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Fully Homomorphic Encryption

Zhunzhun CHEN

A Thesis for

School of Computer Science and Software Engineering
University of Wollongong

ABSTRACT

Fully Homomorphic encryption can compute arbitrary functions on encrypted data
which proposed in 1978. After Gentry propsed the first Fully homomorphic encryp-
tion scheme in 2009, FHE has made a great progress. Lattice-based cryptography
is considered to be secure against quantum computers. Lattice-based cryptograph-
ic schemes has simple computations and their hardness are as hard as approximating
several lattice problem in the worst case. FHE still facing some problems, so it is impor-
tant to construct better FHE scheme. The notion of a fully homomorphic encryption
scheme over integers with public key compression has been proposed by Coron. The
main attractive feature of this scheme is the reduction of the public key size, which is
obtained by encrypting the plaintext with a quadratic form in the public key elements
instead of in a linear form. In this work, we adopt this technique and apply it to the
hidden ideal lattice scheme to acquire a more efficient scheme based on the hidden
ideal lattice. The security of our scheme is based on the bounded distance decoding
over the hidden ideal lattice. Additionally, we also describe a variant of the scheme
with higher degrees. The scheme shows a better level of efficiency in comparison to
the original scheme.

KEYWORDS: RSA, Fully Homomorphic Encryption, Compress
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Chapter 1

Introduction

1.1 Introduction

Information security is the most important area in computer science today. Cryptosys-

tems as the fundamental primitives ensures data transfer more efficient and accurate.

Encryption scheme is provided by different protocols and systems. With the devel-

opment of computer technology, although quantum computer is still in its infancy,

quantum cryptography has developed rapidly. Post-quantum cryptography aims to

construct cryptographic algorithms which are secure against an attack by a quantum

computer. The security of the algorithms relies on hard mathematical problems, there

are three classical hard problems: the integer factorization problem, the discrete log-

arithm problem or the elliptic-curve discrete logarithm problem[57][36]. Under the

current classical computer, these algorithms are hard to solve, however, they can be

solved by quantum computers easily by running Shor’s algorithm [61]. Symmetric

cryptographic algorithms and hash functions in the public-key system are considered

to be relatively secure against attacks by quantum computers [2].

Post-quantum cryptography has six categories of algorithms based on different hard

mathematical problems.

1



1.1. Introduction 2

• Latticed-based cryptography: the cryptographic system includes Learning with

Errors, Ring-Learning with Errors (Ring-LWE)[55], the Ring Learning with Er-

rors Key Exchange and the Ring Learning with Errors Signature, the older N-

TRU or GGH encryption schemes, and the newer NTRU signature and BLISS

signatures [50].

• Multivariate cryptography: the cryptographic system includes the Rainbow scheme

[21]. Rainbow also could provide a quantum secure multivariate signature scheme

called the Rainbow Signature Scheme [21].

• Hash-based cryptography: the cryptographic system includes Lamport signa-

tures and the Merkle signature scheme. RSA and DSA are the most familiar

hash based digital signatures.

• Code-based cryptography: the cryptographic system is based on error-correcting

codes, the McEliece and Niederreiter encryption algorithms are two classic algo-

rithms [48].

• Supersingular elliptic curve isogeny cryptography: the cryptographic system re-

lies on the properties of supersingular elliptic curves. Diffie-Hellman like key

exchange has better performance to resist quantum computing than the Diffie-

Hellman and elliptic curve DiffieHellman key exchange methods [23].

• Symmetric Key based cryptography: Grover’s algorithm is the best quantum

attack against generic symmetric-key systems. This approach is more effective

in small key size for post-quantum cryptography [34].

To prove the security of a cryptographic algorithm is equivalent to proving the

mathematical problem is hard. The procedure of this proof is called ”security re-

ductions”. The security of given cryptographic algorithms above are reduced to the

security of different known hard problems.
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• Ring-LWE Signature: the security reduction of RLWE is the shortest-vector

problem (SVP) in a lattice as a lower bound on the security which is a NP-hard

problem [41].

• NTRU, BLISS: the security reduction of these two algorithms are the closest-

vector problem (CVP) in a lattice as a lower bound on the security which is also

a NP-hard problem [22].

• Rainbow: multivariate quadratic equation cryptosystems called ”Unbalanced Oil

and Vinegar Cryptosystems” is a NP-hard problem. The Rainbow Multivariate

Equation Signature Scheme is a class of multivariate quadratic equation cryp-

tosystems [8]. The Rainbow Multivariate Equation Signature Scheme is a hard

problem .

• Merkle signature scheme: one-way hash functions is a well known hard problem.

The security reduction of Merkle Hash Tree signatures has proved to rely on the

one-way hash function [24].

• McEliece: the Syndrome Decoding Problem (SDP) is also known to be NP-hard

problem. The security reduction of McEliece Encryption System is SDP [60].

• Supersingular elliptic curve isogeny cryptography: Unlike other cryptosystems,

this system has no security reduction to a known NP-hard problem. Delfs and

Galbraith indicates the difficulty of the problem is as hard as the inventors of the

key exchange which relies on constructing an isogeny between two supersingular

curves with the same amount of points [18].

1.1.1 Lattice-Based Cryptography

A classical algorithm such as the RSA and Diffie-Hellman cryptosystem are easily

attacked by a quantum computer. Recently, to resist the attack by both classical



1.1. Introduction 4

and quantum computers, the lattice-based cryptosystem has been widely introduced.

Lattice-based cryptography is the asymmetric cryptographic according to the prop-

erties of lattices. In the n-dimensional Euclidean space Rn, we define a lattice L as

a set of points which has a strong periodicity property in real analysis. A basis is

the basic component of L. Basis is a set of vectors which is represented by the linear

combination of any element with unique integer coefficients. Due to the property of

the cryptosystems, the ciphertext, public key, and private key must be taken from a

finite space, therefore, the lattices used for cryptography is over the finite field only.

The most two famous mathematical problems based on the lattices properties. One is

the Shortest Vector Problem (SVP) and the other is Closest Vector Problem (CVP)

[1]. Both are hard to be solved without a good basis, so the security of algorithm

relies on the hard problem to find the good basis. An effective method to find the

good basis (nearly orthogonal vectors) is using lattice basis reduction. If an attacker

can compute such a lattice basis within polynomial time, the CVP and SVP problems

are not hard to solve any more, the corresponding algorithms are not secure as well.

The LLL algorithm is a quite effective to compute good basis, and so many alternative

algorithms based on LLL algorithm to run faster or more efficienctly [54].

1.1.2 Fully Homomorphic Encryption

The encryption is an effective strategy to secure the data information when its trans-

forming through the channel. The secret key helps the key owner to decrypt the

ciphertext but it is useless for other people. Can we find the algorithm which can

perform arbitrary operations on the ciphertext without secret key. A scheme is called

fully homomorphic if it can operate on the ciphertext without the knowledge of the

secret key. The notion of a fully homomorphic encryption scheme has been known

to be very useful in the cloud computing environment, ciphertext retrieval and secure
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multi-party computation [13]. For instance, the clouding computing, the customer

encrypts the plaintext, keeps the data storage in the server of cloud. When customer

request the operation, the server of cloud does not need to decrypt the ciphertext, but

can perform the operation on the ciphertext. The decryption of the ciphertext will

have the same result as the operation on the plaintext. The homomorphism gives the

same outcome as the operation on the plaintext and plaintext.

In 1978, Rivest, Adleman and Dertouzos [56] introduced the original concept of pri-

vacy homomorphism which allows computation on encrypted data without decryption.

They posed the construction of privacy homomorphism (and hence, fully homomor-

phic encryption) as an open research problem. For any valid function f and plaintext

m, the operation on ciphertexts is equivalent to the same operation on plaintext. In

such a definition, given a function f and a ciphertext c which encrypt a plaintext m,

it is possible to transfer c into a new ciphertext c′ which encrypts f(m) [56] . There

have been many attempts to achieve this goal. Some of them can satisfy additive ho-

momorphism only or multiplicative homomorphism only, and meanwhile some other

schemes have been successful enabling both operations with limited level of operations.

The ’Polly Cracker’ scheme can evaluate arbitrary level operation in any circuit. N-

evertheless, the size of ciphertext will increase exponentially with the depth of the

circuit [65]. We note that none of these schemes is a fully homomorphic scheme. The

first breakthrough has been provided by Gentry in his construction of the first fully

homomorphic encryption in 2009 [25]. Due to the characteristic of the addition and

multiplication over Z2, which forms a complete set of those operations, the scheme can

evaluate the operation on encrypted data in polynomial time.

Gentrys approach to fully homomorphic encryption is achieved by incorporating

the bootstrapping technique, which seems to be the inherent efficiency bottleneck [28].

That is why fully homomorphic encryption schemes cannot be adopted in practice yet.
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The natural fully homomorphic encryption scheme has not been found so far, the ma-

jority schemes proposed use Gentry’s first idea: construct a somewhat homomorphic

encryption scheme first, then applied the squash on the decryption algorithm, finally

use the bootstrapping technique to achieve the fully homomorphic encryption scheme

[26].

To construct a somewhat homomorphic encryption scheme means construct a

scheme with a limited number of homomorphic operations. The somewhat homo-

morphic of Gentry’s framework is GGH cryptosystem which based on the ideal lattice.

There are two kinds of basis, one is ’good’ basis which can be used as the secret key,

another basis is ’bad’ for the public key [26]. The hard lattice problem is a bounded

distance decoding problem over an ideal lattice. The encryption is mapping a plaintext

to a vector which is close to the lattice by using public key, the process is to encrypt

plaintext by using the bad basis. The decryption is reducing the vector to the message

by using the good basis which is the secret key.

During the evaluations, since the noise of the ciphertext is expanded over the

bound especially in the multiplicative operation, it occurs the failure in the decryption.

Gentry used ’homomorphic decryption’ to control the noise increasing. Encrypt the

ciphertext and the corresponding public key by evaluate key, and input the result

into the decryption circuit, output a new ciphertext. If the error of the ciphertext is

able to evaluate one more time especially in multiplication after each operation, then

the ciphertext can perform unlimited times operation [28], [30]. Since the somewhat

homomorphic encryption scheme can only perform a limited number of operations

with low-degree polynomials, the next step is to squash the decryption procedure.

The purpose is to express the decryption function as a low-degree polynomial which

can be supported by the scheme. Finally, the last step is bootstrapping, it is the

major procedure to transfer the somewhat homomorphic encryption scheme into a
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fully homomorphic scheme [26].

There are three categories of fully homomorphic encryption scheme: ideal lattice

based scheme, integer based scheme and learning with error based scheme. Smart and

Vercauteren [63] used the principle of ideal lattice to construct the fully homomorphic

scheme. They selected two integers to represent the lattice and maintained a smaller

key size. The integer based scheme proposed by van Dijk [20], where its security is

based on the approximate greatest common factor. Plantard, Susilo and Zhang [51]

proposed the notion of hidden ideal lattice for the construction of fully homomorphic

encryption schemes. The hidden ideal lattice scheme unifies the ideal lattice scheme

and integer scheme. Instead of publishing the lattice, they used vectors close to a

lattice which is called the hidden ideal lattice. The security of the hidden ideal lattice

scheme relies on a bounded distance decoding problem over hidden ideal lattice rather

than the subset sum problem.

The implementation of the fully homomorphic encryption scheme by van Dijk et al.

[20] shows that the public key size is too big for any practical system [29]. Reducing

the size of the public key is the main point to make the scheme more practical, which is

achieved by shortening the length or decreasing the number of public keys [58]. Coron

proposed a technique to reduce the number of public key, then shrunk the size of the

public key based on the scheme over the integers [15]. The technique can improve the

efficiency of implementing of the fully homomorphic encryption by the small size of

public key.

1.2 Research Objective

This thesis aims for the following main research objective according to the above

discussing:

• Constructing new fully homomorphic encryption scheme. The original fully ho-
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momorphic scheme constructed by Gentry[26] uses bootstrapping which has low

efficiency. To construct new fully homomorphic without bootstrapping will be

our main research.

• The DGHV[20] has large public key size which affects the implementing perfor-

mance. To apply the public key compression to our scheme can improve the

performance of the implementation and save more storage space.

1.3 Research Outcomes

Since Coron’s scheme is over integers, his work can be reduced to the AGCD problem,

the attacker can recover the noise or public key by lattice reduction. We choose Plan-

tard, Susilo and Zhang’s hidden ideal lattice scheme to combine the bounded distance

decoding problem (BDD) with approximate greatest common divisor problem. There-

fore, the scheme based on the ideal lattice gives a stronger security by the hardness of

problems. Coron’s technique can be applied on the the Plantard, Susilo and Zhang’s

hidden ideal lattice scheme, which improves the efficiency exponentially by smaller size

of public key. The less public key we publish, the less information of the public key

or noise will be leaked. In this work, we are to construct a somewhat homomorphic

scheme with public key compression based on hidden ideal lattice. Our approach is

summarized as follows. We first generate a random polynomial vector as the ring ele-

ment, then divide these vectors into two groups. Then, we choose a vector from each

group and the product of two polynomial. Therefore, the original public key will be

replaced by the new quadratic key. The scheme can reduce the number of public keys

from τ keys to 2
√
τ keys. We also extend the technique into higher degrees to reduce

the public key size further.

According to the developing of fully homomorphic encryption, we find the fully
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homomorphic encryption is an attraction topic with highly application in the future.

There are two main areas need to be concerned, one is security and another one is

efficiency. Our aim is to construct a new scheme can improve the efficiency of the fully

homomorphic encryption based on the current hard problem which can guarantee the

security of the scheme.



Chapter 2

Background

In this section, we will provide the backgroud of research on three disciplines: Lattice,

Public-Key Cryptosystems, and Fully Homomorphic Encryption. This section we will

emphasize on introducing lattice and Public-Key Cryptosystems. In the next section,

we will explain the fully homomorphic encryption.

2.1 Notation

The parameters that are used in the scheme are as follows:

• λ: security parameter.

• ρ: the norm of random noise vector.

• η: the bit length of the norm of generating polynomial (secret vector).

• γ: the bit length of the norm of the random multiplier vector.

• τ : the number of vectors in the public key in encryption algorithm.

• β: the number of vectors in the public key.

• ζ: the norm of noise used in encryption.

10
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• n: the dimension of the hidden lattice.

• θ: the constant factor depending on the polynomial.

For integers z and d, denote [z]d as the z mod d with in (−d/2, d/2] and dzc as the

closest integer to d. Recall the definition of the integer residue ring Zn = Z/nZ,

the element in the residue ring is generated by modular operation which in the set

{0, 1, 2, . . . , n − 1}. For x Mod n ≡ y, y is defined as y ≡ x mod n with the interval

(−n
2
, n

2
]. D is a distribution by parameter γ and ρ, Dγ,ρ(p) := {choose q ← Z ∩

[0, q0), e← Z ∩ (−2ρ, 2ρ) : output x = pq + e}.

Denote the vector v to represent the coefficient of polynomial f(x). Let the poly-

nomial f(x) in the form of V ec(f(x)) =
∑n−1

i=0 vix
i, denote vector v =< v1, . . . , vn >,

where vi represents the coefficient of element of xi. For two vectors v1 and v2, de-

note v1 × v2 be the polynomial multiplication over the ring, v1 × v2 = V ec(v1(x) ×

v2(x) mod f(x).

2.2 Lattice

Based on introduction of lattices by Micciancio, Nguyen and Lenstra, this section will

give the definition, proofs and properties of lattice.

2.2.1 Definition

Let Rn be the n-dimensional Euclidean vector. x and y are denoted as column vectors

like x= (x1, . . . , xn)T and y= (y1, . . . , yn)T in Rn. The Euclidean inner product is de-

noted by < x, y > =
∑n

i=1 xiyi, and the corresponding norm is ‖x‖ =
√
x2

1 + · · ·+ x2
n.

The distance between two vectors is d(x, y) = ‖x −y ‖. The distance between a vector

x ∈ Rn and a subset E ⊂ Rn is defined as dist(x,E) = miny∈E{d(x,y)}.
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Definition 2.2.1. (Lattice)[54] Lattice is the set of integer combinations of n linearly

independent vectors v1, . . . .vn in Rn. Denote the set of vectors v1, . . . , vn as the basis

of the lattice.

L(v1, . . . , vn) = {
n∑
i=1

vibi : vi ∈ Z for 1 ≤ i ≤ n},

In the matrix notation, B = [v1, . . . ,vn] ∈ Rn×n denotes as the basis for lattice

L(B) = {Bx : x ∈ Zn}. The determinant of a lattice is det(L) =
√

B×BT.

Definition 2.2.2. (Norm)[54] Let v =< v1, . . . , vn >∈ Rn be the vector of lattice, the

Euclidean norm is defined as ‖v‖ =
√∑n

i=1 v
2
i . For two vectors v1, v2 ∈ Rn, we have

‖v1 + v2‖ ≤ ‖v1‖+ ‖v2‖, and ‖v1 × v2‖ ≤ θ · ‖v1‖ · ‖v2‖, where θ =
√
n.

2.2.2 Ideal Lattice

Definition 2.2.3. (Ideal Lattice)[43] Denote an ideal lattice L(Rot(v, f)) over a poly-

nomial ring Z[X]/f . f ∈ Z[X] is a monic irreducible polynomial of degree n. Denote

Rot(v, f) is the rotation matrix. The i−th row of this matrix equals to the coefficients

of v × xi−1 mod f .

Plantard, Susilo and Zhang constructed a fully homomorphic encryption scheme

by using hidden ideal lattice [51]. The hidden ideal lattice scheme is unified by two

schemes, one is ideal lattice based schemes and the other one is integer based schemes.

The security of this scheme does not rely on the sparse subset sum problem (SSSP),

but rather, it relies on the bounded distance decoding problem (BDD) of ideal lattices.

Definition 2.2.4. (Hidden Ideal Lattice)[51]

Let vi ∈ Zn be τ integer vectors and α ∈ R+ be a positive real. There exists

a unique (ideal) lattice L and some unique vectors vi ∈ L respecting ∀1 ≤ i ≤ τ ,

dist(vi, wi) ≤ α. Then L is called an α−hidden ideal lattice hidden under {vi}.
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Denoted dist(v, L) = min(‖v − u‖), ∀u ∈ L as the distance between the a vector

v ∈ Rn and a lattice L.

Definition 2.2.5. (BDD over Hidden Ideal Lattice) [51]

Let γ ∈ R+ be a positive real and L be an n dimensional ideal lattice. v ∈ Z is

a random vector, there exists a unique vector u ∈ L satisfying dist(v, u) ≤ γ. The

hard problem γ−BDDHIn is called γ-Bounded Distance Decoding problem over ideal

lattice. For given a basis of L and v, find u.

2.3 Hard Problems

To prove the security of algorithms, we introduce several classic computational prob-

lems which are based on lattices computation in this section. Then we review the

lattice application on cryptosystem with LWE and R-LWE.

Definition 2.3.1. (Classic Lattice Problems) [42], [52]

• Decisional Shortest Vector Problem (GapSVPγ): L is a full-rank n-dimensional

lattice, for a given basis B, decide if λ1(L) ≤ 1 or λ1(L) > γ(n).

• Shortest Independent Vectors Problem (SIVPγ): L is a full-rank n-dimensional

lattice, for a given basis B, find a set of linearly independent vectors S =

{s1, . . . , sn}, for si ∈ L(B), minimizing the quantity ‖S‖ = maxi∈[n]‖si‖.

Definition 2.3.2. (Modern Lattice Problems) [52], [54]

• Small Integer Solutions (SISβ): Given a prime q, a random matrix A ∈ Zn×m
q

and a real number β. Find a non-zero vector d ∈ Zm such that Ad = 0 mod q

and ‖d‖ ≤ β. Note, finding a solution of SISβ can be seen as finding a short

lattice point in lattice Λ⊥q (A).
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Lemma 2.3.1. (Average-case to Worst-case) [45], [53] Let n, p ≥ 1 be some integers

and χ be some disribution on Zp. Assume that we have access to a distinguisher W

that distinguishes As,χ from U for a non-negligible fraction of all possible s, then there

exists an efficient algorithm W ′ that for all s accepts with probability exponentially

close to 1 on inputs from U.

Lemma 2.3.2. (Decision to Search) [53] Let n ≥ 1 be some integers, 2 ≤ p ≤ poly(n)

be a prime, and χ be some distribution on Zp. Assume that we have access to procedure

W that for all s accepts with probability exponentially close to 1 on inputs from As,χ

and rejects with probability exponentially close to 1 on inputs from U. Then, there

exists an efficient algorithm W ′ that, given samples from As,χ for some s, outputs s

with probability exponentially close to 1.

Lemma 2.3.3. (Discrete to Continuous) [53] Let n, p ≥ 1 be some integers, let φ be

some probability density function on T, and let φ̄ be its discretisation to Zp. Assume

that we have access to an algorithm W that solves LWEp,φ̄. Then, there exists an

efficient algorithm W ′ that solves LWEp,φ.

2.3.1 Learning With Error (LWE)

Based on worst-case hardness assumption, the ”learning with error” problem is a

classical problem which is to distinguish random linear equations with small amount

of noise from uniform ones. The main theory is to recover a secret key s ∈ Znq given a

sequence of ”approximate” random linear equations on s. If without error, the secret

key s can be found by gaussian elimination in polynomial time. Introducing the small

error perturbs the linear combinations into nonlinear combinations, then the gaussian

elimination algorithm seems impossible to solve the problem directly

Definition 2.3.3. (GLWE) [5] For security parameter λ, let n = n(λ) is the dimension,

and the polynomial f(x) = xd + 1 with d is power of 2, fix q = q(λ) ≤ 2 as a prime
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integer, let R = Z[x]/(f(x)) and Rq = R/qR, and let χ = χ(λ) be a distribution

over R. The GLWEn,f,q,χ problem is to distinguish the following two distributions:

In the first distribution, one samples (ai, bi) uniformly from Rn+1
q . In the second

distribution, one first draws s ← Rn
q uniformly and then samples (ai, bi) ∈ Rn+1

q by

sampling ai ← Rn
q uniformly, ei ← χ, and setting bi =< ai, s > +ei. The GLWEn,f,q,χ

assumption is that the GLWEn,f,q,χ problem is infeasible.

LWE is simply GLWE instantiated with d = 1 and RLWE is GLWE instantiated

with n = 1. The brief description of the LWE problem is, given a size parameter

n ≥ 1 and a modulus q ≥ 2, also given an error probability distribution χ on Zq.

Choose a random vector α ∈ Znq uniformly and e ∈ Zq according to χ, then output

(α,< α, s > +e) in Zq. The As,χ consists of independent and uniform random α.

The LWE problem can be considered as decoding from random linear codes. On the

lattice view, the LWE problem is decoding the code by a random bounded distance

[39]. The maximum likelihood algorithm is a way to solve the LWE problem with

the running time 2O(n logn). The best known algorithm for the LWE problem is Blum

et al. algorithm, and the running time is 2O(n) [9], [32], [47], [59]. We believe the

LWE problem is hard for several reasons. The well known algorithm for solving the

LWE problem is runs in exponential time. Next, the LWE problem is based on certain

assumptions regarding the worst-case hardness of standard lattice problems such as

GapSVP and SIVP on lattices. The ’dual’ problem of LWE problem is the SIS problem.

The hardness of the SIS problem is also based on the worst-case lattice problem such

as SIVP and GapSVP [44], [45], [49].

Theorem 2.3.4. (Informal) [53] Let n, p be integers and α ∈ (0, 1) be such that

αp > 2
√
n. If there exists an efficient algorithm that solves LWEp,Ψ̃α

then there exists

an efficient quantum algorithm that approximates the decision version of the shortest

vector problem (GapSVP) and the shortest independent vectors problem (SIVP) to
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within Õ(n/α) in the worst case.

2.3.2 Ring-Learning With Error (R-LWE)

Normal LWE problem is defined over integers. It turns out the LWE problem over

some special rings is also hard. Due to the large size of key over the integers, the ring

structure allows LWE-based cryptosystems to have a shorter public key size, which is

reduced to almost linear size from O(n2) to O(n) [41]. The structure in the Ring-LWE

of the NTRU cryptosystem is as follows. Choose a random vector α1 = (a1, a2, . . . , an)

uniformly on the ring Zq[x]/ < xn + 1 >, the rest of n − 1 vectors (a2, . . . , an) in the

form of ai = (ai, ai+1, . . . , an,−a1, . . . ,−ai−1) with n is the power of 2. Some schemes

do not require the xn + 1 has to be irreducible [41]. Fix the s ∈ Rq as the secret key,

α ∈ Rq chosen uniformly, and e is an error chosen from the distribution over Rq. The

sample forms as (α, b = α · s + e) ∈ Rq × Rq, where each α is uniformly random and

each inner product α · s is perturbed by a term draw independently from the error

distribution over R [41].

The hardness of the Ring-LWE problem is based on the worst-case lattice problem.

The goal is to recover the secret s from these samples. The main theory [49] is

Theorem 2.3.5. Suppose that it is hard for polynomial-time quantum algorithms to

approximate (the search version of) the shortest vector problem (SVP) in the worst

case on ideal lattices in R to within a fixed poly(n) factor. Then any poly(n) number of

samples drawn from the R-LWE distribution are pseudorandom to any polynomial-time

attacker.

2.3.3 Ideal Lattice Hard Problem

The Hidden Ideal Lattice Problem is defined as follows: given some vectors close to a

(ideal) lattice, find such a lattice.
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Definition 2.3.4. (Dec BDD over Hidden Ideal Lattice) [51] Let γ ∈ R+ be a positive

real. Let L be an n dimensional ideal lattice, and v ∈ Z. The decisional γ-Bounded

Distance Decoding problem over ideal lattice, denoted by Dec γ − BDDHIn,τ , is to

decide if there exists a unique vector u ∈ L satisfying dist(v, u) ≤ γ. or not, given a

basis of L and v.

Definition 2.3.5. (Subset Sum Problem) [51] Let {c1, c2, . . . , cn} be a set of positive

integers. Let c =
∑n

i=1 sici, where si ∈ {0, 1} . Let d ←
∑n

i=1 si. The subset sum

problem, denoted by d, n-SSP, is to find {si}, given {ci} and c.

Gentry choose to use ideal lattice as mathematics tool to construct Fully Homomor-

phic Encryption scheme [26]. Because Ideal lattice has simple operation in decryption

algorithm, such as vector scalar product and vector inner product of matrix, which

has lower complexity in decryption circuit. Another reason to choose ideal lattice is,

ideal lattice satisfies both additional and multiplication homomorphism.

2.4 Public Key Cryptography

Public key cryptography is asymmetric cryptography. Any cryptographic system cre-

ates public key and private key in pairs. Private keys are known to the owner only but

public keys can be public widely. Everyone can encrypt plaintext by using public key,

and the ciphertext can be decrypted by owner’s private key. To strength on a public

key cryptography system should be increased the difficulty of generating a private key

from its corresponding public key. Since the public key may be published without

compromising security, keeping the private key private is the key point of the security

of public key cryptography systems [62]. So far, public key cryptographic algorithms

are based on mathematical problems, such as integer factorization, discrete logarithm,

and elliptic curve relationships.
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Diffie and Hellman [19] introduced a new approach for distributing the key informa-

tion over public insecure channels. Public key cryptosystem also known as asymmetric

key cryptosystem. Each user has two keys, one is a public encryption key another is

a private decryption key. The public key is generated by the secret key with different

mathematical techniques, while the private key cannot be generated by the public key.

In other words, everybody knows the public key but nobody except owner knows the

secret key. Messages are encrypted with the any public key, the ciphertext can only

be decrypted with the corresponding private key relative to public key [57]. The first

implementation of the idea is published by Rivest, Shamir and Adleman in 1977. It is

also known as the RSA algorithm .

The LWE problem has been widely used in public key cryptosystem [55]. There

is an example of the application of LWE with a public key cryptosystem, but the

efficiency needs to be improved.

• Private Key: Choose a random vector s uniformly from Znq .

• Public Key: Choose m samples (αi, bi)
m
i=1 from the LWE distribution. The

error distribution is generated by a function with secret s, modulus q, and error

parameter α.

• Encryption: To encrypt each single binary bit of the message. Choose a

random set S uniformly among all 2m subsets of [m]. To encrypt bit 0, use

(
∑

i∈S αi,
∑

i∈S bi), and to encrypt bit 1, use (
∑

i∈S αi, b
q
2
c+

∑
i∈S bi). Generate

the ciphertext pair (α, b).

• Decryption: The decryption method uses approximately analysis. For each

cipertext pair (α, b) with secret key, if b− < α, s > is closer to 0 than b q
2
c

modulo q, the decryption is 0, and if b− < α, s > is closer to b q
2
c modulo q than

0, the decryption is 1.
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The correctness is obvious. It requires the error of s smaller than q/4, since

each error’s standard deviation is αq, the standard deviation of the sum is at most

√
mαq < q/ log n. The distribution over s of a random subset sum (

∑
i∈S αi,

∑
i∈S bi)

is approximately to be considered uniform in statistical distance, since the choice of

(αi, bi)
m
i=1 [32] has high probability. The encryptions of 0 or 1 is essentially identically

distributed, the algorithm assuming decision LWE is hard [32], [49]

The R-LWE is more widely and efficiently used in the real world. There is an ex-

ample of public key cryptosystem satisfying the semantically secure by Lyubashevsky,

Peikert and Regev [41]. Fix the ring R = Z[x]/ < xn + 1 > with the n is a power of 2.

• Secret Key: Choose a random vector s uniformly from R.

• Public Key: Choose a uniformly random ring element α ∈ Rq, and another

small element e ∈ R from the error distribution. Output a pair (a, b = a · s+ e)

as the public key.

• Encryption: To encrypt a n-bits binary message, choose three random elements

r, e1, e2 ∈ R from the Gaussian distribution. Output the ciphertext in pair

(u, v) ∈ R2
q, where

u = a · r + e1 and v = b · r + e2 + bq/2e · z mod q

• Decryption: The decryption computes

v − u · s = (r · e− sc · e1 + e2) + bq/2e · z mod q.

This application requires the coefficient of the error item r · e − s · e1 + e2 ∈ R must

be less than q/4 [41].



Chapter 3

Fully Homomorphic Encryption

3.1 The Definition of Fully Homomorphic Encryp-

tion

Fully Homomorphic Encryption is a way to delegate processing of your data, without

giving away access to it. There are four algorithms: KeyGen, Encrypt, Decrypt and

Evaluate. The first three are the basic algorithms of a public key encryption system

and the evaluation algorithm is the core algorithm of fully homomorphic encryption

which performing the operation of ciphertext. The algorithm is inputting a group

ciphertext c =< c1, c2, . . . , ct > which has been encrypted for plaintext into a circuit

C, each circuit C represents a function. The group of new output ciphertext can be

decrypted to the corresponding plaintext.

Definition 3.1.1. (Correct Homomorphic Decryption) [25]

The KeyGen algorithm generates many key-pair (pk, sk). After performing t-

input circuit, for any plaintext m1, . . . ,mt and any ciphertext c1, . . . , ct, which are

20
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generated by algorithm ci ← Encrypt(mi). If

Decrypt(sk,Evaluate(pk, C, c)) = C(m1, . . . ,mt)

exists, then scheme E =(KeyGen, Encrypt, Decrypt, Evaluate) is correct.

Definition 3.1.2. (Compact Homomorphic Decryption) [26] For any security param-

eter λ, if there exists a polynomial f , the output length of the evaluate algorith-

m is at most f(λ). The scheme E =(KeyGen, Encrypt, Decrypt, Evaluate) is

compactness.

Definition 3.1.3. (FHE - Fully Homomorphic Decryption) [26] A scheme E is fully

homomorphic if it is compact and homomorphic for the arithmetic circuit.

Definition 3.1.4. (SHE - Somewhat Homomorphic Decryption) [26] The encryption

scheme can handle circuits of depth roughly log logN − log log n, which means the

minimum depth of the permit circuits is greater than twice of the depth of decryption

circuit.

Definition 3.1.5. (Leveled Fully Homomorphic Decryption) [26] For any d ∈ Z+, the

scheme E (d) with the same decryption circuit is compactness and the depth of circuit

is d. The complexity of the scheme E (d) is polynomial with parameter λ, d. A family

of schemes E (d) is leveled homomorphic.

3.2 The Construction of FHE

The crucial point to construct a fully homomorphic encryption scheme is able to eval-

uate polynomials of higher degree, in other words, consider the decryption procedure

as a polynomial with lower degree. When the degree of the decryption polynomial
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is less than the degree of the polynomial which is used for the evaluation of scheme,

therefore, the scheme is a fully homomorphic scheme [26].

There is no natural fully homomorphic encryption scheme so far, the majority of

schemes are constructed by Gentry’s idea. Firstly, construct a somewhat homomorphic

encryption scheme which is a linear code C on the ring R. Linear code satisfies the

additive homomorphism and error correcting code means the code with an error. Since

C is an ideal of the ring, it satisfies the multiplicative homomorphism. The code C

has two kinds of basis, one is ’good’ basis which can be used as a secret key, another

basis is ’bad’ for public key [26].

Since the error of the ciphertext will be expanded over the bound especially in

multiplication, a failure in the decryption occurs. Gentry used ’homomorphic decryp-

tion’ to control the noise increasing. Encrypt the ciphertext and the corresponding

public key with the evaluate key, and input the result into the decryption circuit,

output a new ciphertext. If the error of the ciphertext is able to evaluate one more

time especially in multiplication after each operation, then the ciphertext can perform

the operation unlimited times[28], [30]. Since the somewhat homomorphic encryption

scheme can only perform limited times operations with low-degree polynomials , the

second step is to squash the decryption algorithm to support the scheme, which mean-

s convert into the low-degree polynomial. Finally the application of a bootstrapping

can transform the somewhat homomorphic encryption scheme to a fully homomorphic

scheme [26].

3.3 The Security of FHE

The SHE and FHE is secure against chosen plaintext attacks. But no SHE and FHE

scheme can be IND-CCA2 secure, based on the fact that the adversary is allowed to

manipulate the challenged ciphertext and submit it to the decryption oracle in an
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IND-CCA2 attack. The IND-CCA1 has been proved to be not secure for FHE and

SHE scheme [40]. Zhang et. al provided a way to recover the secret key by using the

decryption oracle over the DGHV scheme [66] [67]. Chenal gave more algorithms to

allow an adversary to recover the pubic keys through decryption oracle queries [11].

3.4 Technique of Fully Homomorphic Encryption

The key point to construct fully homomorphic encryption is how to control the increase

of the noise, there are some techniques like bootstrapping, key switching and modulus

switching.

3.4.1 Bootstrapping

The fully homomorphic decryption requires the depth of decryption circuit less than

the depth of the decryption circuit of the evaluate algorithm. In fact, the depth of

decryption of circuit is greater than the depth of the decryption circuit of evaluate

algorithm. Using ’sub set sum phrase’ is the way to squash the depth of decryption

circuit [26].

3.4.2 Homomorphic Decryption

Homomorphic decryption can generate new ciphertext and reduce the error of cipher-

text with conditions. Let Encrypt(pk1,m) → c1 and Encrypt(pk2, sk1j) → ¯sk1, the

algorithm of homomorphic decryption is:

Recrypt(pk2, D, ¯sk1, c1)

Encrypt(pk2, c1j)→ c̄1

Evaluate(pk2, D, ¯sk1, c̄1)→ c2
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D is the circuit of the decryption algorithm [26]. It decrypts the ciphertext after

first encryption which eliminates the error, then encrypted by new public key to get

new ciphertext with new error. If the new error allows one more multiplication, in

other words, the error is still within the bound after multiplication, then the goal of

homomorphic decryption is achieved [26].

3.4.3 Key Switching

Key switching technique is based on the LWE of R-LWE, it can generate a new cipher-

text corresponding to the different secret keys and reduce the dimension of ciphertext

[5]. The new ciphertext c2 is formed by a matrix M multiplying the fresh ciphertext

c1. The row of matrix M is the dimension of c1 and the column of M is the dimension

of c2. The technique transform c1 with dimension n1 to c2 with dimension n2 with the

same modulus, the error of c2 increases < BitDecomp(c1), e2 > than the error of c1.

The algorithm is:

SwitchKeyGen(s1 ∈ Rn1
q , s2 ∈ Rn2

q ) : A← E.PublicKeyGen(s2, N)

B← A + Powersof2(s1), where N = n1 · dlog qe

output τs1→s2 = B

SwitchKey(τs1→s2 , c1) : output c2 = BitDecomp(c1)T ·B ∈ rn2
q

3.4.4 Modulus Switching

Let the modulus be q = xk, and each ciphertext with error x, the new error is ap-

proximately x2 after multiplication. The error will reach the bounds of the decryption

circuit after log k levels multiplicative. If the error times 1/x after each operation, the

error will be reduced to the original value, meanwhile, the modulus decrease to q/x [5].
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The Iteration can perform k levels without bootstrapping before reaching the bound

of error. The algorithm is :

Scale(c, q, p, r) : input s, q and p with (q > p > m)

output (p/q) · c and c′ = c mod r

3.4.5 Chinese Reminder Theorem

p1, . . . , p2 are pairwise co-prime integers and CRT(p1,...,p2)(m1, . . . ,mk) is a number in

Z ∩ (−π
2
, π

2
], where π =

∏k
i=1 pi. CRT(p1,...,p2)(m1, . . . ,mk) is equivalent to mi mod pi

for all i ∈ {1, . . . , k} . So we have

CRT(p1,...,p2)(m1, . . . ,mk) =
k∑
i=1

miMi(M
−1
i mod pi) mod π

where Mi = π
pi

.

The distributions of single bit with single private key is

Dγ,ρ(p) := {choose q ← Z ∩ [0,
2γ

p
), e← Z ∩ (−2ρ, 2ρ) : output x = pq + e}

The distributions of `Q−bits with multi-private keys is

Dρ(p1, . . . , pk;Q1, . . . , Qk; q0) := {choose e0 ← Z ∩ [0, q0), ei ← Z ∩ (−2ρ, 2ρ)

output x = CRT(q0,p1,...,pk)(e0, e1Q1, . . . , ekQk), for ∀i ∈ {1, . . . , k}}

Consider the value of x when k = 1, since D := {choose q ← Z ∩ [0, q0), e ←
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Z ∩ (−2ρ, 2ρ) : output x = p1q + e mod p1q0}, there is x← Dρ(p1; q0).

x = CRT(q0;p1)(e0, e1)

= e0p1(p−1
1 mod q0) + e1q0(q−1

0 mod p1) mod q0p1

= e0p1α + e1(p1β + 1) mod q0p1

= (e0α + e1β)p1 + e1 mod q0p1

for some α and β. Since e0 6≡ modq0 and gcd(α, q0) = 1, (e0α + e1β) mod q0 is

uniformly in Z ∩ [0, q0).

3.4.6 Public Key Compression

The implementation of the DGHV fully homomorphic encryption scheme has a large

size of public key in Õ(λ10). To resist lattice attack, each public key needs at least 223

bits, the size of the public key will be 246 bits, it is too large for a practical system.

Coron [16] presented an efficient way to compress the public key of the DGHV scheme,

by using quadratic form instead of linear form when computing a ciphertext:

• KeyGen(λ):

Pick a random prime p ∈ [2η−1, 2η). Let x0 = q0 · p where q0 is a random square

free 2λ−rough integer in [0, 2γ/p). Generate integers xi,b ← p · qi,b + ri,b, where

1 ≤ i ≤ β, b ∈ {0, 1}, qi,b is a random integer in [0, q0) and ri,b is a random

integer in (−2ρ, 2ρ). Output sk = p and pk =< x0, x1,0, x1,1, . . . , xβ,0, xβ,1 >.

• Encrypt(pk,m):

Input a random vector b = (bi,j) ∈ [0, 2α), of size τ = β2. Generate a random

integer r ∈ (−2ρ, 2ρ). Output a ciphertext c← m+ 2r+ 2
∑

1≤i,j≤β bi,j ·x1,0 ·xj,1
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• Decrypt and Evaluate:

It is the same as the original scheme but with modulus x0 after addition and

multiplication.

The scheme can extend into higher degrees [17]. Use the same way to generate elements

and encrypt the plaintext as follow:

c∗ = m+ 2r + 2
∑

1≤i,j≤β

bij . . . xi,0 . . . xj,1 mod x0

The authors proved the scheme is semantically secure under the error-free approximate

GCD assumption. They applied the leftover hash lemma on hash function family

h′ : [0, 2α)β
2 → Zq0 , where h′(b) =

∑
1≤i,j≤β bi,j · qi,0 · qj,1 mod q0.

Definition 3.4.1. (Hash Function) [16] A family H of hash function h : X → Y is

ε−pairwise independent if

∑
x 6=x′

(Prh←H[h(x)) = h′(x)]− 1

Y
) ≤ |X|2 · ε

|Y |

Lemma 3.4.1. (Leftover Hash Lemma) [16] Let H be a family of ε−pairwise indepen-

dent hash functions. Choose random h← H and x← X uniformly and independently.

Then (h, h(X)) is (1
2

√
|Y |/|X|+ ε)−uniformly over H× Y

The key element xi,b have been proved that a certain family of quadratic hash

function is close enough to be pairwise independent, so this can apply the leftover

hash lemma. The significance of this method is reducing the size of public key from

τ = Õ(λ3) down to 2β = Õ(λ1.5).

The semantic security of the scheme based on approximate-GCD assumption with

error-free x0. The adversary can find the exact multiple p by solving the AGCD

problem. The known attack had been presented on van Dijk’s paper [20]
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Definition 3.4.2. (AGCD Problem) [51] Let ci ∈ Z, there exists τ unique integers

ri ∈ Z and a unique integer p ∈ N. For ∀i, there is (ci − ri)|p and |ri| ≤ γ ≤ p/2. The

Approximate Greatest Common Divisor problem denoted as, for given ci, find p.

3.5 Existing Fully Homomorphic Encryption Schemes

Many SHE and FHE schemes have been proposed after Gentry’s work. These schemes

can be classified based on different hardness assumptions as in figure 3.1 [11].

• The first category is based on hard problems on lattices that starts with Gentry’s

work[Gen09a,Gen09b] [25], [26], [63], [27], [64], [27].

• The second category relies on the approximate greatest common divisor (AGCD)

problem and some variants. The typical scheme is [vDGHV10] [15], [20].

• The third category is based on the learning with errors (LWE) and on the ring-

learning with errors (RLWE) problems like schemes [NLV11,BGV12,GHS12b,Bra12,GSW13]

[4], [5], [7], [6], [31].

3.5.1 Gentry’s First Fully Homomorphic Encryption Scheme

Gentry used ideal lattices to construct the fully homomorphic encryption scheme of

PKE [26]. A ciphertext ψ is in form of v+x when v is the ideal lattices and x is the error

distribution. The coefficient of ciphertext vectors is the elements in a polynomial ring

Z[x]/f(x). The addition and multiplication of ciphertext satisfy the ring operation.

The security of the scheme is based on finding the closest vector problem for ideal

lattices in a ring.

Gentry’s initial somewhat homomorphic encryption scheme is based on lattice [25].
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Figure 3.1: Hardness assumptions and schemes

• KeyGenE(R,BI):

Input a ring R and a basis BI of lattice I. It sets (Bsk
J ,B

sk
J )← IdealGen(R,BI).

The public key has R,BI,B
pk
J and Samp, where Samp is an algorithm which

sampling basis from the coset of lattice.

The secret key is Bsk
J .

• EncryptE(pk,m):

Input a public key pk and a plaintext m ∈ P . It sets ψ′ ← Samp(m,BI , R,B
pk
J )

Output a ciphertext ψ′ ← ψ mod Bpk
J .

• DecryptE(sk, ψ):

Input the secret key and a ciphertext ψ.

Output m← (ψ mod Bsk
J ) mod BI

• EvaluateE(pk, C,Ψ):

Input the public key pk and a circuit C consist of AddBI and MultBI , and a
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set of ciphertext ψ .

Output new ciphertext ψ.

Add(pk, ψ1, ψ2). Output ψ1 + ψ2 mod Bpk
J .

Mult(pk, ψ1, ψ2). Output ψ1 × ψ2 mod Bpk
J .

This somewhat homomorphic scheme without bootstrapping is not a fully homomor-

phic encryption function. The bootstrapping is the way to squash the decryption

procedure, since reducing the degree of the decryption polynomial, decryption can be

performed as many times as required. Gentry hid the public key in the form of a s-

parse subset-sum problem (SSSP). The public key becomes a big set of vectors [27]. A

ciphertext of the scheme can be decrypted with a low-degree polynomial. The scheme

with bootstrapping is the fully homomorphic scheme E (d) with security parameter λ

which can handle all circuits of depth d is given:

• KeyGenE(d)(λ, d):

(ski, pki)← KeyGenE(λ) for i ∈ [0, d]

¯skij ← EncyptE(pki−1, skij) for i ∈ [1, d], j ∈ [1, `]

sk(d) ← sk0, pk(d) ← (< pki >,< ¯skij >)

• EncryptE(d)(pk
d,m):

Input a public key pk(d) and a plaintext m ∈ P ,

Output a ciphertext ψ ← EncryptE(pkd,m).

• DecryptE(d)(sk
(d), ψ):

Input a secret key sk(d) and a ciphertext ψ.

Output DecryptE(sk0, ψ).

• EvaluateE(δ)(pk
(δ), C(δ),Ψ(δ)):

Input the public key pk(δ), a circuit C(δ) of depth at most δ, and a tuple of

ciphertext Ψ(δ).
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Output a new tuple of ciphertext Ψ(δ−1) until δ = 0 and terminates.

Set (C†δ−1,Ψ
†
δ−1)← AugmentE(δ)(pk

(δ), C(δ),Ψ(δ)).

Set (Cδ−1,Ψδ−1)← ReduceE(δ−1)(pk(δ−1), C†(δ−1),Ψ
†
(δ−1)).

Runs EvaluateE(δ−1)(pk(δ−1), C(δ−1),Ψ(δ−1)).

Unfortunately, Gentry’s scheme has inherent efficiency limitations. In the decryption

circuit, the original secret-key has been encrypted into a large ciphertext. The com-

plexity of the scheme is extremly large, which will be defined as the bit-length of the

individual ciphertexts that are used to encrypt the bits of the secret key times the

complexity of the decryption[28]. The bottleneck in practice is the time of per-gate

evaluation.

3.5.2 Dijk, Gentry, Halevi and Vaikuntanathan’s Scheme Over

The Integers (DGHV)

Dijk, Gentry, Halevi and Vaikuntanathan published a fully homomorphic encryption

scheme over the integer rather than on ideal lattice [20].The construction of the some-

what fully homomorphic scheme consist of:

• KeyGen(λ): Secret Key: choose random odd η- bits integer p: p ← (2Z + 1) ∩

[2η∩, 2η).

Public Key: sample uniformly xi ← Dγ, ρ(p), for i = 1, 2, . . . , τ . The odd integer

x0 has to be the largest number and the remainder of x0 mod p is even.

Output sk = p and pk =< x1, x2, . . . , xτ >.

• Encrypt(pk,m): Input a random subset S ⊂ 1, . . . , τ , a random integer r in

(−2ρ
′
, 2ρ) and a plaintext m ∈ 0, 1

Output a ciphertext c← [m+ 2r + 2
∑

i∈S xi]x0 .
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• Decrypt(sk,c): Input a secret key sk and a ciphertext c.

Output m← (c mod p) mod 2.

• Evaluate(pk, C, c1, . . . , cτ ): Input t ciphertext ci as t inputs to the binary circuit

CE , apply addition and multiplication gates of CE on ciphertext.

Output the integer of operation result.

The noise expands quickly especially under multiplication. Assuming the bound of

noise in the fresh ciphertext x0 is B, let the degree of decryption polynomial f is

d. The scheme can decrypt the ciphertext correctly when |f | < p/2. Due to the

condition, the bound of noise has td · Bd < p/2 after d times multiplication, in other

words d < (log p)/(log tB). The depth of decryption circuit depends on the operation

levels on c · p−1 which is at least 2(log p)2.71 levels. It is obviously bigger than the

polynomial degree d. To get fully homomorphic encryption, the bootstrapping with

squashing the decryption circuit is still essential [30].

The security of the DGHV scheme is based on two problems, one is the hardness

of approximate-gcd problem in somewhat homomorphic encryption and another is

SSSP in bootstrapping. To denoted against the known attack on the approximate-gcd

problem like brute-forcing the remainders, continued fraction and Howgrave-Graham’s

approximate gcd algorithm, the security parameter of the scheme needs at least 2λ

[10], [35].

3.5.3 Brakerski and Vaikuntanathan’s Scheme Based on RL-

WE (BV11b)

Brakerski and Vaikuntanathan presented a scheme based on RLWE [6]. They used

two techniques: re-linearization and dimension-modulus reduction to construct the

scheme. Re-linearization can reduce the size of the ciphertext back down to n+1. Let
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s be the original secret key and t is the new secret key. Each ciphertext is (αi,j, bi,j)

where

bi,j =< αi,j, t > +2ei,j + s[i] · · · [j] ≈< αi,j, t > +s[i] · [j].

Consider the multiplication of two polynomials,

fα,b(x) · fα′,b(x) = (b−
∑

α[i]x[i]) · (b′ −
∑

α′[i]x[i])

= h0 +
∑

hi · x[i] +
∑

hi,j · x[i]x[j]

= h0 +
∑

hi(bi− < αi, t >) +
∑
i,j

hi,j · (bi,j− < αi,j, t >)

the result is the linear polynomial with n + 1 coefficients and can be decrypt by the

new secret key t. It is a good way to multiply two ciphertext without expanding the

size and can be decrypted under the new secret key. The somewhat fully homomorphic

encryption scheme is given as:

• KeyGen(λ):

Choose randomL+ 1 vectors s0, s1, . . . , sL ← Znq

Choose random matrix A← Zm×nq

Choose a random vector e← χm

Compute b = As0 + 2e

Output sk = sL and pk = (A, b).

• Encrypt(pk,m):

Choose a random vector r ← {0, 1}m

Letv = AT r ∈ Znq

Let w = bT r +m ∈ Zq

Output a ciphertext c← ((v, w), `).

• Decrypt(sk,c):
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Input a secret key sk and a ciphertext c.

Output m← (w− < v, sL > mod p) mod 2.

• Evaluate(pk, f, c1, . . . , cτ ):

Addition gates: cAdd = ((vAdd, wAdd, `) := ((
∑

i vi,
∑

iwi), `)

Multiplication gates: cMult = ((vMult, wMult), `)

The security of the scheme relies on the worst-case hardness of classical problem on

lattices [45].

3.5.4 Brakerski, Gentry and Vaikuntanathan’ Scheme Based

on LWE (BGV12)

BGV is the most efficienct scheme so far. The scheme applies key switching and modu-

lus switching, it is a leveled fully homomorphic encryption scheme without bootstrap-

ping [5]. It reduces the production of two ciphertext down to the original dimension

by key switching and reduces the noise by modulus switching on each level[5]. The

scheme can be based on the LWE and also the RLWE. The scheme on the RLWE has

a better efficiency than on the LWE. Let ring R = Z[x]/(xd + 1), where d is the power

of 2 and N = d(2n+ 1) log qe. The schemes is:

• KeyGen(λ):

Choose random s′ ← χn

Let s = (1, s) with s[0] = 1 and s′ ∈ Rn
q Choose random matrix A← RN×n

q

Choose a random vector e← χN

Compute b = A′s′ + 2e

Set A is the (n+1) column matrix (b| − A′)

Output sk = (1, s′[1], . . . , s′[n]) ∈ Rn+1
q and pk = A.
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• Encrypt(pk,m):

Let m← (m, 0, . . . , 0) ∈ Rn+1
q

Choose a random vector r ← RN
2

Output a ciphertext c← m+ AT r ∈ Rn+1
q .

• Decrypt(sk,c):

Input a secret key sk and a ciphertext c.

Output m← (< v, sL > mod p) mod 2.

• Evaluate(pk, f, c1, . . . , cτ ):

Addition gates: c4 = Refresh(c3, τ
′′
sj
→ sj−1, qj, qj−1), where c3 ← c1 + c2

mod qj

Multiplication gates: c4 = Refresh(c3, τ
′′
sj
→ sj−1, qj, qj−1), where c3 is the linear

equation of Llongc1,c2
(x
⊗

x)

Assuming the error with bound B and the corresponding modulus is qj. The noise will

increase to 2B by addition and approximated to be B2 by multiplication. After the key

switching, the error becomes E2 + eswitch. Processing the modulus switching, the error

decreases to (qj−1/qj) · (E2 + eswitch) + escale. To decrypt the ciphertext correctly, the

error should be smaller than B on each level [3]. The scheme can operate on a circuit

of depth L. It can transfer to the fully homomorphic encryption by bootstrapping.

The security of the scheme relies on the SVP problem on lattices [42].

3.5.5 Brakerski’s Scheme Based on LWE (Bra12)

This scheme is also based on the LWE problem and can be extend to the RLWE. The

advantages of Bra12 scheme are: using the same modulus which means the scheme

does not need to do modulus switching. The security can be classically reduced to the

worst-case hardness of the GapSVP problem [4].
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The technique they used to construct the scheme is vector decomposition and key

switching. Vector decomposition is a way to operate the inner product.

• BitDecompq(x): For x ∈ Zn, let wi ∈ {0, 1}n, x can represent as x =
∑dlog qe−1

i=0 2i·

wi mod q.

• PowerOfTwoq(y): For y ∈ Zn, output [(y, 2 · y, . . . , 2dlog qe−1 · y)]q ∈ Zn·dlog qe−1
q

The somewhat homomorphic encryption scheme is:

• KeyGen(λ):

Choose randomL+ 1 vectors s0, s1, . . . , sL ← Znq

Choose random matrix A← ZN×nq

Choose a random vector e← χm

Compute b0 = As0 + 2e

Set P0 is the (n+ 1) column matrix (b0| − A′)

s̃i−1 = BitDecomp(1, si−1)
⊗

PowerOfTwo(1, si−1) ∈ {0, 1}((n+1)dlog qe)2

Compute Pi−1 : i← SwitchKeyGen(s̃i−1, si)

Output sk = sL and pk = P0, and evk = {P(i−1):i}i∈[L].

• Encrypt(pk,m):

Let m← (m, 0, . . . , 0) ∈ Rn+1
q

Choose a random vector r ← RN
2

Output a ciphertext c← m+ AT r ∈ Rn+1
q

• Decrypt(sk,c):

Input a secret key sk and a ciphertext c.

Output m←< v, s > mod p) mod 2.

• Evaluate(pk, f, c1, . . . , cτ ):

Addition gates: cAdd = SwitchKey(P(i−1):i, c̃Add) ∈ Z :n+1
q , where c̃Add =
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PowerOfTwo(c1 + c2)
⊗

PowerOfTwo(1, 0, . . . , 0)

Multiplication gates: cMult = SwitchKey(P(i−1):i, c̃Mult) ∈ Z :n+1
q , where c̃Mult =

b2
q
·PowerOfTwo(c1)

⊗
PowerOfTwo(c2))e

The noise increasing in this scheme is different from previous schemes. Assuming the

noise bound of the ciphertext is E and the fresh ciphertext has noise bound of N ·B.

The noise increases to 2E+n2 log q3 after addition and (n · log q) ·E+(n2 logq
3

) ·B after

multiplication. Since multiplication is defined as (2/q) · (c1

⊗
c2), each item divided

by q, E2/q can be ignored when q is large enough for classical reduction from GapSVP

[4]. To get the decryption correctly, the error needs to be less than bq/2c/2, therefore

q/B > (n · log q)L. The depth L depends on the ratio of q/B.

3.5.6 Plantard, Susilo and Zhang’ s Hidden Ideal Lattice

Plantard, Susilo and Zhang constructed a fully homomorphic encryption scheme by

using hidden ideal lattice [51]. They used hidden ideal lattice to unify two schemes

which are ideal lattice based schemes and integer based schemes. The security of the

scheme does not rely on the sparse sub set sum problem (SSSP), but rely on the

bounded distance decoding problem(BDDH)of ideal lattice and approximate greatest

common divisor problem (AGCD) of an integer.

The hidden ideal lattice homomorphic encryption scheme gives an idea, that instead

of giving the lattice as the public key, given some vectors close to the lattice. The

lattice is only known by the secret key holder. Since the ciphertext are also vectors

close to the lattice with a bounded distance, the property of the homomorphism of

the ciphertext still holds [39]. The somewhat scheme is :

• KeyGen(λ):

Choose a random irreducible polynomial of degree n, f(x) = xn + 1.

Choose a random vector v in {u ∈ Zn, 2η−1 <‖u‖ < 2η,
∑n−1

i=0 ui mod 2 = 1}.
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Generate the random matrix V ← Rot(v, f):

Rot(v, f) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

v0 v1 v2 . . . vn−1

−vn−1 v0 v1 . . . vn−2

...
...

...
. . .

...

−v1 −v2 −v3 . . . v0

∣∣∣∣∣∣∣∣∣∣∣∣∣
Let d← |det(V)| is the determinant of V .

Choose random τ−1 vectors gi in {u ∈ Zn, 2γ−1 <‖u‖ < 2γ}, and another vector

gτ in {u ∈ Zn, ‖u‖ < 2γ,
∑n−1

i=0 ui mod 2 = 1}.

Choose random τ−1 vectors ri in {u ∈ {−1, 0, 1}n, ‖u‖ ≤ ρ}, and another vector

rτ in {u ∈ {−1, 0, 1}n, ‖u‖ ≤ ρ,
∑n−1

i=0 ui mod 2 = 1}.

Compute τ vectors πi ← gi × v + ri, for 1 ≤ i ≤ τ.

Find the integer polynomial w(x), which satisfies w(x) × v(x) = d mod f(x),

denote W ← Rot(w, f). Output sk = s{d, w} and pk = {πi}.

• Encrypt(pk,m):

Choose random τ −1 vector si in {
∑n

j=1 si,j mod 2 = 0, 1 ≤ ı ≤ τ −1}, a vector

sτ in {
∑n

j=1 sτ,i mod 2 = m}, and a vector sτ+1 in {
∑n

j=1 sτ+1,j mod 2 = 0}.

Output a ciphertext c←
∑n

i=1 si × πi + sτ+1.

• Decrypt(sk,c):

c′ ← bc× w/de. Output c← c′(1) mod 2.

• Evaluate(pk, C, . . . , cτ ):

Addition gates (c1, c2): Output c← c1 + c2.

Multiplication gates (c1, c2): Output c← c1 × c2.

The semantic security of the scheme has been proved:

Theorem 3.5.1. [33] If an algorithm A breaks the semantic security with advantage ε,

then there exists an algorithm B that solves the Dec α, β−BDDHin,τ with advantage

of ε/8. The running time of B is polynomial in the running time of A.
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3.5.7 Nuida and Kurosawa’s Batching Scheme

The majority of fully homomorphic encryption schemes and somewhat homomorphic

schemes can only encrypt a single bit each time. The efficiency can be improved by

using batch plaintext into a single bit [12]. The scheme can encrypt multiple bits into

a single ciphertext by using the Chinese Remainder Theorem. But it is only applied

in binary space. Kofi et. modified the scheme into the non-binary space [12].

In DGHV scheme, the public key size in somewhat homomorphic encryption s

Õ(λ10) and in fully homomorphic encryption is Õ(λ13). Coron[15] describes public

key compression for fully homomorphic encryption over integers. It reduces the public

key size to Õ(λ5) of somewhat homomorphic encryption and Õ(λ8) of fully homo-

morphic encryption. Consider the batch fully homomorphic encryption scheme in

non-binary space, the public key size is Õ(λ8) in both somewhat homomorphic en-

cryption and fully homomorphic encryption. To achieve this goal, the CRT (Chinese

Remainder Theory) is an important technique [37]. Let p1, . . . , p2 be pairwise coprime

integers and CRT(p1,...,p2)(m1, . . . ,mk) is a number in Z ∩ (−π
2
, π

2
], where π =

∏k
i=1 pi.

CRT(p1,...,pk)(m1, . . . ,mk) is equivalent to mi mod pi for all i ∈ {1, . . . , k} . So we have

CRT(p1,...,p2)(m1, . . . ,mk) =
k∑
i=1

miMi(M
−1
i mod pi) mod π

where Mi = π/pi. The distributions of `Q−bits with multi-private keys is

Dρ(p1, . . . , pk;Q1, . . . , Qk; q0) := {choose e0 ← Z ∩ [0, q0), ei ← Z ∩ (−2ρ, 2ρ)}.

Output

x = CRT(q0,p1,...,pk)(e0, e1Q1, . . . , ekQk), for ∀i ∈ {1, . . . , k}.

Consider the value of x when k = 1, since D := {choose q ← Z ∩ [0, q0), e ←
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Z ∩ (−2ρ, 2ρ) : output x = p1q + e mod p1q0}, there is x← Dρ(p1; q0).

x = CRT(q0;p1)(e0, e1)

= e0p1(p−1
1 mod q0) + e1q0(q−1

0 mod p1) mod q0p1

= (e0α + e1β)p1 + e1 mod q0p1

for some α and β. Since e0 6≡ modq0 and gcd(α, q0) = 1, (e0α + e1β) mod q0 is

uniformly in Z ∩ [0, q0). Recall Nuida and Kurosawa’s batch somewhat homomorphic

encryption scheme. The plaintext space isM = (ZQ1)
h1×(ZQ2)

h2×· · ·×(ZQk)hk , where

k > 1, hj > 1 and Q1, . . . , Qk are distinct primes. The scheme to pack ` plaintext

bits m0, . . . ,m`?1 into a single ciphertext is the extension of the DGHV scheme which

listed as following [12]:

• KeyGen (1λ):

Pick random prime numbers pi,j as secret key, (i, j) ∈ I and I := {(i, j)|i, j ∈

Z, 1 ≤ i ≤ k, 1 ≤ j ≤ hi}. p(i,j) and Qi′are different. Choose

q0 ← [1, 2γ/
∏

(i,j)∈I

pi,j) ∩ 2λ
2

,

which is coprime to all pi,j and all Qi′ . Choose eξ;0 and eξ;i,j for ξ ∈ {1, 2, . . . , τ}

and (i, j) ∈ I:

eξ;0 ← [0, q0) ∩ Z, eξ;i,j ← (−2ρ, 2ρ) ∩ Z.

Let xξ be the unique integer in (−N/2, N/2] satisfying

xξ ≡ eξ;0 (mod q0), xξ ≡ eξ;i,jQi (mod pi,j) for (i, j) ∈ I
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Similarly, for (i, j), (i′, j′) ∈ I, choose e′i,j;0 and ei,j;i′,j′ :

e′i,j;0 ← [0, q0) ∩ Z, ei,j;i′j′ ← (−2ρ, 2ρ) ∩ Z,

and let x′i,jbe the unique integer in (−N/2, N/2] satisfying:

x′i,j ≡ e′i,j;0 (mod q0)

x′i,j ≡ e′i,j;i′,j′Qi′ + δ(i,j),(i′,j′) (mod pi′,j′),

where δ is the Kronecker delta. The public key pk is N , xξ and x′i,j, and the

secret key sk consists of all pi,j.

• Encrypt (pk,m ∈M):

Generate a random subset T ⊆ {1, 2, . . . , τ}. Output the ciphertext as

c :=
∑
(i,j)I

mi,jx
′
i,j +

∑
ξ∈T

ModN, c ∈ (−N/2, N/2] ∩ Z.

• Evaluate (pk, f , c1, . . . , cn):

Given a polynomial f with integer coefficients and ciphertext c1, . . . , cn, output

c∗ is

c∗ := f(c1, . . . , cn) ModN

• Decrypt (sk, c):

Output m := ((cMod pi,j) mod Qi)(i,j) ∈ I.

The scheme is secured under the Error- Free Approximate-GCD assumption.

Definition 3.5.1. (Error-Free Approximate GCD problem) [51] For a random η-bit

prime p, choose a random integer q0 in [0, 2γ/ρ). Let y0 = q0 . . . p and sample many

elements from Dρ(p, q0), then output p.
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Similarly, for batching scheme, the specific integers are q0 and pi,j(i, j) ∈ I. We

input a vector m ∈ Z` into the oracle Oq0,(pi,j)(i, j) ∈ I and the output will be X,

X = CRTq0,(pi,j)(q0,m1,1 +Q1 · r1,1, . . . ,mk,hi +Qk · rk,hi)

where q ← [0, q0) and ri,j ← (−2ρ, 2ρ) Since it is hard to distinguish between an

encryption of zero and an encryption of a random message by using the public-key

encryption instead of the oracle. The scheme can be proved to be semantically secure

[33].

3.5.8 Analysis of Existing Schemes

We will give the analysis of existing schemes based on two aspects: performance and

security in this section.

Public Key Private Key Ciphertext Generate Pub-Key

BGV-L 2n(n+ 1) log q2 (L+ 1)(n+ 1) logB (n+ 1)dlog qe L(n+ 1)3dlog qe2

Bra-L 2n(n+ 1) log q2 (L+ 1)(n+ 1)dlog qe (n+ 1)dlog qe L(n+ 1)3dlog qe4

GSW-L 2n(n+ 1) log q2 (n+ 1)dlog qe2 (n+ 1)2dlog qe3 0

BGV-RL 2n log q2 (L+ 1)(n+ 1)dlogBe 2ndlog qe 6Lndlog qe2

Bra-RL 2n log q2 (L+ 1)(n+ 1)dlogBe 2ndlog qe 6Lndlog qe2

GSW-RL 2n log q2 (n+ 1)dlog qe2 4ndlog qe3 0

The table shows the storage size of different schemes. From the table, it shows the

Ring-LWE schemes has a better performance which is n log q times less than the LWE

schemes, and the generate public key is n2 times less than the LWE schemes. The

size of the private key and ciphertext are almost the same for both LWE and R-LWE

schemes. GSW13 has different structure that there is no process of generating public
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key. The size of ciphertext is n log q2 times greater than others based on LWE schemes

and log q2 times greater than others based on R-LWE schemes. The size of public key

and private key has slightly difference. BGV and Bra12 have similar storage size.

The table shows different schemes has different noise expanding performance which

gives the depth of the operation in evaluation stage.

Schemes Noise Expanding

BGV-LWE (qi−1/qi)·(E2+2(n+1)2B log qi)+(n+1)B ≤ E ≤ qi−1/2,

E is the noise ceiling of the decryption circuit

Bra12-LWE |tL1 ·E+L · tL−1
1 · t2| < b q2c/2, where t1 = 4(n+ 1)dlog qe,

t2 = 2(n+ 1)2dlog qe3B and E = 2nB log q

GSW13-LWE (N + 1)LE = ((n + 1) log q + 1)L · (2nB log q) < q/8,

where E = 2nB log q

BGV-RLWE (qi−1/qi) · (E2 + 6n
3
2B log qi) +n

3
2 (n+ 1)B ≤ E, E is the

noise ceiling of the decryption circuit

Bra12-RLWE |tL1 · E + L · tL−1
1 · t2| < b q2c/2, where t1 = 2n2B + 8n,

t2 = 2nB(4 +B) + 2nB log q and E = 2n2B +B

GSW13-RLWE (N + 1)LE = (2n log q + 1)L · (2nB2 +B) < q/8, where

E = 2nB2 +B

From the table, we can conclude the noise expanding while increasing the depth

of the circuit. Bra12 and GSW13 are similar, but the Bra12’s expanding is slower

than GSW13’s. The BGV is different, the noise dose not expand since the modular

exchange for every single evaluation, the noise will keep as the initial size for all

operations. Generally, the Ring-LWE schemes has better noise control than LWE

schemes except Bra12 scheme.

The security is another important part to compare schemes. Here we give an spe-
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cial case when security parameter λ = 80, the table will list size of public key, private

key and ciphertext while the adversary’s advantage is adv = 2−1,

Scheme Depth Pub Key Gen Key Private Key Ciphertext Total

GSW13
L = 0 21564.98 0 26.42 248604.97 2.7× 105

-LWE L = 5 3× 107 0 5301.23 1.9× 109 2× 109

L = 10 4.7× 108 0 40157.49 5.6× 1016 5.6× 1010

GSW13
L = 0 2.54 0 30.56 2926.68 2959.77

-RLWE L = 5 93.69 0 5857.56 3× 106 3× 106

L = 10 365.80 0 44451.41 4.3× 108 4.3× 107

Bra12
L = 0 17355.49 0 1.03 1.03 17357.55

-LWE L = 5 5.7× 107 9× 1015 355.24 59.21 9.7× 1015

L = 10 8× 108 2× 1018 2436.75 221.52 2× 1018

Bra12
L = 0 2.99 0 0.35 3.36 6.70

-RLWE L = 5 137.97 621218 19.53 219.13 621595.4

L = 10 529.79 9216657 70.83 839.40 9× 106

As shown in the table, consider the size of public key, private key and ciphertext,

the R-LWE schemes have smaller size than the LWE schemes, which means the R-

LWE schemes have better performance in the implementing. The Bra12 R-LWE has

the smallest size in total.

Since the noise expansion control is the key point of the implementing of Fully

Homomorphic Encryption scheme, existing schemes manage noise expansion relies on

three ways: the noise in the ciphertext error , the noise in the private key and the noise

in the ciphertext. The scheme BGV, Bra12, GSW13 on both LWE and R-LWE shrink

the size of public key, private key and ciphertext to improve the efficiency of the Fully

Homomorphic Encryption scheme. As the smallest total size is 607Mb to encrypt one
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bit, it is still too large to make the implementing inefficient. We try to provide a new

way to shrink the size of public key to improve the efficiency of the scheme to achieve

the goal.



Chapter 4

The Construction of Fully

Homomorphic Encryption Scheme

4.1 Our Scheme with Compression Public Key

Our technique consists in working on vectors with integer coefficient V ec(πi,j) of the

form V ec(πi,j) = V ec(πi) × V ec(πj). The number of the public key stored is 2β not

τ as initial. The τ public keys in the encryption can be generated by τ = β2 public

keys. Then our encryption is no longer choosing a linear form as the public key. We

will use a quadratic form.

4.1.1 SHE Scheme

The somewhat homomorphic scheme with public key compression on hidden ideal

lattice is constructed as follows. Generate random polynomial vectors as the ring

element, divide into two groups. Choose a vector from each group, then multiply the

two vector modular the irreducible polynomial. Therefore, the original public key will

be replaced by the new quadratic key.

46
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• KeyGen(λ):

Choose a random irreducible polynomial of degree n, f(x) = xn + 1.

Choose a random vector v in {u ∈ Zn, 2η−1 <‖u‖ < 2η,
∑n−1

i=0 ui mod 2 = 1}.

Generate the random matrix V ← Rot(v, f):

Rot(v, f) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

v0 v1 v2 . . . vn−1

−vn−1 v0 v1 . . . vn−2

...
...

...
. . .

...

−v1 −v2 −v3 . . . v0

∣∣∣∣∣∣∣∣∣∣∣∣∣
Let d ← |det(V)| is the determinant of V . It is almost the same as the initial

scheme so far, the difference is starting from the public key vector generation

Choose two groups of random vectors, each group has β vectors gi or gj for

1 ≤ i, j ≤ β, the Euclidean norm of each vector is in {u ∈ Zn, 2γ−1 <‖u‖ < 2γ}.

There is at least one vector of each group with the Euclidean norm in {u ∈

Zn, ‖u‖ < 2γ,
∑n−1

i=0 ui mod 2 = 1}. The total number of vectors is 2β which

equals 2
√
τ .

Choose two groups of random vectors, each group has β vectors ri or rj for

1 ≤ i, j ≤ β, the Euclidean norm of each vector is in {u ∈ Rn, ‖u‖ ≤ ρ}. There

is at least one vector of each group with the Euclidean norm in {u ∈ Rn, ‖u‖ ≤

ρ,
∑n−1

i=0 ui mod 2 = 1}. The total number of vectors is 2β which equals 2
√
τ .

Compute β vectors πi ← gi×v+ri and β vectors πj ← gj×v+rj , for 1 ≤ i, j ≤ β.

Find the integer polynomial w(x), which satisfies w(x) × v(x) = d mod f(x),

denote W ← Rot(w, f).

Output sk = {d, w} and pk = {πi and πj}.

• Encryption:

Choose random τ − 1 vector si,j in {
∑n

t=1 si,j,t mod 2 = 0, 1 ≤ i, j ≤ β − 1}, a

vector sτ in {
∑n

t=1 sτ,t mod 2 = m} and a vector sτ+1 in {
∑n

t=1 sτ+1,t mod 2 =
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0}. The Euclidean norm of all s are ‖s‖ ≤ ζ.

Output a ciphertext c←
∑β

i,j=1 si,j × πi × πj + sτ+1.

• Evaluation and Decryption:

The decryption and evaluation are the same as the initial scheme.

4.1.2 Correctness of Somewhat Homomorphic Encryption

First, we recall the definition of rEnc and rDec in Gentry’s idea [26].

Definition 4.1.1. (rEnc and rDec) [51] r represents the distance between a ciphertext

ψ and the hidden ideal lattice L. rEnc is the maximum possible distance for the

encryption algorithm, and rDec is the minimum possible distance for the decryption

algorithm.

We define the rpk as the maximum distance between a public key πi,b and the hidden

ideal lattice. According to the KeyGen algorithm, we have rpk ≥ θ · ρ2. The noise of

a ciphertext is the production of s and ri,b with the quadratic form in the encryption.

The distance between a ciphertext and the hidden ideal lattice is rEnc ≤ θ · (θ ·ρ2) ·ζ =

θ2 · ρ2 · ζ. Since θ =
√
n is a constant of polynomial, we have rEnc ≤ n · ρ2 · ζ. From

the result in [29], it shows rDec ∼ 2η. To decrypt the ciphertext correctly, we assume

rEnc < rDec which means n · ρ2 · ζ ≤ 2η.

We will first prove the correctness of the decryption algorithm. For any ciphertext

ψ, we consider the ciphertext has two parts, ψ = a+ b, where a ∈ Zn and b ∈ L. Since

a =
∑β

i,j=1 ri × rj × si,j + sτ+1, we have‖a‖ ≤ nρ2ζ. Because b ∈ L, we realize the

only factor impacts on the decryption is a, hence a = ψ mod V = ψ − bψ · V −1e · V .

V −1 = W/d and the norm of the lattice L d is odd. Since d and 2 is co-prime, so

we have a mod 2 = dψ ·W/dc mod 2 = dψ · w/dc mod 2 = ψ′ mod 2. Therefore

ψ′ mod 2 = a mod 2 =
∑β

i,j=1 ri × rj × si,j + sτ+1 mod 2. Next consider ψ′(1)



4.2. The Security 49

mod 2 =
∑β

i,j=1 ri(1)× rj(1)× si,j(1) + sτ+1(1) mod 2, since random vectors si,j are

in {
∑n

t=1 si,j,t mod 2 = 0, 1 ≤ i ≤ τ − 1} and {
∑n

t=1 sτ+1,t mod 2 = 0}, we have

ψ′(1) mod 2 = rβ,β(1)sβ,β(1) mod 2 = m mod 2. The correctness of decryption has

been proved .

Next, we prove the correctness of evaluation algorithm. Suppose ψ1 = a1 + b1,

and ψ2 = a2 + b2 where a1, a2 ∈ Zn, b1, b2 ∈ L, ‖a1‖, ‖a2‖ ≤ nρ2ζ, and at(x) =∑τ2

i=1 rt,i(x)st,i(x) + sj,β2+1(x) mod f(x). Consider the Add algorithm first, ψ(x) ←

ψ1(x)+ψ2(x) mod f(x) = (a1(x)+a2(x))+(b1(x)+ b2(x)) mod f(x). Since (b1(x)+

b2(x)) ∈ L, we have ‖V ec(a1(x) + a2(x))‖ ≤ rDec, decryption will be a1(1) + a2(1) =

m1 +m2. The add algorithm is correct.

Similarly for Multiplication algorithm, ψ(x)← ψ1(x)×ψ2(x) mod f(x) = (a1(x)a2(x))+

(a1(x)b2(x)) + (a2(x)b1(x)) + (b1(x)b2(x)) mod f(x). Since (b1(x)b2(x)), (a1(x)b2(x))

and (a2(x)b1(x)) ∈ L, we have ‖V ec(a1(x) · a2(x))‖ ≤ rDec, decryption will be a1(1)×

a2(1) = m1 ×m2. Multiplication algorithm is correct.

4.2 The Security

In this section, we will prove our new scheme is semantically secure under the adap-

tation of the approximate greatest common factor (AGCD) assumption. The ad-

versary can break the semantic security by instead of finding the vector V . The

hash function family h(b) =
∑τ

i=1 bi · πi in the linear form is pairwise independent.

By applying the leftover hash lemma, we want to prove that hash function family

h
′
(b) =

∑β
i,j=1 bi,j · πi · πj in the quadratic form is almost pairwise independent, which

is ε−pairwise independent.
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4.2.1 Leftover Hash Lemma

For a pairwise independent of hash function family H, the hash function h : X → Y

holds Prh[h(x) = h(x
′
)] = 1/|Y | for all x 6= x

′
. For our variant, the hash function

family is h
′
: Z(n×β)×(n×β) → Zn, where h

′
(b) =

∑β
i,j=1 bi,j · πi · πj. It is not an exactly

pairwise independent, but it could be almost pairwise independent with parameter.

The following definition gives the ε−pairwise independent:

Definition 4.2.1. [16](ε-pairwise independent) A family H of hash function h : X →

Y is ε−pairwise independent if

∑
x 6=x′

(Prh←H[h(x)) = h′(x)]− 1

Y
) ≤ |X|2 · ε

|Y |

The leftover hash lemma give by the prior definition.

Lemma 4.2.1. (Leftover Hash Lemma) [16] Let H be a family of ε-pairwise indepen-

dent hash functions. choose random h← H and x← X uniformly and independently.

Then (h, h(X)) is (1
2

√
|Y |/|X|+ ε)−uniformly over H× Y

Lemma 4.2.2. For an odd determinant d, the hash function family H is ε- pairwise

independence, with

ε =
1

d
+

n2τ

2n2τ−2nβ

4.2.2 Semantic Security

The semantic security of the scheme has been proved:

Lemma 4.2.3. If an algorithm A breaks the semantic security with advantage ε, then

there exist an algorithm B that solves the Dec α, β − BDDHin,τ with advantage of

3ε/32. The running time of B is polynomial in the running time of A.
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4.3 FHE Scheme

In this section, we follow the Gentry’s idea, use the bootstrapping technique to achieve

fully homomorphic encryption scheme. Our scheme is similar as the initial scheme,

the slightly difference is we using pseudo-random vector generator to construct the

public key set. First, we will squash the decryption algorithm into a lower degree of

the decryption polynomial. Then, we describe the bootstrappable scheme, which the

post-processed ciphertext can be decrypted by modified decryption polynomial more

efficiently.

4.3.1 The squashed Scheme

First, introduce four more parameters κ, σ, Θ and φ with functions of λ. More

precisely, κ = η + γ + 1 + φ, σ = λ, Θ = Õ(λ3) and φ = dlog2(σ + 1)e. We will

add a set of public key y = {y1, . . . , yΘ} of rational numbers in [0, 2) of κ bits. There

is a sparse subset S ⊂ {1, . . . ,Θ} of size σ with
∑

i∈S yi ' wi/d. The ciphertext is

expanded by computing with yi. The secret key sk is replaced by the binary vector of

the subset S.

Instead of storing the whole set of yi in the public key, we will use the pseudo-

random vector generator f(se) with seed se to generate yi for 2 ≤ i ≤ Θ. Then the

public key consists of se and y1. The scheme will be as follows:

• KeyGen(λ):

Generated sk∗ = w1, d and pk∗ as for the SHE scheme. Set xi =< x1, . . . , xn >

with xi ← d2κ × wi/dc

Choose n vectors si =< si,1, . . . , si,Θ > with Θ-dimensional, each si has hamming

weight σ. Specifically, let si,1 = 1 and S = {i, j : si,j = 1}

Set ui,1 such that
∑

i,j∈S ui,j = xi. Use f(se) to generate vectors of Θ-dimensional

ui =< ui,1, . . . , ui,Θ > with ui,j ∈ [0, 2κ+1), for 2 ≤ i ≤ Θ.
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Set yi,j = ui,j/2
γ and yi = {yi,1, . . . , yi,Θ}, with γ bits after binary point.

[
∑Θ

j=1 yi,j]2 = (wi/d)−∆d for some |∆d| < 2−κ.

Output sk = {si} and pk = {πi,j, se, yi,1}, for i ∈ n.

• Encryption and Evaluation: Given a ciphertext ψ =< ψ1, . . . , ψn >, for each

coefficient with respect to ψi with i ∈ n, generate zj = ψj ·yj, for j ∈ {1, . . . ,Θ},

and keep φ = dlog2(σ + 1)e bits after binary point for each zj.

Output ψ and zj

• Decryption:

ψ∗i = [zi · si] and ψ∗ ←< ψ∗1, . . . , ψ
∗
n >, for i ∈ n.

ψ′ =
∑
ψ∗i

ψ ← ψ′(1) mod 2

4.3.1.1 Correctness

We first prove the correctness of the squashed algorithm by rounding off the noise.

Our algorithm has assumption likes:

ψ∗i = zi · si

= ψi · yi · si

= ψi · ui · si/2κ

= ψi · xi/2κ

= ψi ·
2κ × wi/d

2κ

= ψi × wi/d

Hence, the noise can be eliminate since wi/d is a small number, the algorithm is

correct.
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Next, we recall the definition of the permitted polynomial. Considering turn of the

noise, we will prove the scheme is correct for the set C(PE) of circuit that computes

permitted polynomial.

Lemma 4.3.1. The squashed scheme is correct for the set C(PE) of the circuit that

computed permitted polynomial. For every ciphertext (ψ, zi) that is generated by eval-

uating a permitted polynomial, it holds that [si · zi] is within 1/2.

Proof. Fix a permitted polynomial P (x1, . . . , xt) ∈ PE , an arithmetic circuit C can

compute P , and t fresh ciphertext c1, . . . , ct that encrypt the input into C. Denote

ψ = Evaluate(pk, C, c1, . . . , ct). Meanwhile, fix the public key and the secret key with

respect to security parameter λ. For each i ∈ n, we have yi =< yi,1, . . . , yi,Θ > as the

integer vectors in the public key and si =< si,1, . . . , si,Θ > as binary vectors in the

secret key. From the above assumption, we need to prove [ψi ·wi/d] = [zi ·si] (mod 2).

Recall zi ← [ψi · yi] with φ = dlog2(σ + 1)e bits after binary point for each zi. We

have [ψi · yi] = zi−∆i, since ∆i has φ bits after binary point, so the maximum bits of

∆i is φ+ 1 = dlog2(σ + 1)e+ 1, |∆i| ≤ 2−(φ+1) ≤ 2−(dlog2(σ+1)e+1) ≤ 1/2(σ + 1).

[ψi · wi/d− zi · si] = [ψi · wi/d− si · (ψi · yi)− si ·∆i]

= [ψi · wi/d− ψi · (si · yi)− si ·∆i]

= [ψi · wi/d− ψi · (wi/d−∆d)− si ·∆i]

= [ψi · wi/d− ψi · wi/d+ ψi ·∆d − si ·∆i]

= [ψi ·∆d − si ·∆i]
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Recall [si × yi] = (wi/d)−∆d with ∆d ≤ 2−κ. We have

|[ψi ·∆d − si ·∆i]| ≤ |[ψi ·∆d|+ |si ·∆i]|

≤ 2γ+η · 2−κ + σ · 1

2(σ + 1)

= 2γ+η−κ + σ · 1

2(σ + 1)

= 2−1−φ + σ · 1

2(σ + 1)

<
1

2(σ + 1)
+

σ

2(σ + 1)

= 1/2

Therefore, the claim follows.

4.3.2 Bootstrapping

In this section, we will prove the squashed scheme is bootstrappable. From Gentry’s

idea [26], our scheme can achieve fully homomorphic for a circuit of any depth.

Theorem 4.3.2. [26] Let E be the scheme above, and let DE be the set of augmented

(squashed) decryption circuits. Then, DE ⊂ C(PE).

Proof. To prove E is bootstrappable, we need to show the modified decryption m ←∑
[zi ·si](1) mod 2 is a permitted polynomial size circuit. Recall si =< si,1, . . . , si,Θ >

for each i ∈ n are binary number vectors and each si,j is a bit, similarly, zi =<

zi,1, . . . , zi,Θ > for each i ∈ n are rational number vectors and each zi,j is rational

number in [0, 2), keeping φ = dlog(σ+ 1)e bits of precision after the binary point. We

also proved
∑

[si · zi] is within 1/2, and the Hamming weight is σ of the bits si for

each i. The computation algorithm of the decryption can be split into four steps:

• Step 1: For i ∈ {1, . . . , n} and j ∈ {1, . . . ,Θ}, set ai.j ← si,j ·zi,j. ai,j = zi,j when

si,j = 1 and ai,j = 0 when si,j = 0, with φ = dlog(σ + 1)e bits of precision after
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the binary point in binary representation. Set the vectors ai =< ai,1, . . . , ai,Θ >.

• Step 2: Set the vectors xj =
∑
aj for each i ∈ n.

• Step 3: For each i ∈ n, from the Θ rational numbers {xj}Θ
j=1, generate other

φ + 1 rational numbers {yt}Θ+1
t=1 , each yt has less than φ bits of precision, and

satisfy
∑

j xj =
∑

t yt mod 2

• Step 4: Output m←
∑

t yt(1) mod 2

Step 1 and 2 require only constant depth, because when adding vectors, there is no

expensive carry operations needed. For step 3, we will apply the grade-school addition

to handle the carries, and the carries are constant-depth. The last step, we can just

use a constant depth circuit, the circuit has polynomial fan-in add-gates and constant

fan-in mult-gates. Therefore, the total degree of the squashed scheme depends on the

decryption polynomial in the binary representation.

From [29], the bound of the noise in the evaluated ciphertext is rEva ≤ (rEnc)
d×
√
m,

where d is the degree of the polynomial and m is the number of monomials. For

elementary symmetric polynomials with the degree of d, the number of monomials is

m =
∏blog2 dc

i=0

(
d
2i

)
∼ 2m

′
. To guarantee the ciphertext is inside the decryption radius

of the secret key, we have

(rEnc)
d
√
m = (nρ2ζ)d

√
m ≤ 2η. (4.1)

The degree of the permitted polynomial is d ≤ (η − m
′
/2)/(log (nρ2ζ)). From the

result in [26], we need to support the degree of the polynomial up to d, then we have

η ≥ d · log (nρ2ζ) + log
√
m to evaluate the ”squashed decryption circuit” for deep

enough circuits.
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4.3.3 Security of the Squashed Scheme

The security of the squashed scheme is based on the sub set sum problem. To recover

the secret key, the attacker has to find all the coefficient of wi. Since we make public

the polynomial vectors instead of the ideal lattice, the attacker is not able to recover

wi correctly. A brute force attack on chosen cipertext can achieve the goal. To solve

the n different t, the complexity is
(
σ
t

)n
[51].

4.4 Attacks

The SHE and FHE is secure against chosen plaintext attacks. Due to the adversary’s

attack like IND-CCA2 attack, like manipulating the challenged ciphertext and submit

it to the decryption oracle, there is no SHE and FHE scheme can be IND-CCA2

secure. The IND-CCA1 has been proved to be not secure for FHE and SHE scheme

[40]. Zhang provided a way to recover the secret key by using the decryption oracle

over the DGHV scheme [66] [67]. The adversary can perform more algorithms to

recover the pubic keys through decryption oracle queries [11]. Since the scheme based

on the two cryptosystem: ideal lattice based system and integer based system. We

consider the attacks on the approximate-gcd problem [35] and the BDD problem[39].

4.4.1 Brute Force Attack

The simplest attack is brute force attack on the noise in the public key. Since the

ciphertext is protected by noise, this attack will guess the possible noise to recover

the secret key. Since each public key πi = gi × v + ri, the v can be computed by

v = gcd(π1−r1, . . . , π2β−r2β). The scheme needs the number of possible ri more than

2λ to against the attack. The Stehle-Zimmermann algorithm to compute the GCD’s

told us, the time complexity of the algorithm is Õ(γ + η) for the norm of the vectors
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of γ + η bits. The attack complexity is ρ · Õ(γ + η). Therefore, the attack is thwarted

when ρ = ω(log λ).

4.4.2 Birthday Attack

To resist the birthday attack on our scheme, the running time of the attack needs to

be greater than 2log ρ/2 [29]. So the bit length of the noise has to be at least 2λ bits to

against this attack, and the possible numbers of the noise relative to a single key is at

least 2λ/2.

4.4.3 SDA-Simultaneous Diophantine Approximation

In this section, we start with the known attack based on AGCD problem. To solve

the AGCD problem with many numbers, we can apply simultaneous Diophantine

approximation (SDA) [38]. The element in our variant is polynomial vector rather

than a single integer, we can not apply the SDA directly. Fortunately, the coefficient

of each polynomial is integer, then we can modify the SDA to find the target vector.

First, we generate a lattice L(B) by spanning the rows with k + t ≤ 2β public keys.

B =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

θMultρ · In Rot(π2) Rot(π3) . . . Rot(πk+t)

0 −Rot(π1) 0 . . . 0

0 0 −Rot(π1) . . . 0

...
...

...
. . .

...

0 0 0 . . . −Rot(π1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
For π1 = r1 +g1 and πi = ri+gi where 1 ≤ i ≤ k+ t, we have πig1−π1gi = rig1− r1gi.

Then we can apply LLL reduction algorithm to find the vector u =< θ · ρg1, r1g1 −

r1g1, r2g1 − r1g2, . . . , rk+tg1 − r1gk+t >=< θMult · ρ · g1, r1g1( r2
r1
− g2

g1
), r1g1( r3

r1
−

g3
g1

), . . . , r1g1( rk+t
r1
− gk+t

g1
) >. Once the attacker finds the vector u, they can recover

all ri.
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The attack problem comes to the lattice reduction problem. Based on the lattice

reduction algorithm [9], the target vector u cannot be found if λ2(L(B))
‖u‖ < cn(k+t), where

c is a constant reached to the smallest value of 1.009 [9].

From the definition of successive minimum λ2 ≤ (nn/2 det(L)/λ1)
1

(n−1) [59], we have

λ2 ≤
√
n(k + t)

n(k+t)
n(k+t)−1 (det(L)

‖u‖ )
1

n(k+t)−1 . If
√
n(k + t)

n(k+t)
n(k+t)−1 det(B)

1
n(k+t)−1 < cn(k+t)‖u‖

n(k+t)
n(k+t)−1 ,

the target vector u cannot be computed by lattice reduction. Briefly, to guaran-

tee ‖u‖ is hard to be found, we need the matrix satisfy the condition of det(B) <

c(n(k+t))(n(k+t)−1)‖u‖n(k+t). Since det(B) = (θρ)n‖π1‖k+t−1, therefore we can get det(B) ≤

(θρ)n(θ · ‖g1‖ · ‖v‖)n(k+t−1). As ‖u‖ > θ · ρ · ‖g1‖, the successful attack achieves when

(θρ)n(θ‖g1‖‖v‖)n(k+t−1) ≥ c(n(k+t))(n(k+t)−1)(θ ·ρ ·‖g1‖)n(k+t) ≥ cn
2(k+t)2(θ ·ρ ·‖g1‖)n(k+t).

We conclude an inequation as :

η(k + t− 1) ≥ n(k + t)2 log2 c+ γ + (k + t− 1) log2 ρ, (4.2)

and

log2 c ≤
(η − log2 ρ)(k + t− 1)− γ

n(k + t)2
. (4.3)

To get the right hand side maximum, we need to find the maximum value of

η − log2 ρ

n(k + t)
− η − log2 ρ− γ

n(k + t)2
,

since log2 ρ is quite small compared with η, which means k + t ∼ O(γ
η
) gives the best

attack.

In our parameter setting, k + t ∼ O(γ
η
). To resist the modified SDA attack, our

numbers of public key has to satisfy γ
η
> 2β. The attacker can use all public keys to

give themselves best advantage. For 2β ≥ γ
η
, the time to get a 2η approximation is

2γ/η. Therefore to thwart this attack, we need γ/η = ω(log λ). The setting of γ is

γ = ω(η log λ).
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4.4.4 Nguyen and Stern’s Orthogonal Lattice

Using Nguyen and Stern’s orthogonal lattice [46] is another way to operate the lattice

attack. The attacker will be a failure if the dimension of the lattice is larger than the

ratio of the bit length of the public key and the bit length of secret key k+t > (γ+η)/η,

more precisely, the target vector will not be covered when k + t > (γ + η)/(η − logρ2).

The time complexity is roughly 22γ/η2 .

We generate the lattice spanned by the row of the following (t + k) × (t + k + 1)

matrix:

B =

∣∣∣∣∣∣∣∣∣∣∣∣∣

Rot(π1) R1In

Rot(π2) R2In
...

. . .

Rot(πk+t) Rk+tIn

∣∣∣∣∣∣∣∣∣∣∣∣∣
The row (i) represents the constraint Rot(πi)−riIn = 0 mod V , where Ri is an upper

bound on |ri|. Let the vector v =< v0, v1, . . . , vβ >=
∑k+t

i=1 giBin, for n ∈ 1, . . . , n in

the lattice above. We obtain

v0 −
k+t∑
i=1

vi
Ri

· ri =
k+t∑
i=1

gi(Rot(πi)− riIn) = 0 mod V.

The vectors are orthogonal to (1,− r1
R1
,− r2

R2
, · · · − rk+t

Rk+t
) by the lattice reduction algo-

rithm, then the noise ri can be recovered.

The determinant of the lattice is approximately to the product of the columns

of B, which is
√
k + t‖Rot(πi)‖

∏k+t
i=1 Ri ≈

√
k + t‖Rot(Πi)‖Rk+t

i , where ‖Rot(Πi)‖

is the upper bound of ‖Rot(πi)‖. Therefore, we have R k+t
√

Π < σρ, where k + t >

(γ + η)/(η − log2 ρ). The parameter to use against the known attack will be similar

as the SDA attack.
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4.4.5 Coppersmith’s Method

We consider the Coppersmith’s technique [14] to attack on recovering the noise of

public keys. Coppersmith’s method does not only focus on the relations Rot(πi) −

riIn = 0 mod V , but also consider the relations like (Rot(πi) − riIn)2 = 0 mod V ,

or (Rot(πi) − riIn) × (Rot(πi)
′ − r′iIn) = 0 mod V . The lattice will be generated as

follows. We still set Π as the bound of the public key and R is the bound of noise, and

let all πi,j be roughly the same size Π. The first row of the matrix has size Õ(Πd), d is

the relations of product, where d ≤ 2β. The next 2β rows has size Õ(Πd−1R) on the

pivots position. In the general case, on the pivots position, there are
(

2β+d−1
d

)
rows of

the size Õ(Πd−iRi). Remaining rows are the size of Õ(Rd).

The determinant of the lattice det(B) ≈ Π2 · (ΠR)2β · (R2)(
2β
2 )−1 = Π2+2βR4τ−2.

The attacker will take the best advantage if 2β ≤ (γ − ρ)/(η − ρ). To against the

attack, we need to choose the number of public key 2β > (γ − ρ)/(η − ρ) ∼ O(γ/η).

which is also close to the previous attack.

4.4.6 BDD-Bounded Distance Decoding

We will use the BDD problem to recover the random vectors u←< 1, s1, s1, . . . , sβ >.

This is the known message attack to find the shortest vector by lattice reduction. By

using the ciphertext, the matrix generate as follow:

B =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 0 . . . 0 ψ

0 In 0 0 . . . 0 Rot(π1 × π1)

0 0 In 0 . . . 0 Rot(π1 × π2)

...
...

...
...

. . .
...

...

0 0 0 0 . . . In Rot(πβ × πβ)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

As previously, det(Rot(π1)) ≤ ‖π1‖n ≤ (σ‖g1‖‖v‖)n, therefore, det(B) ≤ ‖ψ‖ +

τ(θ2‖g1‖‖v‖‖g2‖‖v‖)n, and ‖u‖ = 1 + (τ + 1)ζ. From the Minkowski bounds, we relax
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the condition to against the best lattice reduction, we have

2 log2 θ + 2γ + 2η < τ(nτ + 1) log2 c+ τ log2(1 + τζ). (4.4)

The number of public keys has to be n · τ + 1 to defend against the known attack.

4.5 Extension of The HIL Encryption to Higher

Degree

In the section 3, we use a quadratic form to compute ciphertext instead of linear form.

Due to reduce the number of public keys, the significant benefit of this scheme is reduce

the size of the public key. Followed by this idea, we modified the scheme further by

higher degree t of the encryption procedure, c←
∑β

i1,...,it=1 si1,...,it×πi1×πi2 · · ·×πit +

sτ+1. The key point is to prove the hash function family Ht with h : Z(nβ)t → Zn

is almost a pairwise independent hash function family, then it is suitable to apply a

variant of the leftover hash lemma. The constraint will be βt ≥ γ + η + ω(log λ).

To get the decryption correct, we also need rEnc = θt · ρt · ζ < 2η, and rEnc =

√
m(θt ·ρt ·ζ)` < 2η for bootstrapping. We consider the constant factor m ·θ as a small

number, so rEnc requires
√
m · θt(ρt · ζ)` < 2η. To defend against the known attack,

we need γ to satisfy the equation

γ ≥ (η − log2 ρ)(tβ − 1)− n(tβ)2 log2 c, (4.5)

and

t log2 γm + tγ + tη < τ(nτ + 1) log2 c+ τ log2(1 + τζ). (4.6)

We set a convenient parameter set as: ρ = λ, ζ = λ, η = O(λ2 logk λ2), γ =



4.6. Parameters and Constraints 62

O(λ3 logk λ3), t = log λ and τ = βt = O(λ3/t logk λ3/t). Now, we store β = O(λ3/t logk λ3/t)

integers. Hence, the public key size becomes O(λ4 logk λ4) rather than O(λ6 logk λ6)

in the original scheme.

Table 4.1: Comparisons between Quadratic and Higher Degree
Quadratic Higher Degree

Columns 2 t = log λ

Numbers of PK in Each Column β = O(λ2 logk λ2) β = O(λlog λ logk λlog λ)

Total Numbers of PK 2 · β = O(λ2 logk λ2) t · β = O(log λ · λlog λ logk λlog λ)

PK Size O(λ6 logk λ6) O(λ4 logk λ4)

4.6 Parameters and Constraints

We choose parameters under the following constraints:

• ρ = ω(log λ) to avoid brute force attack on noise.

• η ≥ log (nρ2ζ) · Θ(λ/ log λ) to support the evaluation of squashed decryption

circuits.

• γ = ω(η · λ) to against lattice-based attacks.

• β2 ≥ log (γ + η) + ω(log λ) to use the leftover hash lemma in the reduction to

approximate common vector.

• ζ = ω(log λ) for secondary noise parameter.

• n = ω(λ log λ) to foils lattice-based reduction [29] and θ =
√
n [26].

We set a convenient parameter set as: ρ = λ, ζ = λ, η = O(λ2 logk λ2), γ =

O(λ3 logk λ3) and τ = β2 = O(λ3 logk λ3). The main difference is that instead of hav-

ing τ = O(λ logk λ) integers, we store β = O(λ1.5 logk λ1.5) integers. Hence, the public

key size becomes O(λ4.5 logk λ4.5) rather than O(λ6 logk λ6) in the original scheme.
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We will use λ = 80 as an example to compare the new scheme and the initial

scheme. Under the assumption that the dimension of the lattice is the square root of

the dimension of the normal lattice.

Table 4.2: The Relations between Degree of Decryption Polynomial and Number of
Monomials

Degree of Decryption Polynomial Number of Monomials
3 = 22 − 1 9
7 = 23 − 1 5145
15 = 24 − 1 ∼ 234

31 = 25 − 1 ∼ 275

63 = 26 − 1 ∼ 2176

. . . . . .
1023 = 210 − 1 ∼ 23180

In this case, it requires the lattice with dimension 31 (From the Table 1) to be

large enough to resist the lattice reduction. To resist birthday paradox attack, the

maximum norm of each noise is
√

32. s has τ + 1 blocks, to stop the brute force

attack, we set maximum 5 blocks with nonzero entries besides the τ -th block. So we

can find the number of public keys used in the encryption scheme. The total sample

is at least
(
τ+1

5

)
(
(
n
2

)
22)5 > 280, which is τ = 111. We keep the same security level of

the squashed secret key by Θ = 6 and σ = 1. We set maximum 11 coefficient to be 1

or −1 , for rEnc, the maximum norm of the noise in each ciphertext is 32 ·
√

11
3 ∼ 210.

Here, we use the suggestion in [29], the expansion factor for the production of two

random vectors is much too small, we can consider ‖v1 × v2‖ ≈ ‖v1‖ · ‖v2‖ for our

example in the bootstrapping. The worst case occurs when rEnc = 210. To achieve the

bootstrapping, η has to satisfy the equation [1]: 2η ≥
√

275(210)31, therefore, η = 348.

According to the known attack, we choose γ = 7090 as the smallest value to satisfy

equation [5], [6] which guarantees the scheme is secure.

In our SHE scheme, the ciphertext size is (348 + 7090) × 31 ∼ 225Kb, the public

key space is (348 + 7090)× 31× 22 ∼ 4.8Mb. In the squashed scheme, the public key
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size is (348 + 7090) × 31 × 6 ∼ 1.3Mb, the secret key size is 225 × 31 × 6 ∼ 40.9Mb.

The whole scheme with the public key size is 4.8+1.3+40.9 = 47Mbits which is much

smaller than the original scheme with 173.5Mbits.

Table 4.3: Comparisons with Original HIL Scheme
GH Scheme Initial Scheme Qaudratic Higher Degree

Key Columns n/a 1 2 t = log λ
Security Parameter λ = 7 λ = 80 λ = 80 λ = 80
Lattice Dimension n = 2048 n = 31 n = 31 n = 31
Public Key Size 552 Mb 173.5 Mb 47 Mb 40.4 Mb
Ciphertext Size 780 Kb 573 Kb 225 Kb 202.8 Kb

Compare with the existing schemes, our scheme compress the size of the public key

on the hidden ideal lattice scheme. Due the technique, we can compress the public

key size into the higher degree which can make the process more faster and have a

smaller storage space. The running time of the system is mainly inuenced by the size

of the ciphertext and the squashed decryption polynomial (both degree and number

of monomials). We note that those parameters in our scheme are smaller than Gentry

and Halevis system, the hidden ideal lattice scheme, therefore, it is straightforward to

see that the running time of our scheme is shorter. To extend the technique, we can

see the higher degree has the similar function to squash the key size and ciphertext

size, the operation time will be shorten, but not significant other than two columns.



Chapter 5

Conclusion and Future Work

There are three categories of fully homomorphic encryption scheme: ideal lattice based

scheme, integer based scheme and LWE based scheme. Each branch has designed and

improved Fully homomorphic Encryption schemes. There are three main aspects need

to be improve: the construction of schemes, the efficiency of schemes and the security

of the schemes. The construction of schemes are based on some mathematics tools:

integer ring, polynomial ring, lattice, and ideal lattice. There are many modification

can apply on these schemes. Second, the security parameter needs to be large enough

to against the attack, which means the operation is take long time or the storage space

is large. So the efficiency needs to be improve to implement the Fully homomorphic

encryption. Last is the security of the Fully homomorphic encryption scheme. The

major difference between Fully homomorphic encryption scheme and general encryp-

tion scheme is, the Fully homomorphic encryption needs to consider the evaluation of

the ciphertext, which may leak the private key information.

In this thesis, we focus on the research of Fully Homomorphic Encryption schemes

with better parameters than previous schemes as well as the optimization from the

theoretical point of view. On the other hand, we present the method to estimate

the parameters of Fully Homomorphic Encryption schemes based on the public key

65
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compression. By summarizing the result of the current works, we realized the efficiency

of the fully homomorphic encryption scheme can be improved by reducing the key size.

So we focus on how to apply the technique on reducing the key size especially the public

key. We also identified that not all three categories can achieve this goal by the same

technique. Therefore, research was to apply the public key compressing on different

schemes and also applied on the batching schemes.

To answer the first question: how to reduce the size of public key somewhat homo-

morphic encryption? We use the same way to construct fully homomorphic encryp-

tion schemes. First, to construct somewhat homomorphic encryption and then use

the bootstrapping to achieve fully homomorphic encryption schemes. That means, we

have to make sure our somewhat homomorphic scheme is correct, then we can apply

squashing and bootstrapping. We construct the squashed scheme which needs to do

the ”post process” on the ciphertext.

To answer the second question: How to construct a more efficient scheme based on

the existing scheme with new technique? We focus on applying the public key compres-

sion on batching schemes to improve the efficiency of fully homomorphic encryption.

We modified Plantard, Susilo and Zhang’s scheme, since the scheme can encrypt a

plaintext vector rather than single bit. We apply the public key compression on the

scheme to check whether the scheme has better key size with less time consuming.

The correctness and security was proved, and the known attack was analyzed as well.

In the future, we construct a fully homomorphic encryption scheme based on coding

theory. More precisely, we want to construct a modified McEliece cryptosystem scheme

to achieve fully homomorphic encryption.The most linear code like binary Goppa

codes, addition homomorphism is obvious, but multiplication homomorphism failed.

Some existing modified scheme can only performing limited times of multiplication. We

want to modified the scheme to achieve performing unlimited times of multiplication
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without rapid expansion on ciphertext.
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[15] Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. Scale-invariant

fully homomorphic encryption over the integers. In Public-Key Cryptography–

PKC 2014, pages 311–328. Springer, 2014.
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