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How to convince the sceptics
that quantum computers work?

It is (relatively) easy to
experimentally show a
quantum advantage under
locality constraints.

% e.g. Bell violation, where the locality
constraints are either assumed or
enforced (loophole free)

Showing a gap between
classical and quantum

computing is more challenging.

Source: IEEE Spectrum: The Case
Against Quantum Computing



% We know that P ¢ BQP ¢ PSPACE. But we cannot
exclude that they are all the same.

[ PSPACE problems )

/ NP problems \
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% Showing a separation P # PSPACE would be a major
breakthrough in complexity theory.

%= P # BQP would imply such a separation. (Thus, let us
better try something else.)



Two approaches: Supremacy vs. Advantage

Quantum computational supremacy Advantage for restricted circuits
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— and this work
— and various others

complexity theoretic assumptions

circuit restrictions (e.g. low-depth
(P # PSPACE and beyond) (.9 pth)
no classical computer can solve no low depth classical can solve the
this problem (if assumptions hold up), problem, but a low-depth quantum
but a quantum computer can computer can
sampling problem relational problem

feasible with NISQ devices feasible-ish with NISQ devices
(tolerates little noise, 2D) (tolerates constant stochastic noise, 3D)
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Results - noiseless

Result 1 (Quantum advantage with 1D shallow circuits —informal). For each n there ezists
a relation problem R with roughly n input-output bits and a set of inputs S of size |S| = poly(n)
such that the following holds:

e The problem R can be solved with certainty for all inputs by a constant-depth quantum circuit
composed of geometrically local gates on a 1D grid.

o Any classical probabilistic circuit composed of constant fan-in gates that solves R with proba-
bility exceeding 0.9 for a uniformly random input from S must have depth at least Q(logn).

and log-depth classical circuits.

% Quantum circuit wins with certainty while...
% ...classical circuits win at most with 90% probability.

Improves on the original result: &

% requires only 1D circuit instead of 2D Quantum advantage with shallow circuits

+ See all authors and affiliations

%}Ké‘ CO n Ce pt u al Iy Si m p I e Sergey Bravyi', David Gosset'”, Robert Konig?*

Science 19 Oct 2018:
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Results - noisy

Gap persists if we allow constant local stochastic noise
(on system and ancillas, circuit and measurements).

Let p € [0,1]. A random n-qubit Pauli error E is called p-local stochastic noise if

Pr[F C Supp(E)] < p!¥'! for all F' C [n].
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Constant-depth quantum circuit in 3D wins with 99% probability while...
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...classical circuits can win at most with 90% probability,
unless it is almost log-depth.
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Result 2 (Quantum advantage with noisy shallow circuits —informal). For each n there
ezists a relation problem R with roughly n input-output bits and a set of inputs S of size |S| = poly(n)
such that the following holds:

e The problem R can be solved with probability at least 0.99 for all inputs by a constant-depth
quantum circuit composed of geometrically local gates on a 3D grid, subject to local stochastic
noise. The noise rate must be below a constant threshold value independent of n.

o Any classical probabilistic circuit composed of constant fan-in gates that solves R with proba-
bility exceeding 0.9 for a uniformly random input from S must have depth at least

? (1gl<1g(£z>>) '




The noiseless case

classically quantumly

hard % easy



Magic squares

% Alice asked to fill a (random)
column, Bob a (random) row.

% The columns should multiply
to -1, the rows to +1.

* The element where column
and row overlap needs to be
consistent.

* Without communication or
entanglement, this can be won
with probability at most 8/9.




Magic squares

o B Binary a, B € {01, 10, 11} are
l .............. D) } inputs for Alice and Bob.
§ o —® 5

Alice . Dob 3-bit strings x, y are outputs.
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l l X1 Xoxz = — 1 yiyays = 1

X Yy

Xﬁ —_ ya
““ ol | 10 | 11

Quantum players can win 3

with certainty using these
measurements (and their
negation) on two singlets.

01 | Xq1o | 11Xo | X1X5
10 1122 | Z119 | Z145
11 —X122 —ZlXQ l/1Y2




Magic square circuit
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00|y =01

v =10

U(y)

Hi1, |Hy1y - SWAP

V()
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Hy1H,

SWAP

v =11

U(v)

Hy1ly - CNOT

V(7)

(H1Hs) - CZ - (Z125)
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We can play this as a circuit.

The input controls a two-qubit
unitary that determines the
measurement basis.

It only outputs the first two bits
— fixing the third so that the
parity condition holds.

a, B, x and y will satisfy the
magic squares relation x; =y, .



Magic squares on a (classical) chip
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% What if we just put the inputs at
opposite ends of the chip?

. % ldea: if the device is long enough, the
7 inputs depth will not suffice to communicate
between the two ends due to the
bounded fan-in mption.
5 \/,X unded fan-in assumptio
&/

n outputs

\ry




A simple idea: light cones

constant depth logarithmic depth
a - — Q@ — —
k’ T " X k’ — " X
ﬂu: _ ﬂu: —

(Attention: this diagram wrongly suggests that the circuits are geometrically local,
but we in fact don't assume that - that is in fact an important point of our proof.)



Magic squares on a (classical) chip

2 What if we just put the inputs at

“k» opposite ends of the chip?
7 inputs % |dea: if the device is long enough, the
depth will not suffice to communicate
y; X between the two ends due to the
U bounded fan-in assumption.

" outputs

\ry

% But wires are cheap and thus we do
not want to assume locality.

* We instead put inputs at random
too hard? locations, and again use the
bounded fan-in assumption.



The quantum Magic squares game (l)

(jak7a7:3) where 1S.7<kSn and
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a,B € {01,10,11} p1 |0) Hi—e Ula)
a.={a’ =7 ﬂ.z{ﬂ’ 1=k q1 |0) —(H ' 1
“T 00, i " oo, i#k. a I
b1
¢ The idea is to distribute P2 |0) & ” ”
. V
entanglement using 1D local ¢ |0) & a2
W (B, az
entanglement swaps. ps 0y A H o o )
2
: W rotates into the Bell basis on © ! |1t
input 0000, inactive otherwise. :
| I
I I I ps |0 D
Swap requires a Pauli rotation ! :oi T vees
depending on the measured  * = W (B, a3)
output - cannot do that here! ~ » 1 t———
_ g 0) —H *
Can we play magic squares | :

with a wrong Bell state?
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Magic squares and Pauli noise

o —
|(I)s’,t’> V(,B)
\ /74:
@, ) = (Z%(1+s)X%(1+t) Q I) D)

% Since the Magic square

rotations are Clifford, we can
propagate any Bell rotations
trough.

»* This simply changes the

winning condition, instead of
Xﬁya — 1
we require

X,Bya =fa,ﬂ(s, S/, t, t,)



The quantum Magic squares game (ll)
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The inputs o)
(03]
(4, k,a, B) where 1<j<k<n and o fi_H 1 [
a, B € {01,10,11}
. . . b1
o — a, 1= 5 — B, 1=k pa 10 & i B i B
00, ©#J. 00, i # k. o 1| v | B
q2 N W(ﬁh()@)
. p3 [0) — H|[—e - —
and outputs must satisfy B Ulaa) | | i
q3 10) — H *
o I .
XV = fap(sit, 1) 6, : n
- 1 - - pa |0) SV - — -
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too easy? 20 10) o
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Why is this still classically hard?

(8
ol ey .
J’ o | S’> — @ X"Y fa,ﬁ(sa t,S,t)
o ® s = ss(@) sg(B) s,
....... ll D, ) ll S = @) D),
X SgsSpIas Iy Y S Splp tp t = ty(a) tg(P) 4

' = ty(a)tz(P) 1,

% Influencing the winning condition depending on their
respective inputs does not help the classical players.

% Proof: Reduce every strategy for this game to a strategy
for the base game with the same winning probability.



Recap - noiseless case

Result 1 (Quantum advantage with 1D shallow circuits —informal). For each n there exists
a relation problem R with roughly n input-output bits and a set of inputs S of size |S| = poly(n)
such that the following holds: depth 5

e The problem R can be solved with certainty for all inputs by a constant-depth quantum circuit
composed of geometrically local gates on a 1D grid.

In fact, they are classically controlled two-qubit gates
(essentially as simple as it can get).

o Any classical probabilistic circuit composed of constant fan-in gates that solves R with proba-
bility exceeding 0.9 for a uniformly random input from S must have depth at least 2(logn).

In particular, the problem is not in NCP but sits in the
corresponding quantum class.



The noisy case



Stochastic noise in the system

Let p € [0,1]. A random n-qubit Pauli error FE is called p-local stochastic noise if

Pr[F C Supp(E)] < p!* for all F' C [n]. @
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We consider errors on state preparation,
gates and measurements.

They can be arbitrarily correlated...

% ...In particular there are no locality constraints...

% ...but errors affecting many qubits are exponentially suppressed.

¢ The noise parameter p is held constant, but as things scale we need the

error per logical qubit to vanish.

¢ Standard fault-tolerance does not apply since the circuit depth (even for

preparing a logical zero) blows up with decreasing error per logical qubit.



Code properties (l)

We introduce generic way to make relational problems
using Clifford circuits noise-tolerant.

We need a CSS-type code family parametrised by m with
the following properties:

1. Logical H, S (and CNOT) can be implemented using depth-1 Clifford
circuits composed of (at most) two-qubit gates.

2. We have constant-depth single-shot logical basis state preparation.

1. Prepare m + myy,. qubits in the state |0™) ® |0™anc),

3. Measure each ancilla qubit in the Z-basis, giving an |Omanc> ] /74=H
outcome s € {0, 1}™Manc,

4. Depending on the outcome s, apply a suitable Pauli
recovery Rec(s) to the state of the m unmeasured

qubits.

2. Apply a constant-depth Clifford circuit W'. |Om> — Rec(s) — |6>



Code properties (ll)

= We need a CSS-type code family parametrised by m with
the following properties:

1. Logical H, S (and CNOT) can be implemented using depth-1 Clifford
circuits composed of (at most) two-qubit gates.

2. We have constant-depth single-shot logical basis state preparation.

3. Error threshold akin to fault-tolerance threshold theorem, with error
vanishing (almost exponentially) as m increases.

= These are satisfied by a folded 2D surface code
(but this is not trivial to show)

WA

= 2D surface code per logical qubit + 1D logical circuit
= 3D physical circuilit.
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Long-range quantum entanglement in noisy cluster states

Robert Raussendorf, Sergey Bravyi, and Jim Harrington
Phys. Rev. A 71, 062313 — Published 14 June 2005

1. Prepare 3D cluster state.
2. Measure bulk (the right way).

3. Results in surface-code encoded maximally
entangled qubits at the boundaries.



The construction

this controlled (constant
depth) Clifford circuit
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defines a relational problem

RU(b, Z) - {

1, pb(Z) > ()

otherwise.

and induces a fault-tolerant
relational problem

X |
0™) — AR
%4
|Omanc> — = sl
0™) — A=y
4 _
|Omanc> — A= 52 Ch
0™) — A=Y
%%
|Omanc> — /7<= sn




The reduction

— If the quantum circuit solves a relational problem
perfectly in the noiseless case, its fault-tolerant version
can solve it up to constant error if we choose

m, m,. . € O(polylogn)

< If a f(n) depth classical circuit with constant fan-in solves
the fault-tolerant problem, then there exists a f(n) + O(1)
depth circuit with fan-in O(polylog n) solving the original
problem.

Since the latter cannot exist for f(n) = logn/log(logn)
(according to Result 1), the former cannot either.



Recap - noisy case

Result 2 (Quantum advantage with noisy shallow circuits —informal). For each n there
exists a relation problem R with roughly n input-output bits and a set of inputs S of size |S| = poly(n)

such that the following holds: can it ever be 2D?

e The problem R can be solved with probability at least 0.99 for all inputs by a constant-depth
quantum circuit composed of geometrically local gates on a 8D grid, subject to local stochastic
noise. The noise rate must be below a constant threshold value independent of n.

e Any classical probabilistic circuit composed of constant fan-in gates that solves R with proba-
bility exceeding 0.9 for a uniformly random input from S must have depth at least

? (1;(f(grz)n») '




