
Odd Manhattan’s Algorithm Specifications and Supporting

Documentation

Thomas PLANTARD

Institute of Cybersecurity and Cryptology
School of Computing and Information Technology
Faculty of Engineering and Information Sciences

University of Wollongong

1 Background

Definition 1 (Lattice). A lattice L is a discrete sub-group of Rn, or equivalently the set of all
the integral combinations of d ≤ n linearly independent vectors over R.

L = Z b1 + · · ·+ Z bd, bi ∈ Rn.

B = (b1, ..., bd) is called a basis of L and d, the dimension of L, noted dim(L).
L(B) refers to the lattice generating by a basis B.
A lattice of dimension d = n is called full-rank.
A lattice L ⊆ Zn is called integer lattice.

The determinant of a lattice L, noted det(L), can be computed by det(L) =
√
det (BBT).

Property 1 (Random Lattice). In [6], Goldstein and Mayer characterized random lattices: if p
is prime, a random full-rank integer lattice of determinant p is generated by a basis

p 0 0 · · · 0 0
a1 1 0 · · · 0 0
a2 0 1 · · · 0 0
...

. . .
...

ad−1 0 0 · · · 1 0
ad 0 0 · · · 0 1

with ai uniform in [0, p− 1].

Remark 1. We will focus on full-rank integer lattice with prime determinant to match Goldstein-
Mayer characterization.

Definition 2 (Dual Lattice). Let L a lattice, its dual lattice L∗ is a lattice such that

L∗ = {u ∈ span(L),∀v ∈ L, 〈u, v〉 ∈ Z}.

1

Definition 3 (lp−norm). Let w a vector of Rn. The lp−norm is the function ‖.‖p such that

‖w‖p =

(
n−1∑
i=0

|wi|p
) 1
p

.

The l1−norm is called the Manhattan norm or taxicab norm.
The l2−norm is called the Euclidean norm.
The l∞−norm is called the infinity norm or max norm, and is computed as ‖w‖∞ = max {|wi|, 0 ≤ i < n}.

Definition 4 (Successive Minima). Let L a lattice and an integer i. The ith successive min-
ima, noted λi is the smallest real number such there exist i non zero linear independent vector
v1, . . . , vi ∈ L with ‖v1‖, . . . , ‖vi‖ ≤ λi. λi,p refers to the ith successive minima regarding the
lp−norm.

Theorem 1 (of Minkowski [11]). For any d−dimensional lattice L, λ1,∞ ≤ det(L)
1
d .

Ajtai [1] demonstrated that using the Gaussian heuristic, one can predict that in a d−dimensional
random lattice,

λ1,2 ≈
Γ
(
d
2 + 1

)
√
π

det(L)
1
d . (1)

Definition 5 (γ-Gap Shortest Vector Problem (GapSV Pγ)). Given a lattice L and a real number
r, determine if λ1 ≤ r or λ1 > γr.

Definition 6 (γ-Unique Shortest Vector Problem (USV Pγ)). Given a lattice L with γλ1(L) <
λ2(L), find v ∈ L such that ‖v‖ = λ1. γ is called the gap.

Definition 7 (α-Bounded Distance Decoding (BDDα)). Given a lattice L and a vector v such
that ∃u, (v − u) ∈ L, ‖u‖ < αλ1(L), find u.

2 Algorithm Specifications

2.1 Cryptosystem Concept

The cryptosystem requires three public parameters {d, b, p} corresponding:

i) d a lattice dimension,

ii) b an upper bound,

iii) p a prime number.

Its trapdoor is a odd vector of bounded Manhattan norm i.e. a vector w ∈Md,l,

Md,l = {w ∈ Zd,∀1 ≤ i ≤ d,wi mod 2 = 1, ‖w‖1 ≤ l}.
It could be described as follow:

• Setup: Alice creates a public d−dimensional lattice L of determinant p such there exists a
vector w ∈ L∗∩ ∈Md, p−1

2b
.

• Encryption: To encrypt a message m = {0, 1}, Bob send to Alice a vector v such that

∃u, v − u ∈ L, ‖u‖∞ ≤ b,
∑d
i=1 ui mod 2 = m.

• Decryption: To decrypt Alice uses w to extract the parity m of u from the vector v.

2

2.2 Specific Algorithm

To setup this cryptosystem, we require a uniform generator of vector of Md,l.

Algorithm 1 Random Generator from Md,l

Require: d a dimension and l a bound.
Ensure: w ∈Md,l

1: Compute l′ =
⌊
l+d
2

⌋
2: Pick a random combination of d−1 elements ai in [1, l′] i.e. 1 ≤ a1 < ... < ai < ... < ad ≤ l′
3: Compute w′ such w′i = ai − ai−1 for i > 1 and w′1 = a1.
4: Compute w′′ such w′′i = 2w′i− 1.
5: Compute w such wi = siw

′′
i with si a random elements of {−1, 1}.

6: return w

Proof of Algorithm 1 correctness.
Line 2 and 3 corresponds to a known method ([13] paragraph 2.5.3, [15] for a specific integer
version) to create random strictly positive vector of l1−norm less or equal to l′. Line 4 transforms
a strictly positive vector of l1−norm less or equal to l′ in a positive odd vectors of l1−norm less

or equal to 2l′ − d. As l′ =
⌊
l+d
2

⌋
= l+d−(l+d mod 2)

2 , we have 2l′ − d = l− (l+ d mod 2). Indeed,
this is correct, as if l + d = 1 mod 2 i.e. l and d have different parity, there is no odd vectors of
l1−norm equal to l. Line 5 transforms a positive odd vectors to a signed odd vectors without
changing the l1−norm. This is uniform as well as all elements of wi 6= 0.

2.3 CPA encryption

Algorithm 2 Key Generation

Require: A set of parameters {d, b, p}.
Ensure: A secret key SK = w1 with w1 = [1, p−1] and a public key PK = v with v ∈ [1, p−1]d.

1: Create a random vector of w of Md,b p−1
2b c.

2: Compute h ∈ Zd with hi = wi(w
−1
1) mod p.

3: Set SK = w1 and PK = h.
4: return SK,PK.

Algorithm 3 Encryption

Require: A set of parameters {d, b, p}, a public key PK = h and message m = {0, 1}.
Ensure: A ciphertext CT = s with s ∈ [0, p[.
1: Create a random vector u ∈ [−b, b]d with

∑
ui = 1 mod 2.

2: Compute s = 〈u, h〉 mod p.
3: Set CT = s.
4: return CT .

3

Algorithm 4 Decryption

Require: A set of parameters {d, b, p}, a secret key SK = w1 and ciphertext CT = s.
Ensure: A message m = {0, 1}.
1: Compute r = sw1 mod p with r ∈]− p

2 ,
p
2 [.

2: Compute m = r mod 2
3: return m.

Proof of Algorithm 4 correctness.
We can check that

r = sw1 mod p
= 〈u, h〉w1 mod p
= 〈u, hw1〉 mod p
= 〈u,ww−1

1 w1〉 mod p
= 〈u,w〉 mod p

Furthermore,

|〈u,w〉| ≤ ‖u‖∞‖w‖1
≤ b‖w‖1
≤ bp−1

2b

≤ p−1
2

< p
2

Consequently, with r = 〈u,w〉 mod p and −p2 < r < p
2 , we have r = 〈u,w〉.

Finally, we have

r mod 2 = 〈u,w〉 mod 2

=
∑d
i=1 uiwi mod 2

=
∑d
i=1 ui1 mod 2

=
∑d
i=1 ui mod 2

= m

2.4 CCA Key Encapsulation Message

We are using a method proposed by Dent [3] to transform a Chosen-Plaintext Attack (CPA)
resistant cryptosystem into a Chosen-Ciphertext Attack (CCA) resistant Key Encapsulation
Mechanism (KEM) of λbits security:

1. Alice sets the random generator used by Algorithm 3 with a seed s of λbits.

2. Alice uses Algorithm 3 to encrypt bit by bit s and send c, the ciphertext, to Bob,

3. Bob uses Algorithm 4 to extract the seed s from c,

4. Bob sets the random generator used by Algorithm 3 with s,

5. Bob uses Algorithm 3 to encrypt bit by bit s,

6. Bob checks that the ciphertext generated is equivalent to c,

7. Alice and Bob both expand s to a share secret.

4

3 Security Analysis

3.1 Public Key Security

Regarding public key security, a first remark is that giving h with h1 = 1 to represent the lattice
L = {v ∈ Zd, 〈v, h〉 = 0 mod p} is equivalent of giving a basis B of L,

B =

p 0 0 · · · 0 0
p− h2 1 0 · · · 0 0
p− h3 0 1 · · · 0 0

...
. . .

...
p− hd−1 0 0 · · · 1 0
p− hd 0 0 · · · 0 1

We present Theorem 2 showing how random is the public key.

Theorem 2. Let L a full rank lattice of determinant p > 2 prime and dimension d > 1, and
l ∈ N∗, the probability Pp,d,l that L∗ ∩Md,l = ∅ is given by

Pp,d,l =

(
1− 1

pd−1

)2d−1(b
l+d
2 c
d

)
(2)

Proof of Theorem 2.

i) Firstly, we present the probability than an element of Zd is in L∗.
If L has a basis

p 0 0 · · · 0 0
a1 1 0 · · · 0 0
a2 0 1 · · · 0 0
...

. . .
...

ad−1 0 0 · · · 1 0
ad 0 0 · · · 0 1

,

then Zd ∩ L∗ has a basis given by

1 −a1 −a2 · · · −ad−1 −ad
0 p 0 · · · 0 0
0 0 p · · · 0 0
...

. . .
...

0 0 0 · · · p 0
0 0 0 · · · 0 p

Therefore, the probability that a vector of Zd is in Zd ∩ L∗ is given by 1

pd−1 .

ii) Secondly, Algorithm 1 allows us to deduce the size of Md,l,

#Md,l = 2d
(⌊ l+d

2

⌋
d

)
.

5

As if v ∈ Zd ∩ L∗ then −v ∈ Zd ∩ L∗, we restrict the number of relevant vectors to

2d−1

(⌊ l+d
2

⌋
d

)
i.e. we study only vectors of Md,l with a positive first coefficient. As p and 2 are coprime,
each vectors of Md,l with a positive coefficient has the same independant probability to be
in L∗.

To allow a better understanding, Equation 2 can be approximate

Pp,d,l ≈ e−2d−1(b
l+d
2 c
d

)p−(d−1)

≈ e−(b
l+d
2 c
d

)(p2)
−(d−1)

A relevant special case is when we fix l = p−1
2b , we can further approximate

Pp,d, p−1
2b

≈ e−(b
l+d
2 c
d

)(p2)
−(d−1)

≈ e−(b
p−1+2db

4b c
d

)(p2)
−(d−1)

Finally, assuming p� b, d, we can simplify further in

Pp,d, p−1
2b

≈ e−
(p

4b)
d

d! (p2)
−(d−1)

≈ e−
p

2d+1bd(d)!

Therefore, we obtain that more than half of lattice L with a determinant p & 2d+1bd(d)! has
such a trapdoor, i.e. Md,b p−1

2b c ∩ L
∗ 6= ∅. It guarantees a highest security for our public key as

any information from the public key will be as hard to extract as from a random lattice.
Consequently, we will use

2d+1bd(d)! < p < 2d+2bd(d)!. (3)

3.2 Message Security

Message security is based on a new problem (Definition 8).

Definition 8 (α-Bounded Distance Parity Check (BDPCα)). Given a lattice L of dimension d

and a vector v such that ∃u, (v − u) ∈ L, ‖u‖ < αλ1(L), find
∑d
i=1 ui mod 2.

This problem is clearly related to a more studied problem i.e. the Bounded Distance Decoding
problem (Definition 7). We present Theorem 3 to confirm this intuition.

Theorem 3 (BDDα
4
≤ BDPCα). For any lp−norm and any α ≤ 1 there is a polynomial time

Cook-reduction from BDDα
4

to BDPCα.

Proof of Theorem 3.
Let L, v and instance of BDDα

4
. The main idea of the reduction is to use a BDPCα solver

to find the parity of one coefficient (instead of the sum of them), do it for each coefficient, use
this information to transform v, u in both all even vectors and consequently divide them by 2.
Repeating all this operation allows to extract u.

6

i) Find the parity of u1.

Let B a basis of L and P a matrix defined by

D =

1 1 0 · · · 0 0
0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

. . .
...

0 0 0 · · · 1 0
0 0 0 · · · 0 1

We compute v′ = vD and B′ = BD. As v = u+ kB with k ∈ Zd, we obtain v′ = uD+ kB′.
We note u′ = uD.

First, we note that ‖u′‖ ≤ 2‖u‖ for any lp−norm.

Secondly, we know that there is at least one non-null vector w′ ∈ L′ such that ‖w′‖ = λ1(L′).
If we note w = w′D−1 with

D−1 =

1 −1 0 · · · 0 0
0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

. . .
...

0 0 0 · · · 1 0
0 0 0 · · · 0 1

,

we obtain a non-null vector w in L with ‖w‖ ≤ ‖w′‖‖D−1‖ = λ1(L′)‖D−1‖. Once again,
for any lp−norm, we have ‖w‖ ≤ 2λ1(L′). As ‖w‖ is a non null vector of L, we can then
obtain λ1(L) ≤ ‖w‖ ≤ 2λ1(L′).

By definition, we have ‖u‖ < α
4 λ1(L). Using the two equations, ‖u

′‖
2 ≤ ‖u‖ and λ1(L) ≤

2λ1(L′), we obtain ‖u′‖ < αλ1(L′).
Consequently, we can use a BDPCα oracle respectively on L′, v′ and L, v and extract re-
spectively

∑d
i=1 u

′
i mod 2 and

∑d
i=1 ui mod 2.

Substracting those two value, we obtain the parity of u1, i.e.

d∑
i=1

u′i −
d∑
i=1

ui mod 2 = u1 +

d∑
i=1

ui mod 2−
d∑
i=1

ui mod 2 = u1 mod 2.

ii) Find the parity of ui.

By using permutation matrix P with

P =

0 1 0 · · · 0 0
1 0 0 · · · 0 0
0 0 1 · · · 0 0
...

. . .
...

0 0 0 · · · 1 0
0 0 0 · · · 0 1

,

7

we can repeat the first operation on BP and vP to obtain u2. We can repeat this operation
with equivalent type of permutation matrix to obtain all ui.

iii) Dividing v by two.

From i and ii, we know we can extract z such that zi = {0, 1} and zi = ui mod 2.

We compute a vector q ∈ {0, 1}d satisfying v+qB = z mod 2. Definition itself of the problem
guarantees such a solution exists.

We note that v′ = v+qB−z
2 is such that it exist a k′ ∈ Zd such that v′ = u−z

2 + k′B with

k′ = k+q
2 .

We can now redo step i and ii with v′,L.

iv) Extracting u.

After s number of steps iii, we can rebuild from all z, Z such ui = Zi mod 2s. Therefore,
after

s =
⌈
1 + log2

(
α (det(L))

1
d

)⌉
,

steps iii and using Theorem 1 and Definition 7, we obtain that

‖u‖∞ < αλ1,∞

< α (det (L))
1
d

< 2s−1

Consequently u can be extracted from Z as ui = Zi mod 2s with −2s−1 < ui < 2s−1.

Moreover, using Theorem 1 and Equation 3, we obtain that

λ1,∞ ≤ p 1
d

<
(
2d+2bd(d)!

) 1
d

< 2b (4(d)!)
1
d

As by definition ‖u‖∞ = b, we obtain that the message security is based on BDPCα,∞ with

α ≥ 1

2 (4(d)!)
1
d

.

Using Theorem 3 as well as results form Lyubashevsky and Micciancio [10], we obtain a
message security as hard as solving any of the following problems,

i) BDDα with α = 1
o(d) for l∞−norm,

ii) USVPγ with γ = o(d) for l∞−norm,

iii) GapSVPγ with γ = o(d2

log d) for l∞−norm,

iv) GapSVPγ with γ = o(d2

log d) for l2−norm using a randomized reduction from [12].

Remark 2. It is important to notice that weaker version of those problems are used in most of
lattice based cryptography. This is indeed one of the strongest advantages of this cryptosystem.
However, this has a cost: the size and time of key generation, encryption and decryption are
somehow costly.

8

3.3 Side Channel Attack Resistance

During encryption, to avoid a possible extraction via side channel of
∑d
i=1 |ui|, we replace the

computation of
∑d
i=1 uihi mod p by(

d∑
i=1

(b+ 1 + ui)hi

)
− (b+ 1)

d∑
i=1

hi mod p.

Then, we can precompute for 1 ≤ i ≤ d, 1 ≤ j ≤ 2b+ 1, hi,j = jhi,j mod p. Hence, the final
computation becomes (

d∑
i=1

hi,b+1+ui

)
− (b+ 1)

d∑
i=1

hi mod p

which can be done in constant time.

3.4 Known Attacks

As shown in the previous section, the ciphertext is from far the easiest way to attack this
cryptosystem. There is no specific algorithm to solve efficiently a BDD∞ problem. As for lattice
problem in non Euclidean norm, the most efficient attacks are made by using Euclidean norm
solvers.

For u with ‖u‖∞ ≤ b, we have u2
i to be expected as

2
∑b
j=1 j

2

2b+1 . Therefore, ‖u‖2 ≈
√
d (b+1)b

2b+1 .

Furthermore, using Gaussian Heuristic (Equation 1), one can expect to have λ1,2 ≈
Γ(d2 +1)

1
d

√
π

p
1
d .

Consequently, to successfully attack a message encrypted with parameters {d, b, p}, one need to
solve an Euclidean norm BDDα problem with

α ≈

√
πd (b+1)b

2b+1

Γ
(
d
2 + 1

) 1
d p

1
d

.

However, even for the Euclidean norm, there are few results on solving efficiently a BDD
problem [9].

Currently, the state of the art method would be

i) to transform a BDD problem into a Unique Shortest Vector Problem (Embedding Tech-
nique), (

v 1
B 0

)
,

ii) to solve this new USVP using lattice reduction algorithm.

Using this method, we obtain a USVP with a gap

γ ≈
Γ
(
d+3

2

) 1
d+1 p

1
d+1√

πd (b+1)b
2b+1

. (4)

Lattice reduction methods are well studied and their strength are evaluated using the Hermite
factor. Let L a d−dimensional lattice, the Hermite factor of a basis B of L is given by

‖B1‖2
det(L)

1
d

.

9

Consequently, lattice reduction algorithms strengths are given by the Hermite factor of their
expected output basis.

In [5], it was estimated that lattice reduction methods solve USVPγ with γ a fraction of the
Hermite factor.

To confirm this hypothesis, we have performed lattice reduction on embedded BDD problem
of encrypted message using LLL [8] and BKZ20 [14]. Those lattice reduction algorithm have an
expected Hermite factor of respectively 1.0219d and 1.0128d [5]. For each dimension d, we fix
b = 1 and p ≈ 2d+1bd(d)! = 2d+1(d)! as from Equation 3.

Figure 1 shows the success rate of the embedded attack using LLL and BKZ20 in function
of d the dimension. Tests have been performed on 48 different instances for each dimension and
using FPLLL [4].

 0

 0.2

 0.4

 0.6

 0.8

 1

 180 190 200 210 220 230

LLL

 0

 0.2

 0.4

 0.6

 0.8

 1

 400 410 420 430 440

BKZ 20

Figure 1: Success rate in function of lattice dimension.

Figure 2 shows the same results than in Figure 1, however, in function of the ratio estimated
of the USVP gap to the estimated Hermite factor of lattice reduction algorithm. For LLL and

BKZ20, this ratio is given by
Γ(d+3

2)
1
d+1 p

1
d+1√

π 2d
3 1.0219d+1

,
Γ(d+3

2)
1
d+1 p

1
d+1√

π 2d
3 1.0128d+1

respectively.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.4 0.5 0.6 0.7 0.8

LLL

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.3 0.35 0.4 0.45 0.5 0.55 0.6

BKZ 20

Figure 2: Success rate in function of the USVP gap to Hermite factor ratio.

Consequently, we will use a conservative bound of 1
4 for the ratio of the USVP gap to the

Hermite factor.

10

3.5 Expected Security Strength

Different papers are giving some relations between the Hermite factor and the security parameter
λ [7, 17] often using BKZ simulation [2]. Aiming to be conservative, we are to assume a security
of 2128, 2192, 2256 for a Hermite factor of 1.006d, 1.005d, 1.004d respectively.

Dimension Bound Determinant Pp,d, p−1
2b

Gap 2λ

965 1 29148 − 11919 . 0.235 < 1
4 (1.007)d+1

1156 1 211258 − 4217 . 0.336 < 1
4 (1.006)d+1 2128

1429 1 214353 − 15169 . 0.137 < 1
4 (1.005)d+1 2192

1850 1 219268 − 7973 . 0.218 < 1
4 (1.004)d+1 2256

2576 1 228057 − 6181 . 0.146 < 1
4 (1.003)d+1

Table 1: Parameter Sets.

Remark 3. The following choices have been made to build Table 1.

i) p is set to respect equation 3,

ii) p is set to be a Pseudo Mersenne p = 2n − c which allows a compact representation n, c,

iii) b is set at 1 to obtain smaller keys and ciphertext size,

iv) d is set to obtain a USVP gap (Equation 4) with γ < δd+1

4 for δ = 1.006, 1.005, 1.004
respectively.

All those choices are not intrinsic to the cryptosystem and can be changed.

4 Implementation

4.1 Optimization

We have implemented two methods to accelerate time computation.

i) Pseudo Mersenne: as p = 2n− c with c small, we can accelerate modular reduction required
during computation [16]. We replace a mod (2n − c) with a1c + a0 mod (2n − c) when a =
a0 + a12n

ii) Computation Sharing: when encrypting λ bits, we can compute the encryption of all λ bits at

the same time. This allows to share some resources. Indeed, instead of computing
∑d
i=1 hi,u′i

with u′i = b+1+ui and hi,j = jhi mod p, one can precompute all possible
∑k−1
l=0 hi+l,u′i+l mod

p corresponding to all possible k consecutive additions of hi,u′i and memorize it in

H∑k−1
l=0 u

′
i+l(2b+1)l .

Therefore, if multiple ciphertexts require the same k consecutive additions, it is performed
only one time. This method costs to memorize (2b + 1)k values and is clearly limited as
(2b + 1)k < λ to allow a good number of share computations. In our tests, maximum
efficiency has been obtained with k = 3 for λ = 128 and λ = 192, with k = 4 for λ = 256.

11

4.2 Performance Analysis

We fix D, the dimension d, B, the bound b, N , the number of bits of the determinant p, C, the
constant such that p = 2N −C, P , the number of bytes for p i.e. P = dN8 e. Then we can fix the
number of bytes for the secret key to DP , the number of bytes for the public key to (D − 1)P ,
and the number of bytes for the ciphertext to λP .

Table 2 shows size of secret and public key and ciphertext, and time of key generation,
encryption and decryption (average on 50,000 instances) for different security parameters. Tests
have been performed using a Linux 4.13.0-17 on a dual core Intel i7-6560U 2.20GHz (Turbo
3.20GHz) with 8GB of RAM.

Size in Bytes Time in Microseconds
2λ Secret Key Public Key Ciphertext Key Generation Encryption Decryption

2128 1,627,648 1,626,240 180,224 45,696 16,317 17,701
2192 2,565,055 2,563,260 344,640 74,486 31,558 34,590
2256 4,456,650 4,454,241 616,704 134,801 64,375 70,592

Table 2: Size and Time performance.

Note if one desires a more compact secret key, one can simply keep the seed used during the
key generation and rebuild the secret key at the begin of the decryption. However, we can see
on Table 2 that this will increase by a factor 3 to 4 the decryption time.

4.3 Known Answer Tests

We use NIST Known Answer Tests generator to create our KAT. We picked a tiny dimension
i.e. d = 79, a bound b = 1 and a prime determinant p = 2469 − 283.

References

[1] M. Ajtai. Generating random lattices according to the invariant distribution, 2006.

[2] Yuanmi Chen and Phong Q. Nguyen. BKZ 2.0: Better lattice security estimates. In Ad-
vances in Cryptology - ASIACRYPT 2011 - 17th International Conference on the Theory
and Application of Cryptology and Information Security, Seoul, South Korea, December 4-8,
2011. Proceedings, pages 1–20, 2011.

[3] Alexander W. Dent. A designer’s guide to kems. In Cryptography and Coding, 9th IMA
International Conference, Cirencester, UK, December 16-18, 2003, Proceedings, pages 133–
151, 2003.

[4] The FPLLL development team. fplll, a lattice reduction library. Available at https:

//github.com/fplll/fplll, 2016.

[5] Nicolas Gama and Phong Q. Nguyen. Predicting lattice reduction. In Advances in Cryptology
- EUROCRYPT 2008, 27th Annual International Conference on the Theory and Applica-
tions of Cryptographic Techniques, Istanbul, Turkey, April 13-17, 2008. Proceedings, pages
31–51, 2008.

[6] Daniel Goldstein and Andrew Mayer. On the equidistribution of Hecke points. Forum
Mathematicum, 15(2):165–189, 2003.

12

https://github.com/fplll/fplll
https://github.com/fplll/fplll

[7] Jeffrey Hoffstein, Jill Pipher, John M. Schanck, Joseph H. Silverman, William Whyte, and
Zhenfei Zhang. Choosing parameters for NTRUEncrypt. In Topics in Cryptology - CT-RSA
2017 - The Cryptographers’ Track at the RSA Conference 2017, San Francisco, CA, USA,
February 14-17, 2017, Proceedings, pages 3–18, 2017.

[8] A.K. Lenstra, H.W. Lenstra Jr., and L. Lovsz. Factoring polynomials with rational coeffi-
cients. Mathematische Annalen, 261(4):515–534, 1982.

[9] Mingjie Liu and Phong Q. Nguyen. Solving BDD by enumeration: An update. In Topics in
Cryptology - CT-RSA 2013 - The Cryptographers’ Track at the RSA Conference 2013, San
Francisco,CA, USA, February 25-March 1, 2013. Proceedings, pages 293–309, 2013.

[10] Vadim Lyubashevsky and Daniele Micciancio. On bounded distance decoding, unique short-
est vectors, and the minimum distance problem. In Advances in Cryptology - CRYPTO 2009,
29th Annual International Cryptology Conference, Santa Barbara, CA, USA, August 16-20,
2009. Proceedings, pages 577–594, 2009.

[11] H. Minkowski. Geometrie der Zahlen. B. G. Teubner, Leipzig, 1896.

[12] Oded Regev and Ricky Rosen. Lattice problems and norm embeddings. In Proceedings of
the 38th Annual ACM Symposium on Theory of Computing, Seattle, WA, USA, May 21-23,
2006, pages 447–456, 2006.

[13] Reuven Y. Rubinstein and Dirk P. Kroese. Simulation and the Monte Carlo Method. John
Wiley & Sons, Incorporated, October 2006.

[14] Claus-Peter Schnorr. Block reduced lattice bases and successive minima. Combinatorics,
Probability & Computing, 3:507–522, 1994.

[15] Noah A. Smith and Roy W. Tromble. Sampling uniformly from the unit simplex, October
2004.

[16] Jerome Solinas. Pseudo-Mersenne Prime. Springer US, Boston, MA, 2005.

[17] Joop van de Pol and Nigel P. Smart. Estimating key sizes for high dimensional lattice-based
systems. In Cryptography and Coding - 14th IMA International Conference, IMACC 2013,
Oxford, UK, December 17-19, 2013. Proceedings, pages 290–303, 2013.

13

	1 Background
	2 Algorithm Specifications
	2.1 Cryptosystem Concept
	2.2 Specific Algorithm
	2.3 CPA encryption
	2.4 CCA Key Encapsulation Message

	3 Security Analysis
	3.1 Public Key Security
	3.2 Message Security
	3.3 Side Channel Attack Resistance
	3.4 Known Attacks
	3.5 Expected Security Strength

	4 Implementation
	4.1 Optimization
	4.2 Performance Analysis
	4.3 Known Answer Tests

