$$
\begin{aligned}
& \text { Fermal-FHE } \\
& \text { Cryplosystem }
\end{aligned}
$$

MACAO, Wollongong workshop

 November 27th, 2019AnCoine Joux

Mersenne/Fermal systems

- Inside Ring and Noise family with
- NTRU
- Codes
- Ideal Lattices, RLWE
- With a different Ring
- z/pz (p Mersenne prime)
- Z/NZ (N Fermat number)

Fermal FHE

Fully Homomorphic Encryption (FHE)

- Encryption Scheme allowing arbitrary computations on encrypted data
- Usually, from universal set of gates
- Principle Rivest, Adleman, Dertouzos (78)
- First system Gentry (2009)

FHE basic need
x
x XOR y
y
x
x
y
x AND y

Addition of bits $(\bmod 4)$

Modulo Fermat Numbers
$F=2^{2 f}+1$
Write $f=l+h$; define $L=2^{L}$ and $H=2^{h}$
$x \bmod F($ except -1$)$ is an LH bit number

$$
\begin{array}{l|l|l|l|l}
x= & x_{L-1} & \ldots & x_{2} & x_{1} \\
x_{0} \\
\hline
\end{array}
$$

L. blocks of H bits

Approximate encryption Params: $F=2^{2^{f}}+1, L, H$

Approx encryption of X : pair (A, B) with

$$
B=A S+X+E(\bmod F)
$$

\square

Noise E

$$
\begin{aligned}
& E= \\
& E=e_{0}+2^{H} e_{1}+\ldots+2^{(L-1) H} e_{L-1}
\end{aligned}
$$

With each e_{i} small (from some err. dist)

Key owner operations

- Approx Encryption/Decryption are easy - From (A, B) compute B-AS
- Encrypt/decrypt bits (exactly)
- Encrypt $X=b 2^{M}$
- Decryption $[(X \bmod 2 H) / 2 M]$

FHE operations

- $\left(A_{0}+A_{1}, B_{0}+B_{1}\right)$ encrypts $X_{0}+X_{1}$ (with slightly larger noise)

XOR and AND : Need an extraction technique

Bil Exeraclion (a.k.a. gale bookstrapping)

Encrypled Mux

- (A0, Bo) encryption of X_{0}
- $\left(A_{1}, B_{1}\right)$ encryplion of X_{1}
- Produce Re-encryption of $\left(A_{c}, B_{c}\right)$

Using a special encryption of c

Using Multiplication by c

- From (A, B) Approx Encrypt of X
- Compute (A^{\prime}, B^{\prime}) App Enc of oX
- Then $\operatorname{Mux}\left(c,\left(A_{0}, B_{0}\right),\left(A_{1}, B_{1}\right)\right)$

$$
=\left(A_{0}, B_{0}\right)+c\left(A_{1}-A_{0}, B_{1}-B_{0}\right)
$$

How to multiply by (specially) encrypted c?

Special Encryption of c

- ($\left.K_{i}, L_{i}\right)$ Approx Encrypt of $2 i c$
- $\left(M_{i}, N_{i}\right)$ Approx Encrypt of $-2 i c S$
- Used in conjunction with the binary decomposition of (A, B)
\Rightarrow Multiplication

BLock decomposition
From Binary decomp $A=\sum_{i=0}^{H L-1} a_{i} i^{i}$
Make blocks $\quad A_{i}=\sum_{j=0} a_{j H+i} i^{j H}$
We have $\quad A=\sum_{i=0}^{H-1} A_{i} 2^{i}$
Idem for B

BLock decomposicion

(aterex
$\bullet \bullet \bullet$

Encrypled Mulkiplication
$A^{H-1}=\sum^{H-1}$
Let $\quad A^{\prime}=\sum_{i=0}\left(B_{i} K_{i}+A_{i} M_{i}\right)$

$$
B^{\prime}=\sum_{i=0}^{H-1}\left(B_{i} L_{i}+A_{i} N_{i}\right)
$$

By linearily, it is an encryption of

$$
X^{\prime}=\sum_{i=0}^{H-1}\left(B_{i} 2^{i} c-A_{i} 2^{i} c S\right)
$$

Encrypled Mulliplicalion

We have $X^{\prime}=c\left(\sum_{i=0}^{H-1} 2^{i} B_{i}-S \sum_{i=0}^{H-1} 2^{i} A_{i}\right)$

Thus $\quad X^{\prime}=c(B-A S)$
I.e. desired encryption $c(A, B)$

A remark: rotakion

Rotate to the left

Rotate to the left

Rotate to the left until L rotations

Virtual 2L. blocks buffer

Conditional Rotation

Back to Bit Extraction

Perform rotation by an approximation of the decryption mod 2L.

Exact decryption formula

$$
\frac{(B-\delta A \bmod F) \bmod 2^{H}}{2^{b_{P}}}
$$

$(\bmod 2)$

Approximate it by :

$$
\left\lceil\frac{B_{0}-s_{0} A_{0}}{2^{b_{P}-\ell}}\right\rceil+\sum_{i=1}^{L-1}\left\lfloor\frac{A_{i}}{2^{b_{P}-\ell}}\right\rceil s_{i}(\bmod 2 L)
$$

Execute as a sequence of cond. rotation

How ko approximate

- Forget the carry of reduction mod F
- Decompose multiplication by blocks
- Lower power of 2 in second modulus
- Closest integer : free from rotating buffer

Low-block of output
or

Final slep

Low-block of output

or
$2^{b_{M}-1}$
Add $2^{b_{M}-1}$

1

A test application

- User encrypts X and Y (kwo 16-bit integers)
- Cloud computes min (x, y)
- Proposed as test by TFHE

Circuit for min

Logical Max

$$
\text { If }(b, y, x)
$$

$=$
(b AND Y) XOR (NO T(b) AND X)

Bit-by-Bit Comparator

- Input: b [comparison mod ai], x_{i}, y_{i}
- Output: b' [comparison mod 2^{i+1}]

$$
b^{\prime}=\text { If }\left(x_{i}=y_{i}, b, x_{i}\right)=\operatorname{If}\left(x_{i} X O R y_{i}, x_{i}, b\right)
$$

High bits equal \Rightarrow done change comparison High bits diff $\Rightarrow x_{i}(0$ if x is min)

Test implementalion parameters

$$
L=1024 \quad H=32
$$

Direct GMP implem: 16.2 s
Porkable NTT-based approx mull : 9.4 s

TFHE sOo-bil key, 32-bik words
Porkable FFT implem: 7.6 s Highly oplimised floak implem : 0.8 s

Conclusion

