
Study of Modular Inversion in RNS

Jean Claude Bajard, Nicolas Meloni, Thomas Plantard
LIRMM, UMR CNRS 5506, Montpellier, France

ABSTRACT

Residue Numbers System have some features useful in implementations of cryptographic protocols. The main
property of RNS is the distribution of the evaluation on large values over its small residues, allowing paral-
lelization. This last property implies that we can randomize the distribution of the bases elements. Hence, the
resulting arithmetic is leak resistant, i.e. robust against side channel attacks. One drawback of RNS is that
modular inversion is not obvious. Thus, RNS is well suited for RSA but not really for ECC. We analyze in
this paper the features of the modular inversion in RNS over GF (P). We propose a RNS Extended Euclidean
Algorithm which uses a quotient approximation module.

Keywords: Residue Number Systems, Modular Inversion, Cryptography

1. INTRODUCTION

1.1. Context

Since the proposal of cryptography over elliptic curves by Miller and Koblitz4, 6 , the arithmetic over finite field
enables efficient hardware or software implementations.

The Elliptic Curves Cryptosystems ECC deals with the structure of group defined by the points of an elliptic
curve over a finite field. The basic operation is the ”addition” of two points of the curve, which is done by
determining the intersection with the curve of the line defined by those two points. In affine coordinates over
GF (P), this operation is composed of two products, one square (two for doubling a point) and one inversion.
Now if we consider homogeneous coordinates to avoid the inversion, we need: twelve products and one square
(7 products and 5 squares for doubling). Hence, if the cost of an inversion is lower than that of six products we
can assume that affine coordinates offer the best features for an implementation.

In the constext of side chanel attack it was shown2, 3 that residue numbers systems offer the opportunity to
randomize the bases and thus provide a leak resistant arithmetic. This approach gave good results for cryp-
tosystems like RSA which is based on modular exponentiation and on modular multiplication. But, considering
ECC, the drawback of the RNS arithmetic is the lack of an inversion. This problem is quite difficult, and rarely
approached in the literature. Hence, we propose in this paper to deal with this RNS operation and give one RNS
version of the Euclidean algorithm.

1.2. Residue Number Systems

The residue number systems (RNS) are very old.5, 8, 9 The aim of this system is to represent a number by its
residues over a set of coprime numbers (m1, ...,mn), called RNS basis. For example, a number A has a residue
ai modulo mi for each i from 1 to n. Thus the vector (a1, ..., an) will be called the RNS representation of A.
We denote a corresponding digit-vector with A, and M =

∏i=1
n mi. The Chinese Remainders Theorem assumes

that each vector A defines one and only one value A such 0 ≤ A < M . Moreover, the following explicit formula
enables to recover an integer from its RNS representation (we note that α is an integer smaller than n).

A =

∣∣∣∣∣
n∑

i=1

∣∣aiM
−1
i

∣∣
mi

Mi

∣∣∣∣∣
M

=
n∑

i=1

∣∣aiM
−1
i

∣∣
mi

Mi − αM (1)

We can remark that this representation is not redundant: one vector defines one value.

E-mail: bajard,meloni,plantard@lirmm.fr, LIRMM, 61 rue ADA, Montpellier, 34000 France

Example: We consider here the set of coprimes B = (3, 7, 13, 19) as a RNS basis. Thus we can represent all
the numbers from 0 to M = 5187

X = 147 Y = 31
X = (0, 0, 4, 14) Y = (1, 3, 5, 12)

The addition and the multiplication become:

X + Y = (|0 + 1|3 , |0 + 3|7 , |4 + 5|13 , |14 + 12|19)
= (1 , 3 , 9 , 7)
= 178

X × Y = (|0× 1|3 , |0× 3|7 , |4× 5|13 , |14× 12|19)
= (0 , 0 , 7 , 16)
= 4557

Hence, the main advantage of this representation is due to the property of distributing the evaluation over
the residues which are small values. We remark that it is fully parallel, i.e. there is no propagation of data
through the moduli. The drawback of the RNS is that comparisons and overflow detections are hard. In RNS
the operation are made modulo M .

The features of RNS are interesting for cryptography.2 Some efficient modular multiplications have been
proposed in the literature1, 7 in particular for RSA.

Actually we could not find any RNS inversion algorithms for finite fields GF (P), which could be useful for
ECC. So we will focus our study on this operation in RNS .

2. EXTENDED EUCLIDEAN ALGORITHM IN RNS

In this section, we present the classical Extended Euclidean Algorithm (EEA).5 Then we propose an RNS version
of it, with points discussed in detail in the next section.

2.1. The classical algorithm

The Extended Euclidean Algorithm (EEA) is the classical Euclidean algorithm for computing the greatest com-
mon divisor (gcd) where we add some variables which satify an invariant equality coming from the Bezout
identity.

Algorithm 1: ExtEucl(A,P)
Data: A < P and coprime;
Result: A−1 mod P ;
(U1, U2, U3)← (0, 1, P);
(V1, V2, V3)← (1, 0, A);
while V3 > 0 do

q ←−
⌊

U3
V3

⌋
;

(U1, U2, U3)←− (U1, U2, U3)− q(V1, V2, V3) ;
(U1, U2, U3)←→ (V1, V2, V3) ;

end
return U1

In this algorithm the variables at each step satisfy:

U1A + U2P = U3 (2)
V1A + V2P = V3 (3)

We can verify that at each step V3 decreases, since it is replaced by a remainder of Euclidean division by V3.
Then, when V3 = 0, the Euclidean algorithm assumes that U3 contains the gcd of A and P . When P is prime,
this gcd is 1 and U1A ≡ 1 (mod P). We could find a negative value for U1, in this case we have to add P to
obtain a positive representation of the inverse of A in GF (P). The sign of U1 is due to the number of exchanges
in the algorithm, if this number is odd then U1 is positive else it is negative..

Now we will consider this algorithm for numbers in RNS representations.

2.2. The RNS version

We note A = (a1, ..., an) the RNS representation of A. The RNS Extended Euclidean Algorithm will merge the
division to the gcd algorithm. In fact, since the quotient is estimated, we are not sure that the remainder is
smaller than the divisor. So, some additional iterations could be necessary before the exchange.

Algorithm 2: ExtEuclRNS(A,P)

Data: A < P < M
4 with P a prime number;

Result: A−1 mod P ;
(U1, U3)← (0, P);
(V1, V3)← (1, A);
tu ← 0 ; tv ← 0; 2tu ← (1); 2tv ← (1);
NormalSup(U3, tu, ũ, 2tu);
NormalSup(V3, tv, ṽ, 2tv);
counter ← 0 ;
while V3 6= 0 do1

(Q, q̃)←− Estim(ũ, ṽ, tu, tv, 2tu , 2tv) ;
if q̃ > 0 then2

(U1, U3)←− (U1, U3)−Q(V1, V3) ;
NormalSup(U3, tu, ũ, 2tu);

else
if Test(U3, V3) then3

(U1, U3)←− (U1, U3)− (V1, V3) ;
NormalSup(U3, tu, ũ, 2tu);

end
(U1, U3, tu, 2tu)←→ (V1, V3, tv, 2tv) ;4

counter ← counter + 1 ;
end

end
if counter is even then

U1 ←− P + U1

end
return U1

The main loop 1 of this algorithm is the one of the Euclidean algorithm. At each iteration, to perform the
division we estimate the quotient. If the obtained value is a positive non zero number, step 2, then we can reduce
the value of U3 and update all the associated variables, with a call of NormalSup. If the approximation is a zero
value then, step 6, we compare U3 to V3. If U3 is the greater, the quotient is , in this case, equal to 1, and U3−V3

is smaller than V3. We update the variables associated to U3 by calling NormalSup. Then, we exchange the U
values with the V values.

The convergence of the algorithm is due to the estimation of (Q̃, q̃) such that if q̃ = 0 then U3 < V3 or
U3 − V3 < V3. Thus we maintain at the end of each pass in the while loop, two facts: first that U3 > V3, and
secondly, at least U3 and/or V3 are decreasing.

3. ESTIMATION AND COMPARISON

3.1. Approximation of U

In the Algorithm 2, we calculate an approximation of the quotient U
V by estimating the values of U

M and V
M . The

main idea comes from the following equality :

U =
n∑

i=1

∣∣ui ×M−1
i

∣∣
mi
×Mi − αM =

n∑
i=1

λi

mi
×M − αM (4)

where α is an integer and λi =
∣∣ui ×M−1

i

∣∣
mi

. Now let E and F be such that
∑n

i=1
λi

mi
= E + F where E is

an integer and 0 ≤ F < 1 . Then from the equation (4) we have

U

M
=

n∑
i=1

λi

mi
− α = (E − α) + F (5)

Noticing that (E − α) is an integer and as 0 < U
M < 1, we finally get that E = α and so, F = U

M . So, in order
to evaluate U

M we calculate an estimate of
∑n

i=1
λi

mi
and then we take its fractional part.

Now let us assume that n < 2l−2 and that M
8 < U × 2tu < M

2 . Then the following algorithm returns an
integer ũ which satifies :

U × 2tu

M
× 2l−1 ≤ ũ <

U × 2tu

M
× 2l−1 + n (6)

Algorithm 3: ApproxSup(U, 2tu)

Precomputed: βi =
⌈

22l

mi

⌉
; µ with µi = |Mi|−1

mi
; for i = 1, ..., n

λ← U × µ× 2tu ;
ũ← 0 ;
for i← 1 to n do

ũ← ũ + βi × λi mod 22l ;
end
ũ← ũ div 2l + 1 ;
return ũ

Proof : To simplify the proof, we consider the case where M
8 < U < M

2 , which corresponds to tu = 0. It is
easy to see that if tu 6= 0 we can consider U ′ = U × 2tu instead of U .

We have U = (u1, ..., un)RNS and for each i ∈ {1..n}, βi =
⌈

22l−1

mi

⌉
and 0 ≤ λi ≤ 2l. Let i ∈ {1..n} :

22l−1

mi
≤ βi ≤ 22l−1

mi
+ 1 (7)

n∑
i=1

λi ×
22l−1

mi
≤

∑n
i=1 λi × βi ≤

n∑
i=1

λi ×
22l−1

mi
+

n∑
i=1

λi (8)

Now, let set
∑n

i=1
22l−1

mi
= (E + U

M)× 22l−1 where E is an integer. Since, U
M < 1

2 , we have

(E +
U

M
)× 22l−1 ≤

n∑
i=1

λi × βi < (E +
U

M
)× 22l−1 +

n∑
i=1

λi (9)

(E +
U

M
)× 22l−1 ≤

n∑
i=1

λi × βi < E × 22l−1 + 22l−2 + n2l (10)

So, since n < 2l−2, we get 22l−2 + n2l < 22l−1. Thus∣∣∣∣∣
n∑

i=1

λi × βi

∣∣∣∣∣
22l−1

=
n∑

i=1

λi × βi − E × 22l−1 (11)

and finally

U

M
× 22l−1 ≤

∣∣∣∣∣
n∑

i=1

λi × βi

∣∣∣∣∣
22l−1

≤ U

M
× 22l−1 + n2l (12)

A final division by 2l gives the expected result.

3.2. Normalization

Thanks to the ApproxSup algorithm, we are able to estimate the first bits of U×2tu

M . To have as many significant
bits as possible, we use the following normalization algorithm.

It consists in evaluating tu, ũ, 2tu such that:

M

8
< U × 2tu <

M

2

where ũ correspond to the result of ApproxSup.

Algorithm 4: NormalSup(U, tu, ũ, 2tu)

ũ← ApproxSup(U, 2tu);
while ũ < 2e+2 do

tu ← tu + l − e− 4;
2tu ← 2l−e−4 × 2tu ;
ũ← ApproxSup(U, 2tu);

end
c← 0;
while ũ < 2l−3 do

tu ← tu + 1;
ũ← ũ << 1;
c← c + 1;

end
if c > 0 then

2tu ← 2c × 2tu ;
ũ← ApproxSup(U, 2tu);

end

Proof : We assume that 0 < U × 2tu < M
2 and we note e =

⌈
log n
log 2

⌉
.

First, let us suppose that ũ < 2e+2, then

U

M
× 2tu × 2l−1 ≤ ũ

U × 2tu × 2l−1 < M × 2e+2

U × 2tu × 2l−e−4 <
M

2

So, at the end of each iteration of the first while loop, as tu is updated to tu + l − e − 4, we still have
U × 2tu < M

2 . At the end, we get 2e+2 ≤ ũ < 2l−2 and

U

M
× 2tu × 2l−1 ≤ ũ <

U

M
× 2tu × 2l−1 + 2e (13)

We consider the second loop which construct c such that: 2l−3 ≤ ũ× 2c < 2l−2.

2l−3 < ũ× 2c <
U

M
× 2c × 2tu × 2l−1 + 2e × 2c

2−3 <
U

M
× 2c × 2tu × 2−1 + 2e × 2c × 2−l

As ũ× 2c ≥ 2e+2 × 2c, we have e + c + 2 ≤ l − 2.

Then
2−3 <

U

M
× 2c × 2tu × 2−1 + 2−4

Finally, we get,

2−4 = 2−3 − 2−4 <
U

M
× 2c × 2tu × 2−1

or,

2−3 <
U

M
× 2c × 2tu

Similarly, we have
U

M
× 2tu × 2c × 2l−1 ≤ ũ× 2c ≤ 2l−2

which gives,
U

M
× 2tu × 2c ≤ 2−1

So, we get , with tu = tu + c,
1
8

<
U

M
× 2tu <

1
2

(14)

3.3. Estimation of the quotient

The procedure Estim computes an approximation of the quotient
⌊

U
V

⌋
such that the returned value is zero only

if
⌊

U
V

⌋
< 2. In other cases, when tv − tu − (l − 2) ≥ 0, the returned value q̃ is such that 2l−5 < q̃ < 2l. This

assumes that the division is as efficient as a division in radix 2l−4.

Algorithm 5: Estim(ũ, ṽ, tu, tv, 2tu , 2tv)

if tv − tu − (l − 2) ≥ 0 then
s←− l − 2

else
s←− tv − tu

end
q̃ ←− (eu−n)2sev ;
Q̃←− q̃ × 2tv−tu−(s) ;
return (Q̃, q̃);

Proof. The proof of this algorithm is in two part. First we show that 2s−3 < q̃ < 2s+2. For this we consider
that:

M

8
< U × 2tu <

M

2
and

M

8
< V × 2tv <

M

2
(15)

Then we obtain,

2−2 <
U

V
× 2tu−tv < 22 (16)

Now we try to bound q̃. For this, we use the equation defined by ApproxSup where we note ũ = ũ − n to
simplify the notations.

U

M
× 2tu+l−1 − n ≤ ũ <

U

M
× 2tu+l−1 (17)

V

M
× 2tv+l−1 ≤ ṽ <

V

M
× 2tv+l−1 + n (18)

Thus we obtain for the quotient:

U × 2tu+l−1 − nM

V × 2tv+l−1 + nM
≤ ũ

ṽ
≤ U

V
2tu−tv (19)

U − nM × 2−(tu+l−1)

V + nM × 2−(tv+l−1)
2tu−tv ≤ ũ

ṽ
≤ U

V
2tu−tv (20)

Now we use that : M
8 < U × 2tu < M

2 and M
8 < V × 2tv < M

2 As, for each i, 2l−1 < mi < 2l and n < 2e, the
equation (20) becomes:

1− 2e+3−(l−1)

1 + 2e+3−(l−1)
× U

V
× 2tu−tv ≤ ũ

ṽ
≤ U

V
× 2tu−tv (21)

We know that 1
1+2e+3−(l−1) < 1− 2e+3−(l−1) when e + 3− (l − 1) ≤ −2, in other words, when l ≥ e + 6.

Hence, the equation is:

(1− 2e+3−(l−1))2 × U

V
× 2tu−tv ≤ ũ

ṽ
≤ U

V
× 2tu−tv (22)

But, if l ≥ e + 6, then (1− 2e+3−(l−1))2 > 1
2 . We deduce that:

⌊
U

V
× 2tu−tv+s−1

⌋
≤ q̃ ≤

⌊
U

V
× 2tu−tv+s

⌋
(23)

And, ⌊
2−1 × U

V

⌋
≤ Q̃ ≤

⌊
U

V

⌋
(24)

If s = l − 2 and l ≥ e + 6, we obtain 2l−5 ≤ q̃ ≤ 2l.

If s = tv − tu, then Q̃ = q̃. In this case, q̃ can be equal to zero when (1 − 2e+3−(l−1))2 × U
V < 1, in other

words U
V < (1− 2e+3−(l−1))−2 which is lower than 2 since e + 3− (l − 1) ≤ −3 that is to say l > e + 7. Hence,

if l > e + 7, we assume that Estim gives a zero value only when U < 2× V .

3.4. Sign of a difference

In the RNS Euclidean Algorithm when q̃, the approximation of the quotient given by Estim is zero, we know
that U < 2V . Thus, if U ≥ V we assume that 0 ≤ U − V < V . So we must compare U and V . For this
we propose to evaluate the difference D = U − V . In fact we know that we will use this comparison when the
returned approximated quotient is zero i.e., when −V ≤ D < V . If D < 0 then U < V else 0 ≤ U − V < V .

Now, when we evaluate the difference D in RNS, D = U − V , the returned value can be D = D if U ≥ V or
D = M + D if D is negative. We know that 0 < V < P < 1

4M , which are the preconditions of our algorithm.
So, we deduce that if D is negative then D = M + D > 1

2M and if D is positive then the returned value
D = D < 1

4M .

We note d̃ the ApproxSup of the RNS returned value of D,

D

M
2l−1 < d̃ <

D

M
2l−1 + n (25)

If d̃ ≥ 2l−2 then D = M + D, else D = D and d̃ < 2l−3 + n. As, 2l−3 + n < 2l−2 for n < 2l−3, we don’t have
any overlaps.

But, ApproxSup approximate values lower than M
2 . So, we will divide D by 2 to verify this condition. In this

case we will compare d̃ to 2l−3 . When D is even, the division by two can be obtained by multiplying with the
inverse of 2 modulo M if M is odd. To find the parity, we need one mi to be even, indeed the parity of D is
the one of its residue modulo this mi. Thus, the procedure Red computes D

2 or D−1
2 if D is odd, by multiplying

with the inverse of 2 for all the odd moduli, and dividing by two for the even one.

The function Test is given by the algorithm below :

Algorithm 6: Test (U, V)

Data: 0 ≤ U, V < P < 1
4M

Result: B boolean value, true if U ≥ V , else false
D ← U − V ;
D ← Red(D);
d̃← ApproxSup(D, 1);
if d̃ ≥ 2l−3 then

B ← False;
else

B ← True;
end
return B

4. CONCLUSION

The main features of the RNS Extended Euclidean Algorithm, proposed in this paper, are that all the operators
are l bits integer operators, and that, except the quotient, all the variables are updated in RNS. The main cost
in time of an iteration of the algorithm 2 is one product and one addition modulo an mi, an estimation of the
quotient and a normalization, a call to Test occurs only if the approximated quotient is zero. The number of
integer operators needed is equal to the number of bits of the prime number P divided by l the size of the integers
which is equivalent to the size needed for classical big numbers arithmetic. In futur work we will study the exact
complexity of this RNS inversion and identify the worst and average cases. We assume that ApproxSup can be
logarithmic in time.

REFERENCES
1. J.-C. Bajard and L. Imbert. A full rns implementation of rsa. IEEE Transactions on Computers, 53(6):769–

774, 2004.
2. J.-C. Bajard, L. Imbert, P.LY. Liardet, and Y. Teglia. Leak resistant arithmetic. CHES 2004, pages 59–65,

Boston MA, USA, 2004. LNCS Kluwer.
3. M. Ciet, M. Neve, E. Peeters, and J.-J. Quisquater. Parallel FPGA implementation of RSA with residue

number systems – can side-channel threats be avoided? In 46th IEEE International Midwest Symposium
on Circuits and Systems (MWSCAS-2003), Cairo, Egypt, December 2003.

4. N. Koblitz. Elliptic curve cryptosystems. Mathematics of Computation, 48(177):203–209, January 1987.
5. Donald Knuth. Seminumerical Algorithms, volume 2 of The Art of Computer Programming. Addison-Wesley,

2 edition, 1981.
6. V. S. Miller. Uses of elliptic curves in cryptography. In H. C. Williams, editor, Advances in Cryptology –

CRYPTO ’85, volume 218, pages 417–428. Springer-Verlag, 1986.
7. K. C. Posch and R. Posch. Modulo reduction in residue number systems. IEEE Transaction on Parallel

and Distributed Systems, 6(5):449–454, 1995
8. N. S. Szabo and R. I. Tanaka. Residue Arithmetic and its Applications to Computer Technology. McGraw-

Hill, 1967.
9. H. L. Garner. The residue number system. IRE Transactions on Electronic Computers, EL-8(6):140–147,

June 1959.

