
Subquadratic Space Complexity
Binary Field Multiplier Using

Double Polynomial Representation
Jean-Claude Bajard, Christophe Negre, and Thomas Plantard

Abstract—This paper deals with binary field multiplication. We use the bivariate representation of binary field called Double

Polynomial System (DPS) presented in [11]. This concept generalizes the composite field representation to every finite field. As shown

in [11], the main interest of DPS representation is that it enables to use Lagrange approach for multiplication, and in the best case, Fast

Fourier Transform approach, which optimizes Lagrange approach. We use here a different strategy from [11] to perform reduction, and

we also propose in this paper, some new approaches for constructing DPS. We focus on DPS, which provides a simpler and more

efficient method for coefficient reduction. This enables us to avoid a multiplication required in the Montgomery reduction approach of

[11], and thus to improve the complexity of the DPS multiplier. The resulting algorithm proposed in the present paper is subquadratic in

space Oðn1:31Þ and logarithmic in time. The space complexity is 33 percent better than in [11] and 18 percent faster. It is asymptotically

more efficient than the best known method [6] (specifiably more efficient than [6] when n � 3;000). Furthermore, our proposal is

available for every n and not only for n a power of two or three.

Index Terms—Binary field, double polynomial system, multiplication, subquadratic complexity, FFT.

Ç

1 INTRODUCTION

EFFICIENT finite field arithmetic in IF2n is one of the
challenges in implementing cryptographic cryptosys-

tem like elliptic curve cryptography or cryptosystems based
on DLP in finite fields. A binary field IF2n can be seen as the
set of binary polynomials with degree <n. Multiplication
and addition in IF2n are done modulo a degree n irreducible
polynomial P .

In order to get efficient reduction modulo P , NIST
recommends [3], [15] to use P with trinomial (or pentano-
mials if there are no irreducible trinomials of degree n)
form. In this case, the architecture is dedicated to only one
P , which is not fine for circuit makers. In this paper, the
approach proposed is available for every P .

There are two types of binary field multipliers. The first
ones are called sequential multipliers, their hardware space
complexity is OðnÞ, and their critical path have a delay of
Oð1Þ or OðlogðnÞÞ (see, for example, [24], [25], a complete
multiplication is done after n clock cycles using the same
hardware, thus the time complexity is inOðnÞ orOðn logðnÞÞ.
The second kind of multipliers are the parallel multipliers,
they are faster: their time complexity is OðlogðnÞÞ, but their
space complexity is for the best one subquadraticOðn1þ�Þ [6].
The approach proposed in this paper belongs to this second
category, and is asymptotically better that the former ones
found in the literature.

1.1 State of the Art on Parallel Multiplier

In his PhD [19], Mastrovito expresses the finite field IF2n

multiplication as a product of an n� nmatrix by a vector. He
gives an algorithm for constructing this n� n matrix, and
shows that trinomials and pentanomials offer efficient
implementations. This approach is used in many other works
concerning multiplication in IF2n [14], [13]. This strategy is
improved by Doche in [4]. He proposes to use redundant
trinomials, when the field cannot be defined by an irreducible
trinomial.

Fan and Hasan [6] compute the product of two field
elements using a matrix-vector product as proposed by
Mastrovito. They propose to use a divide and conquer
approach to perform efficiently this matrix-vector product.
Their method is available for n such that n is a power of
two or three.

As the square operation appears in the addition formulas
of two points of an elliptic curve,1 Massey and Omura [18]
proposed to represent the field in a normal basis. In this case,
the evaluation of the square is reduced to a cyclic shift, but
the multiplication (in an arbitrary normal basis) can be very
costly. In [21], Mullin et al. show that some normal bases can
be optimal for the multiplication. But optimal normal bases
do not exist for every field IF2n . For such a case, the best
known method has been proposed by Fan and Hasan. In [7],
they successfully adapt their method [6] initially proposed
for polynomial representation to optimal normal basis.

The Fan and Hasan’s divide and conquer approach [6], [7]
provides a multiplier for n a power of two or three with
Oðn1:58Þ gates for the space complexity andOðlogðnÞÞ in time.

A new system of representation called the Double
Polynomial System (DPS) is introduced in [16] and [11]. It
is a variant of the polynomial representation inspired from
the adapted bases for the modular arithmetic [2]. They

IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 12, DECEMBER 2010 1585

. J.C. Bajard is with UPMC Paris, LIP6 CNRS, France.

. C. Negre is with DALI/ELIAUS, Université de Perpignan, France.

. T. Plantard is with the University of Wollongong, Australia.

Manuscript received 14 Dec. 2008; revised 16 Oct. 2009; accepted 27 Jan.
2010; published online 10 June 2010.
Recommended for acceptance by P. Montuschi.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-2008-12-0615.
Digital Object Identifier no. 10.1109/TC.2010.141. 1. The exact formula can be found, for example, in [3].

0018-9340/10/$26.00 � 2010 IEEE Published by the IEEE Computer Society

represent the elements in a double polynomial representa-
tion: the field elements are polynomials in two variables �
and � with bounded degrees. In [11], they provide a field
multiplier based on a Montgomery method [20]. One
interest of their system of representation is that it allows
the use of Fast Fourier Transform (FFT) for polynomial
multiplication. The use of FFT is a classical and efficient
approach for polynomial multiplication [9]: this consists in
evaluating the polynomial in roots of unity so as to perform
the multiplication in this Lagrange representation and to
finally get the product using an interpolation.

Until now, this is the best known method. Its space
complexity is roughly 85n1:31 gates (XOR or AND) and its
time complexity is 16 log3ðnÞTX þ TA, where TX and TA
represent, respectively, the delay of an XOR gate and an
AND gate.

1.2 Our Results

In this paper, we focus on some specific DPS, so as to avoid
the use of a Montgomery approach presented in [11] for
reduction. We provide a new method to perform reduction
in these specific DPSs, which is more efficient than
Montgomery approach. We give some original methods for
constructing these DPSs. Following the idea found in [11],
we propose a version of our algorithm using an FFT mixing
DPS and Lagrange representation. Compared to [11], we
avoid several FFT computation and coefficient multiplica-
tions, using the features of our new point of view. Our
resulting multiplier has a space complexity offfi 42n1:31 gates
and a delay of 13 log3ðnÞTX . Moreover, we propose, in
Section 7.1, an efficient squarer that was not provided in [11].

2 THE DOUBLE POLYNOMIAL SYSTEM

One of the most commonly used methods to represent
elements of a binary field consists in using a generating
systemGof IF2n (we note that it is not necessarily a basis). Each
field element is expressed as a sum of the elements of G, and
we represent this element by its coordinates in the system.

Definition 1 (Generating system). A set G ¼ ð�1; . . . ; �kÞ of
k elements of IF2n , with k � n, is a generating system if every
element U of IF2n can be written as:

U ¼
Xk
i¼1

ui�i; with ui 2 f0; 1g: ð1Þ

For each element U 2 IF2n , the vector ðu1; . . . ; ukÞG represents
the coordinates of U in G and is called the representation of U
in G. If k ¼ n, then the generating system is a basis of IF2n ,
and for each U 2 IF2n , the representation of U ¼ ðu1; . . . ; unÞG
is unique.

In the following, we simplify, by often omitting the
subscript ð � ÞG. In a generating system representation, the
addition of two elements U; V 2 IF2n is just a bitwise XOR of
the element coordinates. The multiplication is a little bit
more complex. For each field IF2n , we have to choose the
best generating system to obtain the most efficient
implementation of the multiplication.

2.1 Usual Representation System

The following two systems are the most commonly used for
representing binary fields:

. Polynomial bases are bases of IF2n of the following
form:

B ¼ ð1; �; �2; . . . ; �n�1Þ;

such that � 2 IF2n has a minimal polynomial of
degree n. Mastrovito, in his thesis [19], showed that
these bases are particularly interesting when the
minimal polynomial of � is sparse (e.g., trinomial or
pentanomial). Indeed, in these cases, the reduction
modulo the irreducible polynomial of � is really
simple.

. The normal bases are the bases of IF2n of the following
form:

B ¼ ð�; �2; �4; . . . ; �2n�1Þ:

Clearly, the elements �2i must be linearly inde-
pendent. These bases yield a very simple way for
squaring the elements of IF2n : this is done by a cyclic
shift of the coefficients. For general normal bases, the
multiplication is not really efficient. Vanstone and
coworkers [21] proposed a special family of normal
bases, i.e., so-called optimal normal bases (ONB),
which provide efficient multiplication in IF2n .

The notion of dual basis [8] is sometimes used for
constructing a multiplier. Generally, such approaches are
interesting when the dual basis is constructed over
polynomial bases modulo sparse irreducible polynomials
or over an optimal normal base.

In [11], the authors introduce a new generating system:
the Double Polynomial System.

Definition 2 (DPS [11]). We call Double Polynomial System of
IF2n , a generating system defined by five elements
ð�; r; �;m; pÞ, where �; � 2 IF2n and m; r 2 NN, and p is an
irreducible polynomial which defines IF2n , such that each
element U 2 IF2n can be written as

U ¼
Xm�1

i¼0

Xr�1

j¼0

ui;j�
j�i ðmod pÞ; with ui;j 2 f0; 1g;

or, similarly,

U ¼
Xm�1

i¼0

uið�Þ�i ðmod pÞ with 8i; deg� uið�Þ < r:

Remark 1. We note that the family �j�i, for i ¼ 0; . . . ;m� 1
and j ¼ 0; ::; r� 1 form a generating system G with
k ¼ m� r.

In the following examples, we give two different ways to
check that the DPS is indeed a generating system:

Example 1. Let IF25 ¼ IF2½X�=pðXÞ with p ¼ X5 þX3 þ
X2 þX þ 1, and let � ¼ X; � ¼ 1þX3 þX4. Then, the
system S ¼ ð�; 3; �; 2; pÞ is a DPS. It is indeed equivalent
to the following generating system:

G ¼ ð1; �; �2; �; ��; �2�Þ
¼ ð1; X;X2; 1þX3 þX4; 1þX2 þX3 þX4; 1þX2 þX4Þ:

Let us verify that G generates IF25 . We have to express
an element U 2 IF2n in the system S. We begin from the

1586 IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 12, DECEMBER 2010

following expression of U in the polynomial basis
ð1; X;X2; X3; X4Þ:

U ¼ ~u0 þ ~u1X þ ~u2X
2 þ ~u3X

3 þ ~u4X
4; ð2Þ

U ¼ ~u0 þ ~u1�þ ~u2�
2 þ ~u3�

3 þ ~u4�
4: ð3Þ

We can check that �3 and �4 can be written as follows:

�4 ¼ �2� þ �2 þ 1;

�3 ¼ �2 þ � þ �2�:

Thus, in (2), by replacing �4 and �3 by the previous

expressions, we get:

U ¼ ð~u0 þ ~u4Þ þ ~u1�þ ð~u2 þ ~u3 þ ~u4Þ�2 þ ð~u3Þ�
þ ð0Þ�� þ ð~u3 þ ~u4Þ�2�

¼ u0;0 þ u0;1�þ u0;2�
2 þ u1;0� þ u1;1�� þ u1;2�

2�

¼ u0ð�Þ þ u1ð�Þ�;

where u0ð�Þ ¼ u0;0 þ u0;1�þ u0;2�
2 and u1ð�Þ ¼ u1;0 þ

u1;1�þ u1;2�
2, which proves that S is a generating

system.

Example 2. We use the same field as in Example 1. We

consider � ¼ 1þX and � ¼ 1þX3 þX4. These two

elements satisfy the following equations:

X4 ¼ �2� þ �2 þ � mod p;

X3 ¼ 1þ �2 þ �2� mod p;

X2 ¼ �2 þ 1 mod p;

X1 ¼ �þ 1 mod p;

X0 ¼ 1:

Every U ¼
P4

i¼0 uiX
i 2 IF25 can be expressed in the

system S ¼ ð�; 3; �; 2; pÞ by replacing each Xi in U by

its corresponding expression in S. The corresponding

generating system is

G ¼ ð1; �; �2; �; ��; �2�Þ
¼ ð1; 1þX; 1þX2; 1þX3 þX4; X2; X2 þX3Þ:

At the end of the 1990s, several implementations for

composite fields IF2m�r were proposed by Paar and cow-

orkers [12] and DeWin et al. [5]. They used the fact that

IF2m�r is a field extension of IF2r of degree m. They represent

IF2r with a polynomial basis ð�iÞr�1
i¼0 over IF2 and they

represented IF2r�m using a polynomial basis ð�iÞm�1
i¼0 over

IF2r . The elements of IF2m�r are, in this situation, polynomials

in two variables � and �. The double polynomial system

generalizes this kind of representation for noncomposite

fields IF2n , i.e., with n prime. In this case, a DPS is always

redundant, because m� r must be strictly bigger than n,

when n is prime, to be sure that the representation is

sufficiently large to represent the field. In Section 3, we

propose a DPS class where the reduction and multiplication

are more efficient than in the classical representations.

Remark 2. We note that, in this paper, we do not consider

elements of the field IF2mr , but elements of IF2n coded on

m� r bits, with n < m� r.

3 ADAPTED DPS FOR MULTIPLICATION IN IF2n

This section deals with the multiplication in a DPS of
IF2n . We propose to use a classical approach, where the
multiplication is decomposed in two steps: first, a
polynomial multiplication, and then, a modular reduction.
We consider two elements of IF2n , U ¼

Pm�1
i¼0 uið�Þ�i and

V ¼
Pm�1

i¼0 við�Þ�i, which are expressed in a double poly-
nomial system S ¼ ð�; r; �;m; pÞ. The product W of U and
V can be expressed as:

W ¼ UV ¼
Xm�1

i¼0

Xr�1

j¼0

ui;j�
j�i

 ! Xm�1

i¼0

Xr�1

j¼0

vi;j�
j�i

 !

¼
X2m�2

i¼0

X2r�2

j¼0

wi;j�
j�i:

In this expression, some terms �i�j are such that i � m
or/and j � r. These terms must be reduced to obtain a
representation of this value in the DPS S.

In [11], they define a specific kind of DPS, called
Adapted DPS (ADPS) which provides simple reduction in
�. The reduction in � will be considered in Section 3.2.

Definition 3 (Adapted Double Polynomial Systems [11]).
Let ð�; r; �;m; pÞ be a DPS, we say that ð�; r; �;m; c; pÞ is an
Adapted DPS if � and � verify:

�m ¼ cð�Þ ðmod pÞ;

with c 2 IF2½�� and deg� cð�Þ very small.

In an ADPS, the reduction of the degree in � of W is an
easy process. Hence, the multiplication in an ADPS is
decomposed in three steps: first, we consider the ADPS
representations as polynomials in � with coefficients in
IF2½��, and we multiply these polynomials. Then, we have
two further reduction steps: a first one for reducing this
product modulo ð�m � cð�ÞÞ as a polynomial in �, and a
second one for reducing its coefficients, which are poly-
nomials in �, to a degree lower than r.

The multiplication algorithm is depicted below:

Algorithm 1. Multiplication in an ADPS

(ADPS_Multiplication)

Require: One ADPS ð�; r; �;m; c; pÞ and two elements of

IF2n , U ¼ ðu0ð�Þ; . . . ; um�1ð�ÞÞ and

V ¼ ðv0ð�Þ; . . . ; vm�1ð�ÞÞ.
Ensure: W .

Polynomial multiplication in ðIF2½��Þ½��. Að�Þ Uð�ÞV ð�Þ
Polynomial reduction. Bð�Þ Að�Þ mod ð�m � cð�ÞÞ
(reduction in �)

Coefficients reduction. Wð�Þ CRðBð�ÞÞ (reduction in �)

The two first steps of this algorithm are classical, and we
depict them in a short section where we give the expression
of the obtained polynomials with their degrees in �. We
will present later in Sections 5 and 6 an efficient hardware
architecture which performs these two operations at the
same time, using FFT.

We focus on the “Coefficient reduction” which is the
original part of the algorithm. We show that if there exists a
sparse ADPS representation of �r, it is possible to have an
efficient coefficient reduction.

BAJARD ET AL.: SUBQUADRATIC SPACE COMPLEXITY BINARY FIELD MULTIPLIER USING DOUBLE POLYNOMIAL REPRESENTATION 1587

3.1 Analysis of the First Two Steps

3.1.1 Multiplication of Polynomials in �

The polynomial A is the product of U and V considered as
polynomials in �.

The obtained polynomial A is such that:

Að�Þ ¼ UV ¼
Xm�1

i¼0

uið�Þ�i
 ! Xm�1

j¼0

vjð�Þ�j
 !

¼
X2m�2

i¼0

aið�Þ�i;

where t he aið�Þ are polynomia ls in � : aið�Þ ¼Pi
k¼0 ukð�Þvi�kð�Þ.
Thus, the maximal degree in � of the coefficient of A is

written as:

deg� A ¼ max
0�i�2m�2

max
0�k�i

deg� ukð�Þ þ deg� vi�kð�Þð Þ
� �

� 2r� 2:

ð4Þ

We thus assume that the degree in � of these
coefficients aið�Þ is smaller than or equal to 2r� 2.

3.1.2 Polynomial Reduction in �.

In the second step, the previous result A is reduced
modulo �m � cð�Þ. For this, we decompose A as a
polynomial in �, in two parts, one of degree lower than
m, and one larger than or equal to m:

A ¼
Xm�1

i¼0

aið�Þ�i þ �m
Xm�2

i¼0

amþið�Þ�i:

Thus, we obtain Bð�Þ, which is equal to Að�Þ mod ð�m �
cð�ÞÞ, by replacing �m by cð�Þ:

B ¼
Xm�1

i¼0

aið�Þ�i þ cð�Þ
Xm�2

i¼0

amþið�Þ�i:

If we note a2m�1 ¼ 0, we get:

B ¼
Xm�1

i¼0

bið�Þ�i where bið�Þ ¼ aið�Þ þ cð�Þaiþmð�Þ: ð5Þ

Now, we evaluate the maximal degree in � of the
coefficients of B in (5). Equations (5) and (4) imply that, for
i ¼ 0; . . . ;m� 1, the maximal degree in � of the coefficients
of B satisfies:

deg� B ¼ max
m�1

i¼0
ðdeg� bið�ÞÞ � 2r� 2þ deg� cð�Þ: ð6Þ

Hence, we must reduce the coefficients of B to a degree
smaller than r in the representation obtained in (5) for
obtaining an ADPS representation W equivalent to B.
Coefficients of B are considered as polynomials in � whose
degree must be reduced using some properties of the
considered ADPS. Thus, at the end of the algorithm of
coefficients reduction, we get an expression of W with a
degree in � lower than r.

Remark 3. For the multiplication step, different approaches
can be available depending on the size of m and r: for

example, Karatsuba or Toom-Cook schemes. Then, the
complexity of the polynomial reduction in � is related to
the Hamming weight of cð�Þ. But, we will perform these
two steps using a Fast Fourier Transform approach in
Section 5.

3.2 Coefficient Reduction

Coefficients bið�Þ of B are considered as polynomials in �.
We know that their degrees are smaller than or equal to
2r� 2þ deg� cð�Þ. To obtain an ADPS representation, we
must reduce them to a degree lower than r.

To achieve this goal, we propose to consider Z an ADPS
representation of �r:

�r ¼ Z ¼ z0ð�Þ þ z1ð�Þ� þ � � � þ zm�1ð�Þ�m�1; ð7Þ

where deg� zið�Þ < r.
The reduction process consists in replacing �r by Z

several times and smartly in the expressions of bið�Þ. We
first deal with a special case which works on polynomials B
having a small degree (rþ�) in � called a semireduction
process (� depends on the degree of Z, see Theorem 1).
After that, we will deal with the case of a general B.

3.2.1 The Semireduction Process.

This process is the basic keystone of the coefficient
reduction (Algorithm 3). In this part, we consider B as a
polynomial in � with coefficients in IF2½�� of degree lower
than or equal to rþ�. The output of the semireduction will
be an equivalent polynomial for the ADPS, with coefficients
in IF2½�� of degree lower than or equal to r� 1. We note
�þ 1 to be the part of the degree which will be reduced in
Algorithm 2. Then, the semireduction process constructs
from a polynomial B with coefficients of degree in � smaller
than or equal to rþ�, an equivalent polynomial (ADPS
mean) with coefficients of degree smaller than or equal to
r� 1. The term � depends on Z, i.e., the representation (7)
of �r in the ADPS, and on the degree of cð�Þ.

Algorithm 2 uses representation Z for replacing the
multiplication with �r by one matrix-vector product (that we
will reduce to few additions) by the low coefficient matrixM
defined in the proof of Theorem 1. Hence, this algorithm
computes an expression ofB with a degree in � smaller than
r, i.e., an expression of B in the considered ADPS.

Algorithm 2. SRðR;SÞ, semireduction process

Require: An ADPS S ¼ ð�; r; �;m; cð�Þ; pÞ of a finite field

IF2n , �r ¼ ðz0ð�Þ; . . . ; zm�1ð�ÞÞS with Z ¼
Pm�1

i¼0 zið�Þ�i an

expression of �r in the ADPS, a matrix M defined by (12),

and a vector B ¼ ðb0ð�Þ; . . . ; bm�1ð�ÞÞS with bi 2 IF2½��
and a degree � �þ r.

Ensure: B semireduced.
Define the vectors B and B such that B ¼ Bþ �rB and

deg� B < r

Compute B BþM �B.

Return B

Theorem 1. I f � ¼ ðr� 1� deg� Z � deg� cð�ÞÞ, with
deg� Z ¼ maxm�1

i¼0 deg� zið�Þ, then Algorithm 2 constructs
from a polynomial B of degree smaller or equal to rþ� in �,
an equivalent polynomial (representing the same element of
IF2n) of degree smaller than or equal to r� 1.

1588 IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 12, DECEMBER 2010

Proof. Let us consider an element B ¼
Pm�1

i¼0 bið�Þ�i such
that coefficients bið�Þ have a degree lower than or equal
to rþ�. We split B into two parts B and B, with respect
to the degree in � of its coefficients

B ¼ Bþ �rB; ð8Þ

where

B ¼
Xm�1

i¼0

b0ið�Þ�i with deg� b
0
ið�Þ � r� 1;

B ¼
Xm�1

i¼0

b00i ð�Þ�i with deg� b
00
i ð�Þ � �:

The term B is a polynomial verifying the features
of an ADPS representation and the term B satisfies
deg� B � �. We consider the second term of (8): the
product �rB, which gives the maximal degree in � in
the expression (8) of B. We are going to expand the
product �rB to get an expression with degree in �
smaller than or equal to r� 1.

The product �rB is evaluated, first by replacing B by
this expression. We have

�rB ¼
Xm�1

i¼0

b00i ð�Þ�r�i: ð9Þ

Now, we replace each �r�i by an expression in � and �
with degree in � smaller than r. We get these expressions
by replacing �r by the expression of Z given in (7), and
then, by evaluating the products Z�i modulo �m � cð�Þ:

��r ¼ cð�Þzm�1ð�Þ þ z0ð�Þ� þ z1ð�Þ�2 þ � � �
� � � þ zm�2ð�Þ�m�1;

�2�r ¼ cð�Þzm�2ð�Þ þ cð�Þzm�1ð�Þ� þ z0�
2 þ � � �

� � � þ zm�3ð�Þ�m�1;

..

. ..
.

�m�1�r ¼ cð�Þz1ð�Þ þ cð�Þz2ð�Þ� þ � � �
� � � þ cð�Þzm�1ð�Þ�m�2 þ z0ð�Þ�m�1:

ð10Þ

The expression of �rB can be computed with a matrix-
vector product

�rB ¼ Z �B ¼M �B; ð11Þ

where B is considered as a vector and M is the
m�m matrix whose columns are equal to the
coefficients of �r�i in (10)

M ¼

z0ð�Þ cð�Þzm�1ð�Þ � � � cð�Þz1ð�Þ
z1ð�Þ z0ð�Þ � � � cð�Þz2ð�Þ

..

. ..
.

zm�1ð�Þ zm�2ð�Þ � � � z0ð�Þ

26664
37775: ð12Þ

The maximal degree in � of (11) satisfies:

deg�ðM �BÞ � maxi;j deg� cð�Þzið�Þb00j ð�Þ
� �� �

� deg�ðcð�ÞÞ þ deg�ðZÞ þ�;
ð13Þ

since deg�ðzið�ÞÞ � deg�ðZÞ and deg�ðb00j ð�ÞÞ � �. Now,

using the fact that � ¼ r� 1� deg�ðZÞ � deg�ðcð�ÞÞ,
we get

deg�ðM � BÞ � r� 1:

This means that �rB ¼M �B and BþM �B are both
expressed in the ADPS S ¼ ð�; r; �;m; cð�Þ; pÞ. tu

3.2.2 General Coefficient Reduction Process

The full reduction of B works as follows: we iteratively

apply the SR algorithm to the upper part Q of degree rþ�.

B is split into polynomials R and Q such that B ¼ Rþ �tQ,

where the degree in � of R is smaller than or equal to t� 1,

and that of Q is equal to rþ�. We have deg� B ¼ tþ rþ�.
The degree of B decreases at each step (to tþ r� 1).

After a sufficient number of semireductions, we obtain an

ADPS representation of B. The following lemma gives an

upper bound on the necessary number of calls to Algo-

rithm 2 for a complete reduction to an ADPS representation:

Lemma 1. Let S ¼ ð�; r; �;m; cð�Þ; pÞ be an ADPS of a finite

field IF2n ¼ IF2½X�=ðpÞ and let Z be the expression of �r in

the ADPS (7). We denote by B ¼ ðb0ð�Þ; . . . ; bm�1ð�ÞÞ an

element of IF2½��m, and we set � ¼ r� 1� deg�ðZÞ �
deg� cð�Þ.

If � � 0; i:e:; if r > deg� cð�Þ þ deg�ðZÞ þ 1;

then the number N of calls of the semireduction Algorithm 2 to

obtain an ADPS expression of B is bounded by

N � deg� B� ðr� 1Þ
�þ 1

� �
: ð14Þ

Proof. We decompose B as B ¼ Rþ �tQ, where t ¼
deg� B� ðrþ�Þ is such that deg� R < t and deg� Q ¼
rþ�. Let us show that the reduced value of B,

Rþ �tSRðQÞ, is equal to B modulo p. We have seen

previously that SRðQÞ ¼ Q mod p. This implies that

Rþ �tSRðQÞ ¼ Rþ �tQ ¼ B mod p.
We consider the degree of ðRþ �tSRðQÞÞ. The degree

of SRðQÞ is smaller than r, thus we have

deg�ðRþ �tSRðQÞÞ � tþ r� 1 ¼ deg� B� ð�þ 1Þ:

Consequently, at each call of Algorithm 2, the degree
of B decreases by ð�þ 1Þ > 0 and the value modulo p of
B remains unchanged. After ‘ calls for semireduction, we
obtain a reduced expression B‘ of B such that:

deg� B‘ � deg� B� ‘ð�þ 1Þ:

This means that the number N of calls of Algorithm 2
satisfies

N � deg� B� ðr� 1Þ
�þ 1

� �
:

ut

Corollary 1. If we consider B as the output of the first two steps

of Algorithm 1, then the maximal degree of B is given by (6):

deg� B � 2r� 2þ deg� cð�Þ, and we obtain:

BAJARD ET AL.: SUBQUADRATIC SPACE COMPLEXITY BINARY FIELD MULTIPLIER USING DOUBLE POLYNOMIAL REPRESENTATION 1589

N � r� 1þ deg� cð�Þ
r� deg� Z � deg� cð�Þ

� �
: ð15Þ

In the following table, we give the corresponding upper
bound corresponding to (15) in the specific situation
deg�ðZÞ ¼ 0 (this is the case in practical situations). We
remark that N remains small even for quite a big value of
deg�ðcÞ.

According to Lemma 1, as ð�þ 1Þ increases, the speed of
the coefficient reduction process increases, i.e., when the
degrees in � of cð�Þ and Z decrease. Indeed, in this case, the
right part of (14) is smaller. In Section 4, we will study some
special ADPS for which cð�Þ and Z have a low degree in �.

Now, we introduce the full algorithm for coefficient
reduction.

Algorithm 3. CRðBÞ, Coefficient Reduction

Require: An ADPS S ¼ ð�; r; �;m; cð�Þ; pÞ of a finite field

IF2n ¼ IF2½X�=ðpðXÞÞ, the expression Z ¼ ðz0; . . . ; zm�1Þ of

�r in the system S, such that the degrees in � of Z and

cð�Þ satisfy � ¼ r� 1� deg� Z � deg� cð�Þ � 0, and a

vector B ¼ ðb0; . . . ; bm�1Þ with entries in IF2½�� (which

represents the coefficients of the polynomial B in �).
Ensure: W the reduced expression in � of B.

W B

k deg� W

while k � r do

t maxðk� ðrþ�Þ; 0Þ
We define Q and R such that: W ¼ Q�t þR
W SRðQÞ�t þR
k deg� W

end while

4 CONSTRUCTION OF ADPS

For practical use of Algorithm 1, we need ADPS with sparse
cð�Þ and sparse zið�Þ. Indeed, the first step of Algorithm 1 is
a classical polynomial multiplication, and the two steps of
reduction depend on the Hamming weight of cð�Þ and zið�Þ.

In this section, we present two methods for constructing
an ADPS of IF2n which satisfies these conditions. Our
methods are consequences of the following result:

Lemma 2. Let IF2n ¼ IF½X�=ðpðXÞÞ and �; � 2 IF2n which
satisfy

�m ¼ cð�Þ;

�r ¼
Xm�1

i¼0

zið�Þ�i:
ð16Þ

If X can be expressed as

X ¼
Xr�1

i¼0

Xm�1

j¼0

xi�
i�j; with xi 2 f0; 1g;

and if � ¼ r� 1� deg�ðZÞ � deg� cð�Þ > 0, then the sys-
tem G ¼ ð�i�jÞ0�i<r;0�j<m is a generating system of IF2n .

Proof. We have to show that each element of IF2n ¼
IF½X�=ðpðXÞÞ admits a representation in G. Let us first
show that Xi for i � 0 can be expressed in G. We prove it
by induction on i. This is clearly true for i ¼ 0 and 1.
Suppose it is true for i and let us show it for iþ 1. Since
Xiþ1 ¼ XiX and S ¼ ð�; r; �;m; c; pÞ satisfy the condition
of Lemma 1, we can apply Algorithm 1 to compute this
product. The result is a representation of Xiþ1 in G.

Let U be an arbitrary element of IF2n . By construction
of IF2n , U can be expressed as

U ¼
Xn�1

i¼0

uiX
i: ð17Þ

Now, if we replace in (17) each Xi by its correspond-
ing representation in G, we get the required representa-
tion of U in G. tu

We now give two methods to construct such pðXÞ, �, �.
The first method focuses on the case � ¼ X, i.e., p is the
minimal polynomial of �. The second one deals with � ¼ X,
i.e., p is the minimal polynomial of �.

4.1 Construction of the Minimal Polynomial of �

In this first approach, we propose a construction of the
polynomial p such that pð�Þ ¼ 0 using specific cð�Þ. The
proposition below summarizes the main idea of this section.

Proposition 1. Let m; r be two integers and p be an
irreducible factor of RðXÞ ¼ Xmr þ

Pm�1
i¼0 ziðXmÞXi, where

deg ziðXÞ < r. Then, in IF2n ¼ IF2½X�=ðpÞ, the elements
� ¼ X and � ¼ �m satisfy

�m ¼ �; ð18Þ

�r ¼
Xm�1

i¼0

zið�Þ�i: ð19Þ

Proposition 2. Let m; r be two integers and p be an irreducible
factor of

RðXÞ ¼ ðXm þ 1Þr þ
Xm�1

i¼0

ziðXm þ 1ÞXi;

where deg ziðXÞ < r. Then, in IF2n ¼ IF2½X�=ðpÞ, the elements
� ¼ X and � ¼ �m þ 1 satisfy

�m ¼ �þ 1 and �r ¼
Xm�1

i¼0

zið�Þ�i:

Proof. In Proposition 1, (18) is a direct consequence of the
definition of �. For (19), we know that

Rð�Þ ¼ 0 mod p:

If we replace zið�mÞ by zið�Þ, we get the required (19).
Thus, Proposition 1 is proved.

The proof of Proposition 2 can be tackled in the
same way. tu

1590 IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 12, DECEMBER 2010

To have an efficient step 3 in Algorithm 1, we must
consider an ADPS providing a sparse expansion of �r. In
this case, the matrix M is sparse, and its coefficients are
small. In particular, under the additional condition
deg� Z ¼ 0 (Z is defined in (7)), we note that the ADPS
given by the previous proposition provides a very efficient
reduction process; indeed, according to Lemma 1, the
number of calls of the semireduction algorithm is equal to
d r
r�1e ¼ 2 (deg� c ¼ 1 in Propositions 1 and 2).

This construction requires a factorization of a polynomial
RðXÞ. This computation is only done once a time, during
the construction of the field and the ADPS. This factoriza-
tion can be done efficiently using different algorithms
depicted in [10, chap. 14]. These methods have a polynomial
complexity in the degree [10, p. 380], and thus are efficient
for quite big n.

We give here one example, where we construct an ADPS
for IF219 using Proposition 2.

Example 3. We consider here the finite field IF213 . For m ¼ 3
and r ¼ 5, we determine Z such that zi is a constant equal
to 0 or 1, and such that the polynomial ðXm þ 1Þr �Pm�1

i¼1 ziX
i admits an irreducible factorP�ðXÞ of degree 13

ðX3 þ 1Þ5 þX þ 1 ¼ ðX2 þXÞðX13 þX12 þX11 þX þ 1Þ:
ð20Þ

Hence, IF213 ¼ IF2½X�=ðP�ðXÞÞ is defined. According to
the fact that � verifies ð�3 þ 1Þ5 ¼ �2 þ 1, and that
� ¼ �3 þ 1, by the system S ¼ ð�; 5; �; 3; P�Þ such that:

�3 ¼ �þ 1;

�5 ¼ � þ 1 ði:e:; deg� Z ¼ 0Þ:
}

4.2 Construction of the Minimal Polynomial of �

For a more general cð�Þ (always with a very small degree),
we have not been able to find a similar construction to
Proposition 1. Thus, we propose to construct the irreduci-
ble polynomial p in the case � ¼ X and the following
equations hold:

�m ¼ cð�Þ; ð21Þ

�r ¼
Xm�1

i¼0

zið�Þ�i: ð22Þ

If we multiply successively (22) by �i for i ¼ 0; . . . ; m� 1
and reduce it relatively to � using (21), we obtain the
following equations:

ð�r þ z0ð�ÞÞ þ z1ð�Þ� þ � � �
� � � þ zm�1ð�Þ�m�1 ¼ 0;

cð�Þzm�1ð�Þ þ ð�r þ z0ð�ÞÞ� þ z1ð�Þ�2 þ � � �
� � � þ zm�2ð�Þ�m�1 ¼ 0;

cð�Þzm�2ð�Þ þ cð�Þzm�1ð�Þ� þ � � �
� � � þ zm�3ð�Þ�m�1 ¼ 0;

..

. ..
.

cð�Þz1ð�Þ þ cð�Þz2ð�Þ� þ � � �
� � � þ cð�Þzm�1ð�Þ�m�2 þ ð�r þ z0ð�ÞÞ�m�1 ¼ 0:

ð23Þ

We note that any linear combination over IF2½�� of the

above equations is equal to zero. In other words, if we

define the matrix MðXÞ with coefficients in IF2½X� as

follows:

MðXÞ ¼

z0ðXÞ cðXÞzm�1ðXÞ � � � cðXÞz1ðXÞ
z1ðXÞ z0ðXÞ � � � cðXÞz2ðXÞ

..

. ..
.

zm�1ðXÞ zm�2ðXÞ � � � z0ðXÞ

26664
37775;
ð24Þ

and then, if I denotes the m�m identity matrix, for every

U ¼ ðu0ð�Þ; . . . ; um�1ð�ÞÞ with uið�Þ 2 IF2½��, we have

ð�rI �Mð�ÞÞ � U ¼ 0. This implies that � is a root of

detðXrI �MðXÞÞ ¼ 0: ð25Þ

The polynomial p can thus be taken as a factor of

detðXrI �MðXÞÞ. Knowing p, we construct IF2n as IF2n ¼
IF2½X�=ðpÞ and � ¼ X. Since � is a root of the two

polynomials Y m þ cð�Þ and �r þ
Pm�1

i¼0 zið�ÞY i of IF2n ½Y �,
we find the expression of � in IF2n by computing

gcdðY m þ cð�Þ; �r þ
Xr�1

i¼0

zið�ÞY iÞ;

which must have Y � � as factor.

Proposition 3. If we consider � ¼ X and � a root of

gcdðY m þ cð�Þ; �r þ
Pr�1

i¼0 zið�ÞY iÞ, with a polynomial p

factor of detðXrI �MðXÞÞ, where MðXÞ is defined as in

(24), then, � and � satisfy:

�m ¼ cð�Þ; ð26Þ

�r ¼
Xm�1

i¼0

zið�Þ�i; ð27Þ

and they define an ADPS over IF2½X�=ðpðXÞÞ.
Example 4. We consider here the case m ¼ 5; r ¼ 4 and we

look for a field IF2n and two elements �; � 2 IF2n such that

�5 ¼ �2 þ �þ 1 and �4 ¼ �4 þ �3 þ �2:

As explained above, we first compute the matrixMðXÞ

MðXÞ ¼

1 0 0 X2 þX þ 1 X2 þX þ 1
1 1 0 0 X2 þX þ 1
1 1 1 0 0
0 1 1 1 0
0 0 1 1 1

266664
377775:

Now we find pðXÞ ¼ X13 þX12 þX8 þX7 þX6 þX3 þ 1

such that:

pðXÞ j detðXr þMðXÞÞ:

Then, we can choose n ¼ 13, with IF213 ¼ IF2½X�=ðpÞ and

� ¼ X.
We compute � by determining the great common

d i v i s o r : gcdðY m þ �2 þ �þ 1; �4 þ Y 2 þ Y 3 þ Y 2Þ ¼
ðY � �Þ. This gives � ¼ 1þ �þ �3 þ �4 þ �5 þ �6 þ
�7 þ �9. }

BAJARD ET AL.: SUBQUADRATIC SPACE COMPLEXITY BINARY FIELD MULTIPLIER USING DOUBLE POLYNOMIAL REPRESENTATION 1591

Remark 4. We conjecture that it is possible for every binary
field to find an ADPS providing an efficient reduction
process, and thus, an efficient multiplication.

Remark 5. Proposition 3 can easily be extended for � 6¼ X.

5 IMPROVED ADPS MULTIPLIER USING LAGRANGE

REPRESENTATION

In Section 3, we gave a general form for ADPS multi-
plication. In this section, we study a modified version of
Algorithm 1, using the FFT/Lagrange approach presented
in [11]. It is based on the following remark: let �ð�Þ be a
polynomial satisfying deg� �ð�Þ > ð2r� 2Þ þ deg� cð�Þ; the
two first steps of Algorithm 1 can be done through

B UV mod ð�m � cð�Þ; �ð�ÞÞ:

Performing the operations modulo ð�m � cð�Þ; �ð�ÞÞ means
that we reduceUV in �modulo �m � cð�Þ and that we reduce
the result in �modulo �ð�Þ. Indeed, in Algorithm 1, we have
deg�ðUV mod ð�m � cð�ÞÞ � 2r� 2þ deg� cð�Þ (see formu-
la 6); thus, if we reduce UV mod ð�m � cð�Þmodulo �ð�Þ, we
do not change it. If we denoteR ¼ IF2½��=ð�ð�ÞÞ, the product
UV is a product of polynomials in R½�� modulo �m � cð�Þ.
The strategy in [11] was to choose �ð�Þ such that this product
is easy to compute. We first state some background on
Lagrange Representation.

5.1 Lagrange Representation

LetR be a ring andR½�� be the polynomial ring overR. The
Lagrange representation of a polynomial of degree ðm� 1Þ
in R½�� is given by its values at m distinct points [17]. For
us, these m points will be the roots �i 2 R of a polynomial
E ¼

Qm�1
i¼0 ð� � �iÞ 2 R½��. From an arithmetic point of view,

this is related to the Chinese Remainder Theorem which
asserts that the following application is an isomorphism:

R½��=ðEð�ÞÞg�! Ym�1

i¼0

R½��=ð� � �iÞ;

A 7! ðA mod ð� � �iÞÞi2f0;...;m�1g:

ð28Þ

The computation of Amod ð� � �iÞ is simply the compu-
tation of Að�iÞ. In other words, the image of Að�Þ by the
isomorphism (28) is nothing else than the multipoints
evaluation of A at the roots of E. This fact motivates the
following Lagrange representation of the polynomials:

Definition 4 (Lagrange representation [17]). Let A 2 R½��
with degA < m, and �0; . . . ; �m�1 be the m distinct roots of a
polynomial Eð�Þ

Eð�Þ ¼
Ym�1

i¼0

ð� � �iÞ:

If ai ¼ Að�iÞ for 0 � i � m� 1, the Lagrange representation
(LR) of Að�Þ is defined by �A ¼ ða0; . . . ; am�1Þ.

Lagrange representation is advantageous to perform
operations modulo E; this is a consequence of the Chinese
Remainder Theorem. Specifically, the arithmetic modulo E
in classical polynomial representation can be costly if E has
a high degree. In LR, the arithmetic is decomposed into

m independent arithmetic units, with each unit performing
arithmetic modulo a very simple polynomial ð� � �iÞ.
Furthermore, arithmetic modulo ð� � �iÞ is the arithmetic
in R since the product of two zero-degree polynomials is
just the product of the two constant coefficients.

5.2 Multiplication Using Lagrange Representation

Let us see how to use Lagrange representation to perform
the product

Uð�ÞV ð�Þ mod ð�m � cð�Þ; �ð�ÞÞ:

This is the case if the polynomial Eð�Þ ¼ �m � cð�Þ splits
modulo �ð�Þ:

Eð�Þ ¼
Ym�1

i¼0

ð� � �iÞmod �ð�Þ:

We obtain Algorithm 4 which results from this previous
remark.

Algorithm 4. ADPS-LR Multiplication.

Require: U; V expressed trough an ADPS B ¼ ð�; r; �;m; pÞ.
Ensure: R in B such that R ¼ UV in IF2n

�U ConvertADPS!LRðUÞ
�V ConvertADPS!LRðV Þ
�B �U � �V

B ConvertLR!ADPSð �BÞ
W CRðBÞ, (Algorithm 3)

The first two steps consist in computing the Lagrange
representation of U and V from their ADPS representation.
These two operations can be done in parallel.

The operations to compute �B are performed in Lagrange
representation, and then, can be easily parallelized as
m independent multiplications in IF2½��=ð�ð�ÞÞ. The opera-
tion ConvertLR!ADPSð �BÞ refers to conversion from La-
grange representation to ADPS representation. The
resulting B is thus equal to U � V mod �n � cð�Þ. To get
W , we have to just apply the coefficient reduction process
(Algorithm 3).

We thus need to perform the conversions LR$ ADPS
efficiently.

5.3 Conversion LR$ ADPS

An efficient implementation of conversions between
Lagrange representations modulo �ð�Þ and ADPS repre-
sentation relies on the binomial form of Eð�Þ ¼ �m � cð�Þ.
As stated in the following lemma, in this situation the
roots of E have a special form:

Lemma 3. Let R ¼ IF2½��=ð�ð�ÞÞ be such that �ð�Þ is
irreducible (i.e., R is a field) and let E ¼ �m � cð�Þ be a
binomial polynomial which splits totally in R½��

Eð�Þ ¼
Ym�1

i¼0

ð� � �iÞ; �i 2 R;

and such that the �i are pairwise distinct. Then, there exists
! 2 R, a primitive mth root of unity, and an element � 2 R
such that after reordering the �i

�i ¼ �!i:

1592 IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 12, DECEMBER 2010

Proof. We fix � ¼ �0 (i.e., � is a root of E, as every �i). Since,
R is a field, ��1 exists. We claim that the m distinct
elements �i=� are m roots of unity. Indeed, we get:

ð�i=�Þm ¼ ð�iÞm=�m ¼ cð�Þ=cð�Þ ¼ 1;

since � and �i are roots of E. Moreover, since there are
m distinct roots of unity inR and �ð�Þ is irreducible, one
of these roots must be a primitive mth root of unity. We
call it !. We can reorder the �i to get �i=� ¼ !i which
gives �i ¼ �!i as announced in the lemma. tu
Using this form of the roots of E, we can perform the

multipoint evaluation of the polynomial Að�Þ in �i (which
corresponds to compute �A, the Lagrange representation of
A) as follows:

1. set eAð�Þ ¼ Að��Þ ¼Pm�1
i¼0 ai�

i�i,
2. compute �A ¼ DFT�ð eA;m; !Þ,

where DFT�ð eA;m; !Þ is the evaluation of the polynomial eA
in the mth roots of unity !i for i ¼ 0; . . . ;m� 1. Similarly,
the Lagrange interpolation, which computes Að�Þ from �A,
can be done by reversing the previous process.

Hence, the operations ConvertPol!LR and ConvertLR!Pol
have both a cost of m multiplications modulo � and one
Discrete Fourier Transform. This last operation can be done
efficiently by using FFT algorithm [9, Section 8.2].

5.4 Hardware Architecture for FFT

We present an architecture to perform the FFT computation of
a polynomialAð�Þ 2 R½�� of degree ðm� 1Þ, keeping in mind
our targeted Lagrange conversion. Note that the FFT process
needs to be performed using the ternary method, since the
binary one is not feasible over characteristic two rings [22].
Thus, in this section, we focus on the ringR ¼ IF2½��=ð�ð�ÞÞ,
where �ð�Þ ¼ �2�=3 þ ��=3 þ 1, � is a multiple of m, and
m ¼ 3s. Hence, we have � ¼ 	m.

Remark 6. We remind that one condition on �ð�Þ is that its
degree is greater than or equal to 2r� 1þ deg cð�Þ
(formula 6). Thus, when deg�ð�Þ ¼ 2�=3, this means
that r satisfies

r � �=3þ 1� deg cð�Þ: ð29Þ

For efficiency reasons, r should be close to this upper
bound.

Let ! ¼ �	 be a primitive mth root of unity2 in
IF2½��=ð�ð�ÞÞ and let
 ¼ !m=3 be a third root of unity. The
ternary FFT process is based on the following three-way
splitting of A:

A1 ¼
Xm=3�1

j¼0

a3j�
3j;

A2 ¼
Xm=3�1

j¼0

a3jþ1�
3j;

A3 ¼
Xm=3�1

j¼0

a3jþ2�
3j;

such that A ¼ A1 þ �A2 þ �2A3.

Let bA½i� ¼ Að!iÞ be the ith coefficient of DFT�ðA;m; !Þ.
Let us also denote by Â1½i� ¼ A1ð!3iÞ; Â2½i� ¼ A2ð!3iÞ, and
Â3½i� ¼ A3ð!3iÞ the coefficients of the DFT of order m=3 of,
respectively, A1; A2, and A3 (remind that !3 is an m=3 root
of unity).

The following relations can be obtained by evaluating
A ¼ A1 þ �A2 þ �2A3 in !i; !iþm=3, and !iþ2m=3:

Â½i� ¼ Â1½i� þ !iÂ2½i� þ !2iÂ3½i�;
Â½iþm=3� ¼ Â1½i� þ
!iÂ2½i� þ
2!2iÂ3½i�;
Â½iþ 2m=3� ¼ Â1½i� þ
2!iÂ2½i� þ
!2iÂ3½i�:

ð30Þ

This operation is frequently called the butterfly opera-
tion. It can be performed efficiently, if we compute
modulo �ð�Þð��=3 þ 1Þ ¼ �� þ 1 instead of �ð�Þ. Indeed,
in this case, ! ¼ �	 and a multiplication að�Þ � !i modulo
�� þ 1 is a simple cyclic shift. The butterfly circuit (Fig. 1)
is a consequence of this remark and of the relations given
in (30).

In Fig. 1, the blocks noted 	 refer to a simple shift
operation by the given value and the

L
blocks refer to

XOR operator. When no value is given, then shift operation
is not performed.

Within the FFT, the computations of Â1; Â2, and Â3 are
done recursively in the same way. These polynomials are
split in three parts and butterfly operations are applied
again. This process is done recursively until constant
polynomials are reached.

If we entirely develop this recursive process, we obtain
the schematized architecture in Fig. 2.

Let us now evaluate the complexity of this architecture. It
is composed of log3ðmÞ stages, where each stage consists ofm
operations in a butterfly way. Each of these operations
requires 2� XOR gates, and has a delay of 2TX, where TX is
the delay of one XOR gate. The final reduction of the
coefficients modulo �ð�Þ requires 2

3 �mXOR for a delay of TX.
Consequently, this architecture has a space complexity of

SðFFT�ð�ÞÞ ¼ 2�m log3ðmÞ þ
2

3
�m

� �
XOR ð31Þ

and a delay of

DðFFT�ð�ÞÞ ¼ ð2 log3ðmÞ þ 1ÞTX: ð32Þ

6 ARCHITECTURE AND COMPLEXITY

We now present a parallel architecture associated to
Algorithm 4 in the special case where �ð�Þ ¼ �2�=3 þ
��=3 þ 1. This choice allows us to use the FFT circuit

BAJARD ET AL.: SUBQUADRATIC SPACE COMPLEXITY BINARY FIELD MULTIPLIER USING DOUBLE POLYNOMIAL REPRESENTATION 1593

Fig. 1. Ternary butterfly operator.

2. We note that �ð�Þð��=3 þ 1Þ ¼ �� þ 1 ¼ 0 over IF2½��=ð�ð�ÞÞ.

presented in the previous section. The architecture of our

binary field multiplier is given in Fig. 3. It is constituted of

FFT blocks, multipliers modulo �ð�Þ (referenced by Mult�)

and coefficient reduction block (referenced by CoeffRed).

As much as possible, all the computations are parallelized.

6.1 Complexity Evaluation of Each Block

We now evaluate the complexity of this architecture block

by block.

. Complexity of Mult� blocks. Since we consider �ð�Þ ¼
�2�=3 þ ��=3 þ 1 and � ¼ 	m ¼ 	3s, if � is a power of
three, then we can use the multiplier of Fan and
Hasan [6] to perform multiplication modulo �. The
complexity (cf. Table 1) of these blocks is easily
deduced from [6, Table 1].

. Complexity of FFT blocks. The FFT blocks are designed
using the ternary method presented in the previous
section. Therefore, their complexities are given in
(31) and (32).

. Complexity of CoeffRed blocks. Recall that the
coefficient reduction is performed (Algorithm 3)
by computing

W SRðQÞ�t þR

N times, where (see Lemma 1)

N � r� 1þ deg� cð�Þ
r� deg� Z � deg� cð�Þ

� �
:

At each time, to compute W we need only to
compute SRðQÞ, and no more operation is needed
since deg�ðSRðQÞ�tÞ � t and deg�ðRÞ < t. Conse-
quently, the corresponding architecture of the
coefficient reduction consists of N circuits perform-
ing a semireduction.

The semireduction process (Algorithm 2) consists
of the following operation:

B BþM �B;

where B is such that degB � rþ� and B < r and
B < �. The matrix M is as follows:

z0ð�Þ cð�Þzm�1ð�Þ � � � cð�Þz1ð�Þ
z1ð�Þ z0ð�Þ � � � cð�Þz2ð�Þ

..

. ..
.

zm�1ð�Þ zm�2ð�Þ � � � z0ð�Þ

26664
37775:

The complexity of the semireduction is thus related
to Z, the ADPS representation of �r, and to cð�Þ
(cf. Section 3.2). We assume here that Z is sparse as
polynomial in� and has degree 0 in�. We also assume
that deg� cð�Þ is small relatively to r. Consequently, in
the matrix M, the zi are equal to 0 or 1 and the matrix
coefficients are equal to 1, to cð�Þ, or to 0. Thus, for
computing the matrix vector product M �B, we first
compute cð�Þbið�Þ for i ¼ 1; . . . ;m� 1, then, for each
row of the matrix M, we add at most HWðZÞ
coefficients of fcð�Þbið�Þ; i ¼ 1; . . . ;m� 1g [fbið�Þ;
i ¼ 0; . . . ;m� 1g, where HWðZÞ is the number of
zið�Þ 6¼ 0. We obtain the complexity of the resulting
architecture in Table 2.

The architecture for the multiplication by cð�Þ
corresponds to the parallel binary tree of XOR, and
no AND gates are needed since cð�Þ is a constant.
We, finally, can deduce the complexity of the
CoeffRed architecture, it is just N times the complex-
ity of the semireduction architecture.

1594 IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 12, DECEMBER 2010

Fig. 3. DPS-Lagrange Multiplier.

TABLE 1
Complexity of Multipliers Modulo �

Fig. 2. Ternary FFT circuit.

TABLE 2
SR Complexity

6.2 Overall Complexity of the Multiplier

We deduce the overall complexity of our multiplier (Table 4).
We first give the number of operating blocks. Their
corresponding space complexity is denoted by S, and their
time complexity is denoted byD. Thus, the space complexity
is given by:

ð4m� 3ÞSðMul�Þ þ 3SðFFT�Þ þ SðCoeffRedÞ:

Similarly, the critical path of this architecture gives the
delay of our multiplier:

3DðMul�Þ þ 2DðFFT�Þ þ DðCoeffRedÞ:

With the previous expression of the complexity of FFT
block ((31) and (32)), RedCoeff (Table 2), andMult� (Table 1),
we find the space complexity in terms of the number of XOR
and AND gates.

6.2.1 Asymptotic Complexity in n

In this part, we consider that � ¼ m which is a correct
asymptotic assumption that simplifies the formulations. In
order to construct a DPS-FFT multiplier, we must have n �
rm and r � m=3, where n is the degree of the field IF2n . This
implies that n � m2=3, and the best n are such that
m ffi

ffiffiffiffiffiffi
3n
p

. In Table 3, we give the complexity for this case
(we suppose that HWðZÞ � 3 and deg� cð�Þ � 6 and N � 2,
which corresponds to practical situations).

We also give in Table 3 the complexity of the best known
method, regarding space and time complexity, to perform
binary field multiplication. Specifically, we give the com-
plexity of the multiplier of [11], which has asymptotically
the smaller space complexity. We also give the complexity of
[6], which is better than [11] for smaller field. We do not give
the complexity of [23] and [1], which also present subqua-
dratic space complexity multipliers, since their complexities
are worse than [6].

We can remark that our approach has a space complexity
with the same order as [11], i.e., Oðn1:31Þ. But we improve by
33 percent. Our multiplier is also 18 percent faster than the
multiplier of [11].

The multiplier of Fan and Hasan has space complexity
with order Oðn1:56Þ but it is, in general, faster than our

multiplier. But, the Fan-Hasan approach is available only

when n is a power of two or three. Our method is more

general and is available for all n.
In Table 5, we give for different field sizes, a correspond-

ing ADPS. We constructed such ADPS using the method of

Section 4.2. These ADPSs admit an FFT multiplier. We do

not give the polynomial pðXÞ, which defines the field, but it

can be recovered by factoring the determinant given in (25).

In each field, � satisfies pð�Þ ¼ 0.
In this table, we also give the corresponding complexity

of DPS-FFT multiplier and Fan-Hasan multiplier using the

formulas of Table 3. We can see that our multiplier

becomes better than the Fan-Hasan multiplier around

3,000 bits. This is due to the constant factor in n1:31. We

could get better complexity if we could improve the

multiplication by the constant �i and ��i. We point out,

even if the given examples do not show it, that our method

is available for field size recommended by NIST [3].

7 OTHER OPERATIONS

For a practical use of ADPS multiplication, some additional

operations could be necessary like conversion to classical

polynomial systems, testing the equality of two elements,

squaring, inversion, etc. We present here several methods to

perform these operations.

7.1 Squaring

Let U be an element expressed in an ADPS system S ¼
ð�; r; �;m; c; pÞ as U ¼

Pm�1
i¼0

Pr�1
j¼0 ui;j�

j�iðmod pÞ, with

ui;j 2 f0; 1g. To compute A ¼ U2, we use the well-known

property which states that the squaring of polynomial in

IF2½�; �� consists in just multiplying the exponents by two

U2 ¼
Xm�1

i¼0

Xr�1

j¼0

ui;j�
2j�2i ðmod pÞ:

This computation is free of computation. After that, we

just have to perform a reduction modulo �n � cð�Þ, and

then, a reduction of the coefficients to have the ADPS

representation of U2.

Algorithm 5. ADPS squaring

Require: One ADPS ð�; r; �;m; c; pÞ and one element of IF2n ,

U ¼ ðu0ð�Þ; . . . ; um�1ð�ÞÞ
Ensure: W .

Polynomial squaring in ðIF2½��Þ½��.
Að�Þ

Pm�1
i¼0

Pr�1
j¼0 ui;j�

2j�2i

Polynomial reduction. Bð�Þ Að�Þ mod ð�m � cð�ÞÞ
Coefficients reduction. Wð�Þ CRðBð�ÞÞ

BAJARD ET AL.: SUBQUADRATIC SPACE COMPLEXITY BINARY FIELD MULTIPLIER USING DOUBLE POLYNOMIAL REPRESENTATION 1595

TABLE 3
Complexity Comparison of Multiplication in GF ð2nÞ

FH
 ¼ [6], where for binary n ¼ 2t, for ternary n ¼ 3t.

TABLE 4
Complexity of DPS-FFT Architecture

We can directly implement this algorithm in hardware

in the special case of ADPS given in Section 4. The

corresponding space complexity is equal to the space

complexity of the reduction modulo �m � cð�Þ plus the

complexity of RedCoeff.

. Complexity of Polynomial reduction. For the reduction
modulo �m � cð�Þ, we have m=2 multiplications by
cð�Þ, and, at most m=2 additions of coefficients of
degree 2r� 2. A multiplication by cð�Þ has a cost in
space of ðdeg cð�ÞÞð2r� 1Þ XOR gates and a cost in
time of log2ðdeg cð�ÞÞTX .

. Complexity of coefficient reduction. We have already
evaluated this cost in the previous section, and it is
given in Table 2.

The resulting cost of the squarer is equal to

ðNmrðHWðZÞ � 1Þ þ ðNðm� 1Þr
þm=2ð2r� 1Þðdeg cð�ÞÞ þm=2ð2r� 1ÞÞ

XOR for the space complexity and Nðlog2ðHW ðZÞÞ þ
ðN þ 1Þ log2ðdeg cð�Þ þ 1ÞTX in time. When deg� cð�Þ and

HWðZÞ are small, i.e., of order Oð1Þ, the space complexity

is OðrmÞ XOR and the time complexity is equal to Oð1ÞTX.

7.2 Conversion between ADPS to Standard
Polynomial

Let us represent an element expressed in an ADPS S as

US ¼
Pm�1

i¼0

Pr�1
j¼0 ui;j�

i�j. We get its standard polynomial

representation by replacing each �i�j by their correspond-

ing standard polynomial expression �ðXÞ and �ðXÞ

U ¼
Xn
i¼0

ui;j�ðXÞj�ðXÞi mod p:

We can perform this using a precomputed expression of

�ðXÞi�ðXÞj mod p since these elements are constant. This

strategy requires mr additions of degree n polynomial.
For the reverse conversion, i.e., from standard poly-

nomial to ADPS, we use an ADPS representation of X

XS ¼
Xr�1

i¼0

Xm�1

j¼0

xi;j�
i�j:

Let UðXÞ be an element of IF2n in standard polynomial

representation. We compute US by substituting X by XS in

UðXÞ. This method is developed in Algorithm 3.
The complexity of this method is equal to n calls of

Algorithm 1.

Algorithm 6. Conversion from polynomial to ADPS

Require: A degree n� 1 polynomial UðXÞ in X.

Ensure: USðXÞ the representation of U in S.

US 0

for i ¼ n� 1 to 0 do

US ui þADPS MultiplicationðXS ; USÞ,
(Algorithm 1)

end for

7.3 Comparison of Elements

An ADPS is, in general, a redundant system. This means
that a field element U can have different representations in
this system. Consequently, the following question can occur
during a computation: let US and VS be two elements
expressed in S, are they equal? US and VS could be two
different DPS representations of one unique field element.

For equality, we consider a basis extracted from S.
Indeed, from linear algebra theory, we can extract a basis
from each generating system of a vector space. Let

B ¼ �i1�j1 ; . . . ; �in�jn
	

be a basis extracted from an ADPS S. In this basis, each
element in IF2n has a unique expression. Specifically, for
�i�j such that ði; jÞ 62 fði1; j1Þ; . . . ; ðin; jnÞg, we have

�i�j ¼
Xn
k¼1

�
ði;jÞ
k �ik�jk :

To get a representation of an element U in B, we just have
to replace �i�j by their corresponding expression in B in the
DPS representation of U . Consequently, U is equal to V if
the representation of U � V in B is equal to 0.

7.4 Inversion

We do not know any method exploiting ADPS representa-
tion really efficiently. We mention here two methods. The
first one uses the classical exponentiation method based on
Fermat theorem. Using a square and multiply method, we
compute U�1 ¼ U2n�2.

The second method uses extended euclidean algorithm
in standard polynomial multiplication. Specifically, if we
have conversion operator, one can compute inversion of an
element U as follows:

. Convert U expressed in ADPS to standard poly-
nomial UðXÞ.

. Compute the inverse U�1 of U modulo pðXÞ using
the extended euclidean algorithm.

. Convert U�1 to the ADPS.

1596 IEEE TRANSACTIONS ON COMPUTERS, VOL. 59, NO. 12, DECEMBER 2010

TABLE 5
LR-ADPS Examples

8 CONCLUSION

We have presented in this paper a new multiplication

algorithm in the double polynomial system presented in

[11]. We use a different approach for coefficient reduction.

Specifically, using a sparse ADPS representation of �r, the

coefficient reduction becomes really simple and efficient.

We avoid one multiplication used in the Montgomery

strategy of [11]. We also give some method to construct

ADPS which admits a sparse �r. We give also algorithm for

other operations: e.g., squaring, comparison, etc.
We have presented an architecture for this algorithm

using the Lagrange and FFT approach. The resulting

architecture is better than the multiplier of [11] by 33 percent

in space and 18 percent in time. ADPS offers an interesting

alternative to other approaches (see Table 3), with a

complexity close to best known methods without restriction

on n. We compare our approach with the best known

subquadratic multiplier for small field: the multiplier of Fan

and Hasan [6]. We show that our multiplier is asymptoti-

cally better than Fan and Hasan, and in practical uses, this

is true when 243 < n � 673.

REFERENCES

[1] J.-C. Bajard, L. Imbert, and G.A. Jullien, “Parallel Montgomery
Multiplication in GF(2k) Using Trinomial Residue Arithmetic,”
Proc. IEEE Symp. Computer Arithmetic (ARITH ’05), pp. 164-171,
2005.

[2] J.-C. Bajard, L. Imbert, and T. Plantard, “Modular Number
Systems: Beyong the Mersenne Family,” Proc. Int’l Workshop
Selected Areas in Cryptography (SAC ’04), pp. 159-169, 2005.

[3] M. Brown, D. Hankerson, J. López, and A. Menezes, “Software
Implementation of the NIST Elliptic Curves over Prime Fields,”
Topics in Cryptology—CT-RSA, pp. 250-265, Springer, 2001.

[4] C. Doche, “Redundant Trinomials for Finite Fields of Character-
istic 2,” Proc. Australasian Conf. Information Security and Privacy
(ACISP ’05), pp. 122-133, 2005.

[5] E. DeWin, A. Bosselaers, S. Vandenberghe, P. DeGersem, and
J. Vandewalle, “A Fast Software Implementation for Arithmetic
Operations in GF(2n),” Advances in Cryptology—Asiacrypt ’96,
pp. 65-76, Springer, 1996.

[6] H. Fan and A. Hasan, “A New Approach to Subquadratic Space
Complexity Parallel Multipliers for Extended Binary Fields,” IEEE
Trans. Computers, vol. 56, no. 2, pp. 224-233, Feb. 2007.

[7] H. Fan and M.A. Hasan, “Subquadratic Computational Complex-
ity Schemes for Extended Binary Field Multiplication Using
Optimal Normal Bases,” IEEE Trans. Computers, vol. 56, no. 10,
pp. 1435-1437, Oct. 2007.

[8] S.T.J. Fenn, M. Benaissa, and D. Taylor, “GF(2m) Multiplication
and Division Over the Dual Basis,” IEEE Trans. Computers, vol. 45,
no. 3, pp. 319-327, Mar. 1996.

[9] J. von zur Gathen and J. Gerhard, Modern Computer Algebra.
Cambridge Univ. Press, 1999.

[10] J. von zur Gathen and J. Gerhard, “Polynomial Factorization over
IF2,” Math. Computation, vol. 71, no. 240, pp. 1677-1698, 2002.

[11] P. Giorgi, C. Negre, and T. Plantard, “Subquadratic Binary Field
Multiplier in Double Polynomial System,” Proc. Int’l Conf. Security
and Cryptography (SECRYPT ’07), 2007.

[12] J. Guajardjo and C. Paar, “Efficient Algorithms for Elliptic Curve
Cryptosystems,” Advances in Cryptology—Crypto ’97, pp. 342-356,
Springer, 1997.

[13] J. Guajardo, T. Gneysu, S.S. Kumara, C. Paar, and J. Pelzl,
“Efficient Hardware Implementation of Finite Fields with Appli-
cations to Cryptography,” J. Acta Applicandae Mathematicae, vol. 93,
nos. 1-3, pp. 75-118, Sept. 2006.

[14] A. Halbutogullari and C.K. Koc, “Mastrovito Multiplier for General
Irreducible Polynomials,” IEEE Trans. Computters, vol. 49, no. 5,
pp. 503-518, May 2000.

[15] D. Hankerson, J. López Hernandez, and A. Menezes, “Software
Implementation of Elliptic Curve Cryptography over Binary
Fields,” Proc. Int’l Workshop Cryptographic Hardware and Embedded
Systems (CHES ’01), 2001.

[16] J.-C. Bajard, C. Negre, and T. Plantard, “Double Polynomial Basis
Representation for Binary Field Arithmetic,” Technical Report 5,
Team DALI/Lab. ELIAUS, Univ. of Perpignan, July 2005.

[17] J.-C. Bajard, L. Imbert, and C. Negre, “Arithmetic Operations in
Finite Fields of Medium Prime Characteristic using Lagrange
Representation,” IEEE Trans. Computers, vol. 55, no. 9, pp. 1167-
1177, Sept. 2006.

[18] J.L. Massey and J.K. Omura, “Computational Method and
Apparatus for Finite Field Arithmetic,” US Patent 4,587,627,
May 1986.

[19] E.D. Mastrovito, “VLSI Architectures for Computations in Galois
Fields,” PhD thesis, Dept. of Electrical Eng., Linkoping Univ.,
1991.

[20] P.L. Montgomery, “Modular Multiplication without Trial Divi-
sion,” Math. Computation, vol. 44, no. 170, pp. 519-521, Apr. 1985.

[21] R.C. Mullin, I.M. Onyszchuk, S.A. Vanstone, and R.M. Wilson,
“Optimal Normal Bases in GF(pn),” Discrete Applied Math., vol. 22,
no. 2, pp. 149-161, 1989.

[22] A. Schonhage, “Schnelle Multiplikation von Polynomen über
Körpern der Charakteristik 2,” Acta Informatica, vol. 7, pp. 395-398,
1977.

[23] B. Sunar, “A Generalized Method for Constructing Subquadratic
Complexity GF(2k) Multipliers,” IEEE Trans. Computers, vol. 53,
no. 9, pp. 1097-1105, Sept. 2004.

[24] L.A. Tawalbeh, A.F. Tenca, S. Park, and C.K. Koc, “An Efficient
Hardware Architecture of a Scalable Elliptic Curve Crypto-
Processor over GF(2m),” Proc. SPIE Conf., pp. 216-226, Aug. 2005.

[25] L.A. Tawalbeh and A.F. Tenca, “An Algorithm and Hardware
Architecture for Integrated Modular Division and Multiplication
in GF(p) and GF(2n),” Proc. IEEE Int’l Conf. Application-Specific
Systems, Architectures and Processors (ASAP ’04), pp. 247-257, 2004.

Jean-Claude Bajard received the PhD degree
in computer science from the �Ecole Normale
Supérieure de Lyon (ENS), France, in 1993. He
is currently a professor at the Université Paris 6,
France, and a member of the LIP 6. He taught
mathematics in high school from 1979 to 1990
and served as a research and teaching assistant
at the ENS in 1993. From 1994 to 1999, he was
an assistant professor at the Université de
Provence, Marseille, France. From 1999 to

2009, he was a professor at the University Montpellier 2, and was a
member of the ARITH Team of the LIRMM. His research interests
include computer arithmetic and cryptography.

Christophe Negre received the MS degree in
mathematics and the PhD degree in computer
science from the Université Montpellier 2,
France, in 2001 and 2004, respectively. Since
September 2004 , he is an assistant professor in
the DALI Team at the Université de Perpignan,
France. His research interests include computer
arithmetic and cryptography.

Thomas Plantard received the MS and PhD
degrees in computer science from the Université
de Bordeaux in 2002 and the Université Mon-
tpellier 2, France, in 2005, respectively. Since
September 2006, he has a postdoctoral position
at the University of Wollongong, Australia. His
research interests include cryptography and
lattice theory.

BAJARD ET AL.: SUBQUADRATIC SPACE COMPLEXITY BINARY FIELD MULTIPLIER USING DOUBLE POLYNOMIAL REPRESENTATION 1597

