Odd Manhattan

Thomas PLANTARD

Institute of Cybersecurity and Cryptology University of Wollongong

 $\label{eq:http://www.uow.edu.au/-thomaspl} thomaspl@uow.edu.au$

13 April 2018

1 Description

- 2 Security Analysis
- Implementation Details

4 Comments

< □ > < 同 > < 三</p>

Lattice based Cryptosystem

- Using Generic Lattice generated form its Dual.
- Dual created from an Odd Vector of bounded Manhattan norm.

Lattice based Cryptosystem

- Using Generic Lattice generated form its Dual.
- Dual created from an Odd Vector of bounded Manhattan norm.

Lattice based Key Encryption Message

- Encrypt a message *m* in the **parity bit** of a vector close to the lattice.
- CCA achived using classic method i.e. Dent's.

Public Key Encryption

Setup

- Alice choose 3 public parameters
 - d a lattice dimension,
 - 2 b an upper bound,
 - *p* a prime number.
- Alice creates a secret random vector $w \in \mathcal{M}_{d,l}$ i.e.
 - with w_i odd,
 - 2 with $\sum_{i=1}^{d} |w_i|$ bounded by $l = \lfloor \frac{p-1}{2b} \rfloor$
- Alice publish the Lattice \mathcal{L} such that $w \in \mathcal{L}^*$.

Public Key Encryption

Setup

- Alice choose 3 public parameters
 - d a lattice dimension,
 - 2 b an upper bound,
 - *p* a prime number.

• Alice creates a secret random vector $w \in \mathcal{M}_{d,l}$ i.e.

with w_i odd,

) with
$$\sum_{i=1}^{d} |w_i|$$
 bounded by $l = \lfloor \frac{p-1}{2b} \rfloor$

• Alice publish the Lattice $\mathcal L$ such that $w \in \mathcal L^*$.

Encryption/Decryption

Theorem

Let \mathcal{L} a full rank lattice of determinant p > 2 prime and dimension d > 1, and $l \in \mathbb{N}^*$, the probability that a Lattice does not have such vector in its dual $\mathcal{L}^* \cap \mathcal{M}_{d,l} = \emptyset$ is given by

$$\mathcal{P}_{p,d,l} = \left(1 - rac{1}{p^{d-1}}
ight)^{2^{d-1}\left(\left\lfloorrac{\lfloorrac{l+d}{2}
ight
ceil}{d}
ight)}$$

Theorem

Let \mathcal{L} a full rank lattice of determinant p > 2 prime and dimension d > 1, and $l \in \mathbb{N}^*$, the probability that a Lattice does not have such vector in its dual $\mathcal{L}^* \cap \mathcal{M}_{d,l} = \emptyset$ is given by

$$\mathcal{P}_{p,d,l} = \left(1 - rac{1}{p^{d-1}}
ight)^{2^{d-1}\left(igslash rac{l+d}{2}
ight)}$$

Cryptosystem Parameters

By taking $p \approx 2^{d+1}b^d(d)!$, we insure that $\mathcal{P}_{p,d,\frac{p-1}{2b}} < \frac{1}{2}$ i.e. the set of **all possible public key** represents more than **half** of the set of **all generic lattices** with equivalent dimension and determinant.

Computational Hardness for message security

Definition (α -Bounded Distance Parity Check (BDPC α))

Given a lattice \mathcal{L} of dimension d and a vector v such that $\exists u, (v - u) \in \mathcal{L}, ||u|| < \alpha \lambda_1(\mathcal{L})$, find $\sum_{i=1}^d u_i \mod 2$.

Computational Hardness for message security

Definition (α -Bounded Distance Parity Check (BDPC α))

Given a lattice \mathcal{L} of dimension d and a vector v such that $\exists u, (v - u) \in \mathcal{L}, ||u|| < \alpha \lambda_1(\mathcal{L})$, find $\sum_{i=1}^d u_i \mod 2$.

Theorem $(BDD_{\frac{\alpha}{4}} \leq BDPC_{\alpha})$

For any l_p -norm and any $\alpha \leq 1$ there is a polynomial time Cook-reduction from $BDD_{\frac{\alpha}{4}}$ to $BDPC_{\alpha}$.

Computational Hardness for message security

Definition (α -Bounded Distance Parity Check (BDPC α))

Given a lattice \mathcal{L} of dimension d and a vector v such that $\exists u, (v - u) \in \mathcal{L}, ||u|| < \alpha \lambda_1(\mathcal{L})$, find $\sum_{i=1}^d u_i \mod 2$.

Theorem $(BDD_{\frac{\alpha}{4}} \leq BDPC_{\alpha})$

For any l_p -norm and any $\alpha \leq 1$ there is a polynomial time Cook-reduction from $BDD_{\frac{\alpha}{4}}$ to $BDPC_{\alpha}$.

Extracting message is as hard as...

1 BDD_{$$\alpha$$} with $\alpha = \frac{1}{o(d)}$ for I_{∞} -norm,

②
$$\mathsf{USVP}_\gamma$$
 with $\gamma = o(d)$ for $I_\infty-$ norm,

3 GapSVP
$$_{\gamma}$$
 with $\gamma = o(\frac{d^2}{\log d})$ for I_{∞} -norm,

• GapSVP
$$_{\gamma}$$
 with $\gamma = o(rac{d^2}{\log d})$ for l_2 -norm.

Best Known Attack

Find the Unique Shortest Vector of the lattice

$$\begin{pmatrix} v & 1 \\ P & 0 \end{pmatrix}$$

with a lattice gap

$$\gamma = \frac{\lambda_2}{\lambda_1} \simeq \frac{\Gamma\left(\frac{d+3}{2}\right)^{\frac{1}{d+1}} p^{\frac{n}{n+1}}}{\sqrt{\pi d \frac{(b+1)b}{2b+1}}}$$

Image: Image:

Best Known Attack

Find the Unique Shortest Vector of the lattice

$$\begin{pmatrix} v & 1 \\ P & 0 \end{pmatrix}$$

with a lattice gap

$$\gamma = \frac{\lambda_2}{\lambda_1} \simeq \frac{\Gamma\left(\frac{d+3}{2}\right)^{\frac{1}{d+1}} p^{\frac{n}{n+1}}}{\sqrt{\pi d \frac{(b+1)b}{2b+1}}}$$

Conservator Choices

Dimension	Bound	Determinant	$\mathcal{P}_{p,d,\frac{p-1}{2b}}$	Gap	2^{λ}
1156	1	$2^{11258} - 4217$	$\lesssim 0.336$	$ <rac{1}{4}(1.006)^{d+1}$	2 ¹²⁸
1429	1	$2^{14353} - 15169$	$\lesssim 0.137$	$ <rac{1}{4}(1.005)^{d+1}$	2 ¹⁹²
1850	1	$2^{19268} - 7973$	$\lesssim 0.218$	$<rac{1}{4}(1.004)^{d+1}$	2 ²⁵⁶

Side-Channel resistance

Constant time achieved by reorganising inner product computation.

Side-Channel resistance

Constant time achieved by reorganising inner product computation.

Shared Computation

- Due to CCA, implementation encrypting λ message m = 0, 1.
- Optimisation to **share** some **common computation** while encrypting.

Side-Channel resistance

Constant time achieved by reorganising inner product computation.

Shared Computation

- Due to CCA, implementation encrypting λ message m = 0, 1.
- Optimisation to **share** some **common computation** while encrypting.

Pseudo Mersenne

Using $p = 2^n - c$, to accelerate **modular reduction**.

Tancrede Lepoint

- Implementation issue regarding CCA security.
- Shared secret was not randomised when return decryption failure.

- 3 →

Specificity

Specificity

- Secret key is composed by only one Odd vector of bounded Manhattan Norm.
- Message is encrypted in the parity bit of a close vector.

Specificity

Specificity

- Secret key is composed by only one Odd vector of bounded Manhattan Norm.
- Message is encrypted in the parity bit of a close vector.

Advantage

- Majority of all generic lattices are potential public keys.
- As Hard as $BDD_{\frac{1}{o(d)}}$ for I_{∞} -norm i.e. max norm.
- No decryption error.
- Simplicity.

Specificity

Specificity

- Secret key is composed by only one **Odd** vector of bounded **Manhattan** Norm.
- Message is encrypted in the parity bit of a close vector.

Advantage

- Majority of all generic lattices are potential public keys.
- As Hard as $BDD_{\frac{1}{o(d)}}$ for I_{∞} -norm i.e. max norm.
- No decryption error.
- Simplicity.

Disadvantage

Keys and Ciphertext size.

A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A