Odd Manhattan

Thomas PLANTARD

Institute of Cybersecurity and Cryptology University of Wollongong

http://www.uow.edu.au/~thomaspl thomaspl@uow.edu.au

13 April 2018

4 0 F

1 [Description](#page-2-0)

- 2 [Security Analysis](#page-6-0)
- 3 [Implementation Details](#page-13-0)

4 [Comments](#page-16-0)

5 [Specificity](#page-17-0)

∢ □ ▶ ⊣ 倒 ▶

 -4 э \sim ≃

Lattice based Cryptosystem

- **.** Using Generic Lattice generated form its Dual.
- Dual created from an Odd Vector of bounded Manhattan norm.

4 0 8

Lattice based Cryptosystem

- **Using Generic Lattice generated form its Dual.**
- **Dual created from an Odd Vector of bounded Manhattan norm.**

Lattice based Key Encryption Message

- \bullet Encrypt a message m in the **parity bit** of a vector close to the lattice.
- **CCA** achived using classic method i.e. Dent's.

Public Key Encryption

Setup

- Alice choose 3 public parameters
	- \bullet d a lattice dimension,
	- 2 *b* an upper bound,
	- \bullet p a prime number.
- Alice creates a secret random vector $w\in\mathcal{M}_{\boldsymbol{d},l}$ i.e.
	- \bullet with w_i odd,
	- \sum with $\sum_{i=1}^d |w_i|$ bounded by $l = \lfloor \frac{p-1}{2b} \rfloor$
- Alice publish the Lattice $\mathcal L$ such that $w\in \mathcal L^*.$

つへへ

Public Key Encryption

Setup

- Alice choose 3 public parameters
	- \bullet d a lattice dimension.
	- 2 *b* an upper bound,
	- ³ p a prime number.

Alice creates a secret random vector $w\in\mathcal{M}_{\boldsymbol{d},l}$ i.e.

- \bullet with w_i odd,
	- \sum with $\sum_{i=1}^d |w_i|$ bounded by $l = \lfloor \frac{p-1}{2b} \rfloor$
- Alice publish the Lattice $\mathcal L$ such that $w\in \mathcal L^*.$

Encryption/Decryption

• To encrypt $m \in \{0, 1\}$, Bob computes v such $\exists u$ \bigcirc $(v - u) \in \mathcal{L}$ \bullet $||u||_{\infty} \leq b$ 3 $\sum_{i=1}^d u_i$ mod 2 = m • To decrypt, Alice extract $m = (vw^t \mod p)$ $m = (vw^t \mod p)$ $m = (vw^t \mod p)$ [m](#page-4-0)od [2](#page-4-0)[.](#page-5-0)

Theorem

Let L a full rank lattice of determinant $p > 2$ prime and dimension $d > 1$, and $I \in \mathbb{N}^*$, the probability that a Lattice does not have such vector in its dual $\mathcal{L}^* \cap \mathcal{M}_{d,l} = \varnothing$ is given by

$$
\mathcal{P}_{p,d,l} = \left(1 - \frac{1}{p^{d-1}}\right)^{2^{d-1}\left(\left\lfloor\frac{l+d}{d}\right\rfloor\right)}
$$

つひひ

Theorem

Let L a full rank lattice of determinant $p > 2$ prime and dimension $d > 1$, and $I \in \mathbb{N}^*$, the probability that a Lattice does not have such vector in its dual $\mathcal{L}^* \cap \mathcal{M}_{d,l} = \varnothing$ is given by

$$
\mathcal{P}_{p,d,l} = \left(1 - \frac{1}{p^{d-1}}\right)^{2^{d-1}\left(\left\lfloor\frac{l+d}{d}\right\rfloor\right)}
$$

Cryptosystem Parameters

By taking $\rho \approx 2^{d+1}b^d(d)$!, we insure that $\mathcal{P}_{\rho,d,\frac{\rho-1}{2b}} < \frac{1}{2}$ the set of all possible public key represents more than half of the set of $\frac{1}{2}$ i.e. all generic lattices with equivalent dimension and determinant.

Computational Hardness for message security

Definition (α -Bounded Distance Parity Check (BDPC α))

Given a lattice $\mathcal L$ of dimension d and a vector v such that $\exists u, (\mathsf{v}-\mathsf{u}) \in \mathcal{L}, \| \mathsf{u} \| < \alpha \lambda_1(\mathcal{L})$, find $\sum_{i=1}^d u_i$ mod 2.

Computational Hardness for message security

Definition (α -Bounded Distance Parity Check (BDPC α))

Given a lattice $\mathcal L$ of dimension d and a vector v such that $\exists u, (\mathsf{v}-\mathsf{u}) \in \mathcal{L}, \| \mathsf{u} \| < \alpha \lambda_1(\mathcal{L})$, find $\sum_{i=1}^d u_i$ mod 2.

Theorem $(BDD_{\frac{\alpha}{4}}\leq BDP\mathcal{C}_\alpha)$

For any I_p −norm and any $\alpha \leq 1$ there is a polynomial time Cook-reduction from $BDD_{\frac{\alpha}{4}}$ to $BDPC_{\alpha}$.

つへへ

Computational Hardness for message security

Definition (α -Bounded Distance Parity Check (BDPC α))

Given a lattice $\mathcal L$ of dimension d and a vector v such that $\exists u, (\mathsf{v}-\mathsf{u}) \in \mathcal{L}, \| \mathsf{u} \| < \alpha \lambda_1(\mathcal{L})$, find $\sum_{i=1}^d u_i$ mod 2.

Theorem $(BDD_{\frac{\alpha}{4}}\leq BDP\mathcal{C}_\alpha)$

For any I_p –norm and any $\alpha \leq 1$ there is a polynomial time Cook-reduction from BDD_a to BDPC_a. 4

Extracting message is as hard as...

9 BDD<sub>$$
\alpha
$$</sub> with $\alpha = \frac{1}{o(d)}$ for l_{∞} -norm,

Q USVP<sub>$$
\gamma
$$</sub> with $\gamma = o(d)$ for l_{∞} —norm,

9 GapSVP<sub>$$
\gamma
$$</sub> with $\gamma = o(\frac{d^2}{\log d})$ for l_{∞} -norm,

9 GapSVP<sub>$$
\gamma
$$</sub> with $\gamma = o(\frac{d^2}{\log d})$ for l_2 -norm.

Best Known Attack

Find the Unique Shortest Vector of the lattice

$$
\begin{pmatrix} v & 1 \\ P & 0 \end{pmatrix}
$$

with a lattice gap

$$
\gamma = \frac{\lambda_2}{\lambda_1} \simeq \frac{\Gamma\left(\frac{d+3}{2}\right)^{\frac{1}{d+1}} \rho^{\frac{n}{n+1}}}{\sqrt{\pi d \frac{(b+1)b}{2b+1}}}
$$

4 ロ ▶ 4 何

Best Known Attack

Find the Unique Shortest Vector of the lattice

$$
\begin{pmatrix} v & 1 \\ P & 0 \end{pmatrix}
$$

with a lattice gap

$$
\gamma = \frac{\lambda_2}{\lambda_1} \simeq \frac{\Gamma\left(\frac{d+3}{2}\right)^{\frac{1}{d+1}} \rho^{\frac{n}{n+1}}}{\sqrt{\pi d \frac{(b+1)b}{2b+1}}}
$$

Conservator Choices

Side-Channel resistance

Constant time achieved by reorganising inner product computation.

4 0 3 4

 QQ

Side-Channel resistance

Constant time achieved by reorganising inner product computation.

Shared Computation

- Due to CCA, implementation encrypting λ message $m = 0, 1$.
- Optimisation to **share** some **common computation** while encrypting.

4 D F

Side-Channel resistance

Constant time achieved by reorganising inner product computation.

Shared Computation

- Due to CCA, implementation encrypting λ message $m = 0, 1$.
- Optimisation to **share** some **common computation** while encrypting.

Pseudo Mersenne

Using $p = 2^n - c$, to accelerate **modular reduction**.

Tancrede Lepoint

- **.** Implementation issue regarding CCA security.
- Shared secret was not randomised when return decryption failure.

4 **D F**

Specificity

Specificity

- Secret key is composed by only one Odd vector of bounded Manhattan Norm.
- Message is encrypted in the parity bit of a close vector.

4 **D F**

Specificity

Specificity

- Secret key is composed by only one **Odd** vector of bounded Manhattan Norm.
- Message is encrypted in the **parity bit** of a close vector.

Advantage

- Majority of all generic lattices are potential public keys.
- As Hard as $\mathbf{BDD}_{\frac{1}{\sqrt{n}}}$ for $l_{\infty}-$ norm i.e. $\mathbf{max}% _{1}\left\vert \mathbf{right}\right\rangle _{1}$ norm. $\overline{o(d)}$
- No decryption error.
- **•** Simplicity.

Specificity

Specificity

- **•** Secret key is composed by only one Odd vector of bounded Manhattan Norm.
- Message is encrypted in the **parity bit** of a close vector.

Advantage

- Majority of all generic lattices are potential public keys.
- As Hard as $\mathbf{BDD}_{\frac{1}{\sqrt{n}}}$ for $l_{\infty}-$ norm i.e. $\mathbf{max}% _{1}\left\vert \mathbf{right}\right\rangle _{1}$ norm. $\overline{o(d)}$
- No decryption error.
- **•** Simplicity.

Disadvantage

• Keys and Ciphertext size.

← ロ → → ← 何 →

 QQ