Article

Improved Sum of Residues Modular Multiplication Algorithm

Mohamad Ali Mehrabi
Department of Computing, Macquarie University, Sydney 2109, Australia; mohamadali.mehrabi@mq.edu.au

Received: 26 April 2019; Accepted: 27 May 2019; Published: 29 May 2019

Abstract

Modular reduction of large values is a core operation in most common public-key cryptosystems that involves intensive computations in finite fields. Within such schemes, efficiency is a critical issue for the effectiveness of practical implementation of modular reduction. Recently, Residue Number Systems have drawn attention in cryptography application as they provide a good means for extreme long integer arithmetic and their carry-free operations make parallel implementation feasible. In this paper, we present an algorithm to calculate the precise value of " $X \bmod p$ "directly in the RNS representation of an integer. The pipe-lined, non-pipe-lined, and parallel hardware architectures are proposed and implemented on XILINX FPGAs.

Keywords: modular reduction; modular multiplication; residue number systems (RNS); Elliptic Curve Cryptography (ECC); sum of residues (SOR) reduction; montgomery modular reduction (MMR)

1. Introduction

The residue number system (RNS) has been proposed by Svoboda and Valach in 1955 [1] and independently by Garner in 1959 [2]. It uses a base of co-prime moduli $\left\{m_{1}, m_{2}, \cdots, m_{N}\right\}$ to split an integer X into small integers $\left\{x_{1}, x_{2}, \cdots, x_{N}\right\}$ where x_{i} is the residue of X divided by m_{i} denoted as $x_{i}=X \bmod m_{i}$ or simply $x_{i}=\langle X\rangle_{m_{i}}$.

Conversion to RNS is straightforward. Reverse conversion is complex and uses the Chinese Remainder Theorem (CRT) [3]. Addition, subtraction, and multiplication in RNS are very efficient. These operations are performed on residues in parallel and independently, without carry propagation between them. The natural parallelism and carry-free properties speed up computations in RNS and provide a high level of design modularity and scalability.

One of the most interesting developments has been the applications of RNS in cryptography [3]. Some cryptographic algorithms which need big word lengths ranging from 2048 bits to 4096 bits like RSA (Rivest-Shamir-Adleman) algorithm [4], have been implemented in RNS [5,6]. RNS is also an appealing method in Elliptic Curve Cryptography (ECC) where the sizes range from 160 to 256 bits.

The modular reduction is the core function in public key cryptosystems, where all calculations are done in a finite field with characteristic p.

The first RNS modular reduction proposed by Karl and Reinhard Posch [7] in 1995 was based on the Montgomery reduction algorithm [8]. Their proposed algorithm needed two RNS base extension operations. They used a floating point computation for correction of the base extension in their architecture that was not compatible with the RNS representation.

The main advantage of the RNS Montgomery reduction method is its efficiency in using hardware resources. In this algorithm, half of the RNS channels are involved at a time. Two base extension operations are used to retrieve the other half of the RNS set. The base extension is a costly operation and limits the speed of the algorithm. In 1998, Bajard et al. [9] introduced a new Montgomery RNS reduction architecture using mixed radix system (MRS) [3] representation for base extensions. Due to
the recursive nature of MRS, this method is hard to implement in the hardware. Based on Shenoy and Kumaresan work in [10], Bajard et al. proposed a Montgomery RNS modular reduction algorithm in 1998, using residue recovery for the base extension [11]. In 2000, the floating point approach of [7] was improved by Kawamura et al. [12] by introducing the cox-rower architecture that is well adapted to hardware implementation. In 2014, Bajard and Merkiche [13] proposed an improvement in cox-rower architecture by introducing a second level of Montgomery reduction within each RNS unit. Several variants and improvements on the RNS montgomery modular reduction have been discussed in the literature [2,14-17]. The most recent work in [18] proposed the application of quadratic residues in the RNS Montgomery reduction algorithm.

Modular reduction based on the sum of residues (SOR) algorithm was first presented by Phillips et al. [19] in 2010. The SOR algorithm hardware implementation was proposed later in [20]. A disadvantage of the SOR algorithm is that unlike the Montgomery reduction method, the output is an unknown and variable factor of the " $X \bmod p$ " value. Although this algorithm offers a high level of parallelism in calculations, the proposed implementation in [20] is considerably big in area.

In this paper, we do an improvement to the sum of residues algorithm by introducing the correction factor κ to obtain a precise result. Using an efficient moduli set, we also propose a new design to improve the area in comparison to [20]. The timing of our design is improved compared to RNS Montgomery reduction as well. Two implementations are done for the 256-bit prime field of the SEC2P256K1 [21] and the 255-bit prime field of the ED25519 [22] elliptic curves respectively. It can be extended to other prime fields using the same methodology.

Section 2 of this paper is a quick review of the sum of residues reduction algorithm and the related works already published in the literature. Section 3 is mainly our contribution to the correction of the sum of residues algorithm and improving speed and area using efficient RNS base (moduli set). Section 4 presents our proposed hardware architectures and implementation results. Table A1 in Appendix A summarises the notations applied in this paper.

2. Background

Representation of the integer $X, 0 \leq X<M$, using CRT (Chinese Reminder Theorem) is [3]:

$$
\begin{equation*}
X=\left\langle\sum_{i=1}^{N}\left\langle x_{i} M_{i}^{-1}\right\rangle_{m_{i}} M_{i}\right\rangle_{M} . \tag{1}
\end{equation*}
$$

where, N is the number of moduli in moduli set of co-primes $\mathcal{B}=\left\{m_{1}, m_{2}, \cdots, m_{N}\right\}$.
$x_{i}=X \bmod m_{i}$.
$M=\prod_{i=1}^{N} m_{i}($ also called dynamic range of $X)$.
$M_{i}=\frac{M}{m_{i}}$ and
M_{i}^{-1} is the multiplicative inverse of M_{i}. In other terms, $M_{i} \cdot M_{i}^{-1} \bmod m_{i}=1$.
We assume that: $2^{n}>m_{1}>\cdots>m_{N}>2^{n-1}$. As a result, the dynamic range is $2^{N \cdot(n-1)}<M<$ $2^{N \cdot n}$.

The values of M, M_{i}, and M_{i}^{-1} are known and pre-computed for hardware implementation.
Consider two l-bit integer X and Y. The multiplication result $Z=X \cdot Y$ is a $2 l$-bit integer. The representation of Z in RNS is :

$$
\begin{equation*}
\operatorname{RNS}(Z)=\left\{z_{1}, z_{2}, \cdots, z_{N}\right\} \tag{2}
\end{equation*}
$$

where, $z_{i}=\left\langle x_{i} \cdot y_{i}\right\rangle_{m_{i}}$.

The CRT enforces condition $Z<M$. Otherwise, the N-tuple RNS set in (2) do not represent the correct integer Z. In other terms, the bit length of the moduli (n) and the number of moduli (N) must be chosen such that the condition $2 l<\left\lceil\log _{2} M\right\rceil<N \cdot n$ is satisfied.
Introducing $\gamma_{i}=\left\langle z_{i} M_{i}^{-1}\right\rangle_{m_{i}}$, the integer Z can be presented as:

$$
\begin{equation*}
Z=\left\langle\sum_{i=1}^{N} \gamma_{i} M_{i}\right\rangle_{M} \tag{3}
\end{equation*}
$$

An integer coefficient α can be found such that [3]:

$$
\begin{equation*}
Z=\sum_{i=1}^{N} \gamma_{i} M_{i}-\alpha M \tag{4}
\end{equation*}
$$

Reducing Z by the modulus p yields:

$$
\begin{equation*}
Z \quad \bmod p=\langle Z\rangle_{p}=\left\langle\sum_{i=1}^{N} \gamma_{i} M_{i}\right\rangle_{p}-\langle\alpha M\rangle_{p} \tag{5}
\end{equation*}
$$

The RNS multiplications $\left\langle x_{i} y_{i}\right\rangle_{m_{i}}$ and $\left\langle z_{i} M_{i}^{-1}\right\rangle_{m_{i}}$ can be easily performed by an unsigned integer $n \times n$ multiplier and a modular reduction detailed in Section 2.1. Calculation of α is outlined in Section 2.2.

2.1. Efficient RNS Modular Reduction

An RNS modular multiplication in the 256-bit prime field requires a dynamic range of at least 512 bits. In our design this is provided by eight 66-bit pseudo-Mersenne co-prime moduli as presented in Table 1. This moduli set provides a 528-bit dynamic range.

Table 1. 66-bit co-prime moduli set \mathcal{B}.

$2^{66}-1$	$2^{66}-2^{2}-1$	$2^{66}-2^{3}-1$	$2^{66}-2^{4}-1$
$2^{66}-2^{5}-1$	$2^{66}-2^{6}-1$	$2^{66}-2^{8}-1$	$2^{66}-2^{9}-1$

The optimal RNS bases are discussed in [23]. Modular reduction implementation using moduli set in general form of $m_{i}=2^{n}-2^{t_{i}}-1$ (here $n=66$) is very fast and low-cost in hardware [24]. Suppose B is a $2 n$-bit integer $\left(0 \leq B<2^{2 n}\right)$. It can be broken up into two n-bit most significant and least significant integers denoted as B_{H} and B_{L} respectively. In other terms, $B=B_{H} 2^{n}+B_{L}$.
Since $\left\langle 2^{n}\right\rangle_{\left(2^{n}-2^{t_{i}}-1\right)}=2^{t_{i}}+1$, then:

$$
\begin{equation*}
\left\langle B_{H} 2^{n}+B_{L}\right\rangle_{\left(2^{n}-2^{t_{i}}-1\right)}=\left\langle\left\langle B_{H} 2^{t_{i}}\right\rangle_{\left(2^{n}-2^{t_{i}}-1\right)}+B_{H}+B_{L}\right\rangle_{\left(2^{n}-2^{\left.t_{i}-1\right)}\right.} . \tag{6}
\end{equation*}
$$

$B_{H} 2^{t_{i}}$ has $\left(n+t_{i}\right)$ bits and can be re-written as $B_{H} 2^{t_{i}}=B_{H H_{i}} 2^{n}+B_{H L_{i}}$.
Let $\left(b_{n-1} \ldots b_{0}\right), b_{i} \in\{0,1\}$ be the binary representation of B_{H}. Then we introduce $B_{H H_{i}}$ as the most significant t_{i} bits of B_{H}, i.e. $\left(b_{n-1} \ldots b_{n-t_{i}-2}\right)$ and $B_{H L_{i}}$ as the rest least significant bits $\left(b_{n-t_{i}-1} \ldots b_{0}\right)$ left shifted t_{i} times, i.e. $B_{H L_{i}}=(b_{n-t_{i}-1} \cdots b_{0} \underbrace{0 \cdots 0}_{t_{i} \text { zeroes }})$.
Similarly,

$$
\begin{equation*}
\left\langle B_{H H_{i}} 2^{n}\right\rangle_{\left(2^{n}-2^{t_{i}}-1\right)}=\left\langle B_{H H_{i}} 2^{t_{i}}+B_{H H_{i}}\right\rangle_{\left(2^{n}-2^{\left.t_{i}-1\right)}\right.} . \tag{7}
\end{equation*}
$$

Since $B_{H H_{i}}$ is t_{i} bits long, the term $B_{H H_{i}} 2^{t_{i}}+B_{H H_{i}}$ can be rewritten as concatenation of $B_{H H_{i}}$ to itself, i.e., $B_{H H_{i}} 2^{t_{i}}+B_{H H_{i}}=B_{H H_{i}}| | B_{H H_{i}}$. ("||" denotes bit concatenation operation.)

So, the final result is:

$$
\begin{equation*}
\langle B\rangle_{\left(2^{n}-2^{\left.t_{i}-1\right)}\right.}=\left\langle B_{H H_{i}}\right|\left|B_{H H_{i}}+B_{H L_{i}}+B_{H}+B_{L}\right\rangle_{\left(2^{n}-2^{t_{i}}-1\right)} . \tag{8}
\end{equation*}
$$

The modular reduction of $0 \leq B \leq 2^{2 n}$ can be calculated at the cost of one 4 -input n-bit CSA (Carry Save Adder) compare to Barrett method [25] that requires two multipliers.

2.2. Calculation of α

By dividing both sides of (4) to M we obtain:

$$
\begin{equation*}
\frac{Z}{M}=\sum_{i=0}^{N} \gamma_{i} \frac{M_{i}}{M}-\alpha \rightarrow \alpha=\sum_{i=0}^{N} \frac{\gamma_{i}}{m_{i}}-\frac{Z}{M} \tag{9}
\end{equation*}
$$

Since $0 \leq \frac{Z}{M}<1$, then:

$$
\begin{equation*}
\alpha=\left\lfloor\sum_{i=0}^{N} \frac{\gamma_{i}}{m_{i}}\right\rfloor \tag{10}
\end{equation*}
$$

It is known that: $0 \leq \frac{\gamma_{i}}{m_{i}}<1$, therefore:

$$
\begin{equation*}
0 \leq \alpha<N \tag{11}
\end{equation*}
$$

Calculation of α has been discussed in [12,20]. It is shown that choosing proper constants q and Δ and enforcing boundary condition of (12), α can be calculated using (13).

$$
\begin{gather*}
0 \leq X<(1-\Delta) M . \tag{12}\\
\alpha=\left\lfloor\frac{1}{2^{q}}\left(\sum_{i=1}^{N}\left\lfloor\frac{\gamma_{i}}{2^{n-q}}\right\rfloor+2^{q} . \Delta\right)\right\rfloor . \tag{13}
\end{gather*}
$$

Algorithm 1 is used to calculate the coefficient α. A Maple program was written to find the optimal q and Δ. Choosing $q=8$, for the 66 -bit moduli set in Table 1, we realised that $\Delta=\frac{1}{2^{4}}$ is suitable for the whole effective dynamic range. The hardware realisation of (13) is an N-input q-bit adder with offset $2^{q} \cdot \Delta$. Note that the effective dynamic range by applying boundary condition in (12), is $\hat{M}=\left\lfloor\left(1-\frac{1}{2^{4}}\right) M\right\rfloor$; that is greater than the minimum required bit length (512 bits).

```
Algorithm 1: Calculation of \(\alpha\)
    input : \(\left\{\gamma_{1}, \ldots \gamma_{N}\right\}\) where, \(\gamma_{i}=\left\langle z_{i} \cdot M_{i}^{-1}\right\rangle_{m_{i}}, i \in\{1, \ldots, N\}\).
    input : \(q, \Delta\).
    output: \(\alpha\).
    \(A \leftarrow 2^{q} \cdot \Delta ;\)
    for \(i=1\) to \(N\) do
        \(A \leftarrow A+\left\lfloor\frac{\gamma_{i}}{2^{n-q}}\right\rfloor ;\)
    end
    \(\alpha \leftarrow\left\lfloor\frac{A}{2^{q}}\right\rfloor ;\)
```


3. Improved Sum of Residues (SOR) Algorithm

Here, we introduce an integer V as:

$$
\begin{equation*}
V=\sum_{i=1}^{N} \gamma_{i}\left\langle M_{i}\right\rangle_{p}-\langle\alpha M\rangle_{p} \tag{14}
\end{equation*}
$$

Comparing (5) and (14), it can be realised that the difference is a factor of modulus p. Recalling the fact that for any integer Z we can find an integer κ such that $\langle Z\rangle_{p}=Z-\kappa \cdot p$.

$$
\begin{align*}
V-\langle Z\rangle_{p} & =\sum_{i=1}^{N} \gamma_{i}\left\langle M_{i}\right\rangle_{p}-\left\langle\sum_{i=1}^{N} \gamma_{i} M_{i}\right\rangle_{p} \\
& =\sum_{i=1}^{N} \gamma_{i}\left(M_{i}-v \cdot p\right)-\sum_{i=1}^{N} \gamma_{i} M_{i}-\mu \cdot p \tag{15}\\
& =\left(\sum_{i=1}^{N} \gamma_{i} \cdot v-\mu\right) \cdot p \\
& =\kappa \cdot p .
\end{align*}
$$

(v and μ are constants such that: $\left\langle M_{i}\right\rangle_{p}=M_{i}-v \cdot p$, and $\left\langle\sum_{i=1}^{N} \gamma_{i} M_{i}\right\rangle_{p}=\sum_{i=1}^{N} \gamma_{i} M_{i}-\mu \cdot p$).
The factor (κ) is a function of γ_{i}, not a constant. Therefore the value of V - which is actually the output of SOR algorithm introduced in $[19,20]$ - is not presenting the true reduction of $\langle Z\rangle_{p}$. In fact:

$$
\begin{equation*}
V=\kappa \cdot p+\langle Z\rangle_{p}=\sum_{i=1}^{N} \gamma_{i}\left\langle M_{i}\right\rangle_{p}+\langle-\alpha M\rangle_{p} \tag{16}
\end{equation*}
$$

The values of $\left\langle M_{i}\right\rangle_{p}$ and $\langle\alpha M\rangle_{p}$ for $\alpha \in\{0,1, \cdots, N-1\}$ are known and can be implemented in hardware as pre-computed constants.
The RNS form of V resulted from (14) is:

$$
\left[\begin{array}{c}
\langle V\rangle_{m_{1}} \tag{17}\\
\langle V\rangle_{m_{2}} \\
\vdots \\
\langle V\rangle_{m_{N}}
\end{array}\right]=\left(\sum_{i=1}^{N} \gamma_{i}\left[\begin{array}{c}
\left\langle\left\langle M_{i}\right\rangle_{p}\right\rangle_{m_{1}} \\
\left\langle\left\langle M_{i}\right\rangle_{p}\right\rangle_{m_{2}} \\
\vdots \\
\left\langle\left\langle M_{i}\right\rangle_{p}\right\rangle_{m_{N}}
\end{array}\right]\right)+\left[\begin{array}{c}
\left\langle-\alpha\langle M\rangle_{p}\right\rangle_{m_{1}} \\
\left\langle-\alpha\langle M\rangle_{p}\right\rangle_{m_{2}} \\
\vdots \\
\left\langle-\alpha\langle M\rangle_{p}\right\rangle_{m_{N}}
\end{array}\right]
$$

If (17) deducted by $\left\{\langle\kappa \cdot p\rangle_{m_{1}},\langle\kappa \cdot p\rangle_{m_{2}}, \cdots,\langle\kappa \cdot p\rangle_{m_{N}}\right\}$, the accurate value of Z_{p} in RNS will be obtained.

$$
\left[\begin{array}{c}
\left\langle Z_{p}\right\rangle_{m_{1}} \tag{18}\\
\left\langle Z_{p}\right\rangle_{m_{2}} \\
\vdots \\
\left\langle Z_{p}\right\rangle_{m_{N}}
\end{array}\right]=\left(\sum_{i=1}^{N} \gamma_{i}\left[\begin{array}{c}
\left\langle\left\langle M_{i}\right\rangle_{p}\right\rangle_{m_{1}} \\
\left\langle\left\langle M_{i}\right\rangle_{p}\right\rangle_{m_{2}} \\
\vdots \\
\left\langle\left\langle M_{i}\right\rangle_{p}\right\rangle_{m_{N}}
\end{array}\right]\right)+\left[\begin{array}{c}
\left\langle-\alpha\langle M\rangle_{p}\right\rangle_{m_{1}} \\
\left\langle-\alpha\langle M\rangle_{p}\right\rangle_{m_{2}} \\
\vdots \\
\left\langle-\alpha\langle M\rangle_{p}\right\rangle_{m_{N}}
\end{array}\right]-\left[\begin{array}{c}
\langle\kappa \cdot p\rangle_{m_{1}} \\
\langle\kappa \cdot p\rangle_{m_{2}} \\
\vdots \\
\langle\kappa \cdot p\rangle_{m_{N}}
\end{array}\right]
$$

3.1. Calculation of κ

Dividing two sides of (16) by p yields:

$$
\begin{equation*}
\kappa+\frac{\langle Z\rangle_{p}}{p}=\sum_{i=1}^{N} \frac{\gamma_{i}\langle M i\rangle_{p}}{p}+\frac{\langle-\alpha M\rangle_{p}}{p} . \tag{19}
\end{equation*}
$$

The coefficient κ is an integer. Reminding that $\frac{\langle Z\rangle_{p}}{p}<1$ and $\frac{\langle-\alpha M\rangle_{p}}{p}<1, \kappa$ can be calculated as:

$$
\begin{equation*}
\kappa=\left\lfloor\sum_{i=1}^{N} \frac{\left\langle\gamma_{i} M_{i}\right\rangle_{p}}{p}\right\rfloor \tag{20}
\end{equation*}
$$

The modulus p is considered to be a pseudo Mersenne prime in general form of $p=2^{W}-\epsilon$ where $2^{W} \gg \epsilon$. For example: $p_{S}=2^{256}-2^{32}-2^{9}-2^{8}-2^{7}-2^{6}-2^{4}-1$ and $p_{E}=2^{255}-19$ are the field modulus for the NIST recommended curve SECP256K1 [21] and the Twisted Edwards Curve ED25519 [22], respectively.

Substitution of fractional equation $\frac{1}{2^{W}-\epsilon}=\frac{1}{2^{W}}\left(1+\frac{\epsilon}{2^{W}-\epsilon}\right)$ in (20) results:

$$
\begin{equation*}
\kappa=\left\lfloor\sum_{i=1}^{N} \frac{\gamma_{i}\left\langle M_{i}\right\rangle_{p}}{2^{W}}\left(1+\frac{\epsilon}{\left(2^{W}-\epsilon\right)}\right)\right\rfloor \tag{21}
\end{equation*}
$$

Considering that $\left\langle M_{i}\right\rangle_{p}<p$ and $\gamma_{i}<2^{n}$, if we choose:

$$
\begin{equation*}
\epsilon<\frac{2^{W-n}}{N} \tag{22}
\end{equation*}
$$

Then, $\sum_{i=1}^{N} \frac{\gamma_{i}\left\langle M_{i}\right\rangle_{p}}{2^{W}} \frac{\epsilon}{\left(2^{W}-\epsilon\right)}<1$, and the value of κ resulted from (21) is:

$$
\begin{equation*}
\kappa=\left\lfloor\sum_{i=1}^{N} \frac{\gamma_{i}\left\langle M_{i}\right\rangle_{p}}{2^{W}}\right\rfloor \tag{23}
\end{equation*}
$$

The condition in (22) provides a new boundary for choosing the field modulus p. It is a valid condition for most known prime modulus p used practically in cryptography. Table 2 shows the validity of κ for some standard curves based on (23).

Table 2. Checking validity of κ for some standard curves [21,22].

CURVE	Modulus p	N	n	$\frac{2^{W-n}}{N}$	ϵ
ED25519	$2^{255}-19$	8	66	2^{186}	19
SECP160K1	$2^{160}-2^{32}-21389$	5	66	$\frac{2^{94}}{5}$	$2^{32}+21389$
SECP160R1	$2^{160}-2^{32}-1$	5	66	$\frac{2^{94}}{5}$	$2^{32}+1$
SECP192K1	$2^{192}-2^{32}-4553$	6	66	$\frac{2^{125}}{3}$	$2^{32}+4553$
SECP192R1	$2^{192}-2^{64}-1$	6	66	$\frac{2^{125}}{3}$	$2^{64}+1$
SECP224K1	$2^{224}-2^{32}-6803$	7	66	$\frac{2^{158}}{7}$	$2^{32}+6803$
SECP224R1	$2^{224}-2^{96}+1$	7	66	$\frac{2^{158}}{7}$	$2^{96}-1$
SECP256K1	$2^{256}-2^{32}-977$	8	66	2^{187}	$2^{32}+977$
SECP2384R1	$2^{384}-2^{128}-2^{96}+2^{31}-1$	12	66	$\frac{2^{316}}{3}$	$2^{128}+2^{96}-2^{31}+1$
SECP521R1	$2^{521}-1$	16	66	2^{451}	1

The hardware implementation of (23) needs a 66×256-bit multiplier. For an efficient hardware implementation, it is essential to avoid such a big multiplier. To compute the value of κ in hardware, we used:

$$
\begin{equation*}
\kappa=\left\lfloor\frac{1}{2^{T}} \sum_{i=1}^{N} \gamma_{i}\left\lfloor\frac{\left\langle M_{i}\right\rangle_{p}}{2^{W-T}}\right\rfloor\right\rfloor . \tag{24}
\end{equation*}
$$

The integer T must be selected such that the equality of (23) and (24) is guaranteed. Using a MAPLE program, we realised that $T=72$ for SECP256K1 and $T=71$ for ED25519 are the best solutions for an area efficient hardware. In this case, as the term $\left\lfloor\frac{\left\langle M_{i}\right\rangle_{p}}{2^{W-T}}\right\rfloor$ is 55 bits for SECP256K1 and 44 bits for ED25519, the 66×55-bit and 66×44-bit multipliers are required to compute κ, respectively. Therefore, the coefficient of κ for SECP256K1 can be calculated efficiently by the following equation:

$$
\begin{equation*}
\kappa=\left\lfloor\frac{1}{2^{72}} \sum_{i=1}^{N} \gamma_{i}\left\lfloor\frac{\left\langle M_{i}\right\rangle_{p_{S}}}{2^{184}}\right\rfloor\right\rfloor \tag{25}
\end{equation*}
$$

Similarly, for ED25519, κ can be calculated using the below formula:

$$
\begin{equation*}
\kappa=\left\lfloor\frac{1}{2^{71}} \sum_{i=1}^{N} \gamma_{i}\left\lfloor\frac{\left\langle M_{i}\right\rangle_{p_{E}}}{2^{184}}\right\rfloor\right\rfloor \tag{26}
\end{equation*}
$$

The value of $\left\lfloor\frac{\left\langle M_{i}\right\rangle_{p}}{2^{184}}\right\rfloor$ can be pre-computed and saved in the hardware for $i=1$ to N. The integer κ is maximum 52-bit long for SECP256K1 and 42-bit long for ED25519. As a result, RNS conversion is not required. $\left(\kappa_{i}=\kappa \bmod m_{i}=\kappa\right)$ and κ can be directly used in RNS calculations.

Calculation of κ can be done in parallel and will not impose extra delay in the design. Finally, to find $z=X \bmod p$ we need to compute $\kappa \cdot\langle p\rangle_{m_{i}}$. Note that $\langle p\rangle_{m_{i}}$ is a constant and can be pre-computed as well. So, we get:

$$
\begin{equation*}
z_{i}=\left\langle\langle V\rangle_{m_{i}}-\langle\kappa \cdot p\rangle_{m_{i}}\right\rangle_{m_{i}} . \tag{27}
\end{equation*}
$$

The number of operations can be reduced by pre-computing $\langle-p\rangle_{m_{i}}$ instead of $\langle p\rangle_{m_{i}}$.
(A modular subtraction consists of two operations: $\forall a, b<m_{i},\langle a-b\rangle_{m_{i}}=\left\langle a+\left(m_{i}-b\right)\right\rangle_{m_{i}}$). Then z_{i} is calculated directly by:

$$
\begin{equation*}
z_{i}=\left\langle\langle V\rangle_{m_{i}}+\left\langle\kappa \cdot\langle-p\rangle_{m_{i}}\right\rangle_{m_{i}}\right\rangle{ }_{m_{i}} \tag{28}
\end{equation*}
$$

Algorithm 2 presents the RNS modulo p multiplication $\left\{x_{1}, x_{2}, \cdots, x_{N}\right\} \times\left\{y_{1}, y_{2}, \cdots, y_{N}\right\}$ $\bmod p$ over moduli base \mathcal{B} using improved sum of residues method. The calculations at stages 4 and 5 are done in parallel. Different levels of parallelism can be achieved in hardware by adding on or more RNS multipliers to perform stage 5.3 calculations in a shorter time.

As discussed, the coefficient κ is a 52-bit(42-bit) integer for SECP256K1(ED25519) design. Consequently, the output of the original SOR algorithm [19] represented in (16) is as big as 308(297) bits. In conclusion, the hardware introduced in $[20,26,27]$ cannot calculate two tandem modular multiplications while the product of the second stage inputs has a higher bit number than the dynamic range that violates the CRT. In cryptographic applications, it is generally required to do multiple
modular multiplications. Our correction to the SOR algorithm ensures that the inputs of the next multiplication stage are in range.

Algorithm 2: Improved Sum of residues reduction
Require: $p, \Delta, q, \mathcal{B}=\left\{m_{1}, \cdots, m_{N}\right\}, m_{1}>m_{2}>\cdots>m_{N}, n=\left\lceil\log _{2} m_{1}\right\rceil$,
$W=\left\lceil\log _{2} p\right\rceil, T, N \geq\left\lceil\frac{2 W}{n}\right\rceil$
Require: $M=\prod_{i=1}^{N} m_{i}, \hat{M}=(1-\Delta) M, M_{i}=\frac{M}{m_{i}}$ for $i=1$ to N

Require: pre-computed tables

$$
\left[\begin{array}{c}
\left\langle M_{1}^{-1}\right\rangle_{m_{1}} \\
\left\langle M_{2}{ }^{-1}\right\rangle_{m_{2}} \\
\vdots \\
\left\langle M_{N}{ }^{-1}\right\rangle_{m_{N}}
\end{array}\right],\left[\begin{array}{c}
\langle-p\rangle_{m_{1}} \\
\langle-p\rangle_{m_{2}} \\
\vdots \\
\langle-p\rangle_{m_{N}}
\end{array}\right] \text {, and }\left[\begin{array}{c}
\left\lfloor\frac{\left\langle M_{1}\right\rangle_{p}}{2^{W-T}}\right\rfloor \\
\vdots \\
\left\lfloor\frac{\left\langle M_{N}\right\rangle_{p}}{2^{W-T}}\right\rfloor
\end{array}\right]
$$

Require: pre-computed table $\left[\begin{array}{c}\left\langle\left\langle M_{i}\right\rangle_{p}\right\rangle_{m_{1}} \\ \left\langle\left\langle M_{i}\right\rangle_{p}\right\rangle_{m_{2}} \\ \vdots \\ \left\langle\left\langle M_{i}\right\rangle_{p}\right\rangle_{m_{N}}\end{array}\right]$ for $i=1$ to N.
Require: pre-computed table $\left[\begin{array}{c}\left\langle\alpha \cdot\langle-M\rangle_{p}\right\rangle_{m_{1}} \\ \left\langle\alpha \cdot\langle-M\rangle_{p}\right\rangle_{m_{2}} \\ \vdots \\ \left\langle\alpha \cdot\langle-M\rangle_{p}\right\rangle_{m_{N}}\end{array}\right]$ for $\alpha=1$ to $N-1$
input :Integers X and $Y, 0 \leq X, Y<\hat{M}$ in form of RNS: $\left\{x_{1}, \cdots, x_{N}\right\}$ and $\left\{y_{1}, \cdots, y_{N}\right\}$.
output: Presentation of $Z=X \cdot Y \bmod p$ in RNS: $\left\{z_{1}, \cdots, z_{N}\right\}$.

1. for $i=1$ to N do

$$
x y_{i} \leftarrow\left\langle x_{i} \cdot y_{i}\right\rangle_{m_{i}} .
$$

end
2. for $i=1$ to N do

$$
\gamma_{i} \leftarrow\left\langle x y_{i}\left\langle M_{i}^{-1}\right\rangle_{m_{i}}\right\rangle_{m_{i}}
$$

end
3. for $i=1$ to N do
for $j=1$ to N do
$Y_{i j} \leftarrow \gamma_{i}\left\langle\left\langle M_{i}\right\rangle_{p}\right\rangle_{m_{j}}$.
end
end
4. for $i=1$ to N do
$4.1 \alpha \leftarrow\left\lfloor\frac{1}{2^{q}}\left(\sum_{i=1}^{N}\left\lfloor\frac{\gamma_{i}}{2^{n-q}}\right\rfloor+2^{q} \Delta\right)\right\rfloor$.
$4.2 \kappa \leftarrow\left\lfloor\frac{1}{2^{T}} \sum_{i=1}^{N} \gamma_{i}\left\lfloor\frac{\left\langle M_{i}\right\rangle_{p}}{2^{W-T}}\right\rfloor\right\rfloor$.
end
5. for $i=1$ to N do
5.1 Calculate $\left\langle\kappa \cdot\langle-p\rangle_{m_{i}}\right\rangle_{m i}$.
5.2 Read $\left\langle\alpha\langle-M\rangle_{p}\right\rangle_{m_{i}}$ from the table.
5.3 sum $_{i} \leftarrow\left\langle\sum_{j=1}^{N} Y_{j i}\right\rangle_{m_{i}}$.
end
6. for $i=1$ to N do
$z_{i} \leftarrow\left\langle\text { sum }_{i}+\alpha\langle-M\rangle_{p}\right\rangle_{m_{i}}+\left\langle\kappa\langle-p\rangle_{m_{i}}\right\rangle_{m_{i}}$.
end

4. New SOR Algorithm Implementation and Performance

The required memory to implement pre-computed parameters of Algorithm 2 is $N\left((2 N+2) n+n^{\prime}\right)$ bits, where n^{\prime} is the biggest bit number of $\left\lfloor\frac{\left\langle M_{i}\right\rangle_{p}}{2^{W-T}}\right\rfloor, i \in\{1 \cdots N\}$. In our case $n^{\prime}=55$ for SECP256K1 and $n^{\prime}=44$ for ED25519. Therefore, the required memory is 9944 and 9856 bits for the SECP256K1 and ED25519 respectively.

In our design, FPGA DSP modules are used for the realisation of eight 66×66 bit multipliers that are followed by a combinational reduction logic to build an RNS multiplier. The total number of 128 DSP resources are used for an RNS multiplier. Table 3 lists maximum logic and net delays of the RNS multiplier and the RNS adder(accumulator) implemented on the different FPGA platforms used in this survey. These delays determine the overall design latency and performance. The maximum RNS adder logic and routing latency are less than half of the RNS multiplier logic and net delays. The system clock cycle is chosen such that an RNS addition is complete in one clock period and an RNS multiplication result is ready in two clock periods.

Table 3. Implementation results of SOR components on different FPGAs.

Unit	Device	Max. Logic Delay (ns)	Max. Net Delay $(\mathbf{n s})$	Max Achieved Freq. on Core $\mathbf{M H z}$
RNS Multiplier	ARTIX 7	16.206	5.112	109.00
RNS Adder	ARTIX 7	6.017	2.303	109.00
RNS Multiplier	VIRTEX 7	11.525	3.793	125.00
RNS Adder	VIRTEX 7	3.931	1.469	125.00
RNS Multiplier	VIRTEX UltraScale+	5.910	4.099	185.18
RNS Adder	VIRTEX UltraScale+	2.139	2.454	185.18
RNS Multiplier	KINTEX 7	11.964	4.711	116.27
RNS Adder	KINTEX 7	4.613	1.599	116.27
RNS Multiplier	KINTEX UltraScale+	5.789	4.099	187.13
RNS Adder	KINTEX UltraScale+	2.018	2.454	187.13

Figure 1 presents a simplified block diagram of the Algorithm 2 with non-pipe-lined architecture. We name this architecture as SOR_1M_N. The sequencer state machine provides select signals of the multiplexers and clocks for internal registers. The inputs of the circuit are two 256-bit integers X and Y in RNS representation over base \mathcal{B}; i.e., $\left\{x_{1}, \cdots, x_{N}\right\}$ and $\left\{y_{1}, \cdots, y_{N}\right\}$ respectively.

Figure 1. Sum of residues reduction block diagram non-pipe-lined (SOR_1M_N) design.

The RNS multiplier inputs are selected by multiplexers MUX1 and MUX2. At the second clock cycle the output of multiplier i.e., $x y_{i}=\left\langle x_{i} \cdot y_{i}\right\rangle_{m_{i}}$ is latched by register $Q 1$. At the fourth clock cycle, $\gamma_{i}=\left\langle x y_{i} \cdot M_{i}^{-1}\right\rangle_{m_{i}}$ is calculated and latched by register $Q 1$. The calculation of α starts after the fourth clock cycle, by adding the eight most significant bits of γ_{1} to γ_{8} to the offset $2^{q} \Delta=2^{4}$. The 3 most significant bits of the result are used to select the value of $\left\langle-\alpha \cdot\langle M\rangle_{p}\right\rangle_{m_{i}}$ from the Look up table. Figure 2 illustrates the hardware implementation of $\left\langle-\alpha \cdot\langle M\rangle_{p}\right\rangle_{m_{i}}$. At the next $3 N$ clock cycles $\left\langle\gamma_{i}\left\langle M_{i}\right\rangle_{p}\right\rangle_{m_{j}}$ will be calculated and accumulated in register Q2. The RNS multiplier must be idle for one clock cycle, letting the RNS adder of the accumulator be completed and latched whenever accumulation of the results is required. The value of κ is calculated in parallel using the hardware shown in Figure 3. The $\langle-\kappa p\rangle_{m_{i}}$ is calculated at the $(3 N+5)$ and $(3 N+6)$ cycles and will be added to the accumulator Q2 at the last clock cycle. The sum of moduli reduction is completed in $(3 N+7)$ clock cycles. Figure A1 in appendix A shows the data flow diagram of SOR_1M_N architecture at every clock cycle.

Figure 2. Implementation of $\left\langle\langle-\alpha M\rangle_{p}\right\rangle_{m_{i}}$.

Figure 3. Implementation of $\langle\kappa\langle-p\rangle\rangle_{m_{i}}$ in architectures SOR_1M_N and SOR_1M_P (Up) and in architecture SOR_2M (Down).

A pipe-lined design is depicted in Figure 4. Here, an extra register Q3 latches the RNS multiplier's output. So, The idle cycles in SOR_1M_N are removed. We call this design SOR_1M_P. The data flow diagram of SOR_1M_P architecture is illustrated in Figure A2 in Appendix A. Algorithm 2 can be performed in $2(N+4)$ clock cycles using this architecture.

Figure 4. Sum of residues reduction block diagram with pipe-lined (SOR_1M_P) design.
Parallel designs are possible by adding RNS multipliers to the design. Figure 5 shows the architecture of using two identical RNS multipliers in parallel to implement algorithm 2. We tag this architecture as SOR_2M. The calculation of $\left\langle\gamma_{i}\left\langle M_{i}\right\rangle_{p}\right\rangle_{m_{j}}(i=1 \cdots N)$ is split between two RNS multipliers. So, the required time to calculate all the N terms is halved. As shown in Figure 3, An extra $n \times n^{\prime}$ multiplier is also required to calculate κ in time. The latency of SOM_2M architecture is $2\left(\frac{N}{2}+5\right)$ clock cycles. Theoretically, the latency could be as small as 12 clock cycles using N parallel RNS multipliers. Figure A3 in appendix A shows the data flow diagram of SOM_2M architecture.

Figure 5. Sum of residues block diagram using two parallel pipe-lined (SOR_2M) design.
Table 4, shows implementation results on ARTIX 7, VIRTEX 7, KINTEX 7, VIRTEX UltraScale $+{ }^{\mathrm{TM}}$, and KINTEX UltraScale+ FPGA series. VIVADO 2017.4 is used for VHDL codes synthesis. On a Xilinx

VIRTEX 7 platform, as shown in Table 3, a 66-bit modular multiplication was achieved in 11.525 ns and a 66-bit RNS addition was performed in 3.93 ns. Considering the maximum net delays, clock frequency 125 MHz is achievable. The fastest design is realised using KINTEX UltraScale+ that clock frequency 187.13 MHz is reachable. Figure 6 summarises the latency and throughput of SOR_1M_N, SOR_1M_P, and SOR_2M on different Xilinx FPGA series for ease of comparison.

Table 4. Sum of residues reduction algorithm Implementation on Xilinx FPGAs.

Architecture	Platform FPGA	Clk Frequency (MHz)	Latency (ns)	Area (KLUTs),(FFs),(DSPs)	Throughput (Mbps)
SOR_1M_N	ARTIX 7	92.5	335	$(8.17),(3758),(140)$	1671
SOR_1M_N	VIRTEX 7	128.8	241	$(8.17),(3758),(140)$	2323
SOR_1M_N	KINTEX 7	117.67	263	$(8.29),(3758),(140)$	2129
SOR_1M_N	VIRTEX US+ 1	192	157	$(8.14),(3758),(140)$	3567
SOR_1M_N	KINTEX US+	198	156.5	$(8.29),(3758),(140)$	3578
SOR_1M_P	ARTIX 7	92.5	259.5	$(8.73),(4279),(140)$	2158
SOR_1M_P	VIRTEX 7	138.8	173	$(8.73),(4279),(140)$	3237
SOR_1M_P	KINTEX 7	117.6	204	$(8.89),(4279),(140)$	2745
SOR_1M_P	VIRTEX US+	185.18	130	$(8.71),(4279),(140)$	4307
SOR_1M_P	KINTEX US+	187.13	128.3	$(8.89),(4279),(140)$	4364
SOR_2M	ARTIX 7	92.5	194.6	$(10.11),(4797),(280)$	2877
SOR_2M	VIRTEX 7	128.5	140	$(10.11),(4797),(280)$	3998
SOR_2M	KINTEX 7	121.9	147.6	$(10.27),(4797),(280)$	3794
SOR_2M	VIRTEX US+	185.18	97.3	$(10.11),(4797),(280)$	5761
SOR_2M	KINTEX US+	187.13	96.3	$(10.26),(4797),(280)$	5821

${ }^{1}$ US+: Ultra Scale+ ${ }^{\text {TM }}$.

Figure 6. SOR architectures Latency and Throughput on Xilinx FPGAs.

4.1. Comparison

In Table 5, we have outlined implementation results of recent similar works in the context of RNS. The design in [20] and [27] are based on the SOR algorithm in [19]. Both of them use forty 14-bit co-prime moduli as RNS base to provide a 560-bit dynamic range. Barrett reduction method [25] is used for moduli multiplication at each channel. The Barrett reduction algorithm costs 2 multiplications and one subtraction which is not an optimised method for high-speed designs. The design in [20] is a combinational logic and performs an RNS modular reduction in one clock cycles. The area of this design is reported in [27] which is equivalent to (34.34 KLUTs, 2016 DSPs) for non pipe-lined and (36.5 KLUTs, 2016 DSPs) for pipe-lined architectures. The MM_SPA design in [27], is a more
reasonable design in terms of the logic size (11.43 KLUT, 512 DSPs). However, in contrast to our SOR_2M design on VIRTEX-7, it consumes more hardware resources and in terms of speed, it is considerably slower. These designs, are based on SOR algorithm in [19] that is not performing a complete reduction. As discussed in Section 3.1, their outputs can exceed the RNS dynamic range and give out completely incorrect results.

A survey on RNS Montgomery reduction algorithm and the improvements in this context is presented in [18]. The application of quadratic residues in RNS modular reduction is then presented and two algorithms sQ-RNS and dQ-RNS are proposed. The authors used eight 65-bit moduli base for their RNS hardware which is similar to our design. The achieved clock frequencies for these two designs are 139.5 MHz and 142.7 MHz , respectively. The input considered for the algorithms is the RNS presentation of " $K^{2} \cdot x$ "; where " x " is equivalent to Z in our notations in Equation (2) and " K^{2} " is a constant. To do a fair comparison, it is required to consider two initial RNS multiplications to get the input ready for the algorithms sQ-RNS and dQ-RNS. This adds two stages of full range RNS multiplication to the design.

Table 5. Comparison of our design with recent similar works.

Design	Platform	Clk Frequency (MHz)	Latency (ns)	Area (KLUT),(DSP)	Throughput (Mbps)
MM_PA_P [20]	VIRTEX 6	71.40	14.20	$(36.5),(2016)^{1}$	14798
MM_PA_N [20] $^{\text {M }}$	VIRTEX 6	21.16	47.25	$(34.34),(2016)^{1}$	5120
MM_PA_P [27] $^{\text {M }}$	VIRTEX 7	62.11	48.3	$(29.17),(2799)$	15900
MM_SPA [27]	VIRTEX 7	54.34	239.2	$(11.43),(512)$	1391
(Ours) SOR_1M_P	VIRTEX 7	138.8	173	$(8.73),(140)$	3237
(Ours) SOR_2M	VIRTEX 7	128.5	140	$(10.11),(280)$	3998
sQ-RNS ${ }^{2}$	KINTEX US+	139.5	$107.53(150.53)$	$(4.247),(84)$	4835^{2}
dQ-RNS [18]	KINTEX US+	142.7	$126.14(168.18)^{2}$	$(4.076),(84)$	4122^{2}
(Ours) SOR_1M_P	KINTEX US+	187.13	128.3	$(8.89),(140)$	4364
(Ours) SOR_2M	KINTEX US+	187.13	96.3	$(10.26),(280)$	5821

${ }^{1}$ Area reported in [27]; ${ }^{2}$ Our estimation.

As illustrated on Figure 13 of [18] it takes 3 clock cycles to perform one multiplication and reduction. So, at the maximum working clock frequency, 42 ns will be added to the latency of the proposed RNS modular reduction circuit. As a result, the equivalent latency for an RNS reduction for sQ-RNs and dQ-RNS reduction hardware is 150.53 ns and 168.18 ns , respectively. Consider that the output of these algorithms is a factor of " $\left\langle x \cdot M^{-1}\right\rangle_{p}$ ", not the precise value of " $\langle x\rangle_{p}$ ". The RNS Montgomery reduction algorithms use half of moduli set. This makes the hardware area efficient, but it still full moduli range multiplication are required for computations. On the same FPGA platform used in [18], i.e., KINTEX Ultra Scale+ ${ }^{\text {TM }}$, we achieved the latency of 128.3 ns and 96.3 ns with our SOR_1M_P and SOR_2M designs, respectively. The latency of SOR_2M showed 36\% improvement compare to sQ-RNS and 41.1% improvement in contrast to MM_SPA on similar FPGA platforms. Similarly, there is 14.9% and 27.6% improvement of SOR_1M_P latency in compare to sQ-RNS and MM_SPA designs, respectively. The latency of our SOR_M_N, however, is very close to sQ-RNS and MM_SPA designs.

5. Conclusions

We introduced a coefficient κ to make a correction on the SOR algorithm to compute the precise value of modular reduction directly in Residue Number Systems for application in cryptography. We also proposed three hardware architectures for the new SOR algorithm and implemented them on different FPGA platforms. Comparing our implementation results to recent similar works showed an improvement achieved in terms of the speed. The sum of residues algorithm is naturally modular and can use parallel multipliers to speed up calculations. It fits for applications where high-speed modular calculations are in demand. This algorithm uses more hardware resources in compare to RNS Montgomery reduction method. Variants of the SOR algorithm can be studied in future works to achieve an area efficient hardware.
Funding: This research received no external funding
Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Data flow diagram per clock cycle for the SOR architectures listed in Section 4 are illustrated in Figures A1-A3.

Figure A1. Data flow of SOR non pipelined with one RNS multiplier architecture SOR_1M_N.

CLK CYCLES	2	2	2	2	2	2	2	2	2	2	1	2	1
RNS Mult.	Z	G	L1	L2	L3	14	L5	16	L7	18		KP	
ACCUMULATOR	K1 α A			$\mathrm{A}=\mathrm{A}+\mathrm{L} 1$	$A=A+L 2$	$A=A+L 3$	$A=A+L 4$	$A=A+L 5$	$A=A+L 6$	$A=A+L 7$	$A=A+L 8$	$A=A+A L$	$A=A+K P$
MULTIPLIER				K2	K3	K4	K5	K6	K7	K8			
ACCUMULATOR				K=K+K1	K=K+K2	K=K+K3	K=K+K4	K=K+K5	K=K+K6	K=K+K7	$\mathrm{K}=\mathrm{K}+\mathrm{K} 8$		
ADDER													
ROM													

Figure A2. Data flow of SOR with one pipelined RNS multiplier architecture SOR_1M_P.

CLK CYCLES	2	2	2		2	2	2	2	2	2
RNS Mult.	Z	G	L1		L3	L5	L7			
RNS Mult.			L2		14	L6	18		KP	
ACCUMULATOR					$\mathrm{A}=\mathrm{A}+\mathrm{L} 1+\mathrm{L} 2$	$A=A+L 3+L 4$	A $=$ A +L5+L6	$A=A+L 7+L 8$		$A=A+A L+K P$
MULTIPLIER			K1		K3	K5	K7			
MULTIPLIER			K2		K4	K6	K8			
ACCUMULATOR					K=K+K1+K2	K=K+K3+K4	K=K+K5+K6	$\mathrm{K}=\mathrm{K}+\mathrm{K} 7+\mathrm{K} 8$		
ADDER			α							
ROM				AL						

Figure A3. Data flow of SOR with two RNS multiplier architecture SOR_2M.

Table A1. The notations applied in this paper.

Notation	Description	
p	Field modulus. In this work considered as a 256-bit prime $p_{S}=2^{256}-2^{32}-977$ or 255-bit prime $p_{E}=2^{255}-19$.	
m_{i}	RNS channel modulus. $m_{i}=2^{n}-2^{t_{i}}-1, t_{i} \in\{0,2,3,4,5,6,8,9\}$.	
n	Bit-length of modulus m_{i}. $\left(n=\max \left\lceil\log _{2} m_{i}\right\rceil, i \in\{1, \ldots, N\}\right)$.	
n^{\prime}	Is the maximum bit number of $\left\lfloor\frac{\left\langle M_{i}\right\rangle_{p}}{2^{W-T}}\right\rfloor, i \in\{1 \cdots N\}$.	
\mathcal{B}	set of RNS Moduli: $\mathcal{B}=\left\{m_{1}, m_{2}, \ldots, m_{N}\right\}$.	
N	Number of moduli in \mathcal{B} (size of \mathcal{B}).	
B	Is a $2 n$-bit integer, product of two RNS channels.	
B_{H}	Is the n most significant bits of B, i.e., $B_{H}=\left\lfloor\frac{B}{2^{n}}\right\rfloor$.	
B_{L}	Is the n least significant bits of B, i.e., $B_{L}=B \bmod 2^{n}$.	
$B_{H H_{i}}$	Is the t_{i} most significant bits of $2^{t_{i}} B_{H}$, i.e., $B_{H H_{i}}=\left\lfloor\frac{B_{H}}{2^{n-t_{i}}}\right\rfloor$.	
$B_{H L_{i}}$	Is the n least significant bits of $2^{t_{i}} B_{H}$, i.e., $B_{H L_{i}}=2^{t_{i}} B_{H} \bmod 2^{n}$.	
A	denotes accumulator in Algorithm 1 and Figures A1-A3.	
X, Y	Integers that meet the condition $0 \leq X \cdot Y<M$.	
Z	An integer considered as product of X and Y.	
x_{i}	The residue of integer X in channel m_{i} i.e., $x_{i}=X \bmod m_{i}$.	
$\langle\mathrm{Z}\rangle_{p}$	Mod operation $Z \bmod p$.	
RNS (X)	The RNS function. Returns the RNS representation of integer X.	
$\left\{x_{1}, x_{2}, \ldots, x_{N}\right\}$	RNS representation of integer X.	
$\begin{gathered} {\left[\begin{array}{c} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{array}\right]} \\ \left(b_{n-1} b_{n-1} \ldots b_{0}\right) \end{gathered}$	RNS representation of integer X. Binary representation of an n-bit integer $B .\left(b_{i} \in\{0,1\}\right)$.	
\|		Bit concatenation operation.
$\lceil u\rceil$	The function $\operatorname{ceil}(u)$.	
$\lfloor u\rfloor$	The function floor (u).	
W	Bit-length of modulus p, i.e., $W=\left\lceil\log _{2} p\right\rceil$.	
M	The dynamic range of RNS moduli. $M=\prod_{i=1}^{N} m_{i}$.	
M_{i}	Is defined as $M_{i}=\frac{M}{m_{i}}$.	
\hat{M}	Is the effective dynamic range. $\hat{M}=M(1-\Delta)$.	
Δ	Correction factor used to calculate α. In our design $\Delta=\frac{1}{2^{4}}$.	
Gi	Is: $\gamma_{i}=\left\langle z_{i} \cdot M_{i}^{-1}\right\rangle_{m_{i}}, i \in\{1, \ldots, 8\}$.	
Li	Is: $\left\{\left\langle G i \cdot\left\langle M_{i}\right\rangle_{p}\right\rangle_{m_{1}}, \ldots,\left\langle G i \cdot\left\langle M_{i}\right\rangle_{p}\right\rangle_{m_{N}}\right\}$	
Ki	Is: $\left.\left\lfloor\frac{1}{2^{T}} \gamma_{i} \left\lvert\, \frac{\left\langle M_{i}\right\rangle_{p}}{2^{W-T}}\right.\right\rfloor\right\rfloor$.	
K	Is the κ accumulator.	
AL	Is: $\left\{\left\langle\alpha \cdot\langle-M\rangle_{p}\right\rangle_{m_{1}} \ldots \ldots,\left\langle\alpha \cdot\langle-M\rangle_{p}\right\rangle_{m_{N}}\right\}$.	
KP	Is: $\left\{\kappa \cdot\left(-p_{1}\right), \ldots, \kappa \cdot\left(-p_{N}\right)\right\}$.	

References

1. Svobod, A.; Valach, M. Circuit operators. Inf. Process. Mach. 1957, 3, 247-297.
2. Garner, H.L. The Residue Number System. In Proceeding of the Western Joint Computer Conference, Francisco, CA, USA, 3-5 March 1959.
3. Mohan, P.V.A. Residue Number Systems: Theory and Applications; Springer: New York, NY, USA, 2016.
4. Rivest, R.; Shamir, A.; Adleman, L. A method for obtaining digital signatures and public key cryptosystems. Comm. ACM 1978, 21, 120-126. [CrossRef]
5. Bajard, J.C.; Imbert, L. A full RNS implementation of RSA. IEEE Trans. Comput. 2004, 53, 769-774. [CrossRef]
6. Fadulilahi, I.R.; Bankas, E.K.; Ansuura, J.B.A.K. Efficient Algorithm for RNS Implementation of RSA. Int. J. Comput. Appl. 2015, 127, 0975-8887. [CrossRef]
7. Posch, K.C.; Posch, R. Modulo reduction in residue number systems. IEEE Trans. Parallel Distrib. Syst. 1995, 6, 449-454. [CrossRef]
8. Montgomery, P. Modular Multiplication Without Trial Division. Math. Comput. 1985, 44, 519-521. [CrossRef]
9. Bajard, J.C.; Didier, L.S.; Kornerup, P. An RNS Montgomery modular multiplication algorithm. IEEE Trans. Comput. 1998, 47, 766-776. [CrossRef]
10. Shenoy, P.P.; Kumaresan, R. Fast base extension using a redundant modulus in RNS. IEEE Trans. Comput. 1989, 38, 292-297. [CrossRef]
11. Bajard, J.C.; Didier, L.S.; Kornerup, P. Modular Multiplication and Base Extensions in Residue Number Systems. In Proceedings of the 15th IEEE Symposium on Computer Arithmetic, Vail, CO, USA, 11-13 June 2001.
12. Kawamura, S.; Koike, M.; Sano, F.; Shimbo, A. Cox-Rower Architecture for Fast Parallel Montgomery Multiplication. In Proceedings of the International Conference on the Theory and Applications of Cryptographic Techniques, Bruges, Belgium, 14-18 May 2000.
13. Bajard, J.C.; Merkiche, N. Double Level Montgomery Cox-Rower Architecture, New Bounds. In Proceedings of the 13th Smart Card Research and Advanced Application Conference, Paris, France, 5-7 November 2014.
14. Bajard, J.C.; Eynard, J.; Merkiche, N. Montgomery reduction within the context of residue number system arithmetic. J. Cryptogr. Eng. 2018, 8, 189-200. [CrossRef]
15. Esmaeildoust, M.; Schinianakis, D.; Javashi, H.; Stouraitis T.; Navi, K. Efficient RNS implementation of elliptic curve point multiplication over GF(p). IEEE Trans. Very Larg. Scale Integr. Syst. 2012, 21, 1545-1549. [CrossRef]
16. Guillermin, N. A High Speed Coprocessor for Elliptic Curve Scalar Multiplications over Fp. In Proceedings of the International Workshop on Cryptographic Hardware and Embedded Systems, Santa Barbara, CA, USA, 17-20 August 2010.
17. Schinianakis, D.; Stouraitis, T. A RNS Montgomery Multiplication Architecture. In Proceedings of the IEEE International Symposium of Circuits and Systems (ISCAS), Rio de Janeiro, Brazil, 15-18 May 2011.
18. Kawamura, S.; Komano, Y.; Shimizu, H.; Yonemura, T. RNS Montgomery reduction algorithms using quadratic residutory. J. Cryptogr. Eng. 2018, 1, 1-19.
19. Phillips, B.; Kong, Y.; Lim, Z. Highly parallel modular multiplication in the residue number system using sum of residues reduction. Appl. Algebra Eng. Commun. Comput. 2010, 21, 249-255. [CrossRef]
20. Asif, S.; Kong, Y. Highly Parallel Modular Multiplier for Elliptic Curve Cryptography in Residue Number System. Circuits Syst. Signal Process. 2017, 36, 1027-1051. [CrossRef]
21. Standards for Efficient Cryptography SEC2: Recommended Elliptic Curve Domain Parameters. Version 2.0 CERTICOM Corp. 27 January 2010. Available online: https:/ /www.secg.org/sec2-v2.pdf (accessed on 1 May 2019).
22. Ed25519: High-Speed High-Security Signatures. Available online: https:/ /ed25519.cr.yp.to / (accessed on 1 May 2019).
23. Bajard, J.C.; Kaihara, M.E.; Plantard, T. Selected RNS bases for modular multiplication. In Proceedings of the 19th IEEE Symposium on Computer Arithmetic, Portland, OR, USA, 8-10 June 2009.
24. Molahosseini, A.S.; de Sousa, L.S.; Chang, C.H. Embedded Systems Design with Special Arithmetic and Number Systems; Springer: New York, NY, USA, 2017.
25. Barrett, P. Implementing the Rivest Shamir and Adleman Public Key Encryption Algorithm on a Standard Digital Signal Processor. In Proceedings of the Conference on the Theory and Application of Cryptographic Techniques, Linkoping, Sweden, 20-22 May 1986.
26. Asif, S.; Hossain, M.S.; Kong, Y.; Abdul, W. A Fully RNS based ECC Processor. Integration 2018, 61, 138-149. [CrossRef]
27. Asif, S. High-Speed Low-Power Modular Arithmetic for Elliptic Curve Cryptosystems Based on the Residue Number System. Ph.D. Thesis, Macquarie University, Sydney, Australia, 2016.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).
