
Quantum advantage with 
noisy shallow circuits in 3D

Marco Tomamichel  
(with Sergey Bravyi, David Gosset, Robert König)

(Wollongong MACAO workshop, 26/11/2019)

(will be presented at FOCS 2019)

IBM IQC/Waterloo TU Munich



Source: IEEE Spectrum: The Case  
Against Quantum Computing

How to convince the sceptics 
that quantum computers work?


It is (relatively) easy to 
experimentally show a 
quantum advantage under 
locality constraints.


e.g. Bell violation, where the locality 
constraints are either assumed or 
enforced (loophole free)


Showing a gap between 
classical and quantum 
computing is more challenging.



We know that P ⊆ BQP ⊆ PSPACE. But we cannot 
exclude that they are all the same.


Showing a separation P ≠ PSPACE would be a major 
breakthrough in complexity theory.


P ≠ BQP would imply such a separation. (Thus, let us 
better try something else.)



Two approaches: Supremacy vs. Advantage
Quantum computational supremacy Advantage for restricted circuits

complexity theoretic assumptions

(P ≠ PSPACE and beyond) circuit restrictions (e.g. low-depth)

no classical computer can solve 
this problem (if assumptions hold up),

but a quantum computer can

feasible with NISQ devices 
(tolerates little noise, 2D) 

sampling problem relational problem

and this work

feasible-ish with NISQ devices 
(tolerates constant stochastic noise, 3D) 

no low depth classical can solve the  
problem, but a low-depth quantum 
computer can

and various others



Outline

The results in a nutshell


The noiseless case: from 
magic squares to quantum 
circuits


The noisy case: fault-
tolerance in constant depth



Results - noiseless

Shows gap between constant-depth quantum circuits in 1D  
and log-depth classical circuits.


Quantum circuit wins with certainty while...

...classical circuits win at most with 90% probability.


Improves on the original result:

requires only 1D circuit instead of 2D

conceptually simple



Results - noisy
Gap persists if we allow constant local stochastic noise  
(on system and ancillas, circuit and measurements). 
 
 

Constant-depth quantum circuit in 3D wins with 99% probability while...

...classical circuits can win at most with 90% probability,  
unless it is almost log-depth.



The noiseless case
classically 
hard

quantumly  
easy



Magic squares

Alice asked to fill a (random) 
column, Bob a (random) row.


The columns should multiply 
to -1, the rows to +1.


The element where column 
and row overlap needs to be 
consistent.


Without communication or 
entanglement, this can be won 
with probability at most 8/9.



Magic squares

Binary α, β ∈ {01, 10, 11} are 
inputs for Alice and Bob.


3-bit strings x, y are outputs.

Quantum players can win  
with certainty using these 
measurements (and their 
negation) on two singlets.

xβ = yα

x1x2x3 = − 1 y1y2y3 = 1



Magic square circuit

We can play this as a circuit.


The input controls a two-qubit 
unitary that determines the 
measurement basis.


It only outputs the first two bits 
— fixing the third so that the 
parity condition holds.


α, β, x and y will satisfy the 
magic squares relation            .xβ = yα

too easy



What if we just put the inputs at 
opposite ends of the chip?


Idea: if the device is long enough, the 
depth will not suffice to communicate 
between the two ends due to the 
bounded fan-in assumption.

Magic squares on a (classical) chip
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constant depth

A simple idea: light cones
logarithmic depth
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(Attention: this diagram wrongly suggests that the circuits are geometrically local, 
but we in fact don't assume that - that is in fact an important point of our proof.)



What if we just put the inputs at 
opposite ends of the chip?


Idea: if the device is long enough, the 
depth will not suffice to communicate 
between the two ends due to the 
bounded fan-in assumption. 
 
 
 
 
 

But wires are cheap and thus we do 
not want to assume locality.


We instead put inputs at random 
locations, and again use the 
bounded fan-in assumption.

Magic squares on a (classical) chip
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too hard?



The quantum Magic squares game (I)

The idea is to distribute 
entanglement using 1D local 
entanglement swaps.

    rotates into the Bell basis on 
input 0000, inactive otherwise.

Swap requires a Pauli rotation 
depending on the measured 
output - cannot do that here!

Can we play magic squares 
with a wrong Bell state?

W



Magic squares and Pauli noise

Since the Magic square 
rotations are Clifford, we can 
propagate any Bell rotations 
trough.

This simply changes the 
winning condition, instead of 
 
 
we require 
 
 

xβyα = 1

xβyα = fα,β(s, s′ , t, t′ )

|Φs,t⟩

|Φs′ ,t′ ⟩



The quantum Magic squares game (II)
The inputs

and outputs must satisfy

xβ
j yα

k = fα,β(s, t, s′ , t′ )

too easy?



Why is this still classically hard?

|Φs,t⟩

|Φs′ ,t′ ⟩
s = sA(α) sB(β) s0

s′ = s′ A(α) s′ B(β) s′ 0

t = tA(α) tB(β) t0
t′ = t′ A(α) t′ B(β) t′ 0

sA, s′ A, tA, t′ A sB, s′ B, tB, t′ B

xβyα = fα,β(s, t, s′ , t′ )

Influencing the winning condition depending on their 
respective inputs does not help the classical players.

Proof: Reduce every strategy for this game to a strategy 
for the base game with the same winning probability.



Recap ‒ noiseless case

depth 5

In fact, they are classically controlled two-qubit gates
(essentially as simple as it can get).

In particular, the problem is not in NC0 but sits in the 
corresponding quantum class.



The noisy case



Stochastic noise in the system

We consider errors on state preparation,  
gates and measurements.


They can be arbitrarily correlated…

…in particular there are no locality constraints…

…but errors affecting many qubits are exponentially suppressed.


The noise parameter p is held constant, but as things scale we need the 
error per logical qubit to vanish. 


Standard fault-tolerance does not apply since the circuit depth (even for 
preparing a logical zero) blows up with decreasing error per logical qubit.



Code properties (I)

We introduce generic way to make relational problems 
using Clifford circuits noise-tolerant.

We need a CSS-type code family parametrised by m with 
the following properties:


1. Logical H, S (and CNOT) can be implemented using depth-1 Clifford 
circuits composed of (at most) two-qubit gates.


2. We have constant-depth single-shot logical basis state preparation.

|0⟩



Code properties (II)

We need a CSS-type code family parametrised by m with 
the following properties:


1. Logical H, S (and CNOT) can be implemented using depth-1 Clifford 
circuits composed of (at most) two-qubit gates.


2. We have constant-depth single-shot logical basis state preparation. 


3. Error threshold akin to fault-tolerance threshold theorem, with error 
vanishing (almost exponentially) as m increases.


These are satisfied by a folded 2D surface code 
(but this is not trivial to show)

2D surface code per logical qubit + 1D logical circuit  
= 3D physical circuit.



1. Prepare 3D cluster state.

2. Measure bulk (the right way).

3. Results in surface-code encoded maximally 

entangled qubits at the boundaries.



The construction

defines a relational problem

this controlled (constant 
depth) Clifford circuit

and induces a fault-tolerant  
relational problem



The reduction

⟹ If the quantum circuit solves a relational problem 
perfectly in the noiseless case, its fault-tolerant version 
can solve it up to constant error if we choose


⟸ If a        depth classical circuit with constant fan-in solves 
the fault-tolerant problem, then there exists a 
depth circuit with fan-in                   solving the original 
problem. 

Since the latter cannot exist for  
(according to Result 1), the former cannot either.

m, manc ∈ O(polylog n)

O(polylog n)

f(n)
f(n) + O(1)

f(n) = log n/log(log n)



Recap ‒ noisy case

can it ever be 2D?


