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ABSTRACT

Residue Number Systems (RNS) allow the distribution of large dynamic range computations over small modular
rings, which allows the speed up of computations. This feature is well known, and already used in both DSP and
cryptography. Most of implementations use RNS bases of three elements to reduce the complexity of conversions,
but if can increase the number of RNS modular computational channels, then we are able to compute over smaller
rings and thus further increase the speed of computation. In this paper, we deal with conversion from RNS to
RNS or RNS to standard representations of numbers. We find, in the literature, two classes of conversion
algorithms: those directly based on the chinese remainder theorem and those which use an intermediate Mixed
Radix representation. We analyze these two different methods, show where the choice of the base is important
and discuss the base selection criteria. We deduce that MRS conversions offer more possibilities than the CRT
conversions. We provide features of RNS bases which provide low complexity of both RNS computation and
conversion. We introduce some examples of bases well suited for cryptography applications.
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1. INTRODUCTION

Original works on modular arithmetic are very old. The Chinese Remainder Theorem was first proposed around
the fifth century by Sun Tsŭ.1 But the use of this arithmetic to represent numbers was introduced only in 1959
by H.L. Garner.2

Theorem 1.1 (Chinese Remainder Theorem).

We consider a n-uple of coprime numbers (m1,m2, . . . ,mn) . We note M =
∏n

i=1 mi, If we consider the
n-uple (x1, x2, . . . , xn) of integer such that xi < mi. Then there exits an unique X which verifies:

0 ≤ X < M and xi = X mod mi = |X|mi
pour 1 ≤ i ≤ n

The n-uple (m1,m2, . . . ,mn) of coprimes is generally called RNS basis.

The main interest of the Residue Number Systems is to distribute integer operations on evaluations with the
residues values. Thus an operation with large integers is made on the residues which are small numbers and
where computations can be executed independently for each modulo allowing a complete parallelization of the
calculus.

Example 1. We consider the coprime n-uple (255, 256, 257), thus M = 16776960

a = 10000 is represented by (55, 16, 234) and b = 300 by (45, 44, 43)

We can verify that a × b = 3000000 is represented by (180, 192, 39) where 180 = 55 ∗ 45 mod 255, 192 =
16 ∗ 44 mod 256 and 39 = 234 ∗ 43 mod 257.

We find, in the literature, different kinds of applications which use RNS. Most of the papers are dedicated to
signal processing.3–6 In fact, the transformations used in this domain are based on additions and multiplications
which are efficient in RNS. They just need three moduli to represent the values manipulated during the evaluation.
Use of RNS appears also in discret geometry7 or in theoretical approaches.8 The last domain where those systems
are helpful, is cryptography9.10 The numbers used are huge, 160 bits for Elliptic Curves Cryptography (ECC)
and 1024 bits for RSA. These systems offer a good alternative for implementing parallel computing for such
numbers.



Though addition and multiplication are easily parallelizable with RNS, some operations, like division or
modular multiplication, need conversions from RNS to binary or RNS to an other RNS. This transformation is
not trivial, and most of the algorithms depend of it. It is the reason why we focus on this operation, in particular
from RNS to RNS which is used in cryptography,11 analyzing the influence of the choice of the coprime n-uple
defining the RNS basis.

We first present the classical conversion algorithms from RNS to RNS or other representations. Then, we
analyze these methods through the point of view of the RNS bases. We propose some criteria of bases selection
to obtain efficient conversions. And we end, in the conclusion, with a discussion around RNS.

2. SOME GENERALITIES ON THE CONVERSION

When we propose to use RNS to represent numbers, the first question is: What is the cost of the conversion to
and from these systems? It is clear that the translation from a classical representation to RNS is identical to a
modular reduction. One of the most trivial way is to store all the powers of the radix modulo each element of
the RNS basis.12–14 Thus, if we consider the RNS basis (m1,m2, . . . ,mn) with M =

∏n
i=1 mi < βT where β is

the radix of the classical representation, then we have to store Tn values of size T/n digits, in other words T 2

digits, for using the following formula:

xi = |X|mi
=

∣∣∣∣∣∣
T∑

j=1

χj × βj

∣∣∣∣∣∣
mi

=

∣∣∣∣∣∣
T∑

j=1

χj ×
∣∣βj
∣∣
mi

∣∣∣∣∣∣
mi

(1)

We assume that the modular multiplier-adder is the basic operator of RNS computing. Hence, the conversion
from β representation to RNS can be done in T iterations. Now if we consider a full parallelization, with n
modular multiplier-adders, this conversion can be logarithmic (ie O(log(T ))). But in this paper we focus our
attention to the conversion from RNS to RNS or to β representation.

To simplify our future discussions, we consider that β = 2, that all the mi have the same number t of bits,
and for the RNS to RNS conversion the two bases have the same number of moduli.

We note B = (m1,m2, . . . ,mn) and B̃ = (m̃1, m̃2, . . . , m̃n) the two RNS bases which we will use.

2.1. From the Chinese Remainder Theorem

In the proof of the Chinese Remainder Theorem we can show, that a solution of the following system: X ≡ x1 (mod m1)
... ... ...
X ≡ xn (mod mn)

(2)

can be constructed from the formula:

X =
∣∣∣x1 |M1|−1

m1
M1 + x2 |M2|−1

m2
M2 + . . . + xn |Mn|−1

mn
Mn

∣∣∣
M

(3)

Where, Mi =
M

mi
for 1 ≤ i ≤ n and |Mi|−1

mi
represents the inverse of Mi modulo mi .

It is obvious that the evaluation of a such expression is heavy. To simplify a little bit the equation (3) we
consider αi = xi |Mi|−1

mi
mod mi, so we obtain a new expression for X:

X =

(
n∑

i=1

αiMi

)
mod M (4)

Despite this transformation, each term stays a great value of the same range than M . Hence we deduce that the
cost of the conversion from RNS to binary representation is equivalent to n modular products modulo an mi, n
products of a large number by a small one, and n− 1 additions of large numbers and a reduction modulo M .



Here again, we can parallelize to obtain a logarithmic time complexity, but the operators will be huge and
not realistic. Now, if the number n of moduli is small, like for some DSP, the equation (4) can offer a good
solution.15, 16

The conversion RNS to RNS is similar, we will make the same kind of operations on each modulo of the new
basis B̃, the equation (3) becomes for j ∈ {1, ..., n}:

X =
∣∣∣x1 |M1|−1

m1
|M1|m̃j

+ x2 |M2|−1
m2
|M2|m̃j

+ . . . + xn |Mn|−1
mn
|Mn|m̃j

∣∣∣
m̃j

(5)

Thus, this evaluation needs n modular products modulo an mi, and for each modulo of the new RNS basis
n modular products (of small numbers), and n − 1 modular additions of residues and a reduction modulo M .
So if we do not take into account the final reduction, we need n(n + 1) modular products and n(n− 1) modular
additions on residues. We have to notice that we can have a great degree of parallelization.

Now, the reduction modulo M is the main drawback of this approach. In fact most of the method proposed
to find α such that:

X + αM =

(
n∑

i=1

αiMi

)
(6)

Hence, when α is determined, αM can be subtracted from the second member of equation (6). This remark is
also available for the RNS to RNS conversion.

A. P. Shenoy and R. Kumaresan have proposed to use an extra modulo to find this factor.17 In this method
all the computing is done with integers. An other point of view is to find an approximation of α with floating
point cell.9, 18, 19

2.1.1. Shenoy Kumaresan

This method is based on the knowledge of the residue modulo an extra co-prime me. So X is define by its RNS
representation (x1, x2, . . . , xn), and we know xe = X mod me. Hence, from expression (6) we can deduce χ the
residue of X + αM modulo me:

χ = (X + αM) mod me =

∣∣∣∣∣
n∑

i=1

αi |Mi|me

∣∣∣∣∣
me

(7)

Thus, we have
α = (χ− xe)× |M |−1

me
mod me (8)

This evaluation needs n modular products and n−1 modular additions on residues. Then the final reduction
is done with a product by α of M (|M |m̃j

for RNS to RNS) and a subtraction.

But this condition on the extra modulo cannot be always satisfied. It is not obvious of maintaining the
knowledge of the residue modulo me during the different calculuses. So, we must consider an approach available
just with the RNS representation.

2.1.2. Floating point approach

In this approach we factorize the equation (6), where appears a floating point value.

X + αM =

(
n∑

i=1

αi
1

mi

)
M (9)

Thus α is the integer part of
n∑

i=1

αi
1

mi
. But this evaluation cannot be realized with exact calculuses, and the

different references9, 18, 19 obtain α ± 1. The complexities are close to those of Shenoy-Kumaresan, but with a
specific floating point cell. So, if we want a pure integer implementation we will use an auxiliary representation
like mixed radix systems.



2.2. Via a mixed radix system
Mixed Radix Systems MRS can be seen as multi-radixes representation. Like for RNS, we define as a MRS basis
a set of integers (m1,m2, . . . ,mn) (here they are not necessary coprime), and an integer X, inferior to M , is
represented by a n-uple (x′1, ..., x′n), with x′i < mi for i ∈ {1, ..., n}, such that:

X = x′1 + x′2m1 + x′3m1m2 + ... + x′nm1...mn−1 (10)

The conversion from RNS to MRS is a classical greedy algorithm where we consider the residue modulo the radix
and then we iterate this process with the quotient. We present two different ways to obtain this representation
one which can be parallelized and an other purely sequential.

We notice that the construction of X from the MRS representation can be done with a classical Horner
scheme, with n products by an mi and n−1 additions (for a conversion RNS to RNS we get the same complexity
with modular operations on each modulus of the new RNS basis).

2.2.1. Parallel algorithm

A naive approach20 consists in applying to the RNS representation of X , the extraction of a residue and the
division by the radix (which is different at each step).

We note m−1
i,j the inverse of mi modulo mj such that: mi.m

−1
i,j ≡ 1[mj ]. Thus the conversion can be described

by the following equations:

x′1 = x1 mod m1

x′2 = (x2 − x′1)m
−1
1,2 mod m2

x′3 = ((x3 − x′1)m
−1
1,3 − x′2)m

−1
2,3 mod m3

...
x′n = (· · · (xn − x′1)m

−1
1,n − x′2)m

−1
2,n)− · · · − x′n−1)m

−1
n−1,n mod mn

(11)

We can remark that x1, the residue modulo m1, is subtracted from the other residues which are then divided by
m1 (ie multiplied by the inverse of m1 for each modulo), this operation is iterated with x′2 etc.

The complexity of this conversion RNS to MRS is equivalent to n(n−1)/2 modular subtractions and products,
which can be parallelized to obtain the result in n− 1 steps.

The drawback of this approach is due to the storage of the n(n− 1)/2 inverses needed for the conversion. An
other method, purely sequential, allows to store only n− 1 values.

2.2.2. Sequential approach

In the equations (11) we observe that we can factorize all the inverses.1 Thus those equations becomes:

x′1 = x1 mod m1

x′2 = (x2 − x′1) |m2|−1
m2

mod m2

x′3 = ((x3 − x′1)− x′2m1) |m1m2|−1
m3

mod m3

...
x′n = ((xn − x′1)−m1(x′2 −m2(x′3 − · · · −mn−3(x′n−2 −mn−2x

′
n−1)...) |m1...mn−1|−1

mn
mod mn

(12)

The global complexity is the same than in the previous approach, but here we observe that each evaluation can
begin only when all the previous are ended. It is not possible to parallelize.

3. BASIS SELECTION CRITERIA AND ALGORITHMS
After those few recalls, we arrive to our main problem which is, how can we define a ”good” RNS basis. It is
clear that, if we just need a basis with few elements, the easiest is to choose a set like {2t− 1, 2t, 2t + 1} which is
very used in digital signal processing. But, in the literature,15, 21 most of the operators use the CRT approach.
We are not convinced, that it is the best choice of algorithm. If we observe the equation (11) we can consider
m1 = 2t + 1, m2 = 2t − 1, and m3 = 2t, then , since m1 mod m2 = 2, m1 mod m3 = 1 and m2 mod m3 = −1,
we deduce that m−1

1,2 = 2n−1 m−1
1,3 = 1 and m−1

2,3 = −1. Thus the conversion to MRS can be reduced to one shift
and four additions, then conversion to binary needs at most two shifts and four additions.



3.1. About MRS to a new RNS basis

The first observation we can made looking equation (10), is that if we use the Horner scheme, we will multiply by
an mi mod m̃j , for i, j ∈ {1, ..., n}. We recall that the elements of the RNS bases of this study are t bits-integers,
thus the value |mi − m̃j | is less than m̃j and can be used for the evaluation of:

X mod m̃j = x̃j = [x′1 + (m1 − m̃j)(x′2 + (m2 − m̃j)(x′3 + ... + (mn−1 − m̃j)x′n)...)] mod m̃j (13)

Hence, we replace a classical modular product by one with an operand of the size of the maximal difference
between two RNS bases elements.

Now the problem is to find RNS bases such that those differences are minimal. To simplify this study we
can consider that the two bases are ordered such that: m1 < m2 < ... < mn < m̃1 < m̃2 < ... < m̃n. Thus the
maximal difference is given by d̂ = m̃n−m1. So, the question is: What is the minimal interval of t-bits integers,
which contains 2n coprime numbers? Or, how many coprimes can we get in an interval of size d̂?

We know that the function π(m) which gives the number of prime numbers less than m, can be approximated
by m

log(m) . Thus, as showed in table 1 the expression d̂

log(d̂)
gives a good idea of the range of the number of coprimes

between m and m+d̂. We note that,if m is chosen equal to a power of 2, the two bases can be considered composed

d̂ 28 210 28 210 28 210

m 232 232 264 264 2128 2128

d̂

log(d̂)
46 147 46 147 46 147

# coprimes found 39 117 44 124 41 121

Table 1. coprimes found between m and m + d with a trivial algorithm

of pseudo-mersennes which are fine for the modular operations. But, we precise that the number of coprimes
does not depend of this particularity, we can verify in table 1 that this value only depends of d. Furthermore, the
main interest is that the modular products of equation (13) have one factor with at most log(d̂) bits. Aftermath,
those operations can be more than t/log(d̂) times faster than a classical modular product. This remark is true
as well for conversion to binary than for conversion to RNS. To have a realistic idea of the benefit we can get, we
consider an example coming from cryptolography which uses huge numbers of for example 1024 bits. In the RNS
modular algorithms for cryptography11, 22 we need 68 moduli of 32 bits, we can assume a maximal difference d̂
less than 210, thus we can expect a speed up of 3 which is consequent.

Example 2. We can generate a set of 68 coprime numbers from 4294967296 to 4294967783 where the difference
is bound by 487. This set is defined by the first value and the differences with it.

{4294967296 1 3 5 7 9 13 15 21 25 27 33 37 55 61 63 75 81 85 91 93 97 105 111 123 133 145 153 163
175 177 181 201 207 211 217 231 243 247 253 261 265 267 273 295 301 307 313 321 327 331 343 351 357 375 385
387 391 397 405 415 427 445 453 463 481 483 487 }

Thus, in expression (13 ), the maximal value of the constant factors is inferior to 487 which is a nine bits
integer.

Now, we will see if such bases have also some interests for conversion from RNS to MRS.

3.2. From RNS to MRS

It is obvious that if we want to exploit the properties of the previous choice of bases, we will want to use the
sequential algorithm defined by equations (12), where each occurrence of mi can be replaced, for an evaluation
modulo mj , by the difference (mi −mj) which is a small value (ie less than d̂). In this case we will obtain the
previous speed up for the n(n − 1)/2 modular products by an mi, but we keep the classical modular products
for the n− 1 multiplications by an inverse.



Now if we consider the equations (11) of the parallel conversion, we can remark that we needs to multi-
ply by the inverses of small numbers (which can be negative). But we know a reduction algorithm found by
Montgomery,23 which gives the modular product by an inverse.

So, the operations, which we have to evaluate, have the following form y = x ∗ |d|−1
m mod m where x and

m are two t-bits integers and d a small value (ie t/c bits number). The method proposed by P.l. Montgomery
is based on the construction of a multiple of a value d by adding to x a multiple of m, thus this result can be
divided by d to obtain a reduced value less than m.

Hence, we must construct k such that: k < d and x + km is a multiple of d, then, as the division of x + km
by d is exact, we obtain the expected value y. This is recapitulated in the following algorithm:

Algorithm 1 : Modular Division
Require: two integers d,m with 0 < d << m and gcd(m, d) = 1

three precomputed values rm, qm and Im such that:
m = rm + qmd with rm < d and Im = (−m)−1 mod d
and an integer x, 0 ≤ x < m

Ensure: an integer y with y = x/d mod m
1: find rx and qx such that: x = rx + qx × d with 0 ≤ rx < d
2: k ← rx × Ix mod d
3: y ← (rx + k × rm)/d + qx + k × qm

Now, we analyze the complexity of this algorithm step by step, we note 2δ−1 ≤ d < 2δ:

1. rx and qx are the results of an euclidian division where the divisor d is a small constant(δ-bits number)
and the dividend is a t-bits integer.

2. rx and Ix are smallest than d, so k can be obtained with a classical Barret modular multiplication24 with
δ-bits numbers.

3. Then we remark that qx + k × qm < m and (rx + k × rm) < d2 is a multiple of d. Hence, we need

• one addition of t-bits numbers, one product of a δ-bits by a (t− δ)-bits numbers,

• one δ-bits multiplication, one 2δ-bits addition and one division of a 2δ-bits by a δ-bits number (we
can use Barrett reduction algorithm),

• and, to end one t-bits addition

If we use this algorithm for a conversion RNS to MRS, we must store rm, qm and Im for each element of the
basis, which will need n2 × (t + δ̂) bits, where δ̂ represents the maximal value of the δ.

3.2.1. Division by a small constant

We want to compute rx and qx such that: x = rx + qx × d with 0 ≤ rx < d.

As, d is a small constant, we can use a division algorithm adapted from Barrett method. The main idea of
this approach is given by the following equations, where f(y) is the fractional part of y:

x2k+1 = d 2k+δ

d
x

2δ−1

= d
(⌊

2k+δ

d

⌋
+ f( 2k+δ

d )
) (⌊

x
2δ−1

⌋
+ f( x

2δ−1 )
)

= d
(⌊

2k+δ

d

⌋ ⌊
x

2δ−1

⌋)
+ d

(
f( 2k+δ

d )
⌊

x
2δ−1

⌋
+
⌊

2k+δ

d

⌋
f( x

2δ−1 ) + f( x
2δ−1 )f( 2k+δ

d )
) (14)



Now, we remark that:(
f( 2k+δ

d )
⌊

x
2δ−1

⌋
+
⌊

2k+δ

d

⌋
f( x

2δ−1 ) + f( x
2δ−1 )f( 2k+δ

d )
)

< x
2δ−1 + 2k+δ

d + 1

< 2k+1
(

x
2δ+k + 2δ−1

d + 1
2k+1

) (15)

Hence, we deduce from (14) and (15) that if x < 2δ+k, then:

x2k+1 − d

(⌊
2k+δ

d

⌋ ⌊ x

2δ−1

⌋)
< 2k+1

(
2 +

1
2k+1

)
d (16)

Thus, we obtain the Barrett equation:

x− d


(⌊

2k+δ

d

⌋ ⌊
x

2δ−1

⌋)
2k+1

 < 3d (17)

The Barrett algorithm Barrettk(x, d) returns (q, r) such that q =

⌊(⌊
2k+δ

d

⌋
b x

2δ−1 c
)

2k+1

⌋
and r = x − dq, for

x < 2δ+k and 2δ−1 ≤ d < 2δ.

Algorithm 2 : Barrettk(x, d)

Require: x < 2δ+k and 2δ−1 ≤ d < 2δ

and a precomputed value
⌊

2k+δ

d

⌋
Ensure: (q, r) such that r = x− dq < 3d

1: q ←
(⌊

2k+δ

d

⌋ ⌊
x

2δ−1

⌋)
2: q ←

⌊
q

2k+1

⌋
3: r ← x− qd mod 2δ+1 (as , r < 3d)

The complexity analysis gives:

1. one product of two k-bits numbers,

2. one shift,

3. one product of (δ + 1)-bits numbers, and one subtraction of (δ + 1)-bits numbers.

Thus, if we suppose that k = t−δ, as this algorithm gives q and r such that: r = x−dq < 3d, for determining
rx and qx, we must compare r to d and, if r is greater than d, then we must subtract d to r and increment q,
this operation can be useful twice, to obtain r < d, and thus we get rx = r and qx = q.

If we consider that the product is quadratic (at least more than linear) in number of binary operations, this
algorithm 2 uses at most k2 + δ2 + 3δ + 2 binary operations. Hence, it can be useful to split the input x to get
less operations.

In algorithm 3, we have fixed k, and we consider R1 the k + δ most significant digits of R = R12T−k−δ + R0,
where R and T are respectively initialized to x and t. We apply Barrettk(R1, d) which returns (rR1 , qR1) such
that R1 − dqR1 = rR1 < 3d. R is set to rR12

T−k−δ + R0 and Q to qR1 + Q2k−2. Then T is decreased of k − 2,
and we iterate again with the k + δ most significant digits of R to obtain R < 3d.

At the end of each path in the first ”while” loop, we verify that Qd2T−2−δ +R = x. Hence when the algorithm
ends, we obtain (rx, qx) with rx + qxd = x and 0 ≤ rx < d.



Algorithm 3 : Division by a small constant DIV (x, d)

Require: two integers x < 2t and 2δ−1 ≤ d < 2δ

Ensure: two integers rx, qx with rx + qxd = x and 0 ≤ r < d
1: R← x
2: Q← 0
3: T ← t
4: while T > δ + 2 do
5: if T ≥ k + δ then
6: R = R12T−k−δ + R0

7: (rR1 , qR1)← Barrettk(R1, d)
8: R← rR12

T−k−δ + R0

9: Q← qR1 + Q2k−2

10: T ← T − k + 2
11: else
12: R = R1

13: (rR1 , qR1)← Barrettk(R1, d)
14: R← rR1

15: Q← qR1 + Q2k−2

16: T ← δ + 2
17: end if
18: end while
19: while R ≥ d do
20: R← R− d
21: Q← Q + 1
22: end while
23: rx ← R, qx ← Q

The number of iterations needed is equal to
⌈

(t− δ − 2)
(k − 2)

⌉
. Thus, if we refer to the complexity of Barrettk(R1, d),

algorithm 3, which represents the first step of algorithm 1, needs
⌈

(t− δ − 2)
(k − 2)

⌉
(k2 + δ2 + 3δ + 4 + log(t)) + 2δ

binary operations.

3.2.2. Analysis of this conversion from RNS to MRS

Other steps of algorithm 1 represent 3δ2 + δt+10δ +2t binary operations (considering the complexity of Barrett
algorithm25). The total complexity of our method to obtain the modular product by an inverse of a small

number, is equivalent to
⌈

(t− δ − 2)
(k − 2)

⌉
(k2 + δ2 + 3δ + 4 + log(t)) + 3δ2 + (t + 12)δ + 2t.

We show in table 2 a comparison of the number of binary operations of our approach (we suppose k = δ),
with the Barrett algorithm in 2t2 + 4t operations for the multiplication by a stored inverse.

d 28 210 28 210 28 210

m 232 232 264 264 2128 2128

Our approach 1252 1521 2386 2868 4219 4234
Barrett algo 2176 2176 8448 8448 33280 33280

Table 2. comparison of our approach to Barret algorithm (number of binary operations)

The ratio of the complexities of Barrett by our method is linear in function of t, for a fixed d, this means
that the efficiency of our approach increases if we use large moduli. The complete conversion using equation (11)
requires n(n−1)

2 calls to a multiplication by an inverse, so the speed-up obtained with our algorithm becomes
really consequent.



4. CONCLUSION

We have seen in this paper that choosing successive coprime numbers can allow to construct efficient RNS
implementations. The numbers of coprimes we can expect in an interval is close to the quotient of the size of this
interval with the logarithm of this size. As all the values of an RNS bases are close, we can choose one reference
element and define the others by their differences to it, thus we just use small values. With this choice of moduli,
the storage is reduced to nlog2(d) + t bits for the mi and the complexities of conversions are more efficient. In
this paper we do not have taken into account the possibility of selecting randomized bases22 which is interesting
in cryptography. It is a new very interesting use of RNS, which needs to be studied in future works.
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