
Fermat-FHE 
Cryptosystem

Antoine Joux

MACAO, Wollongong workshop 
November 27th, 2019



Mersenne/Fermat 
systems

- Inside Ring and Noise family with 
- NTRU 
- Codes 
- Ideal Lattices, RLWE 

- With a different Ring 
- Z/pZ (p Mersenne prime) 
- Z/NZ (N Fermat number)



Fermat FHE



Fully Homomorphic Encryption 
(FHE)

Encryption Scheme allowing arbitrary 
computations on encrypted data 

Usually, from universal set of gates 

Principle Rivest, Adleman, Dertouzos (78) 

First system Gentry (2009)



FHE basic need
x
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x XOR y
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Addition of bits (mod 4)

x

y
x + y [4]

x + y = 2 (x AND y)+(x XOR y) 

ab
a

b



Modulo Fermat Numbers

F = 22
f
+ 1

Write f=l+h; define L=2l and H=2h 

X mod F (except -1) is an LH bit number 

X0X1X2…XL-1X =

L blocks of H bits



Approximate encryption

Params:  F = 22
f
+ 1, L, H

Priv Key:  S (mod F)
Approx encryption of X: 

 pair (A, B) with
B=AS+X+E (mod F)

…E =



Noise E

…E =

E = e0 + 2H e1 + …+ 2(L-1)H eL-1

With each ei small (from some err. dist)



Key owner operations
Approx Encryption/Decryption are easy 

From (A, B) compute B-AS 

Encrypt/decrypt bits (exactly) 

Encrypt X = b 2M 

Decryption [(X mod 2H)/2M]

…



FHE operations
(A0+A1, B0+B1) encrypts X0+X1

…

(with slightly larger noise)

…

…

XOR and AND : Need an extraction technique



Bit Extraction  
(a.k.a. gate 

bootstrapping)



Encrypted Mux

(A0, B0) encryption of X0 

(A1, B1) encryption of X1 

Produce Re-encryption of (Ac, Bc)

…

…

…

Using a special encryption of c



Using Multiplication by c
From (A, B) Approx Encrypt of X 
Compute (A’, B’) App Enc of cX 

Then Mux(c, (A0, B0), (A1, B1))
= (A0, B0) + c (A1-A0, B1-B0) 

How to multiply by (specially) encrypted c ?



Special Encryption of c

(Ki, Li) Approx Encrypt of 2ic 
(Mi, Ni) Approx Encrypt of -2icS 

Used in conjunction with the 
binary decomposition of (A,B)

=> Multiplication



Block decomposition

Ai =
L−1

∑
j= 0

ajH+ i2jHMake blocks

From Binary decomp A =
HL−1

∑
i= 0

ai2i

We have A =
H−1

∑
i= 0

Ai2i

Idem for B



Block decomposition
…A
…A0

…2A1

…2H-1AH-1

…4A2

…



Encrypted Multiplication

Let A′� =
H−1

∑
i= 0

(Bi Ki + Ai Mi)

By linearity, it is an encryption of

B′� =
H−1

∑
i= 0

(Bi Li + Ai Ni)

X′� =
H−1

∑
i= 0

(Bi 2ic − Ai 2icS)



Encrypted Multiplication

We have X′� = c (
H−1

∑
i= 0

2i Bi − S
H−1

∑
i= 0

2i Ai)
Thus X′� = c (B − AS)

I.e. desired encryption c(A,B)



A remark: rotation

…

Rotate to the left

…

Rotate to the left

…

Rotate to the left 
until L rotations

…



Virtual 2L blocks buffer

Rotation



Conditional Rotation

Mux(c, , )



Back to Bit Extraction

…

Mod 2L

Perform rotation by an approximation 
of the decryption mod 2L



Exact decryption formula

V = ⌊ (B − #A mod F) mod 2H

2bP ⌉ (mod 2)

Approximate it by :

⌊ B0 − s0A0
2bP−ℓ ⌉ +

L−1

∑
i= 1

⌊ Ai

2bP−ℓ ⌉ si (mod 2L)

Execute as a sequence of cond. rotation 



How to approximate

Forget the carry of reduction mod F 

Decompose multiplication by blocks 

Lower power of 2 in second modulus 

Closest integer : free from rotating buffer

Low-block of output

or



Final step
Low-block of output

or

−2bM−1 2bM−1

Add 2bM−1

0 1



A test application

User encrypts X and Y (two 16-bit integers) 

Cloud computes min(X,Y) 

Proposed as test by TFHE



Circuit for min
X Y

<=

Cmp bit

X Y

Bit by bit 
mux

Out



Logical Mux

If (b, Y, X)  

=  

(b AND Y) XOR (NOT(b) AND X)



Bit-by-Bit Comparator
Input: b [comparison mod 2i], xi, yi 

Output: b' [comparison mod 2i+1]

b’= If (xi =yi, b, xi) = If (xi XOR yi, xi, b) 

High bits equal => don’t change comparison

High bits diff => xi (0 if x is min)

Repeat 16 times !



Test implementation parameters
L=1024      H=32

Direct GMP implem : 16.2 s
Portable NTT-based approx mult : 9.4 s

TFHE 500-bit key, 32-bit words

Portable FFT implem : 7.6 s
Highly optimised float implem : 0.8 s



Conclusion


