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General Framework : certified algorithms for studying the real roots of systems of polynomial
{equations, inequations, inequalities}

e Certified algorithms
o Always end
o Never provide wrong results
o Never based on uncheckable assumptions
e Real roots of systems of polynomial {equations, inequations, inequalities}
o univariate polynomials
o zero-dimensional systems
o parametric generically zero-dimensional systems
o general positive dimensional systems

e Focus on systems of two equations in two variables with rational coefficients.



Zero-dimensional systems

I C Q[Xy,..., X,
t=X1tus Xo+ -+ u, X, , ft:HaEv(I) (T—t(a))u(a)'

vE {17 X17 ceey Xn}: fv,t — ZaeV(I) M(@)U(O‘)(Hggv(])ﬁ#a (T o t(ﬁ)))

Then f,eQ[T], fi.,€ Q[T] and, if t separates V (1),

V(S 9)) ~ V(fi)
a=(ai,...,p) — t(a)
ft,x1(B) ft,x,(8)

( fe,1(B) 7777 fi,1(8) ) < B

and the multiplicities of the zeroes are preserved.

FUT) = Ha=3"_qai T =1, ey (T — ()

Ge.0(T) =320~ Trace(Myyi) Hy—i—1(T) with H(T) =37 a; 77"




Univariate Polynomials 4/31

P= Z?:o a; X' €Z[X] with ag=1 and ag+ 0 without multiple factors.

e P(a)=0= |a|<1+max’g(|a)

where || P||2 = Zd a;

e Sep(P)=mingtg.a.pevir)la— B> /7 7

d —
1Pll2~"

We can thus assume that we look for roots inly o =]0, 1]

Algorithm Bissection(Iy ,p,V')

]c c+1

|nput . Ik:,C: ?7?

[, p € Q[X] square-free, V (p, ) counts the number of root of p in an
open interval

Output : {[/ o C Iy o, V(p, I cr) =1}

1
/* the enpoints —— + are considered separately : suppose P(

=) #0%/

If V(p,I.) =1 then RETURN({I; .});

If V(p, Ik ) >1then RETURN(Bissection(/j+1, 2,p)UBissection(/+1 2¢+41, D))
RETURN({})
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1970's replace the count by a bound (Descartes' rule of signs) : Collin's / Akritas
1990's speed up with trys using interval arithmetic (Krandick)
2000's Multiprecision interval arithmetic (Zimmermann and R.)

2016 Quasi-optimal algorithm O(dt+d2) bit operations (Kébel, Sagraloff, R.)
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E={p1,--or}, F={f1,--, fi}, with p;, f € QU, X]
U=U.,...,U;=parameters
X=X441,...,X,, = indeterminates
C={zxeC™p1=0,....,p.=0, f1#0, ..., fs#£0}
S={xeR", p1=0,...,p.=0, f1>0,..., fs >0}

o Il;: C" — C9 the canonical proj. on the parameters’ space.
e ¢,:U+—u (specialization map)

We suppose that I1(V(C)) = C<.
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If one wants (at least) to discuss the number of roots, one needs to characterize parameter’s
subsets 2/ C I1;7(C) such that #(I1; (1) NC) is constant over U.

Oso=a € C* such that TI;;*(14) NS is not compact for any compact neighborhood U/ of avin C*

O. = projection on the parameter space of the singular points of & and critical values of the
projection onto the parameter space. In other words O, =1IIy(EN{X € C", Jac(E, X)=0})
onto the parameter space.

Osa the projection by Il;; of components of C of dimension<dim(C) (empty under our condi-
tions)

When having inequalities/inequations : Oz = {u € II;;(C), II; " (u) NCNV (Ifex) £ 0 }, then
necessarilly U NOx=1).

Discriminant Variety (2007) D = O, U O.U Ogq U Ox is an algebraic variety, and is the
smallest algebraic variety such that Vi/ € II;;(C), UN'D =), (II;* () NC,IIy) is an analytic
cover of U.

Computation (2007) : O = Ooo can be “read” on a Grébner basis, O. =V ((£, Jac(&, X)) N
QU Or V&, [1;cx ) NR[U]) in favorable situations (in fact one must saturate before



General systems

S={p1,...,pr} CQ[X7, ..., X;,] with dim(V(S)) =d.
° V:V(S)C(Dn

The principle : A € Q" the set of extrema of d(A, V(S)NIR") intersects each connected
component of V(S)NR".

In practice :

V(C(A)) ={M € V(S),rank(gradp;(p1), ...gradas(pr), E/I)} <n—d;

V(J)={M €V (S),rank(grady(p1), ..., gradps(p,)) } <n —d.

Result (Aubry, R., Safey El Din, 2002):

If (p1,..., pr) is equi-dimensionnal and radical, then 3D € N* and A€ {1,...,D}":
V(C(A)) intersects each semi-algebric connectec component of VNIR";
V(C(A)) =

o dim(V(J))<dim(V);

V(T)UTVh 4 with #Vp 4 < 00;



Systems in 2 variables : motivations

C={(z,y)eR? P(z,y)=0,PcQ[X,Y]}
e Step 1. Computing a finite set of study points.
e Projection of singular points of C :
S.={zeR,(z,y)eC, 8X( y)zO,?—i(x,y)zO}
e Critical values of the projection wrt some direction :
Sy={zeR? (z,y) €C, 8Y(:z: y)=0}
e Projection of “points at infinity” of C : Soo ={x € R, Ley (P) =0}
e Step 2. Computing the (local) topology arround the characteristic points.

e At least the number of half branches crossing a small box containing a study point (“approximate
topology")

e Step 3. Connecting the local descriptions of C around the points of S to get an isotopic description
of C by means of a graph.



Systems in 2 variables : motivations
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Systems in 2 variables : basic tools

f,geD)Y] = (s;f+tig=ri)i=1.1 avec s;,t;,r; € F[Y]

p()ZIC(f),p1:1C(g),7“0:i,7“1:i,SOZi 31:O,t0:0,t1:i,z’:1

Po P1 po’ P1
While (r; #0) do

T4 1 Si—1—q;S; ¢ _ti—1—qit;

o pin1=lc(r;r1), rit1=—"—, Sj41= 1=
p’L+1 ( Z+1) Z+1 pz—{—l l_{—l pz—{—l Z+1 p1+1

o ii=i+1
|=i-1
RETURN(L,(pi, sistis 7i)i=0..041, (¢i)i=1...1)
EEA vs Normalized EEA

PipPi—2--- P20 if 7 is odd }

- re te. s *7“* t* 8* ;= P
Tt 5 &HTiot, % Pi Pi—2 ... p3p1 if 1iseven

Normalized Classical
Qg —
then ¢y =——q; , rf=a;r;, si=«;s; and t7 = o, t;

Qg



Systems in 2 variables : basic tools

(I)k : Pm—kxpn—k — Pn+m—2k
(s,1) (s f+1g) quo Y*
Convention : if [ <0,u;=0 and P,= polynomials of degree <l
(fn 0 0 gm 0 oo e e 0 \
fn—l fn 9dm—1 dm
: -0 ' :
Sp=| : Do .0
Frot1 o o G md kbl e e Om
Fok—mat1 o o fh Gok—mgd e e e e G
m—k n—k /

If s:Z;n:_Ok_lin", t:Z?:_Ok_lini and sf+tg:Z?jOm_k_1uiXi , then

Sk [Ym —k—1y s Y0.2n—k—1, +20) " = [Untm—k—1, -, 0, ug]’
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Let (r;, s, 1;) be the sequence that appears in the normalized EEA : r;,=s; f +1; g
Set n; =deg(r;) and o,,, =det(S,,,)
o if f,geDD[X], then

o 1,8 t; € F[X] where IF is the fraction field of D

o OpTri=0nSif+ontig

. = ~—
eb eD S

o ke{ng,...,n} <=0, #0 (P is an isomorphism)
e Infact, if k=n;<n andif (yo, ..., Ym—k—1, Zn—k—1,---20) is the unique solution of
Sk [Ym—k—1 0y Y0.2n—k—1,---20]L =10, ...,0,1]7", then

8i:20<j<m—kijj and ti:ZO<j<n—kszj
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Gk{(1)7—ip6nnin1<jgip?jlnj with Ti:zlgjgi(nj—l_ni) (nj—ni) if k=mn;,

0 otherwise

Input : A and B in D[X] with deg(B) < deg(A)
Output : the last non nul subresultant of A and B
o f=g=s=1.
e while deg(B)>0

o d=deg(A)—deg(B)

o R=pseudoRemainder(A,B)

o if deg(A) and deg(B) are odd set s := —s

o A= B and B:=— and f:=Lc(A) and g::gdf—fl

fg?
o d:=deg(A)
o B:= SdB_dl
g

All the divisions performed are EXACT
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Let define
e o,,=sres,.(f,g)=mn;th (principal) subresultant coefficient
e 0,,1;=>5res, (f,g)= n;th subresultant polynomial

A fundamental result is the following :

Let ¢: D — DD’ be a ring morphism such that ¢(Lc(f) Lc(g)) #0, then
¢(Sresk(f, g)) = Sresu(o(f), ¢(9))

Definition : the subresultant Sresy( f, g) of degree 0 is the resultant of the two polynomials.

Property : f, g € D[X] have a commun factor in D[X] if and only if their resultant is null

A direct consequence is the following :

If f, g€ Q[X][Y], then the (complex) roots of Sresy(f, g) are the values that either cancel
Ley(f) and Ley(g) or the X-coordinate of roots of f =0, g=0.




Basic tools e

Note : sresg(f, g) =0= Sresi(f,g) =0
R = Sresg(f,g) is the resultant of (f, g)

f,g€Z|Y], ReZ R=0<=deg(gcd(f,g))>0
Moreover, if [ =inf{k, sresy(f, g)#0} then Sres;(f, g)~ged(f, g)

f,9€Z|X,Y], ReZ[X] then R(a)=0 for some a € C if and only of
either lcy (f)(a)=0 or lcy(g)(a) =0
or dl, =inf{k,sresi(f, g)(a)#0} and Sres; (f,g)(a,Y)~ged (f(a,Y),g(a,Y))

In particular if R=0, then f, g have a commun factor.






18/31

One can then decompose the system { f =0, g =0} into a finite union of triangular systems

U Sresi(f, g), Ri(f.g)} where Sreso( f, g) = Ro[ [, R; where the R; € Q[X] are coprime.

(GGo = squareFreePart(Sresy( f, g))
fori=1..m—1

o G;=gcd(sres;(f,9),Gi—1)

Gi-1
G

ROZGm—l

[ Rl:
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Remark : There is a unique solution to { f(a,Y) =0, g(«,Y) =0} or, equivalently to { R;(«) =
0, Sres;(a, Y) =0},

iff Sres;(a, V) =sres;(a) (Y — b(a))*
iff Sres;(a, V) =sres;(a) (Y — b(a))? where Sres;(X,Y) =sres;(X)(Y —b(X)) mod R;(X)
sres; i —1(a) )

isres; (o)

In such case, the (unique) solution above « is : (oz, —

Remark : the identification Sres;(X,Y) =sres; ;(X)(Y — b(X))" can provide an algorithm to
decompose reach { R;(X ), Sres;(X,Y)} into two disjoint components {Ru;(X), Sres;(X,Y")}
and {Rm;(X), Sres;(X,Y )} such that

e {Ruy(X),Sres;(X,Y)} : over each root of Ru;, Sres;(X,Y), has a unique root
e {Rm;(X),Sres;(X,Y)} : over each root of Rm;, Sres;(X,Y), has a least 2 roots

We thus get and algorithm that computes Ufil{R@-(X) =0,Y = —Sj:;;_;(%> } U{Ro(X)}
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Finding a € Z such that Vo, eV ((f,9)), a# f=1(a) #t(f) witht =X +a Y.

If T" separates the roots then we get U?il{Ri(T) =0,Y =— Sf:es 1((TT)) X=T- aY}

Naive algorithm

Lemma : {X +aY,a=0...d*} contains at least a separating form.

The separating forms are those that maximize the degree of the squarefree part of
Resultant(f(T'—aY,Y),g(T —aY,Y),Y)

Cost of the decomposition ?

Cost of finding a separating element 7
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Example : f, g€ Z[X] , with degree <d and bitsize t.
ged (f, g) has bitsize O(t + d) and degree <d.

For almost all primes, gcd ( f mod p, g mod p) =ged (f, g) mod p

If lucky enough, one can expect computing the ged in O(d (t +d)) bit operations. = Monte —
Carlo algorithm.

Unlucky primes are those dividing Resultant( f, g) which has bitsize O(dt) and thus the worst
case algorithm is in O(d dt)

If choosing primes that do not divide the leading coefficients, bad primes induces modular gcd
of too high degree and the final result can be checked by a simple division.

= Las-Vegas algorithm. Expected time (few bad primes in practice) O(d(t+ d))



Computing subresultants 22/31

Fast computation of subresultants :
e Hadamard’s bound for the coefficients sizes : degree O(d?), bitsize O(d )

e Specialization property of subresultants = can avoid easily bad primes and at least 1 luky
prime per index in a set of O(dt) primes.

Half-GCD like : 1 subresultant polynomial or all the principal subresultant coefficients can be
computed in O(d*r) bit operations - « optimal »

Classical remainder sequence : the full subresultant sequence can be computed in O(d°7) bit
operations.

Naive estimate : O(d) gcds of polynomials of degrees O(d?) with bitsizes O(d ¢ + d?) ..... too
much 7.
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Thm (2015) :(R;)i—o..4, can be computed in O(d°t + d°) bit operations in the worst case
and O(d*t + d°) expected bit operations.

Main arguments : if deg(G;) =d; and t; is the bitsize of (; then each G;=gcd (sres; ;,Gi_1) is
computed in O(d? (t;d*+d;dt)) bit operations in the worst case or O(d (t;d*+d;dt)) expected
bit operations.

Remark that resultant(f, g) =[] R;" with p1; > so that [] R! divides resultant(f,g) and so
that each G 1" divides resultant(f, g).

Then d@\ : and Zd@<d2

Mahler measure for f of degree d and coefficients of bitsize ¢ :

Af(f)::Lc(f)flaevqjvrnax(l,M}D

t<1+d+log(M(f)) and log(M(f))=0O(t+log(d))

Gitldivides R = M(Gi‘H) <M(R) = log(M(G;)) < < Loe(M(R) 3nd thus t; < 1+ii—21+

7+ 1
log(M(R)) o dt+ d>? 2
Tsothat ti—O( P )a d> t,= (dt+d)




24/31

Def : the degree of the decomposition is TriDeg( f, g) = Zfi}l i degree(R;)

Corollary (2015) : One can compute TriDeg(f, g) in O(d’t + d°) bit operations in the worst
case and in O(d* + d°) expected bit operations.

Warning : it still claims O(d5t + d®) to compute the full sequence of « usefull » subresultant
polynomials.
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Notation : if (12, (X),Sres;(X,Y))i—0..4,1 is a triangular decomposition of ( f, g) such that
Sres; (o, Y)~ged (f(,Y),g(,Y)), Vo, Ri(a) =0 and R; squarefree, then TriDeg(f,g,Y):
=" i degree(R;)

If f and g squarefree, coprime and monic in Y the solutions of { f =0, g=0} are contained in the
finite set of critical points of the projection onto X of the curve fg=h=0: {h 0, — O}

of )%
( ; fﬁy+g@y 0>'

2
The key point : let («, 5) € V(h). The multiplicity of 3 as a zero of gcd (h(a Y), (a_y) (c,

Y)) is greater by one than the multiplicity of 5 as a zero of gcd (h(a, Y), oy ( )

oh

Taking the sum over the zeroes of (1, -5) :

TriDeg((h, (g?/) ))- T”Deg(w?%»:ﬁv(w’%”

In particular, one can compute #V((h ) in O(d®t + d) bit operations and in O(d*t + d)

expected bit operations.

o)

= We know how to check if a linear form is separating V((h,a—y>) and thus V({f, g)) or not
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For computing a separating linear form, the game consists in
e looking for linear forms that separate V((fg, %))

e finding a « good » prime number p such that if X 4+ aY separates V ({f mod p, gmod p))
then it also separates V ((f, g))

e make several guess/check (O(d*)) modulo p

A prime that is lucky for the specialization of the subresultants and lucky for the several univariate
gcds in the decomposition preserves the degree of de decomposition (> ¢ degree(R;)) and

8V ((f mod p, gmod p)) =4V ((f, g)).

The main unlucky primes for the additional gcd’'s computations in the decomposition
e (G =gcd (Sresg, Sresp)

o (G;=gcd (G;_1,sr€8; ;)

These are primes that do not divide some subresultant coefficients.

The product of all these integers (certificate) has bitsize O(d>t + d*) and can be computed in

O(d°t + d°) bit operations in the worst case using the same amortizing arguments as for the
decomposition.
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A deterministic search consists in (mainly) :

Set h= fg and compute ﬁV((h,%))

oh
’8_Y>
Compute the resultant R(s,T) of f(T'—SY,Y ) and g(T —SY,Y) modulo p

e Choose a prime p that do not divide the certificate for the decomposition of (h

Compute R(a,T) mod p for a=1...2 d* using multipoint evaluation.

o for a=1...2d* compute the squarefree part of R(a,T’) until its degree equals ﬁV((h, %})

Complexity in O(d°t + d®) in the worst case.
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For the Las-Vegas variant, less room for doing computations over the integers.
The key ideas are
e Set h= fg and compute ﬁV((h %>)
oY
e choose « randomly » @ <2d* and a prime p

e compute the squarefree part of resultant(h(T —aY,Y), %(T —aY, Y)) mod p

and check if its degree equals ﬁV((h, %})

Note : in practice, choosing the prime (with a probability greater than 1/2 to be lucky) in the
present case is a problem since one might compute an explicit bound for the number of primes
to be used.



RUR

t=X+aY, fi= Haev(<f,g>) (T = ()",

vE {X7 Y7 1}7 fv,t — ZaEV((f,g)) M(O‘)U(O‘)(ngv«f,g)),g#a (T o t(ﬁ)))

Then fre Q[T], fi.,€ Q[T] and, if ¢ separates V({ [, g)),

V({{f,9)) ~ V(fi)
a= (a1, ...,ap) — t(a)
ft,x1(B) ft,x.(8)

rom T ) ¢ P

and the multiplicities of the zeroes are preserved.

In the bivariate case, all these polynomials can be viewed as specializations factors of polynomials
in two variables with the same magnitude than some resultant.

fS(Tv Y) — f(T - SY? Y)v gS(T,Y) — g(T - SY? Y)
Rs(S,T)=Resultant( fs, gs,Y)
£(T) divides R(a, T), f;1(T) = fi(T), f,.y(T)divides (g—g - RN )S:a




For a € 7 of bitsize O(log(d)) such that X + a Y'separates V((f, g)), a RUR of the system
has degree <d” and coefficients of bitsize in O(dt + d?).




RUR

From a triangular set : (R;(X), Sres; ;(X,Y))

By construction, we know that Sres;(X,Y") =sres; ;(X) Y+ .... and that sres; ;(X) is invert-
ible modulo R?; so that (R;(X), (sres; ; (X ) mod R;)Sres; ;(X,Y)) is a lexicographic Grébner
basis.

One thus might use the general existing algorithm but the complexity will be quite large over
the rationals.

From a triangular set after a shear by a separating linear form

We know that the system is equivalent to U?il{Ri(X) =0,Y = —S,fzies_l(%)}

fi,t,Y(X)}

: : d B B
and we want to change the rational functions to get Uiil{R@-(X) =0,Y = RX)

Well known : One can compute (sres; ;);—o...q,—1 or Sres;(X,Y") for a fixed i in O(d*) bit
operations in the worst case.

Thm (2015) : one can compute (sres; ;, sres; ;—1)i=0..d,—1 in O(d4t) bit operations in the
worst case (same base as the Half GCD)

It then « suffice » to compute f; ; v (X) = (isres; ;(X)) tsres; ;—1(X) R/(X)mod R;



We again use a multi-modular method.

e Choosing the primes using the « certificate » lead to a complexity O(d’t + d°) bit operations
for the worst case

e Chosing the primes randomly in some set give again O(d*t + d°) expected bit operations.



Summary

For the time being we get the following for computing a parameterizations of the solutions:
e Worst case in O(d1 + d°)
o Las -Vegas in O(d*r + d°)

e Monte-Carlo algorithm in d>T¢O(d?+ dt +dP +P2), correct result with probability 1 —2%
by Merhabi/Schost (2015)

Using the rational parameterization for isolating the roots of the system claims anyways O(d5t +
d%) bit operations.

2016 : solving a bivariate system has the same cost as just solving the resultant of two polyno-
mials

2019 : computing the topology of a curve has the same cost as solvin its discriminant.



