the cyclotomic case they exhibit a subgroup of the unit group that
they call multiquadratic units. We can denote it by U. This subgroup is generated by the fundamental units
of all quadratic subfields. Under the Log-embedding it constitutes a full rank sublattice of LogK(O×K) and the
fundamental units of quadratic subfields form an orthogonal basis. This is the best situation possible to solve
lattices problem.However even if [O×K : U] is finite it is too large to be used in the sameway as cyclotomic units
are. It is however the fundamental stone to build the whole unit group. The algorithms of [4] rely essentially
on the Lemma 5.1 which can be stated as

Lemma 2.1. Let K be a multiquadratic field of dimension 2n. Then for all x ∈ K

x2 ∈ K1K2K3

where K1, K2 and K3 are multiquadratic subfields of K of dimension 2n−1. Moreover if x is a unit then the fields
can be replaced by their unit group.

We see that if it is possible to compute the unit group of multiquadratic fields of degree 2n−1 then we can
compute a subgroup G of O×K such that (O×K)2 < G < O×K . The authors of [4] then prove that we can retrieve
O×K from G with high probability. This last step require to compute square roots of element of K. Therefore in
order to construct O×K from the units of subfields of K of degree 2n−1 we only have to carry out products and
square root operations. All of these can be done quickly in K. The algorithm then works recursively. It will
compute the fundamental units of all the quadratic subfields using classical algorithms and will build the
whole unit group by doing products and square root extractions. In order to solve the PIP in multiquadratic
fields the authors of [4] use again the previous Lemma. If I = gOK is a principal ideal then g2 = g1g2g3 where
the gi are the generators of the relative norm ideals NK/Ki (I) which are ideals of OKi respectively. As before
the algorithm works recursively to compute an element h which is a generator of I2 then use the unit group
to retrieve a generator of I. The last step of the attack is then carried using the Log-unit lattice and using a
rounding algorithm. The results of experiments show a high rate of success.

3 Multicubic fields
In this section we will study multicubic fields i.e. number fields generated by cube roots of integers. Cubic
fields have been well studied and one can find several results in textbooks or papers. See for instance [2, 11].
We still present some facts useful to our presentation. However we could not find papers onmulticubic fields
dealing with the results we are interested in. We prove that the structure of multicubic fields is similar to the
one of multiquadratic fields so that the attack of Bauch and al. can be adapted. The facts that are needed for
the algorithms to work are the following:

– every subfield of a multicubic field is a multicubic field;
– there is a structural result similar to Lemma 2.1 so that we can work recursively on subfieds.

Moreover we show that the situation in the Log-unit lattice is also similar because the fundamental units of
the cubic subfields form an orthogonal basis of a full-rank sublattice.

3.1 First structural results

First we will present several facts concerning multicubic fields useful for our study. Let us start with a lemma
on cubic fields that we will use later.
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Lemma 3.1. Consider p and q two rational numbers which are not rational cubes. Then the cubic fieldsQ( 3
√p)

andQ( 3
√q) are equal if, and only if, the following holds : p = q × a3 or p = q2 × a3, with a ∈ Q.

Definition 3.2. Consider n distinct integers d1, . . . , dn which are not rational cubes. We will call (real) mul-
ticubic field generated by d1, . . . , dn the number field K = Q

(︁
d

1
3
1 , . . . , d

1
3
n

)︁
.

Remark 3.3. The sequence elements not being cubes forbidsQ to be amulticubic field.Moreoverwe consider
only real cube roots. We have not supposed anything more about the defining sequence. For example several
elements could be equal to each other. However we can always find a minimal sequence whose length will
be proved to be equivalent to the dimension of the corresponding multicubic field.

Proposition 3.4. Everymulticubic fieldK = Q
(︁
c

1
3
1 , . . . , c

1
3
m

)︁
canbedefinedby a sequence of cube-free integers

d1, . . . , dn such that for none of the tuples of exponents α = (α1, . . . , αn) ∈ J0, 2Kn \ {0} the product
n∏︀
i=1
dαii is

a cube.

Proof. We will proceed by induction on m. If m = 1 then there is nothing to prove. Now suppose that the
property is true for a fixed integer m > 1 and consider a multicubic field K = Q

(︁
c

1
3
1 , . . . , c

1
3
m+1

)︁
defined by

m + 1 integers. Denote by L the multicubic field defined by the first coefficients c1, . . . , cm. We have K =
L
(︁
c

1
3
m+1

)︁
and by hypothesis L can be defined by cube-free integers d1, . . . , dn verifying the desired property.

First we can assume that cm+1 is cube-free. Secondly the integers d1, . . . , dn , cm+1 define K as a multicubic
field. If they verify the property then nothing more needs to be done. Suppose now that

n∏︁
i=1
dαii × c

α
m+1 = a3

for some (α1, . . . , αn , α) ∈ J0, 2Kn+1\{0} and a ∈ Z. By induction hypothesis the product
n∏︀
i=1
dαii is not a cube

if (α1, . . . , αn) = ̸ 0, therefore α ≠ 0 and we can write

c
α
3
n+1 =

a
n∏︀
i=1
d
αi
3
i

∈ L

meaning that we have K = L and that K verifies the desired property.

Definition 3.5. A sequence of integers defining a multicubic field K will be called reduced if it verifies the
property of Proposition 3.4.

Proposition 3.6. Consider K = Q
(︁
d

1
3
1 , . . . , d

1
3
n

)︁
a multicubic field such that d1, . . . dn is reduced. Then K has

exactly 3n−1
2 cubic subfields of the form

Q
(︂
d
α1
3
1 × · · · × d

αn
3
n

)︂
with α = (α1, . . . , αn) ∈ J0, 2Kn \ {0}. Moreover if we see α and β as elements of (F3)n we have

Q
(︂
d
α1
3
1 × · · · × d

αn
3
n

)︂
= Q

(︂
d
β1
3
1 × · · · × d

βn
3
n

)︂
⇐⇒ α = β or α = 2β.

Proof. Consider α ∈ J0, 2Kn \ {0}. There is i ∈ J1, nK such that α ≠ 0. Then the product dα11 × · · · × d
αn
n is not a

cube so d
α1
3
1 × · · · ×d

αn
3
n is not rational and therefore generates a subfield of K of degree 3 overQ. The subfields

of the form considered are then cubic. Now consider two elements α and β such that
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Q
(︂
d
α1
3
1 × · · · × d

αn
3
n

)︂
= Q

(︂
d
β1
3
1 × · · · × d

βn
3
n

)︂
.

By Lemma 3.1, this is equivalent to the existence of a rational a such that one of the three following
possibilities is true : ⎧⎪⎪⎨⎪⎪⎩

dα11 × · · · × d
αn
n = dβ11 × · · · × d

βn
n × a3 (1)

dα11 × · · · × d
αn
n = d2β11 × · · · × d2βnn × a3 (2)

dβ11 × · · · × d
βn
n = d2α11 × · · · × d2αnn × a3 (3).

Now consider µ and ν two non-zero elements of (F3)n. Write in Z the equality µi = νi + ri + 3qi with
0 6 ri < 3 for all i ∈ J0, nK. Then we have

dµ11 × · · · × d
µn
n = dν11 × · · · × d

νn
n × a3 ⇐⇒

n∏︁
i=0
drii =

⎛⎜⎜⎝ a
n∏︀
i=0
dqii

⎞⎟⎟⎠
3

⇐⇒ r = 0.

since no product of di’s with corresponding exponents less than 2 can be a rational cube except for the trivial
one, for we suppose the sequence d1, . . . , dn to be reduced. Combining this with the three previous possi-
bilities we indeed obtain the searched equivalence relation. The claimed number of such cubic subfields is
directly deduced by counting the possible α modulo this relation.

Remark 3.7. (i) Given K = Q(d
1
3
1 , . . . , d

1
3
n ) defined by a reduced sequence and α ∈ J0, 2Kn \ {0}we denote

by Kα the cubic subfield of K generated by the product
n∏︀
i=1
d
αi
3
i .

(ii) When considering these subfields we will therefore identify J0, 2Kn with Fn3. Given a fixed multicubic
field defined by a reduced sequence, cubic subfields in the form mentioned in Proposition 3.6 are in
one-to-one correspondence with elements α ∈ J0, 2Kn modulo multiplication by 2 over F3, which is
the same as the colinearity relation over the vector space (F3)n. Therefore these cubic subfields are
univoquely parametrised by the lines or the hyperplanes of (F3)n. When considering these subfields
we will therefore identify J0, 2Kn with (F3)n.

(iii) In fact wewill see that all cubic subfields of amulticubic field are pure cubic fields of the previous form.

In order to studymulticubic fields further we need to examine the set of the complex embeddingsHom(K,C).

3.2 Set of complex embeddings and other results

Fix a set of n distinct integers {d1, . . . , dn} supposed to constitute a reduced sequence as before and let K be
the multicubic field associated to it. The degree of K over Q is at most 3n. Given an embedding of K into C,
its action can be fully described by its action on each 3

√︀
di and therefore by the embedding it defines when

restricted to each of the cubic fieldsQ( 3
√︀
di). Now if we fix one di, the polynomial X3 − di factorises as

X3 − di = (X − 3
√︀
di)(X − ζ3 3

√︀
di)(X − ζ 23 3

√︀
di).

We suppose di to be cube-free so X3 − di is irreducible overQ. We then have the following isomorphism

Q
(︁

3
√︀
di
)︁
≃ Q[X]

(X3 − di)

and the three embeddings of Q
(︁

3
√︀
di
)︁
into C are the Q−linear maps which send 3

√︀
di respectively to 3

√︀
di,

ζ3 3
√︀
di and ζ 23 3

√︀
di. We will denote these embeddings by σ(0)i , σ(1)i and σ(2)i . Remark that σ(0)i is the identity,

that σ(1)i and σ(2)i are complex embeddings conjugate one to each other. Moreover all this description still
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applies to any cube-free integer m and the field Q
(︁
m

1
3

)︁
, especially to the fields Kα. Thus we will similarly

denote the three complex embeddings of Kα by σ(0)α , σ(1)α and σ(2)α . Finally any embedding K →˓ C can be
described as

n⨂︁
i=1

σ(βi)i , (β1, . . . , βn) ∈ J0, 2Kn .

Given such a decomposition, the corresponding embedding will be written σ(β).

Remark 3.8. We can see that in this situation too the sets J0, 2Kn and (F3)n can be identified. Then the data
of an embedding of K intoC is equivalent to the data of a point in (F3)n. We do not know yet if all such points
can be obtained, which is equivalent to proving that the dimension of K is 3n.

We will see that the duality of complex embeddings of K relatively to cubic subfields Kα can be expressed as
a duality situation in (F3)n thanks to their geometric interpretation as points and hyperplanes. This will help
in proving the following.

Theorem 3.9. Consider K defined by a reduced sequence d1, . . . , dn. Then we have

(i) [K : Q] = 3n and
(︂ n∏︀
i=0
d
αi
3
i

)︂
α∈(F3)n

is aQ−basis of K;

(ii) the set Hom (K,C) is exactly
{︁
σ(β) | β ∈ (F3)n

}︁
.

We will study the action of an element σ(β) of Hom(K,C) on a cubic subfield Kα. Recall that the three possi-

bilities for σ(β)
(︂
d
α1
3
1 × · · · × d

α1
3
n

)︂
are

⎧⎪⎪⎨⎪⎪⎩
σ(0)α (d

α1
3
1 × · · · × d

α1
3
n ) = d

α1
3
1 × · · · × d

α1
3
n ;

σ(1)α (d
α1
3
1 × · · · × d

α1
3
n ) = ζ3 × d

α1
3
1 × · · · × d

α1
3
n ;

σ(2)α (d
α1
3
1 × · · · × d

α1
3
n ) = ζ 23 × d

α1
3
1 × · · · × d

α1
3
n .

We will relate the action of a morphism σ(β) on a field Kα to a geometric relation between α and β as said
earlier. Recall that we can think of α as an hyperplane and β as a point in the vector space (F3)n. Let us fix
some notation. Given α ∈ (F3)n \ {0} and t ∈ F3 we will write Hα(t) the affine hyperplane of (F3)n defined by
the equation α1X1 + · · · + αnXn = t.

Proposition 3.10. Let K = Q
(︁
d

1
3
1 , . . . , d

1
3
n

)︁
be a multicubic field, α ∈ (F3)n \ {0} and β ∈ (F3)n. Then for any

t ∈ F3 we have
(σ(β))|Kα = σ

(t)
α ⇐⇒ β ∈ Hα(t).

Proof. We need to evaluate σ(β) on d
α1
3
1 × · · · × d

αn
3
n . We have

σ(β)
(︂ n∏︀
i=1
d
αi
3
i

)︂
=

n⨂︀
k=1

σ(βk)k

(︂ n∏︀
k=1

d
αk
3
k

)︂
=

n∏︀
k=1

σ(βk)k (d
αk
3
k ) =

n∏︀
k=1

(σ(βk)k (d
1
3
k ))

αk

=
n∏︀
k=1

(ζ βk3 d
1
3
k )
αk =

n∏︀
k=1

ζ αkβk3
n∏︀
k=1

d
αk
3
k

= ζ α1β1+···+αnβn3
n∏︀
k=1

d
αk
3
k .

Thus we have (σ(β))|Kα = σ
(t)
α if, and only if, ζ α1β1+···+αnβn3 = ζ t3 which is equivalent to α1β1 + · · · + αnβn = t.
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Remark 3.11. We see that in order to analyse how the action of the embeddings of K are distributed among
the different cubic subfields we have to do some affine geometry. First, the data of a cubic subfield is the same
as the data of α modulo multiplication by a non-zero element of F3 or equivalently the vectorial hyperplane
Hα(0). One can verify that the relation of the previous Proposition is coherent with the equality of Kα and K2α
by making the observation that Hα(2t) = H2α(t).

Now we will describe more precisely the action of the morphisms σi for i ∈ J0, nK.

Lemma 3.12. Let K be a multicubic field defined by a reduced sequence d1, . . . , dn. Then for all α ∈ (F3)n,
i ∈ J0, nK and k ∈ J0, 2K we have

σi

⎛⎝ n∏︁
j=0
d
αj
3
j

⎞⎠ = ζ k3
n∏︁
j=0
d
αj
3
j ⇐⇒ αi = k.

Proof. This is applying the above Proposition and remarking that this is true for a null α.

Lemma 3.13. Let K be a multicubic field defined by a reduced sequence of integers d1, . . . , dn. Suppose that K
verifies the properties of Theorem 3.9. Then for all x ∈ K the following assertions are equivalent :

(i) ∀σ ∈ Hom(K,C), ∃k ∈ J0, 2K, σ(x) = ζ k3 × x;

(ii) ∃α ∈ (F3)n , ∃a ∈ Q, x = a
n∏︀
i=0
d
αi
3
i .

Proof. Consider x ∈ K. We already know that the second assertion implies the first one. Suppose now the
first condition to be true. Since we assumed K to verify the properties of Theorem 3.9, x can be written as

∑︁
α∈(F3)n

xα

(︃ n∏︁
i=0
d
αi
3
i

)︃

with xα ∈ Q for every α ∈ (F3)n andwrite Supp(x) =
{︀
α ∈ (F3)n | xα = ̸ 0

}︀
. There is nothing to prove if Supp(x)

is the void space so we assume it is not trivial. The property being true for all morphisms is equivalent to be
true for σi for all i ∈ J1, nK. Fix such an integer. We can write x = x0 + x1 + x2 with

xt =
∑︁

α∈(F3)n |αi=t

xα

(︃ n∏︁
i=0
d
αj
3
j

)︃

for all t ∈ J0, 2K. By Lemma 3.12 we have σi(x) = x0 + ζ3 × x1 + ζ 23 × x2. There is some ki ∈ J0, 2K such that
σi(x) = ζ ki3 (x0 + x1 + x2). Let us show that x is equal to xki . We will do the calculation for k = 1 and omit the
two other cases since they are almost identical. Therefore we have x0 + ζ3 × x1 + ζ 23 × x2 = ζ3(x0 + x1 + x2)
and we can write x0(1 − ζ3) + x2(ζ 23 − ζ3) = 0 which leads to x0(1 − ζ3) − x2(1 − ζ3)ζ3 = 0. This is equivalent
to x0 − x2 × ζ3 = 0 and since x0 and x2 are real numbers it is equivalent to x0 = x2 = 0, and we can conclude
that we have x = x1 = xki . Remark that we proved that Supp(x) ⊆

{︀
α ∈ (F3)n | αi = ki

}︀
. The action of the

morphism σi forces the elements of Supp(x) to have a fixed ith coordinate. Geometrically Supp(x) is included
in an hyperplane of (F3)n. By considering all of such morphisms we can see that we have

Supp(x) ⊆
{︀
α ∈ (F3)n | α1 = k1

}︀
∩ · · · ∩

{︀
α ∈ (F3)n | αn = kn

}︀
which is the point k = (k1, . . . , kn). But Supp(x) is not trivial so it is equal to this point and we can finally
write x = xk

n∏︀
i=0
d
ki
3 which gives us the desired result.

Now that we have these results we can prove Theorem 3.9.

Proof. We will proceed by induction on the length n of the sequence d1, . . . , dn. We proved the case n =
1 during the discussion at the beginning of the subsection. Now fix some integer n > 1 and suppose the
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searched results to be true for this n. Let K be a multicubic field defined by a reduced sequence d1, . . . , dn+1.
Consider L the multicubic field defined the reduced sequence d1, . . . , dn. Then K = L

(︁
d

1
3
n+1

)︁
. First let us

show that K has degree 3n+1 over Q. Since by induction [L : Q] = 3n, we need to prove that d
1
3
n+1 does not

belong to L. Suppose the contrary. Every element ofHom(L,C) permutes the roots of X3−dn+1 therefore sends
d

1
3
n+1 to some ζ k3d

1
3
n+1 with k ∈ J0, 2K. By induction hypothesis L verifies the properties of the Theorem so we

can apply Lemma 3.13 to L and d
1
3
n+1 obtaining

d
1
3
n+1 = a

n∏︁
i=1
d
αi
3
i

which implies the equality

Q
(︁
d

1
3
n+1

)︁
= Q

(︃ n∏︁
i=1
d
αi
3
i

)︃
.

This is impossible because the sequence d1, . . . , dn+1 is reduced. Therefore we have d
1
3
n+1 ∈ ̸ K and [K : Q] =

3n+1. Let us now prove that the complex embeddings of K are exactly those of the described form. Using the
induction hypothesis it is clear that there are 3n+1 such morphisms and this gives us the desired result.

We will pursue the study of complex embeddings of multicubic fields by considering its Galois closure. We
will be able to deduce from this other structural results on the field considered. Let us fix K a multicubic field
generated by a reduced sequence d1, . . . , dn. We will see that K̃ is K(ζ3). Given σ ∈ Hom(K,C) a complex
embedding of K we will write σ̃ the field morphism of K(ζ3) obtained as

K(ζ3) −→ K(ζ3)
x ∈ K ↦−→ σ(x)
ζ3 ↦−→ ζ

and τ the morphism which acts as the complex conjugation.

Proposition 3.14. The Galois closure of K is then K(ζ3) and its Galois group is generated by the set {τ} ×
{σ̃i | i ∈ J1, nK}. Moreover it is isomorphic to the group

Z
2Z n

(︂
Z
3Z

)︂n
= ⟨s, r1, . . . , rn | s2 = 1, r3i = 1, srisri = 1⟩.

Proof. The field K(ζ3)has dimension2×3n overQ. Therefore in order to prove that it is Galoiswith the claimed
Galois group it suffices to prove that the last has cardinality 2 × 3n. Denote it by G for the sake of the proof.
By the previous study on complex embeddings of K we already know that the group generated by the σ̃i has
order 3n which divides the order of G. Moreover the complex conjugation has order 2which again divides the
order of G. Therefore 2 × 3n divides the order of G which is smaller than the dimension of K(ζ3) and we have
the desired result. Now let us prove that G has the announced structure. We already stated that the complex
conjugation has order 2. Clearly the σ̃i commute and we have σ̃ki (d

1
3
i ) = ζ

k
3d

1
3
i proving that all of the σ̃i have

order 3 and that they generate a subgroup isomorphic to ( Z
3Z )

n. Let us prove that the last relation holds. For
all i ∈ J1, nK we have

τσ̃iτσ̃i(d
1
3
i ) = τσ̃i(τ(ζ3d

1
3
i )) = τσ̃i(ζ

2
3 d

1
3
i ) = τ(d

1
3 ) = d

1
3

and
τσ̃iτσ̃i(ζ3) = τσ̃i(τ(ζ3)) = τσ̃i(ζ 23 ) = τ(ζ 23 ) = ζ3

which means that τσ̃iτσ̃i is indeed the identity morphism on K̃.

Remark 3.15. We can see that any element of Gal(̃︀K/Q) can be written uniquely as τα∏︀n
i=1 σ̃

βi
i with

(α, β1, . . . , βn) ∈ F2 × (F3)n.
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As said before we will use the Galois group to study the structure of the multicubic field K. Recall that given
a Galois extension M/N there is a correspondence between subgroups of the Galois group Gal(M/N) and
subfields of the extension, which is given by invertible decreasing maps.

Remark 3.16. Let F be a subfield of ̃︀K. Then F is a subfield of K = Inv(τ) if, and only if, the group associated
to F contains τ.

One of the first properties that we can deduce from the structure of the Galois group is that the cubic subfields
of the form Kα considered previously are all of the cubic subfield.

Proof. Consider F a cubic subfield of K. The associated subgroupH of the Galois groupGal(̃︀K/Q) is generated
by a set

S =
{︃
τα

(1)
n∏︁
i=1
σ̃β

(1)
i
i , . . . , τα

(r)
n∏︁
i=1
σ̃β

(r)
i
i

}︃
with r > 1. Since F is real we know that τ belongs to H and we can consider that we have

S =
{︃
τ,

n∏︁
i=1
σ̃β

(1)
i
i , . . . ,

n∏︁
i=1
σ̃β

(r)
i
i

}︃
and therefore we can see that the data of H is the same as the data of the subgroup generated by S \{τ}which
is a subgroup of ( Z

3Z )
n. Moreover we have [̃︀K : F] = 2 × 3n−1 thus the order of H is the same by the Galois

correspondence and therefore the group generated by S \ {τ} has order 3n−1. Cubic subfields of K are then in
one-to-one correspondence with subgroup of ( Z

3Z )
n of order 3n−1. Counting the last is equivalent to counting

sub-vector spaces of (F3)n of dimension 3n−1 or 3. Their number is(︃
n
3

)︃
3

= (3n − 1)(3n−1 − 1) . . . (3n−(n−1)−1 − 1)
(3n−1 − 1)(3n−2 − 1) . . . (3 − 1) = 3n − 1

2 .

We saw in Proposition 3.6 that there are 3n−1
2 cubic subfields of the form Kα.

The cubic subfields are of particular interest for us because as in the multiquadratic case, we will compute
their units and construct from these the units of K. As we will see later their number is the one we need.

Lemma 3.17. Any subfield F of K of degree 3n−1 is of the form Inv(σ̃(β), τ) and is a multicubic field.

Proof. We have [̃︀K : F] = 6 therefore the associated subgroup H of Gal(̃︀K/Q) has order 6. Since F ⊂ K we
know that τ is in H and by using the orders we can conclude that H is generated by τ and only one σ̃(β) with
β ≠ 0. Let fix these notations for the proof. We write I = {i1, i2, . . . , ir} the set of indexes of the non-zero
coefficients of β. We can suppose i1 < · · · < ir. Now consider the sets

S = {d
1
3
j | j ∈ J1, nK \ I}

and

T =
{︃
d

2−δβi1 ,βik
3

i1 d
1
3
ik | k ∈ J2, rK

}︃
.

Then the cardinal of T is r −1 and any element of T is invariant under the action of σ̃β. The field L = Q (S ∪ T)
is therefore a field defined by n− r+ r−1 = n−1 cube roots of integers and its elements are invariant under the
action of σ̃(β). Recall that we assumed the sequence d1, . . . , dn to be reduced. This implies that neither the
elements dj nor the elements d

2−δβi1 ,βik
i1 dik are cubes. Thus we know that L is a multicubic field. Let us show

now that the sequence defined by S∪T is a reduced sequence. First write for simplicity λik = 2−δβi1 ,βik which
is 1 or 2. Consider now without any loss of generality that we have I = J1, rK. Let (α2, . . . , αn) ∈ (F3)n−1 and
assume that

P =
r∏︁
k=2

(dλk1 dk)
αk ×

n∏︁
k=r+1

dαkk = dα11
n∏︁
k=2

dαkk
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– where α1 =
∑︀r

k=2 λkαk – is a cube. We can write α1 = 3q + r with 0 6 r < 3 thus the product

dr1
n∏︁
k=2

dαkk

is a cube. But (r, α2, . . . , αn) ∈ F3 and the sequence (d1, . . . , dn) is reduced therefore r = α2 = · · · = αn = 0.
Consequently the sequence defined by S ∪ T is reduced too. Now L is a multicubic field defined by a reduced
sequence of length n − 1 so by Theorem 3.9 it has degree 3n−1. Finally L ⊂ F and they have the same degree
so they are identical which means that F is indeed a multicubic field.

Theorem 3.18. Let K be a multicubic field. Any subfield F of K is a multicubic field.

Proof. We will proceed by induction on [K : F]. The previous Lemma states that it is true for [K : F] = 31.
Consider the result to be true for [K : F] = 3r for some r > 1 and suppose [K : F] = 3r+1. As usual write H the
subgroup of Gal(̃︀K/Q) such that F = Inv(H). Just as before we can write H = ⟨τ, σ̃(β1), . . . , σ̃(βr+1)⟩. Denote by
L the field fixed by the group ⟨τ, σ̃(β1), . . . , σ̃(βr)⟩ < H. By the Galois correspondence we know that [K : L] = 3r

and that F is subfield of L with [L : F] = 3. The induction hypothesis states that L is multicubic field and we
can apply again the previous Lemma to the extension L/F to conclude that F is a multicubic field too.

We see that the structure of multicubic fields is similar to the one of multiquadratic fields even if they are
not Galois. This structure will allow us to work recursively and fasten considerably our computations. The
following result is similar to Lemma 5.1 in [4] and is a generalisation of a result over bicubic fields proved by
Charles Parry in [18].

Notation : For now on if σ̃ is an element of Gal(̃︀K/Q) we will denote by Kσ̃ the field Inv(τ, σ̃) = K̃σ̃ ∩ R, and
by H(K̃) the subgroup {σ̃ | σ ∈ Hom(K,C)}.

Proposition 3.19. Let K be a multicubic field with [K : Q] > 3. Consider u and v two elements of H(K̃) which
are independent. Then for any x ∈ K we have

x3 = xuxvxuvxu2v
where xw ∈ Kw for every w ∈ {u, v, uv, u2v}. Moreover if x is a unit of K then xw is a unit of Kw for all w ∈
{u, v, uv, u2v}.

Proof. Asmentioned before the proof relies exactly on the same idea that appears in [4, 18]. For every element
x ∈ K we can rewrite the cube as

x3 = x · u(x) · u
2(x) · x · v(x) · v2(x) · x · uv(x) · (uv)2(x)

u(x) · u2(x) · v(x) · v2(x) · uv(x) · (uv)2(x)

=
NK̃/K̃u (x)NK̃/K̃v (x)NK̃/K̃uv (x)

NK̃/K̃u2v (u(x) · uv(x))
.

Then for all w ∈ {u, v, uv, u2v} we write xw the relative norm element corresponding to w in the previous
expression. Since x is an element of K any of the norm in the numeratorNK̃/K̃w (x) is in the fact the same as the
relative normNK/Kw (x)which is an element of Kw. The relative normNK̃/K̃u2v (u(x)·uv(x)) is in K̃u2v. However x

3

is inR as well as the numerator thereforeNK̃/K̃u2v (u(x) ·uv(x)) is in K̃u2v ∩R = Ku2v. The statement concerning
units is clear given the algebraic expression of the elements as relative norms.

3.3 Unit Group

The structure of the unit group of a number field is related to its complex embeddings. Consider a multicubic
field K defined by a reduced sequence d1, . . . , dn. We can see that a multicubic field K has only one real em-
bedding – the identity – and 3n−1 complex ones. Therefore we know that the group of unitsO×K is isomorphic
to
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Z
2Z × Z

3n−1
2 .

In the special case of the cubic subfields Kα we have

O×Kα ≃
Z
2Z × Z.

Then for every α we can write O×Kα =
{︁
±(ϵα)k | k ∈ Z

}︁
with ϵα > 1 just as in the quadratic case. This spe-

cific generating unit will be called the fundamental unit. Just as the authors of [4] defined the subgroup of
multiquadratic units we will define the subgroup of multicubic units using the units of cubic subfields.

Definition 3.20. Consider a multicubic field K = Q
(︁
d

1
3
1 , . . . , d

1
3
n

)︁
defined by a reduced sequence. We call

multicubic units and write MCU(K) – or MCU if there is no ambiguity – the subgroup of O×K generated by the
set
{︀
−1, ϵα | α ∈ (F3)n

}︀
.

Just as in the multiquadratic case we will see that MCU is a full-rank subgroup of O×K and that the basis{︀
ϵα | α ∈ (F3)n

}︀
yields an orthogonal basis under the action of the Log-embedding.

Notation : Given an integer k and a subset S of a field F we will denote by Sk the set {xk | x ∈ S}.

Proposition 3.21. Let K be a multicubic field of degree 3n. Then we have

(O×K)3
n−1

< MCU.

MoreoverMCU is a full-rank subgroup of O×K such that [O×K : MCU] divides 3(n−1)·
3n−1
2 and the set{︀

−1, ϵα | α ∈ (F3)n
}︀
is in fact a basis.

Proof. The result is trivial for n = 1. Now assume it is true for some fixed n > 1 and let K be amulticubic field
of degree 3n+1. As stated in Proposition 3.19 we have

(O×K)3 < O×KuO
×
KvO

×
KuvO

×
Ku2v

with u, v being two elements of H(K̃) . Then for every w ∈ {u, v, uv, u2v} the field Kw is a subfield of K
of dimension 3n. Since it is a multicubic field too it verifies the recursion hypothesis. Therefore (O×Kw )

3n−1 is
included inMCU(Kw) which is itself included inMCU(K). Thus we have

(O×K)3
n
= ((O×K)3)3

n−1
< (O×KuO

×
KvO

×
KuvO

×
Ku2v )

3n−1 < MCU(K).

We have proven the first result. The property on the index follows immediately from (O×K)3
n−1

< MCU(K) < O×K
and the fact that the units of a multicubic field of degree 3n is a free group of rank 3n−1

2 . The previous tower
of groups shows that MCU is indeed a full-rank subgroup of O×K and since the cardinal of the generating set{︀
−1, ϵα | α ∈ (F3)n

}︀
equals the rank of the group we can conclude that this set is a basis ofMCU.

In order to study the geometry of the lattice LogK(MCU) we need to evaluate the action of each embedding
σ(β) on the units ϵα which is induced by the action of the embedding on the cubic field Kα and thus on
d
α1
3
1 × · · · × d

α1
3
n . Recall that we introduced a geometrical point of view regarding this duality situation in

Subsection 3.2. We will use it to describe properly the vectors LogK(ϵα). The following proposition can be
deduced from known affine geometric results.

Notation : Given a vector space V and a family (f1, . . . , fr) in V we will write Vect(f1, . . . , fr) the subvector
space generated by this family.

Proposition 3.22. Consider r elements α1, . . . , αr linearly independent in (F3)n. We have the following geomet-
ric facts :
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(i) For every r-tuple (t1, . . . , tr) of elements of F3, the intersection
r⋂︀
k=1

Hαk (tk) defines an affine variety of

dimension n − r.
(ii) For every r-tuple (t1, . . . , tr) and every 𝛾 ∉ Vect(α1, . . . , αr) we have

r⋂︁
k=1

Hαk (tk) =
⨆︁
t∈F3

(︃ r⋂︁
k=1

Hαk (tk)
)︃
∩ H𝛾(t).

If we transfer this in the setting of number fields and embeddings, we can tell that the actions of the embed-
dings of a multicubic field K into C are uniformly distributed among the cubic subfields of the form Kα. This
well distributed duality will give rise to a nice geometric situation in the Log-unit lattice. Here we consider
the Log map as follow

LogK : K* −→ R3n

x ↦−→ (log|
n⨂︀
i=1
σ(βi)i (x)|)βi∈F3 .

Proposition 3.23. Consider a multicubic field K = Q
(︁
d

1
3
1 , . . . , d

1
3
n

)︁
. The vectors LogK(ϵα)with α ∈ (F3)n \ {0}

form an orthogonal family in R3n .

Proof. Consider α and 𝛾 two elements of (F3)n independent over F3. We will evaluate the scalar product of
LogK(ϵα) and LogK(ϵ𝛾). (︀

LogK(ϵα) | LogK(ϵ𝛾)
)︀

=
∑︀

σ∈Hom(K,C)
log|σ(ϵα)| × log|σ(ϵ𝛾)|

=
∑︀

β∈(F3)n
log|σ(β)(ϵα)| × log|σ(β)(ϵ𝛾)|.

Now we will use the geometric properties described before to rewrite the sum over well distributed subsets.
First recall that (F3)n =

⨆︀
t∈F3 Hα(t) which allows us to write(︀

LogK(ϵα) | LogK(ϵ𝛾)
)︀

=
∑︀
t∈F3

∑︀
β∈Hα(t)

log|σ(β)(ϵα)| × log|σ(β)(ϵ𝛾)|

=
∑︀
t∈F3

∑︀
β∈Hα(t)

log|σ(t)α (ϵα)| × log|σ(β)(ϵ𝛾)|

=
∑︀
t∈F3

log|σ(t)α (ϵα)|
∑︀

β∈Hα(t)
log|σ(β)(ϵ𝛾)|.

We can decompose the hyperplanes Hα(t) as Hα(t) =
⨆︀
s∈F3 Hα(t) ∩ H𝛾(s) and we can write

∑︁
β∈Hα(t)

log|σ(β)(ϵ𝛾)| =
∑︁
s∈F3

⎛⎝ ∑︁
β∈Hα(t)∩H𝛾 (s)

log|σ(β)(ϵ𝛾)|

⎞⎠
=
∑︁
s∈F3

⎛⎝ ∑︁
β∈Hα(t)∩H𝛾 (s)

log|σ(s)𝛾 (ϵ𝛾)|

⎞⎠ .

In the right-hand side of the previous equality, every term of the second sum have the same value. Moreover
the set we are summing over has 3n−2 elements since it is a (n − 2)− dimensional affine variety of (F3)n. This
gives us ∑︁

β∈Hα(t)

log|σ(β)(ϵ𝛾)| =
∑︁
s∈F3

3n−2 × log|σ(s)𝛾 (ϵ𝛾)|

and the scalar product can be rewritten(︀
LogK(ϵα) | LogK(ϵ𝛾)

)︀
=
∑︁
t∈F3

log|σ(t)α (ϵα)|
∑︁
s∈F3

3n−2 × log|σ(s)𝛾 (ϵ𝛾)|
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= 3n−2
⎛⎝∑︁
t∈F3

log|σ(t)α (ϵα)|

⎞⎠⎛⎝∑︁
s∈F3

log|σ(s)𝛾 (ϵ𝛾)|

⎞⎠
= 3n−2 × log

⎛⎝∏︁
t∈F3

|σ(t)α (ϵα)|

⎞⎠ log

⎛⎝∏︁
s∈F3

|σ(s)𝛾 (ϵ𝛾)|

⎞⎠
= 3n−2 × log

(︁
|NKα/Q(ϵα)|

)︁
log
(︁
|NK𝛾 /Q(ϵ𝛾)|

)︁
.

The elements ϵα and ϵ𝛾 are units thus their algebraic norm is ±1 and the scalar product is(︀
LogK(ϵα) | LogK(ϵ𝛾)

)︀
= 3n−2 × log (1) × log (1) = 0.

The orthogonality of the vectors LogK(ϵα) assures that we are in the best situation possible to solve problems
in the lattice LogK(MCU). However in order to use this sublattice to decode in the Log-unit lattice it would
need to be close from LogK(O×K) which is not the case experimentally. We can evaluate the norm of the basis
vector of LogK(MCU).

Lemma 3.24. Consider a multicubic field K = Q
(︁
d

1
3
1 , . . . , d

1
3
n

)︁
. Then for all α ∈ (F3)n \ {0} we have

‖LogK(ϵα)‖
2 = 3n−1 × ‖LogKα (ϵα)‖

2.

Proof. By following the same arguments as in previous calculations we can write(︀
LogK(ϵα) | LogK(ϵα)

)︀
=
∑︁
t∈F3

∑︁
β∈Hα(t)

log|σ(β)(ϵα)| × log|σ(β)(ϵα)|

which is
‖LogK(ϵα)‖

2 =
∑︁
t∈F3

∑︁
β∈Hα(t)

log|σ(t)α (ϵα)| × log|σ(t)α (ϵα)|

but Hα(t) has 3n−1 elements so

‖LogK(ϵα)‖
2 =

∑︁
t∈F3

3n−1 × log|σ(t)α (ϵα)| × log|σ(t)α (ϵα)| = 3n−1 × ‖LogKα (ϵα)‖
2.

Now we will be able to express the norm of LogK(ϵα) in function of the value of ϵα.

Proposition 3.25. Consider a multicubic field K = Q
(︁
p

1
3
1 , . . . , p

1
3
n

)︁
. Then for all α we have

‖LogK(ϵα)‖ =
√︂

3n
2 × log(ϵα).

Proof. We will use the expression found in the previous lemma and express the quantity ‖LogKα (ϵα)‖
2. First

recall some facts. We have ϵα > 1 therefore log(|ϵα|) = log(ϵα) > 0. Moreover the quantity σα(ϵα) and σ(2)α (ϵα)
are conjugates thus they have the same modulus. We can write

‖LogKα (ϵα)‖
2 = (log(ϵα))2 + 2(log|σα(ϵα)|)2.

Then we know that we have

log(ϵα) + 2log|σα(ϵα)| = log|NKα (ϵα)| = 0
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which gives

log|σα(ϵα)| = −
log(ϵα)

2 .

By using this equality we obtain

‖LogKα (ϵα)‖
2 = (log(ϵα))2 + 2 ×

(︂
− log(ϵα)2

)︂2
= 3
2 × (log(ϵα))

2

and by consequence
‖LogK(ϵα)‖

2 = 3n−1 × 32 × (log(ϵα))
2 = 3n

2 × (log(ϵα))2.

The searched equality is found by taking the square root of the previous equation.

3.4 Discriminant

Wewill now establish a formula for the discriminant of multicubic fields. The proofs are left in Appendix. See
[11] for cubic fields and [10] for bicubic fields.

Lemma 3.26. Consider a bicubic field K = Q
(︁

3
√︀
d1, 3

√︀
d2
)︁
defined by cube-free integers d1 and d2. Then for

any prime integer p if p divides d1 then one can assume that p does not divide d2 i.e. K = Q
(︀

3
√︀
d′1, 3

√︀
d′2
)︀
and

p - d′2.

Lemma 3.27. Consider a multicubic field K = Q(d
1
3
1 , . . . , d

1
3
n ). Write P(d) the set of primes dividing

∏︀n
i=1 di.

Then we have :
∀p ∈ P(d), one can assume p | d1, ∀i > 1, p - di .

Lemma 3.28. Consider a bicubic field K = Q
(︁

3
√︀
d1, 3

√︀
d2
)︁
defined by cube-free integers d1 and d2 such that

3 does not divide d1d2. Then one can always assume that one of the following is true{︃
d1 = ±1 (mod 9), d2 = ±1 (mod 9)
d1 = ±1 (mod 9), d2 ≠ ±1 (mod 9)

Proposition 3.29. Consider a multicubic field K = Q(d
1
3
1 , . . . , d

1
3
n ) defined by a reduced sequence. We can

always assume one of the following is true :

(i) ∀i ∈ J1, nK, di = ±1 (mod 9);
(ii) d1 = 2, 4, 5, 7 (mod 9) and ∀i ∈ J2, nK, di = ±1 (mod 9);
(iii) d1 = 0 (mod 3) and ∀i ∈ J2, nK, di = ±1 (mod 9);
(iv) d1 = 0 (mod 3), d2 = 2, 4, 5, 7 (mod 9) and ∀i ∈ J3, nK, di = ±1 (mod 9).

Theorem 3.30 (Discriminant of a multicubic field). Consider a multicubic field K = Q(d
1
3
1 , . . . , d

1
3
n ) with n >

2. Assume that d is in one of the four possibilities of Proposition 3.29. Then the absolute discriminant of K verifies⃒⃒
D(K)

⃒⃒
= 3α

∏︁
p∈P(d)\{3}

p2×3
n−1

with α being:

α =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

3n − 1
2 (i).

3n + 3n−1 − 1
2 (ii).

2 × 3n−1 + 3n + 3n−1 − 1
2 (iii).

2 × 3n + 3n−2 − 1
2 (iv).
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One can deduce from Theorem 3.30 the following result.

Proposition 3.31. Consider amulticubic field K = Q(d
1
3
1 , . . . , d

1
3
n ). Let S be the sequence of the cube-free part of

the elements of (
∏︀n
i=1 d

αi
i )α∈(F3)n . Let B be theQ-basis of K which is constituted by the cube roots of the elements

of S. Then we have 3nOK < Z[B] < OK .

Proof. Remark that D(Z[B]) | D(3nOK).

4 Algorithms and experiments
In all the following we will consider multicubic fields defined by reduced sequence. Fix the field K =
Q(d

1
3
1 , . . . , d

1
3
n ). We proved that K has dimension 3n overQ and that the elements of the form

n∏︁
i=1
d
αi
3
i

with α ∈ J0, 2Kn form a basis of K/Q. In fact we can consider the cube-free part of each of these elements
which we will do in all the following. Therefore elements of K are represented as vectors of length 3n with
rational coefficients. Moreover we can see K as a relative extension of degree 3 over a multicubic subfield of
dimension 3n−1 over Q. The most natural is to write K as L(d

1
3
n ) with L = Q(d

1
3
1 , . . . , d

1
3
n−1). If we choose this

point of view we can see elements of K as vectors of length 3 with coefficients in the subfield L.

Aswe saw already one important tool for us is the Log-embedding. As in [4] wewill not compute the exact
Log-embedding but an approximate version of it, very much like the authors did. This leads us to represent
any non zero element x ∈ K by the pair (x,ApproxLogK(x)) where x is a vector with rational coefficients as
described before and ApproxLogK(x) will be a vector as described later.

In the following we make an extensive use of the LLL algorithm presented in [17] to solve multivariate
linear systems.

General procedure

In [4] the authors compute units of a multiquadratic field K as follow :

(i) Recursively compute the units of three subfields K1, K2, K3 which verify (O×K)2 < U =
∏︀3
i=1 O

×
Ki < O×K;

(ii) Find non trivial squares of U;
(iii) Calculate their square roots.

For multicubic fields this general procedure can be followed : only replace “squares” by “cubes” and
consider four subfields in the first step as in Proposition 3.19. The step (ii) can be directly adapted and is
described in Subsections 4.1 and4.2 however computing cube roots ismore complicated as seen in Subsection
4.3.

4.1 Finding Good Primes

As in [4] we will need to be able to find primes verifying fixed cubic conditions with respect to the di’s. Con-
sider (d1, . . . , dn) a reduced sequence and C = (c1, . . . , cn) ∈ {0, 1}n. A good prime for d and C is a prime p
such that di is a cube modulo p if, and only if, ci is 1.
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In particular we need to find good primes p for the condition sequence (1, . . . , 1) in order to construct
morphisms from K* into finite fields Fp. Remark that the primes should not divide any of the di. Now if we fix
a prime p > 3 we have the following situation :

– if p ≡ 1 (mod 3) then Fp contains a fundamental cube root of unity and F*p
(F*p)3

≃ F3;

– if p ≡ 2 (mod 3) then Fp does not contain a fundamental cube root of unity and F*p
(F*p)3

≃ 1.

Therefore we can have different strategies depending on our goal. If we want the condition (1, . . . , 1) to
be verified we might consider primes only congruent to 2 modulo 3 as long as we do not need a non-trivial
cube root of 1 to be in the field Fp. Otherwise we have to consider primes which are congruent to 1modulo 3.

Let us now describe how the algorithm operates in this case. First we have to draw a prime p and verify
that it is not congruent to 2 modulo 3. This happens with probability 1

2 . Then we have to check whether
the sequence of cube conditions C is verified by (d1, . . . , dn) and p. We know that d

p−1
3
i (mod p) has order

1 or 3 which is equivalent to di being a cube or not. We have therefore Algorithm 1 named OneGoodPrime
wherewemake use of two functions : CheckCubeConditionwhich has been explained and DrawPrimewhich
corresponds to the way we select the candidates for the prime numbers. One can follow [4] and generate a
random prime number in a range given as argument. We could also generate a random prime first and then
draw the next prime.

Algorithm 1 Finding a good prime for a sequence d and a condition sequence C.
Require: A reduced sequence (d1, . . . , dn) and C = (c1, . . . , cn) ∈ {0, 1}n

Ensure: A prime p which does not divide any of the di’s and such that for all i ∈ {0, n} we have : (di is a
cube modulo p) = ci .

1: b ← false
2: while b = false do
3: p ← DrawPrime
4: while p (mod 3) ≡ 2 do
5: p ← DrawPrime
6: end while
7: b ←

n⋀︀
i=1

CheckCubeCondition(di , p, ci) ◁ logical AND

8: end while
9: return p

For a random prime p ≡ 1 (mod 3) the probability that the ith cube condition is true is equal to 2
3 if

ci = 0 and 1
3 if ci = 1. Therefore if Hw(C) designates the Hamming weight of C we have

P(
n⋀︁
i=1

CheckCubeCondition(di , p, ci) = true) = (13)
Hw(C) × (23)

n−Hw(C).

In average the algorithm will try 3n

2n−Hw(C)
primes before finding one verifying the condition sequence C. In

particular the probability that all di’s are cubes inFp is
1
3n and the algorithmwill try 3n primes before finding

one verifying the condition sequence C = (1, . . . , 1).

Complexity :We obtain a complexity essentially in O(N).
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4.2 Detecting cubes

One important procedure in [4] consists in finding non trivial products of a given family of K* which are
squares. In the case of multicubic fields we need to detect cubes. We consider U = ⟨u1, . . . , um⟩ a subgroup
of K*. We need to compute non trivial “cubic characters” from U to F3. To do so we will use several primes p
to create non trivial morphisms from Z[d

1
3
1 , . . . , d

1
3
n ] to Fp which can be extended multiplicatively to U.

In order to create morphisms from Z[d
1
3
1 , . . . , d

1
3
n ] to some Fp we need to find a p such that every di is

a cube modulo p i.e. verifying the cubic conditions C = (1, . . . , 1). This is done with Algorithm 1. Such a
morphism can be extended to all elements of K whose denominators are not divided by p. For this morphism
to be defined on U it is sufficient that p does not divide the denominators of the ui’s. We then verify that the
embeddings of the ui’s are not zero so that the morphism restricted to U is not trivial.

Now suppose a prime p has been selected. Write ϕp the morphism it induces as explained before. We
want to create a character i.e. a group morphism U −→ F3 in order to detect non trivial cubes in U. Similarly
to [4] we use the cubic character F*p −→ F3 which corresponds to the natural morphism F*p �

F*p
(F*p)3

. Remark
that p needs to be congruent to 1modulo 3 because we are looking for a non trivial morphism. Denote by ζ3,p
a fundamental root of unity in Fp. Let us now describe how this morphism can be realised. For any y in Fp we
know that y

p−1
3 is a cube root of unity in Fp. Therefore it can be expressed as ζ λy3,p with λy = logζ3,p ,(y) ∈ J0, 2K.

We can see that the canonical morphism can be written

F*p �
F*p

(F*p)3

y ↦→ logζ3,p ,(y).

As a cubic character induced by p we will therefore consider

χp : U −→ F*p
(F*p)3

u ↦−→ logζ3,p ,(ϕp(u)).

Remark that if u is a cube in O×K then ϕp(u) is also a cube in Fp but the opposite is not true in general. So if
u is a cube then u ∈ ker χp. Therefore to properly detect non trivial cubes in U we need to use several primes.
First remark that the character induces a morphism

χp : U
U∩(K*)3 −→ F3 .

The group U
U∩(K*)3 is isomorphic to some ( Z

3Z )
m′

with m′ 6 r. Moreover it can be seen as F3-vector space.
Following [8] as in [4] if we consider characters χp to be uniformly distributed elements of the dual of this
vector space, drawing sufficiently enough of them will detect cubes. We can adapt Lemma 8.1 of [8] to F3-
vector spaces to say that m′ + s uniformly drawn primes generate the dual of U

U∩(K*)3 with probability at least
1 − 3−s. Therefore by choosing s large enough the cubic characters χp1 , . . . , χpm+s would generate the dual
with high probability and the intersection

⋂︀s
i=1 ker χpi would be the orthogonal of the dual i.e. U ∩ (K*)

3. This
allows us to have Algorithm 2 which returns a matrix of exponents expressing a generating set of non trivial
cubes in U ∩ (K*)3. The fact that the exponent are non trivial means that the cubes are not in U3 so generate
U∩(K*)3
U3 . As mentioned before with s large enough we have a very low probability of yielding an exponent

vector λ such that
∏︀m
i=1 u

λi
i is not a cube. Like the authors of [4] we never encountered such a case.

Complexity : Generating a cubic character consists in applying Algorithm 1 to find a prime p and reducing the
elements u1, . . . , um modulo p to verify that the morphism ϕp is defined and non zero on U = ⟨u1, . . . , um⟩.
In order to calculate ϕp(ui)we need to compute the cube roots of d1, . . . , dn, reduce the coefficients of ui and
compute a sum modulo p. All of this can be done in O(NB) with B an upper bound on the number of bits of
the coefficients of any of the ui. This is mainly due to reduction of ui modulo p. The computation of m + s
characters is therefore in O((m + s)NB). We will consider m + s to be equivalent to N asymptotically so we
obtain O(N2B). Finally the computation of the kernel of a matrix of size N over F3 has complexity N3 so the
complexity of Algorithm 2 is O(N3 + N2B).
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Algorithm 2 Compute non trivial cubes of a subgroup of K* – CubeKernel

Require: U = ⟨u1, . . . , um⟩ a subgroup of K*

Ensure: λ1, . . . , λr ∈ J0, 2Km such that
∏︀m
i=1 u

λj,i
i is a cube for all j ∈ J1, rK

1: Generate sufficiently enough cubic characters χp1 , . . . , χpm+s
2: M ← [χpj (ui)]i,j ∈ Mm,m+s(F3)
3: N ← ker(M) ◁ Left Kernel in F3
4: return N as a matrix in Z

4.3 Computing cube roots

Consider the following problem : «Given an element y in a multicubic field K = Q(d
1
3
1 , . . . , d

1
3
n )which is a cube,

compute its cube root ». In [4] the authors showed how to compute efficiently square roots in multiquadratic
fields using only a few polynomial expressions. In a multiquadratic field E = F(

√
d) – with F a subfield of

E – consider h = g2. Then if we write h = h0 +
√
dh1 and h = g0 +

√
dg1 we have h0 = g20 + dg21 and

h1 = 2g0g1. Moreover the algebraic normNE/F(h) = NE/F(g)2 is an element of E. So if we can compute square-
roots efficiently in F we can know NE/F(g) = g20 − g21d and then retrieve g0 and g1 using h0 and h1. This
require to compute one more square-root in F. The only obstacle in this procedure is the sign since a square-
root may have two distinct solutions. Doing such errors at each level of the recursive process can lead to an
exponential number of possibilities to verify. However the authors of [4] overcame this difficulty and provided
an efficient recursive algorithm to compute square-roots in multiquadratic fields. The problem of sign does
not appear with cube roots. However the polynomial equations aremore complex.Write x = x0+ x1d

1
3
n + x2d

2
3
n

and y = y0 + y1d
1
3
n + y2d

2
3
n . Then we have :⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

y0 = x30 + x31dn + x32d2n + 6x0x1x2dn
y1 = 3(x20x1 + x21x2dn + x22x0dn)
y2 = 3(x20x2 + x21x0 + x22x1dn)
NK/L(x) = x30 + x31dn + x32d2n − 3x0x1x2dn .

There is no straightforward way of transforming these equations into a cube that we could take advantage
of. Therefore we choose to use a real embedding and a LLL reduction. This allows to progressively increase
the needed precision and save the real lattice used to recover the coefficients. Let us now describe the pro-
cedures composing this algorithm. We use a function called RealBasisEmbedding which creates the vector
of the basis elements of the multicubic field K computed in R to a given precision. Then we can create the
matrix representing the basis as a lattice. Write v the column vector RealBasisEmbedding((d1, . . . , dn), l).
We choose as a “real basis matrix” the following

LLL
(︁[︁
v|C · Id

]︁)︁
where C is a coefficient chosen to avoid errors due to the precision. We typically used C = ⌊ 3

n

12⌉. Now if a basis
lattice matrix has been computed for a given precision here how one can try to fasten the computation of
a basis lattice matrix to a bigger precision. First denote by vl1 and vl2 the real basis vectors given up to two
precisions l1 < l2. We can write

LLL
(︁[︁
vl1 | C · Id

]︁)︁
= U ×

[︁
vl1 | C · Id

]︁
with U being a unitary matrix. If we save this unitary operator we can then first calculate

U ×
[︁
vl2 | C · Id

]︁
then apply the LLL algorithm to finally reduce the lattice. This reduction is done by multiplying by a unitary
operator V and the full reduction can be written

LLL
(︁[︁
vl2 | C · Id

]︁)︁
= V × U ×

[︁
vl2 | C · Id

]︁
.
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Therefore we can now save V × U and use the same process if we need to actualise again the precision. Now
recall that we want to compute cube roots. Given L a real lattice matrix for K here how we can expect to do
so. Consider y ∈ K as before. First compute x up to precision l inR. Write RealEmbedding this procedure and
the returned value xl. Then create the row vector x = [xl | 0 | B] with B being a coefficient larger than the
maximum euclidean norm of the rows of L. We can then build the matrix

Algorithm 3 Compute a matrix representing the real embedding of the matrix of a multicubic field –
RealLattice
Require: A LLL-reduced real lattice matrix of (d1, . . . , dn), a unitary operator U, a precision l
Ensure: A LLL-reduced real lattice matrix of (d1, . . . , dn) at precision l and the corresponding unitary oper-

ator
1: v← RealBasisEmbedding(d, l)
2: M ← U ×

(︁[︁
v|C · Id

]︁)︁
3: L, V ← LLL(M) ◁ L = LLL(M) = VM
4: return L, V × U

[︃
L | 0
x

]︃
and apply a LLL algorithm to it. This can be seen as the overall reduction of[︃

v C × Id 0
xl 0 B

]︃

which would reduce the last vector with respect to the real basis lattice. Considering the shape of the last
matrix we expect the central part of the last row vector to be the vector of coefficients of Cx in K. We denote by
CubeRootCandidate this procedure. Once we have this candidate we can check its validity by computing its
cube and looking whether it is y or not. If not we can increase the precision and find another candidate. We
can evaluate the needed precision with a function PrecisionEvaluation. This function takes y and n the
number of primes defining K in argument. Experiments suggest that for a given degree the precision is linear
in log(‖y‖2). However the slope increases with n and seems to be multiplied by a coefficient between 2 and
3. We choose to use 3 so the slope for K of dimension 3n is 3n−1.

Remark 4.1. In fact as in [4] Algorithm 5 is valid only in Z[B] where B is the chosen basis. But an element
y = x3with integral coefficient canhave a cube rootwith rational ones. Therefore, to ensure that the algorithm
will finish, one has to compute the cube root of D3y with D ∈ Z such that Dx has integral coefficients. The
dimension of the field 3n is a valid choice, ensured by Proposition 3.31.

Complexity : The algorithm consists essentially in applying several LLL with coefficients of size given by
PrecisionEvaluation. Denote by B an upper bound on the bit size of coefficients of y. Then the complexity
of CubeRootCandidate would be O(N5B2). We might have to increase the precision but experimentally it is
only done a few times. We expect the complexity to stay in O(N5B2).

4.4 Computing units

We will describe in this section the algorithm used to compute the units of a multicubic field. As mentioned
before we will mainly proceed as in the multiquadratic case. We will recursively compute the units of chosen
subfields and then retrieve the whole group by detecting cubes and computing their cube root. Therefore the
algorithm can be seen as computing the subgroupMCU(K) and then deduce O×K only by doing products and
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Algorithm 4 Compute a candidate for a cube root in a multicubic field – CubeRootCandidate

Require: An cube element y = x3 in amulticubic field K of dimension N, a precision l and a real basis lattice
of K for precision l

Ensure: x′ a candidate for x
1: xl ← RealEmbedding(y, l)
2: x← [xl | 0 | B]

3: M ← LLL
[︃
L | 0
x

]︃

4: x′ ←
(︂
MN,2
C , . . . , MN,N+1

C

)︂
5: return x′

cube root extractions in successive subfields. Moreover we represent any unit at each step of the algorithm
for K as (u,ApproxLogK(u)) even if we are computing the units of a subfield. This can be done easily because
we can compute the approximate logarithm of any element ofMCU(K) by a function CubicApproxLog. Then
we compute the approximate logarithm of other units by doing only sums and divisions by 3. Since the lat-
tice generated by the multicubic units in the Log-unit representation has an orthogonal basis we compute
ApproxLogK(O×K) starting by an orthogonal basis of a sublattice and then only adding and dividing by three
these vectors. In Algorithm 6 we use several sub-algorithms namely

(i) CubicUnitGroup;
(ii) BasisFromGeneratingSet;
(iii) UnitsFromCubes.

Thefirst one is the classical unit groupalgorithm implemented inMagma.Weapply it only to compute themul-
ticubic units. The last two algorithms are adapted from [4] in the multicubic case. BasisFromGeneratingSet
takes into argument a generating set of a subgroup of O×K and returns a basis. It is done by reducing the cor-
responding generating family in the LogK-representation. If the subgroup U is given by a generating family
(u1, . . . , um) we apply a LLL algorithm on the matrix⎡⎢⎢⎢⎢⎣

1 2l × ApproxLogK(u1, l)
1 2l × ApproxLogK(u2, l)

. . .
...

1 2l × ApproxLogK(um , l)

⎤⎥⎥⎥⎥⎦
to reduce thematrix of theApproxLogK(ui , l) and recover aswell V the unitary transform.We therefore obtain
a basis of ApproxLogK(U) and can compute the corresponding elements of K by using V. The stretched Iden-

Algorithm 5 Computing a cube root in a multicubic field – MC_CubeRoot

Require: An cube element y = x3 in a multicubic field K = Q(d
1
3
1 , . . . , d

1
3
n )

Ensure: The cube root x of y
1: l ← PrecisionEvaluation(y, n)
2: L, U ← RealLattice(d, l)
3: x′ ← CubeRootCandidate(y, l, L)
4: while (x′)3 = ̸ y do
5: l ← 2l
6: L, U ← RealLattice(d, l, L, U)
7: x′ ← CubeRootCandidate(y, l, L)
8: end while
9: return x′
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tity matrix allows to recover amatrix V with relatively small relations in a way similar to what did the authors
of [4]. The function UnitsFromCubes computes a generating set of O×K given a generating set of a subgroup
U such that (O×K)3 < U < O×K . Let us write (u1, . . . , um) a generating set of U. The algorithm computes expo-
nent vectors using the CubeKernel algorithm and obtains a basis of non trivial cubes in U. Then it computes
their cube roots (v1, . . . , vr) using MC_CubeRoot and returns the family (u1, . . . , us , v1, . . . , vr). Following [4]
it is not hard to see that the returned family generates the whole group O×K . Remark that the approximate
logarithm of the resulting new vectors can be computed by sums and division by three.

Algorithm 6 Compute the unit group of a multicubic field – MC_Units

Require: A reduced sequence (d1, . . . , dn) defining a multicubic field, a precision factor l.
Ensure: A basis {u1, . . . , ur} of the torsion-free part of unit group

O×K
⟨±1⟩

1: if n = 1 then
2: u ← CubicUnitGroup(K)
3: return (u, CubicApproxLog(u, l))
4: else
5: Choose v, w two independent elements of H(̃︀K) and recursively compute a basis of U =

O×KvO
×
KwO

×
KvwO

×
Kv2w

6: V ← UnitsFromCubes(U) ◁ Algorithm 2 and Algorithm 5
7: U ← BasisFromGeneratingSet(⟨U, V⟩)
8: return U
9: end if

Complexity : The complexity of the algorithm is Poly(N, B) where B is an upper-bound on the bit-size of the
elements we are computing.

4.5 Principal Ideal Problem

Our main goal is to find a short generator for a given principal ideal of K. This problem can be solved by
finding a generator first and finding a short vector using the Log-unit lattice. Since we can compute the unit
group we “only” need to find a generator of an ideal. An ideal I can be described by several representations,
for example:

– an integral basis;
– the two element representations that is used to fasten ideal based cryptosystem such as in [9, 20].

We consider the more basic situation which is the first one. It has the advantage of being more general. How-
ever it is a much bigger representation and operations may be much slower. For example one fundamental
operation on ideals for the PIP algorithm in multiquadratic fields and multicubic fields is the relative norm
computation. Given an ideal I of a number field K and L a subfield of K the relative norm of I with respect to
K/L is the ideal of L generated by the norms NK/L(x) for x ∈ I. If K/L is a Galois extension then we have

NK/L(I) =
∏︁

σ∈Gal(K/L)

σ(I).

This is for example the case if K and L are multiquadratic fields. Multicubic fields are not Galois however
the situation is pretty similar. Instead of computing the product over Gal(K/L) we compute it over the com-
plex embeddings which are the identity when restricted to L and the product is done in ̃︀K. Then one way
of computing NK/L(I) given an integral basis (b1, . . . , bn) is to calculate all of the products

∏︀
σ σ(bσ) with

bσ ∈ {b1, . . . , bn}, express them in basis of OK, then reduce the matrix obtained by calculating its Her-
mite Normal Form (HNF) for example and finally intersect with F. We can see that this requires to compute
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[K : L]−1 product of ideals of K. The complexity of the HNF is polynomial in the degree of K however it is still
quite slow. In Algorithm 7 the fields considered are K a multicubic field of dimension 3n and L a multicubic
field of dimension 3n−1. Therefore K/L is a degree 3 extension and the embeddings in Hom(K,C) which are
the identity on L are {1, σ(β), σ(2β)} for a given β. Therefore we need to compute two ideal products which are
done by reducing matrices of 32n vectors in a HNF with 3n rows.

The PIP algorithm in multicubic fields is similar to the one for multiquadratic fields as their algebraic
structure are almost the same. Given an ideal I we compute recursively a generator for each of four norm
ideals in subfields, combine them to yield a generator h of I3 and finally find ϵ ∈ O×K such that hϵ is a cube
to compute a = (hϵ) 13 . Like the computation of units, this relies on the structure of the field and Proposition
3.19. Indeed let us write I = gO×K . Then we know that we have

g3 =
NK̃/K̃u (g)NK̃/K̃v (g)NK̃/K̃uv (g)

NK̃/K̃u2v (u(g) · uv(g))
=

NK̃/K̃u (g)NK̃/K̃v (g)NK̃/K̃uv (g)
u(NK̃/K̃u2v (g)) · uv(NK̃/K̃u2v (g))

for any independent u, v in H(̃︀K) . For clarity writeN1,N2,N3,N4 the four considered relative norm operators
and g1, g2, g3,g4 the four relative norm elements such that

g3 = g1g2g3
u(g4)uv(g4)

.

Then for all i ∈ J1, 4K, gi is a generator of the principal ideal Ni(I). If hi is a generator of Ni(I) then we have
hi = giϵi with ϵi a unit of the fixed subfield so of K. Then we have

h1h2h3
u(h4)uv(h4)

= g1g2g3
u(g4)uv(g4)

× ϵ1ϵ2ϵ3
u(ϵ4)uv(ϵ4)

= g3 ϵ1ϵ2ϵ3
u(ϵ4)uv(ϵ4)

.

Finally if we find a unit ϵ such that hϵ is a cube we can retrieve gη by computing (hϵ) 13 . Once we have calcu-
lated the ideal norms, retrieved one generator for each of them and computed the element h as stated before
we will find the unit ϵ the sameway we find non trivial cubes in the algorithm for units. Write U the subgroup
of K* generated by h andO×K = ⟨u1, . . . , um⟩. By following [4] we compute enough good cubic characters as in
Algorithm 2 then we store separatelyM = [χpj (ui)]i,j and the row vector ch = [χj(h)]j. A solution e of eM = −ch
yields the desired vector of exponents.

Remark that to solve the PIP in the cubic subfields in Algorithm 7, we use a classical algorithm named
CubicPrincipalIdeal as we used CubicUnitGroup in Algorithm 6. Moreover it is not precised but we com-
pute the approximate logarithm of the retrieved generators of cubic fields. Then we compute the logarithm of
the final generator of I only doing sums and division by three.

Algorithm 7 Solve the PIP – MC_PIP

Require: A principal ideal I of a multicubic field K
Ensure: A generator g of I
1: if n = 1 then
2: g ← CubicPrincipalIdeal(K)
3: return g
4: else
5: Choose u, v two indepedent elements of H(̃︀K) and recursively compute generators h1, h2, h3, h4 of

NKu (I),NKv (I),NKuv (I),NKu2v (I)

6: g ← GeneratorFromCube
(︂

h1h2h3
u(h4)uv(h4)

)︂
7: return g
8: end if
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4.6 Shortening of the generator

Now the problem that we want to solve is the SPIP. Assume that we know that I has a short generator.

Once a generator h of the ideal I is found, one can choose from several techniques to try to recover the
secret g or a short enough generator. In [13] the authors used the dual lattice. They considered a subgroup C
of O×K easily computable such that [O×K : C] is close to 1. They gave a bound on the dual vectors of LogK(C) so
they proved decryption could be done in this sublattice. The very small gap between LogK(C) and LogK(O×K)
allowed a full decryption. In the case of multiquadratic and multicubic fields there is a good subgroup with
a perfect decryption situation, namely the multiquadratic units and the multicubic units. They form orthog-
onal sublattices of the Log-unit of their respective fields. However in both cases the gap between the unit
groups and these subgroups is too large to try the previous strategy. However there are efficient algorithms
to compute the units and solve the PIP of a wide range of multiquadratic fields so the full Log-unit lattice can
be computed efficiently. In the case of multicubic fields we are less efficient but we still manage to compute
units in reasonable time for some cases. Finally even if we can compute a basis of the Log-unit lattice it is not
certain that we can efficiently recover short generators. This will depend on the geometrical properties of the
basis.

In [4] the shortening procedure is a rounding. The authors considered the vector Log(h) = Log(g)+Log(u)
expressed in the basis Log(O×K) and rounded its coefficient to the nearest integer. In the case of multicubic
fields we cannot use this rounding method since the Log-unit lattice is not a full rank lattice in its ambient
vector space. Instead we used a decryption method based on LLL. Write L the matrix of the approximate Log-
embedding of the units computed, h the vector found by the PIP algorithm and B an upper bound of the norm
of the vectors of L. Then consider – similarly to the cube root procedure – the matrix

[︃
L 0

ApproxLogK(h) B

]︃
=

⎡⎢⎢⎢⎢⎢⎢⎣
ApproxLogK(u1) 0
ApproxLogK(u2) 0

...
...

ApproxLogK(um) 0
ApproxLogK(h) B

⎤⎥⎥⎥⎥⎥⎥⎦
and reduce it with a LLL algorithm. If LogK(g) is short respectively to the Log-unit lattice this is expected
to reduce the last row to the Log-embedding of the closest generator. If we compute the unitary operator
corresponding to this LLL reduction we can retrieve u and g.

Algorithm 8 Shorten a given generator of an ideal – ShortGen

Require: A generator h of a principal ideal I, O×K = ⟨u1, . . . , um⟩
Ensure: A candidate g for a short generator.
1: L ← [ApproxLogK(ui)]i∈J1,mK

2: B ← max{‖L[i]‖2 | i ∈ J1,mK}

3: M, V ← LLL(
[︃

L 0
ApproxLogK(h) B

]︃
)

4: return hVm+1,1 ×
∏︀m+1
i=2 uVm+1,ii−1

4.7 Experiments and Results

We present here the data we collected from computations. We considered multicubic fields defined by prime
sequences (p1, . . . , pn). We did computations essentially for multicubic fields defined by n primes with n
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equal to 2, 3 and 4. These correspond to fields of dimension 9, 27 and 81. We did some computations for fields
defined by 5 primes i.e. with dimension 243.

ComputingO×
K

Recall that we compute units of a multicubic field K recursively and at each step the main procedure is
CubeRoot presented in Algorithm 5. The efficiency of the overall algorithm is strongly related to the efficiency
of CubeRoot and tends to be dominated by it. This is illustrated by the times computed in Table 1. In Figure 1
we can find the times for n = 2 printed. It illustrates well the correlation between the time taken to compute
the units and the time taken to compute cube roots. If we analyse the function CubeRoot we can see that it
depends on the dimension, the sequence defining the field K and the norm of the elements it is given. There-
fore together with the times we computed the number of cube roots computed by the last call to CubeRoot
in Algorithm 6 and the average of the logarithm of their norms. We can understand from these data why the
algorithm does not scale as the algorithm in [4]. The norm of the elements from which we compute cube root
seems to scale poorly and we have to compute more cube roots when the degree increases. Moreover the
efficiency seems to decrease quickly with increasing primes.

Complexity : An analysis of the norm of the units that the algorithm compute cube roots of can be found in
Appendix and gives a bound essentially polynomial in N n

2
∏︀n
i=1 di. This gives a complexity for the overall

algorithm essentially in Poly(N n
2
∏︀n
i=1 di).

Figure 1: Times to compute O×K and the cube roots for fields defined by consecutive primes and n = 2

We obtained better results that the standard algorithm implemented in Magma. For example we can see
in Table 2 the times to compute units for consecutive primes and n = 2. We can see that the size of primes has
a strong impact. It took 2540.490 seconds to compute the units of the field defined by (2, 3, 5) and did not
retrieve the units of the field defined by (3, 5, 7) after 34 hours.

Retrieving a short generator

For each given size of keys (except 243) we chose two sequences. The first is the n consecutive primes and
the second follows an arithmetic progression i.e. p1 is fixed and the pk+1 is NextPrime(pk + 4) for each k.
We considered keys as vectors of coefficients drawn uniformly at random in {−1, 0, 1}. This type of keys are
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Table 1: Times and data for Algorithm 5 and 6 for number fields defined by consecutive primes for n = 2, 3, 4 and 5

(a) n = 2

First prime 2 3 5 7 11 13 17 19 23 29
O×K (times in s) 0.260 0.260 0.260 0.270 0.290 0.350 0.330 0.360 0.480 0.320

CubeRoot (times in s) 0.010 0.010 0.010 0.010 0.000 0.050 0.060 0.070 0.180 0.010
# cube roots 3 3 1 1 1 1 1 2 3 1

Average logarithm of the Norm of cubes 3 18 31 45 24 215 270 175 162 70

(b) n = 3

First prime 2 3 5 7 11 13 17 19 23 29
O×K (times in s) 2.110 2.250 2.490 4.500 2.780 18.780 4.060 24.810 9.230 24.420

CubeRoot (times in s) 0.060 0.180 0.350 2.310 0.350 15.980 1.020 16.540 5.950 16.490
# cube roots 3 4 3 4 2 5 4 5 4 3

Average logarithm of the Norm of cubes 13 29 46 127 83 404 112 398 313 781

(c) n = 4

First prime 2 3 5 7 11 13 17
O×K (times in s) 39.670 71.160 157.460 873.670 7479.250 9862.540 29308.850

CubeRoot (times in s) 19.220 47.270 130.240 832.780 7370.470 9271.600 28425.140
# cube roots 14 12 10 11 11 11 13

Average logarithm of the Norm of cubes 29 75 168 533 1090 2178 3295

(d) n = 5

First prime 2 3 5
O×K (times in s) 16026.410 87701.680 566029.130

CubeRoot (times in s) 15246.560 85036.150 562127.470
# cube roots 36 36 48

Average logarithm of the Norm of cubes 63 199 531

Table 2: Times to compute O×K with UnitGroup of Magma for n = 2

First prime 2 3 5 7 11 13 17 19 23 29
O×K (times in s) 0.190 0.200 0.240 0.520 2.190 8.510 0.700 61.480 200.540 503.640

indeed “short vectors” in the ideal lattice they generate. The data are presented in Table 3. For each n and
each progression the first row is the percentage of exact decoding and the second is the percentage of shorter
generators – exact of strictly shorter generators – retrieved.

We can remark that the probability of success seems to converge to 1 as the primes of the defining se-
quence increase. The probability of failure is particularly big when the smaller primes are in the sequence,
especially two. The same phenomenon were noticed in [4]. Moreover we can see that the rate of generators
retrieved which were strictly shorter than the key follow the inverse pattern. It is quite high compared to the
rate of retrieved keywhen the latest is low and n = 2 and tends to 0 otherwise. For themulticubic field defined
by the sequence (2, 3, 5, 7, 11)we retrieved exactly 74.02% of the keys and no shorter generator and for the
field defined by (3, 5, 7, 11, 13) we retrieved exactly all of the keys.

These results tend to show that multicubic fields should not be used to build cryptosystems. Even if we
are still too slow to attack dimensions of cryptographic interest the results we obtained suggest that the we
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Table 3: Percentages of keys recovered for n = 2, 3 and 4

(a) n = 2

First prime 2 3 5 7 11 13 17 19 23 29
Consecutive 35.20 90.80 98.40 98.20 100.0 100.0 99.70 99.80 100.0 100.0

46.20 91.50 98.40 98.20 100.0 100.0 99.70 99.80 100.0 100.0
Arithmetic 69.90 95.10 98.60 97.40 100.0 99.80 100.0 99.80 100.0 100.0

75.20 95.10 98.60 97.40 100.0 99.80 100.0 99.80 100.0 100.0

(b) n = 3

First prime 2 3 5 7 11 13 17 19 23 29
Consecutive 46.00 93.30 100.0 99.91 100.0 100.0 100.0 100.0 100.0 100.0

46.40 93.30 100.0 99.91 100.0 100.0 100.0 100.0 100.0 100.0
Arithmetic 84.10 99.59 100.0 99.50 100.0 n/a n/a n/a n/a n/a

84.10 99.59 100.0 99.50 100.0 n/a n/a n/a n/a n/a

(c) n = 4

First prime 2 3 5 7 11 13 17 19
Consecutive 64.20 99.91 100.0 100.0 100.0 100.0 100.0 100.0

64.20 99.91 100.0 100.0 100.0 100.0 100.0 100.0
Arithmetic 95.00 100.0 100.0 100.0 100.0 n/a n/a n/a

95.00 100.0 100.0 100.0 100.0 n/a n/a n/a

can easily recover short vectors using the Log-unit lattice. Finally in post-quantum perspective we have to
think that computing O×K and solving the PIP can be done efficiently. Therefore the fact that the algorithms
presented in this paper are slow is not completely relevant. We are essentially interested in the quality of the
basis of the Log-unit lattice.
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Appendix : An upper bound on the norm of cubes
We will give an upper bound for the norm of the units that we compute the cube root of in Algorithm 6 de-
pending on the degree and the sequence defining themulticubic field K. Write (d1, . . . , dn) this sequence.We
assume that they are prime numbers. Let us fix v is a unit in K found by CubeKernel in Algorithm 6. As stated
before MC_CubeRoot consists essentially in several LLL procedures applied to matrices of size approximately
N with coefficients of size evaluated by PrecisionEvaluation. In order to find the complexity of the LLL
used to compute the cube root of u we need to bound PrecisionEvaluation(v) = 3n × log(‖v‖). We therefore
need to evaluate ‖v‖. We will consider here the infinity norm. For x, y ∈ K we have

‖xy‖∞ 6 ‖x‖∞‖y‖∞
n∏︁
i=1

(1 + 2di).

Consider C(k, d) = sup{‖v‖∞ | v ∈ O×L , [K : L] = 3n−k} the maximal infinity norm of a unit of a subfield of
K of dimension 3k found in the course of Algorithm 6. Write U = ⟨u1, . . . , um⟩ the subgroup computed in
Algorithm 6 before computing the procedure CubeKernel. We havem 6 4× 3n−1−1

2 and v = ue11 × · · · × u
em
m with

(e1, . . . , em) ∈ J0, 2Km. Typically the previous exponent tuple has a fair proportion of 0 but we will assume
we are in the worst case which is half of 1 and half of 2. Therefore v is calculated by a product of 3 × (3n−1 −1)
terms so we have

‖v‖∞ 6 C(n − 1, d)3×(3
n−1−1) ×

(︃ n∏︁
i=1

(1 + 2di)
)︃3×(3n−1−1)−1

.

If we designate by P(1 + 2d) the product we have

log(‖v‖∞) 6 3(3n−1 − 1)log(C(n − 1, d)) + 3(3n−1 − 1) log(P(1 + 2d)).

If we assume that ‖x‖∞ 6 ‖x3‖∞ 6 for any x ∈ K we can write

log(‖v‖∞) 6 3(3n−1 − 1) × 3(3n−2 − 1)log(C(n − 2, d))
+ 3(3n−1 − 1) + (3(3n−1 − 1) × 3(3n−2 − 1)) log(P(1 + 2d)).

Then if we write ck = 3k − 1 we have

log(‖v‖∞) 6 3n−1cn−1cn−2 . . . c1log(C(1, d))
+ (3cn−1 + 32cn−1cn−2 + · · · + 3n−1cn−1cn−2 . . . c1) log(P(1 + 2d))

which gives rise to

log(‖v‖∞) 6 3n−13
(n−1)n

2 log(C(1, d)) + 3
(n−1)n

2 (3 + 32 + · · · + 3n−1) log(P(1 + 2d))

and therefore

log(‖v‖∞) 6 3n−13
(n−1)n

2 log(C(1, d)) + 3
(n−1)n

2 × 3 × 3
n−1 − 1
2 log(P(1 + 2d)).

Thus we can bound log(‖v‖∞) by N × N
log3(N)

2 (log(C(1, d)) + log(P(1 + 2d)). Now we assume that the infinity
norm of a fundamental unit of cubic field is less than its real embedding (it is verified by computationsmade)
or at least a polynomial of evaluated in it. Therefore we can write

log(‖v‖∞) 6 N × N
log3(N)

2 (log(P(1 + 2d) + max{log(ϵα) | α ∈ (F3)n \ {0}})

and by using an upper bound for the regulator of pure cubic fields and the discriminant of a pure cubic field
we have

log(‖v‖∞) 6 N × N
log3(N)

2 (log(P(1 + 2d)) + P(d))
where P(d) =

∏︀n
i=1 di.

If we compare this bound to the experimental results the subexponential part seems reasonable. However
the norm of the elements that we work with during the algorithm seem to be lower in general.
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Appendix B: Discriminant of multicubic fields

In this sectionwewill study the discriminant ofmulticubic fields i.e. number fields of the formQ(d
1
3
1 , . . . , d

1
3
n )

with d1, . . . , dn being integers. Since the discriminant of a number field is related to the splitting of primes
in its ring of integers we will establish some results on the splitting of primes in multicubic fields. One can
see [19] for a fairly clear and complete presentation of the objects and results used in this part.

Notations
D(L/K) relative discriminant of L/K
d(L/K) relative different of L/K
NL/K relative norm of L/K
D(K) absolute discriminant of K

Proof of Lemma 3.26. Assume p | d1 and p | d2.Without loss of generality one can assume p2 - d1 and p2 | d2.
Then fix d′1 = d1 and d′2 = d1d2

p3 .

Proof of Lemma 3.27. Let p ∈ P(d). There is i0 ∈ J1, nK such that p | di0 . Without loss of generality one can
assume i0 = 1. Then apply Lemma 3.26 to every (d1, di) with i > 1.

Proof of Lemma 3.28. Assume d1 = ̸ ±1 (mod 9) and d2 ≠ ±1 (mod 9). One can replace d1 by d1d2 or d1d22.

Proof of Proposition 3.29. First assume that 3 does not appear in the prime decomposition of any of the di,
i ∈ J1, nK. Then two cases arise. Either di = ±1 (mod 9) for all i ∈ J1, nK and nothing need to be done, either
there is i0 ∈ J1, nK such that di0 = 2, 4, 5, 7 (mod 9). Without loss of generality one can assume that i0 = 1,
and for all j > 1 such that dj ≠ ±1 (mod 9) one can apply Lemma 3.28 to (d1, dj) and assume that dj = ±1
(mod 9). This corresponds to (ii). Now assume that 3 divides di0 for some i0 ∈ J1, nK. Again one can assume
i0 = 1 and – by applying Lemma 3.27 – that 3 - di for all i ∈ J2, nK. Finally we can apply the first case to the
sequence (d2, . . . , dn) which gives rise to the two last possibilities of the proposition.

We will now prove Theorem 3.30. Remark that the formulae can be extended to pure cubic fields – see for
instance [11] – and were proven by Chalmeta in [10] for bicubic fields. In order to determine the discriminant
of multicubic fields we will study the splitting of primes in such fields. A prime p divides D(K) if, and only if,
it ramifies in K. Moreover given two linearly disjoint fields K1 and K2 the discriminant of their compositum
D(K1K2) divides the product D(K1)[K2:Q]D(K2)[K1:Q]. If we apply this to a multicubic field we obtain that a
prime p divides D(K) if, and only if, it divides one of the discriminant of the pure cubic fieldsQ( 3

√︀
di) for i in

J1, nK. Given the discriminant of a pure cubic field this is equivalent to being inP(d)∪{3}. Let us first consider
the case of primes different from 3.

Proposition 4.2. Consider K = Q(d
1
3
1 , . . . , d

1
3
n ) a multicubic field and p a prime integer in P(d) \ {3}. Then we

have vp(D(K)) = 2 × 3n−1.

Proof. The result is true for n = 1, see for instance [11]. Suppose now that n > 2. By using Lemma 3.27 one can
assume p | d1 and p - di for any i in J2, nK. Let K1 = Q( 3

√︀
d1) and K2 = Q( 3

√︀
d2, . . . , 3√dn). By [11] the prime p

ramifies in K1 as p3. Moreover p is unramified in K2 so pOK2 = q1 · · · qs with s > 1. By multiplicativity of the
ramification index, for all i ∈ J1, sK, the ideal qi ramifies completely in K asP3

i . Therefore pOK = (P1 · · ·Ps)3.
Now recall that the different of K/Q verifies d(K/Q) =

∏︀
PPsP where the product is over the prime ideals

of OK which are ramified over Q. Thus the part of d(K/Q) above p is
∏︀s
i=1P

si
i for some integers si. For all

i ∈ J1, sK we know that e(Pi|p) = 3 and p are coprime. Therefore si is equal to e(Pi|p) − 1 = 2. Thus one has
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for the discriminant vp(D(K)) = vp(NK/Q(d(K/Q))) = vp(NK2/Q(NK/K2 (
∏︀s
i=1P

2
i ))). Finally since NK/K2 (Pi) = qi

we obtain vp(D(K)) = vp(NK2/Q(
s∏︀
i=1

q2i )) = vp(NK2/Q(pOK2 )
2) = 2 × 3n−1.

We will now study the splitting of 3 in K in function of the four types of multicubic fields established in
Proposition 3.29.

Proposition 4.3. Consider a multicubic field K = Q(d
1
3
1 , . . . , d

1
3
n ) such that di = ±1 (mod 9) for all i in J1, nK.

Then 3 splits in K as
(3) = P1P

2
2 · · ·P2

r+1

with r = 3n − 1
2 . Therefore f (Pj|3) = 1 for all j ∈ J1, r + 1K.

Proof. We will prove the result by induction on n. The result is true for n = 1, see [11] for instance. Consider
n > 2 and suppose the result to be true for n − 1. Write K1 = Q(d

1
3
1 , . . . , d

1
3
n−1), K2 = Q( 3√dn) and ̃︀K, ̃︁K1,̃︁K2 the respective Galois closure of the considered fields. If one denotes 3n−1−1

2 by s, one has the following
situation by using the induction hypothesis, where the numbers labelling the vertices are the dimensions of
the respective extensions.

Q

(3)

K1pp21 · · · p2s

K2 q1q
2
2

K̃︁K1
̃︁K2

̃︀K

3n−1

3

3

3n−1
2

2

3
3n−12

First we consider the splitting of (3) in the Galois closure ̃︁K1 and ̃︁K2. We focus on ̃︁K2 for the situation in ̃︁K1
is similar. Remark that ̃︁K2/Q is Galois with dimension [̃︁K2 : Q] = 6 so the decomposition of 3OK2 verifies
efg = 6with the functions e(·|3) and f (·|3) being constant – equal to e and f respectively – over prime ideals̃︀q of K̃2 such that ̃︀q | (3). But considering the factorisation 3OK2 = q1q

2
2 we obtain 2 | e(̃︀q|3). Moreover for the

decomposition of qi in ̃︁K2, since ̃︁K2/K2 is Galois, we have ei figi = 2. But 2 | e and e = e1 so we have e1 = 2,
f1 = 1 and g1 = 1. Therefore q1Õ︁K1 = ̃︀q21. Moreover f = f1 = f2 and e = 2e2 so e2 = 1 and g2 = 2. Thus q2 splits
completely in ̃︁K2 as ̃︀q2 ̃︀q3. Finally we obtain the factorisation (3) = ̃︀q21̃︀q22̃︀q23 in ̃︁K2. Similarly we have pÕ︁K1 = ̃︀p2
and pi splits completely in ̃︁K1 for all i ∈ J1, sK. Therefore the factorisation of (3) in ̃︁K1 is (3) = ̃︀p21̃︀p22 · · ·̃︀p22s+1.
Remark that the residual degree is 1 everywhere. We will now consider the decomposition of (3) in K̃. Sincẽ︀K/Q is Galois we obtain efg = 2×3n. If we consider the decomposition of somẽ︀pi wehave ei figi = 3. Moreover
e = 2ei and f = fi for all i ∈ J1, 2s + 1K. Assume ei fi = 3 and gi = 1. If we write ̃︀Pi the ideal of ̃︀K with ̃︀Pi | ̃︀pi
the decomposition groupD(Pi) is therefore a subgroup of Gal(̃︀K/̃︁K1) ≃ Z

3Z of cardinal 3. By considering the

decomposition of some ̃︀qj in ̃︀K we have that ej fj = 3 too so the decomposition subgroup of ̃︀Pi with respect to
the extension ̃︀K/̃︁K2 is also a subgroupof order3ofGal(̃︀K/̃︁K2) and sinceGal(̃︀K/Q(ζ3)) ≃ Gal(̃︀K/̃︁K1)×Gal(̃︀K/̃︁K2)
the decomposition subgroup of ̃︀Pi with respect to ̃︀K/Q has order at least 9. But we supposed that ei fi = 3 so
ef = 6 thus an absurdity. Finally ̃︀pi totally splits in ̃︀K for all i in J1, 2s + 1K and

3Õ︀K = ̃︀P2
1 · · · ̃︀P2

3(2s+1).



Short Principal Ideal Problem in multicubic fields | 391

Then for all i ∈ J1, sK the ideal pi splits totally in ̃︀K therefore it splits totally in K too. On the contrary p̃ is not
totally split in K̃ so p is not totally split in K. We have

pOK =
g∑︁
j=1

e(Pj|p)f (Pj|p) = 3

and we know that f (Pj|p) for all j ∈ J1, gK so

pOK =
g∑︁
j=1

e(Pj|p) = 3.

We stated above that g = 3 and e(Pj|p) = 1 for all j ∈ J1, gK is not possible. Clearly g = 1 and e(P1|p) = 3 is
not possible either. Finally we have

pOK = P1P
2
2

which gives
3OK = P1P

2
2 ·P2

3P
2
4P

2
5 · · ·P2

3sP
2
3s+1P

2
3s+2,

and 3s + 2 = 3 × 3n−1−1
2 + 2 = 3n−1

2 + 1 so we obtain the desired decomposition.

Corollary 4.1. Under the same conditions for the sequence d one has

v3(D(K)) =
3n − 1
2 .

Proof. The part of the different d(K/Q) above 3 is

r+1∏︁
i=2

Pi

because 3 is coprime to 1 and 2. Therefore one has

v3(D(K)) = v3(NK/Q(
r+1∏︁
i=2

Pi)) = v3(
r+1∏︁
i=2

NK/Q(Pi)) = v3(3r) = r =
3n − 1
2 .

Now we will consider the second type of multicubic fields.

Proposition 4.4. Consider a multicubic field K = Q(d
1
3
1 , . . . , d

1
3
n ) with d1 = 2, 4, 5, 7 (mod 9) and di = ±1

(mod 9) for all i ∈ J2, nK. Then, if r = 3n−1 − 1
2 , we have

3OK = P3
1P

6
2 · · ·P6

r+1

and consequently

v3(D(K)) = 3n + 3n−1 − 1
2 .

Proof. As in the proof of the previous proposition, consider K1 = Q( 3
√︀
d1) and K2 = Q( 3

√︀
d2, . . . , 3√dn). Fol-

lowing Cohen [11] and by using the previous proposition, if we write s = 3n−1 − 1
2 , we have the following

situation
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Q
3

K1p3

K2 q1q
2
2 · · · q2s+1

K

Now consider P dividing qi in K for a given i ∈ J1, s + 1K. By the multiplicativity of the ramification index
3 | e(P|qi) and we know that e(P|qi) 6 [K : K2] = 3 so e(P|qi) = 3. We obtain the claimed splitting of 3 in
K. For any i ∈ J1, s + 1K let us denote by Pi the ideal of K such that Pi | qi. In order to study the discrimi-
nant consider the splitting of p in K which is P1P

2
2 · · ·P2

s+1. We have D(K) = D(K1)[K:K1]NK1/Q(D(K/K1)) =
D(K1)[K:K1]NK1/Q(NK/K1 (d(K/K1))) and the part of d(K/K1) over p isP2 · · ·Ps+1 because 3 is coprime to 1 and
2. We know by [11] that v3(D(K1)) = 3 so v3(D(K)) = [K : K1]v3(D(K1)) + v3(NK/Q(P2 · · ·Ps+1)) and finally

v3(D(K)) = 3n−1 × 3 + s = 3n + 3n−1 − 1
2 .

We will consider the third type of multicubic fields. The proof is very similar.

Proposition 4.5. Consider a multicubic field K = Q(d
1
3
1 , . . . , d

1
3
n ) with d1 = 0 (mod 3) and di = ±1 (mod 9)

for all i ∈ J2, nK. Then, if r = 3n−1 − 1
2 , we have

3OK = P3
1P

6
2 · · ·P6

r+1

and consequently

v3(D(K)) = 2 × 3n−1 + 3n + 3n−1 − 1
2 .

Proof. Fix K1 = Q( 3
√︀
d1) and K2 = Q( 3

√︀
d2, . . . , 3√dn). The splitting of 3 in the fields is then the same as in

the previous Proposition and we can use the same formula except that v3(D(K1)) = 5.

Finally we will consider the last type of multicubic field. The proof is similar to the last two cases.

Proposition 4.6. Consider amulticubic fieldK = Q(d
1
3
1 , . . . , d

1
3
n )with d1 = 0 (mod 3), d2 = 2, 4, 5, 7 (mod 3)

and di = ±1 (mod 9) for all i ∈ J3, nK. Then, if r = 3n−2 − 1
2 , we have

3OK = P9
1P

18
2 · · ·P18

r+1

and consequently

v3(D(K)) = 2 × 3n + 3n−2 − 1
2 .

Proof. Fix K1 = Q( 3
√︀
d1, 3

√︀
d2) and K2 = Q( 3

√︀
d3, . . . , 3√dn). By [10] the splitting of 3 in K1 is P9 and the

splitting of 3 in K2 is P1P
2
2 · · ·P2

r+1. We use the same argument as for the two previous types of multicubic
fields and obtain the claimed splitting of 3 in K. Then by [10] we have v3(D(K1)) = 18 and the reasoning used
before gives rise to the claimed formula.
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