
cryptography

Article

Improved Sum of Residues Modular Multiplication
Algorithm

Mohamad Ali Mehrabi

Department of Computing, Macquarie University, Sydney 2109, Australia; mohamadali.mehrabi@mq.edu.au

Received: 26 April 2019; Accepted: 27 May 2019; Published: 29 May 2019
����������
�������

Abstract: Modular reduction of large values is a core operation in most common public-key
cryptosystems that involves intensive computations in finite fields. Within such schemes, efficiency
is a critical issue for the effectiveness of practical implementation of modular reduction. Recently,
Residue Number Systems have drawn attention in cryptography application as they provide a
good means for extreme long integer arithmetic and their carry-free operations make parallel
implementation feasible. In this paper, we present an algorithm to calculate the precise value
of “X mod p ”directly in the RNS representation of an integer. The pipe-lined, non-pipe-lined, and
parallel hardware architectures are proposed and implemented on XILINX FPGAs.

Keywords: modular reduction; modular multiplication; residue number systems (RNS); Elliptic
Curve Cryptography (ECC); sum of residues (SOR) reduction; montgomery modular reduction
(MMR)

1. Introduction

The residue number system (RNS) has been proposed by Svoboda and Valach in 1955 [1] and
independently by Garner in 1959 [2]. It uses a base of co-prime moduli {m1, m2, · · · , mN} to split an
integer X into small integers {x1, x2, · · · , xN} where xi is the residue of X divided by mi denoted as
xi = X mod mi or simply xi = 〈X〉mi

.
Conversion to RNS is straightforward. Reverse conversion is complex and uses the Chinese

Remainder Theorem (CRT) [3]. Addition, subtraction, and multiplication in RNS are very efficient.
These operations are performed on residues in parallel and independently, without carry propagation
between them. The natural parallelism and carry-free properties speed up computations in RNS and
provide a high level of design modularity and scalability.

One of the most interesting developments has been the applications of RNS in cryptography [3].
Some cryptographic algorithms which need big word lengths ranging from 2048 bits to 4096 bits like
RSA (Rivest-Shamir-Adleman) algorithm [4], have been implemented in RNS [5,6]. RNS is also an
appealing method in Elliptic Curve Cryptography (ECC) where the sizes range from 160 to 256 bits.

The modular reduction is the core function in public key cryptosystems, where all calculations
are done in a finite field with characteristic p.

The first RNS modular reduction proposed by Karl and Reinhard Posch [7] in 1995 was based on
the Montgomery reduction algorithm [8]. Their proposed algorithm needed two RNS base extension
operations. They used a floating point computation for correction of the base extension in their
architecture that was not compatible with the RNS representation.

The main advantage of the RNS Montgomery reduction method is its efficiency in using hardware
resources. In this algorithm, half of the RNS channels are involved at a time. Two base extension
operations are used to retrieve the other half of the RNS set. The base extension is a costly operation
and limits the speed of the algorithm. In 1998, Bajard et al. [9] introduced a new Montgomery RNS
reduction architecture using mixed radix system (MRS) [3] representation for base extensions. Due to

Cryptography 2019, 3, 14; doi:10.3390/cryptography3020014 www.mdpi.com/journal/cryptography

http://www.mdpi.com/journal/cryptography
http://www.mdpi.com
https://orcid.org/0000-0003-3984-5361
http://dx.doi.org/10.3390/cryptography3020014
http://www.mdpi.com/journal/cryptography
https://www.mdpi.com/2410-387X/3/2/14?type=check_update&version=2


Cryptography 2019, 3, 14 2 of 16

the recursive nature of MRS, this method is hard to implement in the hardware. Based on Shenoy and
Kumaresan work in [10], Bajard et al. proposed a Montgomery RNS modular reduction algorithm in
1998, using residue recovery for the base extension [11]. In 2000, the floating point approach of [7] was
improved by Kawamura et al. [12] by introducing the cox-rower architecture that is well adapted to
hardware implementation. In 2014, Bajard and Merkiche [13] proposed an improvement in cox-rower
architecture by introducing a second level of Montgomery reduction within each RNS unit. Several
variants and improvements on the RNS montgomery modular reduction have been discussed in the
literature [2,14–17]. The most recent work in [18] proposed the application of quadratic residues in the
RNS Montgomery reduction algorithm.

Modular reduction based on the sum of residues (SOR) algorithm was first presented by
Phillips et al. [19] in 2010. The SOR algorithm hardware implementation was proposed later in [20].
A disadvantage of the SOR algorithm is that unlike the Montgomery reduction method, the output is
an unknown and variable factor of the “X mod p” value. Although this algorithm offers a high level
of parallelism in calculations, the proposed implementation in [20] is considerably big in area.

In this paper, we do an improvement to the sum of residues algorithm by introducing the
correction factor κ to obtain a precise result. Using an efficient moduli set, we also propose a new
design to improve the area in comparison to [20]. The timing of our design is improved compared to
RNS Montgomery reduction as well. Two implementations are done for the 256-bit prime field of the
SEC2P256K1 [21] and the 255-bit prime field of the ED25519 [22] elliptic curves respectively. It can be
extended to other prime fields using the same methodology.

Section 2 of this paper is a quick review of the sum of residues reduction algorithm and the
related works already published in the literature. Section 3 is mainly our contribution to the correction
of the sum of residues algorithm and improving speed and area using efficient RNS base (moduli
set). Section 4 presents our proposed hardware architectures and implementation results. Table A1 in
Appendix A summarises the notations applied in this paper.

2. Background

Representation of the integer X, 0 ≤ X < M, using CRT (Chinese Reminder Theorem) is [3]:

X = 〈
N

∑
i=1
〈xi Mi

−1〉mi
Mi〉M. (1)

where, N is the number of moduli in moduli set of co-primes B = {m1, m2, · · · , mN}.

xi = X mod mi.

M =
N
∏
i=1

mi (also called dynamic range of X).

Mi =
M
mi

and

Mi
−1 is the multiplicative inverse of Mi. In other terms, Mi ·Mi

−1 mod mi = 1.
We assume that: 2n > m1 > · · · > mN > 2n−1. As a result, the dynamic range is 2N·(n−1) < M <

2N·n.
The values of M, Mi, and Mi

−1 are known and pre-computed for hardware implementation.
Consider two l-bit integer X and Y. The multiplication result Z = X · Y is a 2l-bit integer.

The representation of Z in RNS is :

RNS(Z) = {z1, z2, · · · , zN}. (2)

where, zi = 〈xi · yi〉mi
.



Cryptography 2019, 3, 14 3 of 16

The CRT enforces condition Z < M. Otherwise, the N-tuple RNS set in (2) do not represent the
correct integer Z. In other terms, the bit length of the moduli (n) and the number of moduli (N) must
be chosen such that the condition 2l < dlog2 Me < N · n is satisfied.
Introducing γi = 〈zi Mi

−1〉mi
, the integer Z can be presented as:

Z = 〈
N

∑
i=1

γi Mi〉M. (3)

An integer coefficient α can be found such that [3]:

Z =
N

∑
i=1

γi Mi − αM. (4)

Reducing Z by the modulus p yields:

Z mod p = 〈Z〉p = 〈
N

∑
i=1

γi Mi〉p − 〈αM〉p. (5)

The RNS multiplications 〈xiyi〉mi
and 〈zi Mi

−1〉mi
can be easily performed by an unsigned integer

n × n multiplier and a modular reduction detailed in Section 2.1. Calculation of α is outlined in
Section 2.2.

2.1. Efficient RNS Modular Reduction

An RNS modular multiplication in the 256-bit prime field requires a dynamic range of at least
512 bits. In our design this is provided by eight 66-bit pseudo-Mersenne co-prime moduli as presented
in Table 1. This moduli set provides a 528-bit dynamic range.

Table 1. 66-bit co-prime moduli set B.

266 − 1 266 − 22 − 1 266 − 23 − 1 266 − 24 − 1

266 − 25 − 1 266 − 26 − 1 266 − 28 − 1 266 − 29 − 1

The optimal RNS bases are discussed in [23]. Modular reduction implementation using moduli
set in general form of mi = 2n − 2ti − 1 (here n = 66) is very fast and low-cost in hardware [24].
Suppose B is a 2n-bit integer (0 ≤ B < 22n). It can be broken up into two n-bit most significant and
least significant integers denoted as BH and BL respectively. In other terms, B = BH2n + BL.
Since 〈2n〉(2n−2ti−1) = 2ti + 1, then:

〈BH2n + BL〉(2n−2ti−1) = 〈〈BH2ti 〉(2n−2ti−1) + BH + BL〉
(2n−2ti−1)

. (6)

BH2ti has (n + ti) bits and can be re-written as BH2ti = BHHi 2
n + BHLi .

Let (bn−1 . . . b0), bi ∈ {0, 1} be the binary representation of BH . Then we introduce BHHi as the most
significant ti bits of BH , i.e. (bn−1 . . . bn−ti−2) and BHLi as the rest least significant bits (bn−ti−1 . . . b0)

left shifted ti times, i.e. BHLi = (bn−ti−1 . . . b0 0 · · · 0︸ ︷︷ ︸
ti zeroes

).

Similarly,

〈BHHi 2
n〉(2n−2ti−1) = 〈BHHi 2

ti + BHHi 〉(2n−2ti−1). (7)

Since BHHi is ti bits long, the term BHHi 2
ti + BHHi can be rewritten as concatenation of BHHi to

itself, i.e., BHHi 2
ti + BHHi = BHHi ||BHHi . ("||" denotes bit concatenation operation.)



Cryptography 2019, 3, 14 4 of 16

So, the final result is:

〈B〉(2n−2ti−1) = 〈BHHi ||BHHi + BHLi + BH + BL〉(2n−2ti−1). (8)

The modular reduction of 0 ≤ B ≤ 22n can be calculated at the cost of one 4-input n-bit CSA (Carry
Save Adder) compare to Barrett method [25] that requires two multipliers.

2.2. Calculation of α

By dividing both sides of (4) to M we obtain:

Z
M

=
N

∑
i=0

γi
Mi
M
− α→ α =

N

∑
i=0

γi
mi
− Z

M
. (9)

Since 0 ≤ Z
M < 1, then:

α =

⌊ N

∑
i=0

γi
mi

⌋
. (10)

It is known that: 0 ≤ γi
mi

< 1, therefore:

0 ≤ α < N. (11)

Calculation of α has been discussed in [12,20]. It is shown that choosing proper constants q and ∆
and enforcing boundary condition of (12), α can be calculated using (13).

0 ≤ X < (1− ∆)M. (12)

α =

⌊
1
2q

(
N

∑
i=1

⌊
γi

2n−q

⌋
+ 2q.∆

)⌋
. (13)

Algorithm 1 is used to calculate the coefficient α. A Maple program was written to find the
optimal q and ∆. Choosing q = 8, for the 66-bit moduli set in Table 1, we realised that ∆ = 1

24 is
suitable for the whole effective dynamic range. The hardware realisation of (13) is an N-input q-bit
adder with offset 2q · ∆. Note that the effective dynamic range by applying boundary condition in (12),
is M̂ = b(1− 1

24 )Mc; that is greater than the minimum required bit length (512 bits).

Algorithm 1: Calculation of α

input :{γ1, . . . γN} where, γi = 〈zi ·Mi
−1〉mi , i ∈ {1, . . . , N}.

input : q, ∆.
output : α.

A← 2q · ∆ ;
for i = 1 to N do

A← A +

⌊
γi

2n−q

⌋
;

end

α←
⌊

A
2q

⌋
;



Cryptography 2019, 3, 14 5 of 16

3. Improved Sum of Residues (SOR) Algorithm

Here, we introduce an integer V as:

V =
N

∑
i=1

γi〈Mi〉p − 〈αM〉p. (14)

Comparing (5) and (14), it can be realised that the difference is a factor of modulus p. Recalling the fact
that for any integer Z we can find an integer κ such that 〈Z〉p = Z− κ · p.

V − 〈Z〉p =
N

∑
i=1

γi〈Mi〉p − 〈
N

∑
i=1

γi Mi〉p

=
N

∑
i=1

γi(Mi − ν · p)−
N

∑
i=1

γi Mi − µ · p

= (
N

∑
i=1

γi.ν− µ) · p

= κ · p.

(15)

(ν and µ are constants such that: 〈Mi〉p = Mi − ν · p, and 〈
N
∑

i=1
γi Mi〉p =

N
∑

i=1
γi Mi − µ · p ).

The factor (κ) is a function of γi, not a constant. Therefore the value of V — which is actually the
output of SOR algorithm introduced in [19,20] — is not presenting the true reduction of 〈Z〉p. In fact:

V = κ · p + 〈Z〉p =
N

∑
i=1

γi〈Mi〉p + 〈−αM〉p. (16)

The values of 〈Mi〉p and 〈αM〉p for α ∈ {0, 1, · · · , N − 1} are known and can be implemented in
hardware as pre-computed constants.
The RNS form of V resulted from (14) is:


〈V〉m1

〈V〉m2
...

〈V〉mN

 =

(
N
∑

i=1
γi


〈〈Mi〉p〉m1

〈〈Mi〉p〉m2
...

〈〈Mi〉p〉mN


)
+


〈−α〈M〉p〉m1

〈−α〈M〉p〉m2
...

〈−α〈M〉p〉mN

 . (17)

If (17) deducted by {〈κ · p〉m1
, 〈κ · p〉m2

, · · · , 〈κ · p〉mN
}, the accurate value of Zp in RNS will be

obtained. 
〈Zp〉m1

〈Zp〉m2
...

〈Zp〉mN

 =

(
N
∑

i=1
γi


〈〈Mi〉p〉m1

〈〈Mi〉p〉m2
...

〈〈Mi〉p〉mN


)
+


〈−α〈M〉p〉m1

〈−α〈M〉p〉m2
...

〈−α〈M〉p〉mN

−

〈κ.p〉m1

〈κ.p〉m2
...

〈κ.p〉mN

. (18)

3.1. Calculation of κ

Dividing two sides of (16) by p yields:

κ +
〈Z〉p

p
=

N

∑
i=1

γi〈Mi〉p
p

+
〈−αM〉p

p
. (19)



Cryptography 2019, 3, 14 6 of 16

The coefficient κ is an integer. Reminding that
〈Z〉p

p < 1 and
〈−αM〉p

p < 1, κ can be calculated as:

κ =

⌊ N

∑
i=1

〈γi Mi〉p
p

⌋
. (20)

The modulus p is considered to be a pseudo Mersenne prime in general form of p = 2W − ε

where 2W � ε. For example: pS = 2256 − 232 − 29 − 28 − 27 − 26 − 24 − 1 and pE = 2255 − 19 are the
field modulus for the NIST recommended curve SECP256K1 [21] and the Twisted Edwards Curve
ED25519 [22], respectively.

Substitution of fractional equation 1
2W−ε

= 1
2W (1 + ε

2W−ε
) in (20) results:

κ =

⌊ N

∑
i=1

γi〈Mi〉p
2W

(
1 +

ε

(2W − ε)

)⌋
. (21)

Considering that 〈Mi〉p < p and γi < 2n, if we choose:

ε <
2W−n

N
(22)

Then,
N
∑

i=1

γi〈Mi〉p
2W

ε
(2W−ε)

< 1, and the value of κ resulted from (21) is:

κ =

⌊ N

∑
i=1

γi〈Mi〉p
2W

⌋
. (23)

The condition in (22) provides a new boundary for choosing the field modulus p. It is a valid
condition for most known prime modulus p used practically in cryptography. Table 2 shows the
validity of κ for some standard curves based on (23).

Table 2. Checking validity of κ for some standard curves [21,22].

CURVE Modulus p N n 2W−n

N ε

ED25519 2255 − 19 8 66 2186 19

SECP160K1 2160 − 232 − 21389 5 66 294

5 232 + 21389

SECP160R1 2160 − 232 − 1 5 66 294

5 232 + 1

SECP192K1 2192 − 232 − 4553 6 66 2125

3 232 + 4553

SECP192R1 2192 − 264 − 1 6 66 2125

3 264 + 1

SECP224K1 2224 − 232 − 6803 7 66 2158

7 232 + 6803

SECP224R1 2224 − 296 + 1 7 66 2158

7 296 − 1

SECP256K1 2256 − 232 − 977 8 66 2187 232 + 977

SECP2384R1 2384 − 2128 − 296 + 231 − 1 12 66 2316

3 2128 + 296 − 231 + 1

SECP521R1 2521 − 1 16 66 2451 1



Cryptography 2019, 3, 14 7 of 16

The hardware implementation of (23) needs a 66 × 256-bit multiplier. For an efficient hardware
implementation, it is essential to avoid such a big multiplier. To compute the value of κ in hardware,
we used:

κ =

⌊
1

2T

N

∑
i=1

γi

⌊ 〈Mi〉p
2W−T

⌋⌋
. (24)

The integer T must be selected such that the equality of (23) and (24) is guaranteed. Using a
MAPLE program, we realised that T = 72 for SECP256K1 and T = 71 for ED25519 are the best

solutions for an area efficient hardware. In this case, as the term
⌊
〈Mi〉p
2W−T

⌋
is 55 bits for SECP256K1 and

44 bits for ED25519, the 66× 55-bit and 66× 44-bit multipliers are required to compute κ, respectively.
Therefore, the coefficient of κ for SECP256K1 can be calculated efficiently by the following equation:

κ =

⌊
1

272

N

∑
i=1

γi

⌊ 〈Mi〉pS

2184

⌋⌋
. (25)

Similarly, for ED25519, κ can be calculated using the below formula:

κ =

⌊
1

271

N

∑
i=1

γi

⌊ 〈Mi〉pE

2184

⌋⌋
. (26)

The value of
⌊
〈Mi〉p
2184

⌋
can be pre-computed and saved in the hardware for i = 1 to N. The integer

κ is maximum 52-bit long for SECP256K1 and 42-bit long for ED25519. As a result, RNS conversion is
not required. (κi = κ mod mi = κ) and κ can be directly used in RNS calculations.

Calculation of κ can be done in parallel and will not impose extra delay in the design. Finally, to
find z = X mod p we need to compute κ · 〈p〉mi

. Note that 〈p〉mi
is a constant and can be pre-computed

as well. So, we get:
zi = 〈〈V〉mi

− 〈κ · p〉
mi
〉

mi
. (27)

The number of operations can be reduced by pre-computing 〈−p〉mi
instead of 〈p〉mi

.
(A modular subtraction consists of two operations: ∀a, b < mi, 〈a − b〉mi = 〈a + (mi − b)〉mi ).

Then zi is calculated directly by:

zi = 〈〈V〉mi
+ 〈κ · 〈−p〉mi

〉
mi
〉

mi
. (28)

Algorithm 2 presents the RNS modulo p multiplication {x1, x2, · · · , xN} × {y1, y2, · · · , yN}
mod p over moduli base B using improved sum of residues method. The calculations at stages
4 and 5 are done in parallel. Different levels of parallelism can be achieved in hardware by adding on
or more RNS multipliers to perform stage 5.3 calculations in a shorter time.

As discussed, the coefficient κ is a 52-bit(42-bit) integer for SECP256K1(ED25519) design.
Consequently, the output of the original SOR algorithm [19] represented in (16) is as big as 308(297)
bits. In conclusion, the hardware introduced in [20,26,27] cannot calculate two tandem modular
multiplications while the product of the second stage inputs has a higher bit number than the dynamic
range that violates the CRT. In cryptographic applications, it is generally required to do multiple



Cryptography 2019, 3, 14 8 of 16

modular multiplications. Our correction to the SOR algorithm ensures that the inputs of the next
multiplication stage are in range.

Algorithm 2: Improved Sum of residues reduction

Require: p, ∆, q, B = {m1, · · · , mN}, m1 > m2 > · · · > mN , n = dlog2m1e,
W = dlog2 pe, T, N ≥ d 2W

n e

Require: M =
N
∏
i=1

mi, M̂ = (1− ∆)M, Mi =
M
mi

for i = 1 to N

Require: pre-computed tables


〈M1

−1〉m1

〈M2
−1〉m2
...

〈MN
−1〉mN

,


〈−p〉m1

〈−p〉m2
...

〈−p〉mN

 ,and



⌊
〈M1〉p
2W−T

⌋
...⌊

〈MN〉p
2W−T

⌋


Require: pre-computed table


〈〈Mi〉p〉m1

〈〈Mi〉p〉m2
...

〈〈Mi〉p〉mN

 for i = 1 to N.

Require: pre-computed table


〈α · 〈−M〉p〉m1

〈α · 〈−M〉p〉m2
...

〈α · 〈−M〉p〉mN

 for α = 1 to N − 1

input : Integers X and Y, 0 ≤ X, Y < M̂ in form of RNS: {x1, · · · , xN} and {y1, · · · , yN}.
output :Presentation of Z = X ·Y mod p in RNS: {z1, · · · , zN}.
1. for i = 1 to N do

xyi ← 〈xi · yi〉mi
.

end
2. for i = 1 to N do

γi ← 〈xyi〈Mi
−1〉mi

〉
mi

.

end
3. for i = 1 to N do

for j = 1 to N do
Yij ← γi〈〈Mi〉p〉mj

.

end
end
4. for i = 1 to N do

4.1 α←
⌊

1
2q

(
N
∑

i=1

⌊
γi

2n−q

⌋
+ 2q∆

)⌋
.

4.2 κ ←
⌊

1
2T

N
∑

i=1
γi

⌊
〈Mi〉p
2W−T

⌋⌋
.

end
5. for i = 1 to N do

5.1 Calculate 〈κ · 〈−p〉mi
〉

mi
.

5.2 Read 〈α〈−M〉p〉mi
from the table.

5.3 sumi ← 〈
N
∑

j=1
Yji〉mi .

end
6. for i = 1 to N do

zi ← 〈sumi + α〈−M〉p〉mi
+ 〈κ〈−p〉mi

〉
mi

.

end



Cryptography 2019, 3, 14 9 of 16

4. New SOR Algorithm Implementation and Performance

The required memory to implement pre-computed parameters of Algorithm 2 is

N((2N + 2)n + n′) bits, where n′ is the biggest bit number of
⌊
〈Mi〉p
2W−T

⌋
, i ∈ {1 · · ·N}. In our case

n′ = 55 for SECP256K1 and n′ = 44 for ED25519. Therefore, the required memory is 9944 and 9856
bits for the SECP256K1 and ED25519 respectively.

In our design, FPGA DSP modules are used for the realisation of eight 66× 66 bit multipliers
that are followed by a combinational reduction logic to build an RNS multiplier. The total number of
128 DSP resources are used for an RNS multiplier. Table 3 lists maximum logic and net delays of the
RNS multiplier and the RNS adder(accumulator) implemented on the different FPGA platforms used
in this survey. These delays determine the overall design latency and performance. The maximum
RNS adder logic and routing latency are less than half of the RNS multiplier logic and net delays. The
system clock cycle is chosen such that an RNS addition is complete in one clock period and an RNS
multiplication result is ready in two clock periods.

Table 3. Implementation results of SOR components on different FPGAs.

Unit Device Max. Logic Delay Max. Net Delay Max Achieved Freq. on Core
(ns) (ns) MHz

RNS Multiplier ARTIX 7 16.206 5.112 109.00

RNS Adder ARTIX 7 6.017 2.303 109.00

RNS Multiplier VIRTEX 7 11.525 3.793 125.00

RNS Adder VIRTEX 7 3.931 1.469 125.00

RNS Multiplier VIRTEX UltraScale+ 5.910 4.099 185.18

RNS Adder VIRTEX UltraScale+ 2.139 2.454 185.18

RNS Multiplier KINTEX 7 11.964 4.711 116.27

RNS Adder KINTEX 7 4.613 1.599 116.27

RNS Multiplier KINTEX UltraScale+ 5.789 4.099 187.13

RNS Adder KINTEX UltraScale+ 2.018 2.454 187.13

Figure 1 presents a simplified block diagram of the Algorithm 2 with non-pipe-lined architecture.
We name this architecture as SOR_1M_N. The sequencer state machine provides select signals of the
multiplexers and clocks for internal registers. The inputs of the circuit are two 256-bit integers X and Y
in RNS representation over base B ; i.e., {x1, · · · , xN} and {y1, · · · , yN} respectively.

Figure 1. Sum of residues reduction block diagram non-pipe-lined (SOR_1M_N) design.



Cryptography 2019, 3, 14 10 of 16

The RNS multiplier inputs are selected by multiplexers MUX1 and MUX2. At the second clock
cycle the output of multiplier i.e., xyi = 〈xi · yi〉mi

is latched by register Q1. At the fourth clock
cycle, γi = 〈xyi ·Mi

−1〉mi
is calculated and latched by register Q1. The calculation of α starts after

the fourth clock cycle, by adding the eight most significant bits of γ1 to γ8 to the offset 2q∆ = 24.
The 3 most significant bits of the result are used to select the value of 〈−α · 〈M〉p〉mi from the Look
up table. Figure 2 illustrates the hardware implementation of 〈−α · 〈M〉p〉mi . At the next 3N clock
cycles 〈γi〈Mi〉p〉mj

will be calculated and accumulated in register Q2. The RNS multiplier must be

idle for one clock cycle, letting the RNS adder of the accumulator be completed and latched whenever
accumulation of the results is required. The value of κ is calculated in parallel using the hardware
shown in Figure 3. The 〈−κp〉mi

is calculated at the (3N + 5) and (3N + 6) cycles and will be added
to the accumulator Q2 at the last clock cycle. The sum of moduli reduction is completed in (3N + 7)
clock cycles. Figure A1 in appendix A shows the data flow diagram of SOR_1M_N architecture at
every clock cycle.

Figure 2. Implementation of 〈〈−αM〉p〉mi
.

Figure 3. Implementation of 〈κ〈−p〉〉mi in architectures SOR_1M_N and SOR_1M_P (Up) and in
architecture SOR_2M (Down).



Cryptography 2019, 3, 14 11 of 16

A pipe-lined design is depicted in Figure 4. Here, an extra register Q3 latches the RNS multiplier’s
output. So, The idle cycles in SOR_1M_N are removed. We call this design SOR_1M_P. The data flow
diagram of SOR_1M_P architecture is illustrated in Figure A2 in Appendix A. Algorithm 2 can be
performed in 2(N + 4) clock cycles using this architecture.

Figure 4. Sum of residues reduction block diagram with pipe-lined (SOR_1M_P) design.

Parallel designs are possible by adding RNS multipliers to the design. Figure 5 shows the
architecture of using two identical RNS multipliers in parallel to implement algorithm 2. We tag
this architecture as SOR_2M. The calculation of 〈γi〈Mi〉p〉mj , (i = 1 · · ·N) is split between two RNS
multipliers. So, the required time to calculate all the N terms is halved. As shown in Figure 3, An
extra n× n′ multiplier is also required to calculate κ in time. The latency of SOM_2M architecture is
2(N

2 + 5) clock cycles. Theoretically, the latency could be as small as 12 clock cycles using N parallel
RNS multipliers. Figure A3 in appendix A shows the data flow diagram of SOM_2M architecture.

Figure 5. Sum of residues block diagram using two parallel pipe-lined (SOR_2M) design.

Table 4, shows implementation results on ARTIX 7, VIRTEX 7, KINTEX 7, VIRTEX UltraScale+™,
and KINTEX UltraScale+ FPGA series. VIVADO 2017.4 is used for VHDL codes synthesis. On a Xilinx



Cryptography 2019, 3, 14 12 of 16

VIRTEX 7 platform, as shown in Table 3, a 66-bit modular multiplication was achieved in 11.525 ns
and a 66-bit RNS addition was performed in 3.93 ns. Considering the maximum net delays, clock
frequency 125 MHz is achievable. The fastest design is realised using KINTEX UltraScale+ that clock
frequency 187.13 MHz is reachable. Figure 6 summarises the latency and throughput of SOR_1M_N,
SOR_1M_P, and SOR_2M on different Xilinx FPGA series for ease of comparison.

Table 4. Sum of residues reduction algorithm Implementation on Xilinx FPGAs.

Architecture Platform Clk Frequency Latency Area Throughput
FPGA (MHz) (ns) (KLUTs),(FFs),(DSPs) (Mbps)

SOR_1M_N ARTIX 7 92.5 335 (8.17),(3758),(140) 1671

SOR_1M_N VIRTEX 7 128.8 241 (8.17),(3758),(140) 2323

SOR_1M_N KINTEX 7 117.67 263 (8.29),(3758),(140) 2129

SOR_1M_N VIRTEX US+ ¹ 192 157 (8.14),(3758),(140) 3567

SOR_1M_N KINTEX US+ 198 156.5 (8.29),(3758),(140) 3578

SOR_1M_P ARTIX 7 92.5 259.5 (8.73),(4279),(140) 2158

SOR_1M_P VIRTEX 7 138.8 173 (8.73),(4279),(140) 3237

SOR_1M_P KINTEX 7 117.6 204 (8.89),(4279),(140) 2745

SOR_1M_P VIRTEX US+ 185.18 130 (8.71),(4279),(140) 4307

SOR_1M_P KINTEX US+ 187.13 128.3 (8.89),(4279),(140) 4364

SOR_2M ARTIX 7 92.5 194.6 (10.11),(4797),(280) 2877

SOR_2M VIRTEX 7 128.5 140 (10.11),(4797),(280) 3998

SOR_2M KINTEX 7 121.9 147.6 (10.27),(4797),(280) 3794

SOR_2M VIRTEX US+ 185.18 97.3 (10.11),(4797),(280) 5761

SOR_2M KINTEX US+ 187.13 96.3 (10.26),(4797),(280) 5821

¹ US+: Ultra Scale+ ™.

SOR_1M_N SOR_1M_P SOR_2M
50

100

150

200

250

300

350

Architecture

La
te

nc
y

(n
s)

ARTIX 7
KINTEX 7
VIRTEX 7

VIRTEX US+
KINTEX US+

SOR_1M_N SOR_1M_P SOR_2M
1,000

2,000

3,000

4,000

5,000

6,000

Architecture

Th
ro

ug
hp

ut
(M

bp
s)

ARTIX 7
KINTEX 7
VIRTEX 7

VIRTEX US+
KINTEX US+

Figure 6. SOR architectures Latency and Throughput on Xilinx FPGAs.

4.1. Comparison

In Table 5, we have outlined implementation results of recent similar works in the context of
RNS. The design in [20] and [27] are based on the SOR algorithm in [19]. Both of them use forty 14-bit
co-prime moduli as RNS base to provide a 560-bit dynamic range. Barrett reduction method [25] is
used for moduli multiplication at each channel. The Barrett reduction algorithm costs 2 multiplications
and one subtraction which is not an optimised method for high-speed designs. The design in [20]
is a combinational logic and performs an RNS modular reduction in one clock cycles. The area of
this design is reported in [27] which is equivalent to (34.34 KLUTs, 2016 DSPs) for non pipe-lined
and (36.5 KLUTs, 2016 DSPs) for pipe-lined architectures. The MM_SPA design in [27], is a more



Cryptography 2019, 3, 14 13 of 16

reasonable design in terms of the logic size (11.43 KLUT, 512 DSPs). However, in contrast to our
SOR_2M design on VIRTEX-7, it consumes more hardware resources and in terms of speed, it is
considerably slower. These designs, are based on SOR algorithm in [19] that is not performing a
complete reduction. As discussed in Section 3.1, their outputs can exceed the RNS dynamic range and
give out completely incorrect results.

A survey on RNS Montgomery reduction algorithm and the improvements in this context is
presented in [18]. The application of quadratic residues in RNS modular reduction is then presented
and two algorithms sQ-RNS and dQ-RNS are proposed. The authors used eight 65-bit moduli base
for their RNS hardware which is similar to our design. The achieved clock frequencies for these two
designs are 139.5 MHz and 142.7 MHz, respectively. The input considered for the algorithms is the
RNS presentation of “K2 · x”; where “x” is equivalent to Z in our notations in Equation (2) and “K2”
is a constant. To do a fair comparison, it is required to consider two initial RNS multiplications to
get the input ready for the algorithms sQ-RNS and dQ-RNS. This adds two stages of full range RNS
multiplication to the design.

Table 5. Comparison of our design with recent similar works.

Design Platform Clk Frequency Latency Area Throughput
(MHz) (ns) (KLUT),(DSP) (Mbps)

MM_PA_P [20] VIRTEX 6 71.40 14.20 (36.5),(2016) ¹ 14798

MM_PA_N [20] VIRTEX 6 21.16 47.25 (34.34),(2016) ¹ 5120

MM_PA_P [27] VIRTEX 7 62.11 48.3 (29.17),(2799) 15900

MM_SPA [27] VIRTEX 7 54.34 239.2 (11.43),(512) 1391

(Ours) SOR_1M_P VIRTEX 7 138.8 173 (8.73),(140) 3237

(Ours) SOR_2M VIRTEX 7 128.5 140 (10.11),(280) 3998

sQ-RNS ² KINTEX US+ 139.5 107.53(150.53) (4.247),(84) 4835 ²

dQ-RNS [18] KINTEX US+ 142.7 126.14(168.18) ² (4.076),(84) 4122 ²

(Ours) SOR_1M_P KINTEX US+ 187.13 128.3 (8.89),(140) 4364

(Ours) SOR_2M KINTEX US+ 187.13 96.3 (10.26),(280) 5821

¹ Area reported in [27]; ² Our estimation.

As illustrated on Figure 13 of [18] it takes 3 clock cycles to perform one multiplication and
reduction. So, at the maximum working clock frequency, 42 ns will be added to the latency of the
proposed RNS modular reduction circuit. As a result, the equivalent latency for an RNS reduction
for sQ-RNs and dQ-RNS reduction hardware is 150.53 ns and 168.18 ns, respectively. Consider that
the output of these algorithms is a factor of “〈x ·M−1〉p”, not the precise value of “〈x〉p”. The RNS
Montgomery reduction algorithms use half of moduli set. This makes the hardware area efficient, but
it still full moduli range multiplication are required for computations. On the same FPGA platform
used in [18], i.e., KINTEX Ultra Scale+ ™, we achieved the latency of 128.3 ns and 96.3 ns with our
SOR_1M_P and SOR_2M designs, respectively. The latency of SOR_2M showed 36% improvement
compare to sQ-RNS and 41.1% improvement in contrast to MM_SPA on similar FPGA platforms.
Similarly, there is 14.9% and 27.6% improvement of SOR_1M_P latency in compare to sQ-RNS and
MM_SPA designs, respectively. The latency of our SOR_M_N, however, is very close to sQ-RNS and
MM_SPA designs.



Cryptography 2019, 3, 14 14 of 16

5. Conclusions

We introduced a coefficient κ to make a correction on the SOR algorithm to compute the precise
value of modular reduction directly in Residue Number Systems for application in cryptography.
We also proposed three hardware architectures for the new SOR algorithm and implemented them on
different FPGA platforms. Comparing our implementation results to recent similar works showed
an improvement achieved in terms of the speed. The sum of residues algorithm is naturally modular
and can use parallel multipliers to speed up calculations. It fits for applications where high-speed
modular calculations are in demand. This algorithm uses more hardware resources in compare to
RNS Montgomery reduction method. Variants of the SOR algorithm can be studied in future works to
achieve an area efficient hardware.

Funding: This research received no external funding

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Data flow diagram per clock cycle for the SOR architectures listed in Section 4 are illustrated in
Figures A1–A3.

Figure A1. Data flow of SOR non pipelined with one RNS multiplier architecture SOR_1M_N.

Figure A2. Data flow of SOR with one pipelined RNS multiplier architecture SOR_1M_P.

Figure A3. Data flow of SOR with two RNS multiplier architecture SOR_2M.



Cryptography 2019, 3, 14 15 of 16

Table A1. The notations applied in this paper.

Notation Description
p Field modulus. In this work considered as a 256-bit prime pS = 2256 − 232 − 977 or 255-bit prime pE = 2255 − 19.

mi RNS channel modulus. mi = 2n − 2ti − 1 , ti ∈ {0, 2, 3, 4, 5, 6, 8, 9}.

n Bit-length of modulus mi. (n = maxdlog2mie, i ∈ {1, . . . , N}).

n′ Is the maximum bit number of
⌊
〈Mi〉p
2W−T

⌋
, i ∈ {1 · · ·N}.

B set of RNS Moduli: B = {m1, m2, . . . , mN}.

N Number of moduli in B (size of B).

B Is a 2n-bit integer, product of two RNS channels.

BH Is the n most significant bits of B, i.e., BH =

⌊
B
2n

⌋
.

BL Is the n least significant bits of B, i.e., BL = B mod 2n.

BHHi Is the ti most significant bits of 2ti BH , i.e., BHHi =

⌊
BH

2n−ti

⌋
.

BHLi Is the n least significant bits of 2ti BH , i.e., BHLi = 2ti BH mod 2n.

A denotes accumulator in Algorithm 1 and Figures A1–A3.

X,Y Integers that meet the condition 0 ≤ X ·Y < M.

Z An integer considered as product of X and Y.

xi The residue of integer X in channel mi i.e., xi = X mod mi.

〈Z〉p Mod operation Z mod p.

RNS(X) The RNS function. Returns the RNS representation of integer X.

{x1, x2, . . . , xN} RNS representation of integer X.
x1
x2
...

xn

 RNS representation of integer X.

(bn−1bn−1 . . . b0) Binary representation of an n-bit integer B. (bi ∈ {0, 1}).

|| Bit concatenation operation.

due The function ceil(u).

buc The function f loor(u).

W Bit-length of modulus p, i.e., W = dlog2 pe.

M The dynamic range of RNS moduli. M =
N
∏
i=1

mi.

Mi Is defined as Mi =
M
mi

.

M̂ Is the effective dynamic range. M̂ = M(1− ∆).

∆ Correction factor used to calculate α. In our design ∆ = 1
24 .

Gi Is: γi = 〈zi ·Mi
−1〉mi

, i ∈ {1, . . . , 8}.

Li Is: {〈Gi · 〈Mi〉p〉m1
, . . . , 〈Gi · 〈Mi〉p〉mN

} .

Ki Is:
⌊

1
2T γi

⌊
〈Mi〉p
2W−T

⌋⌋
.

K Is the κ accumulator.

AL Is: {〈α · 〈−M〉p〉m1
, . . . , 〈α · 〈−M〉p〉mN

} .

KP Is: {κ · (−p1), . . . , κ · (−pN)}.

References

1. Svobod, A.; Valach, M. Circuit operators. Inf. Process. Mach. 1957, 3, 247–297.
2. Garner, H.L. The Residue Number System. In Proceeding of the Western Joint Computer Conference,

Francisco, CA, USA, 3–5 March 1959.
3. Mohan, P.V.A. Residue Number Systems: Theory and Applications; Springer: New York, NY, USA, 2016.
4. Rivest, R.; Shamir, A.; Adleman, L. A method for obtaining digital signatures and public key cryptosystems.

Comm. ACM 1978, 21, 120–126. [CrossRef]
5. Bajard, J.C.; Imbert, L. A full RNS implementation of RSA. IEEE Trans. Comput. 2004, 53, 769–774. [CrossRef]

http://dx.doi.org/10.1145/359340.359342
http://dx.doi.org/10.1109/TC.2004.2


Cryptography 2019, 3, 14 16 of 16

6. Fadulilahi, I.R.; Bankas, E.K.; Ansuura, J.B.A.K. Efficient Algorithm for RNS Implementation of RSA. Int. J.
Comput. Appl. 2015, 127, 0975–8887. [CrossRef]

7. Posch, K.C.; Posch, R. Modulo reduction in residue number systems. IEEE Trans. Parallel Distrib. Syst. 1995,
6, 449–454. [CrossRef]

8. Montgomery, P. Modular Multiplication Without Trial Division. Math. Comput. 1985, 44, 519–521. [CrossRef]
9. Bajard, J.C.; Didier, L.S.; Kornerup, P. An RNS Montgomery modular multiplication algorithm. IEEE Trans.

Comput. 1998, 47, 766–776. [CrossRef]
10. Shenoy, P.P.; Kumaresan, R. Fast base extension using a redundant modulus in RNS. IEEE Trans. Comput.

1989, 38, 292–297. [CrossRef]
11. Bajard, J.C.; Didier, L.S.; Kornerup, P. Modular Multiplication and Base Extensions in Residue Number

Systems. In Proceedings of the 15th IEEE Symposium on Computer Arithmetic, Vail, CO, USA, 11–13 June
2001.

12. Kawamura, S.; Koike, M.; Sano, F.; Shimbo, A. Cox-Rower Architecture for Fast Parallel Montgomery
Multiplication. In Proceedings of the International Conference on the Theory and Applications of
Cryptographic Techniques, Bruges, Belgium, 14–18 May 2000.

13. Bajard, J.C.; Merkiche, N. Double Level Montgomery Cox-Rower Architecture, New Bounds. In Proceedings
of the 13th Smart Card Research and Advanced Application Conference, Paris, France, 5–7 November 2014.

14. Bajard, J.C.; Eynard, J.; Merkiche, N. Montgomery reduction within the context of residue number system
arithmetic. J. Cryptogr. Eng. 2018, 8, 189–200. [CrossRef]

15. Esmaeildoust, M.; Schinianakis, D.; Javashi, H.; Stouraitis T.; Navi, K. Efficient RNS implementation of
elliptic curve point multiplication over GF(p). IEEE Trans. Very Larg. Scale Integr. Syst. 2012, 21, 1545–1549.
[CrossRef]

16. Guillermin, N. A High Speed Coprocessor for Elliptic Curve Scalar Multiplications over Fp. In Proceedings
of the International Workshop on Cryptographic Hardware and Embedded Systems, Santa Barbara, CA,
USA, 17–20 August 2010.

17. Schinianakis, D.; Stouraitis, T. A RNS Montgomery Multiplication Architecture. In Proceedings of the IEEE
International Symposium of Circuits and Systems (ISCAS), Rio de Janeiro, Brazil, 15–18 May 2011.

18. Kawamura, S.; Komano, Y.; Shimizu, H.; Yonemura, T. RNS Montgomery reduction algorithms using
quadratic residutory. J. Cryptogr. Eng. 2018, 1, 1–19.

19. Phillips, B.; Kong, Y.; Lim, Z. Highly parallel modular multiplication in the residue number system using
sum of residues reduction. Appl. Algebra Eng. Commun. Comput. 2010, 21, 249–255. [CrossRef]

20. Asif, S.; Kong, Y. Highly Parallel Modular Multiplier for Elliptic Curve Cryptography in Residue Number
System. Circuits Syst. Signal Process. 2017, 36, 1027–1051. [CrossRef]

21. Standards for Efficient Cryptography SEC2: Recommended Elliptic Curve Domain Parameters. Version 2.0
CERTICOM Corp. 27 January 2010. Available online: https://www.secg.org/sec2-v2.pdf (accessed on 1
May 2019).

22. Ed25519: High-Speed High-Security Signatures. Available online: https://ed25519.cr.yp.to/ (accessed on 1
May 2019).

23. Bajard, J.C.; Kaihara, M.E.; Plantard, T. Selected RNS bases for modular multiplication. In Proceedings of the
19th IEEE Symposium on Computer Arithmetic, Portland, OR, USA, 8–10 June 2009.

24. Molahosseini, A.S.; de Sousa, L.S.; Chang, C.H. Embedded Systems Design with Special Arithmetic and Number
Systems; Springer: New York, NY, USA, 2017.

25. Barrett, P. Implementing the Rivest Shamir and Adleman Public Key Encryption Algorithm on a Standard
Digital Signal Processor. In Proceedings of the Conference on the Theory and Application of Cryptographic
Techniques, Linkoping, Sweden, 20–22 May 1986.

26. Asif, S.; Hossain, M.S.; Kong, Y.; Abdul, W. A Fully RNS based ECC Processor. Integration 2018, 61, 138–149.
[CrossRef]

27. Asif, S. High-Speed Low-Power Modular Arithmetic for Elliptic Curve Cryptosystems Based on the Residue
Number System. Ph.D. Thesis, Macquarie University, Sydney, Australia, 2016.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.5120/ijca2015906381
http://dx.doi.org/10.1109/71.382314
http://dx.doi.org/10.1090/S0025-5718-1985-0777282-X
http://dx.doi.org/10.1109/12.709376
http://dx.doi.org/10.1109/12.16508
http://dx.doi.org/10.1007/s13389-017-0154-9
http://dx.doi.org/10.1109/TVLSI.2012.2210916
http://dx.doi.org/10.1007/s00200-010-0124-2
http://dx.doi.org/10.1007/s00034-016-0336-1
https://www.secg.org/sec2-v2.pdf
https://ed25519.cr.yp.to/
http://dx.doi.org/10.1016/j.vlsi.2017.11.010
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background
	Efficient RNS Modular Reduction
	Calculation of 

	Improved Sum of Residues (SOR) Algorithm
	Calculation of  

	New SOR Algorithm Implementation and Performance
	Comparison

	Conclusions
	
	References

