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Two multiplication problems 2/46

Integer multiplication

M(n) := cost of multiplying integers with at most n digits

• “digits” means in some fixed base (e.g. binary or decimal).
• “cost” means “bit complexity”
(e.g. # steps on multi-tape Turing machine, or # gates in Boolean circuit).

Polynomial multiplication over finite fields

Mq(n) := cost of multiplying polynomials in Fq[x] of degree at most n

• Fq = field with q elements, q a fixed prime power.
• “cost” means bit complexity, or # ring operations in Fq.
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Long multiplication 3/46

Goes back at least to ancient Egypt —
probably much older.

Complexity is M(n) = O(n2).

Same algorithm for polynomials:
Mq(n) = O(n2).



Kolmogorov’s lower bound conjecture 4/46

Conjecture (Kolmogorov, around 1956)

M(n) = Θ(n2).

According to Karatsuba (1995),
“Probably, [the conjecture’s] appearance is based on
the fact that throughout the history of mankind
people have been using [the algorithm] whose
complexity is O(n2), and if a more economical
method existed, it would have already been found.”
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Faster multiplication 5/46

1962 Karatsuba nlog 3/ log 2 (≈ n1.58)
1969 Knuth n 2

√
2 log n/ log 2 logn

1971 Schönhage–Strassen n logn log logn
2007 Fürer n lognKlog∗ n for some K > 1
2019 H.–van der Hoeven† n logn

Brief history of bounds for M(n).
†: not yet published.

Conjecture (Schönhage–Strassen, 1971)

M(n) = Θ(n logn).



Faster multiplication 5/46

1962 Karatsuba nlog 3/ log 2 (≈ n1.58)
1969 Knuth n 2

√
2 log n/ log 2 logn

1971 Schönhage–Strassen n logn log logn
2007 Fürer n lognKlog∗ n for some K > 1
2019 H.–van der Hoeven† n logn

Brief history of bounds for M(n).
†: not yet published.

Conjecture (Schönhage–Strassen, 1971)

M(n) = Θ(n logn).



Faster multiplication 6/46

1977 Schönhage n logn log logn
2017 H.–van der Hoeven–Lecerf n logn 8log∗ n

2019 H.–van der Hoeven n logn 4log∗ n

2019 H.–van der Hoeven† n logn

Brief history of bounds for Mq(n).
†: not yet published; depends on unproved number-theoretic hypothesis.

Unsolved problem
Can we get Mq(n) = O(n logn) unconditionally?

Expected answer: yes, because the unproved hypothesis is extremely plausible.
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Outline of rest of talk 7/46

1. Complex DFTs and FFTs

2. Reductions between integer and polynomial multiplication

3. Multidimensional DFTs

4. Conditional O(n logn) multiplication for integers and polynomials

5. Unconditional O(n logn) integer multiplication



Complex DFTs and FFTs



The discrete Fourier transform (DFT) 8/46

Let n ⩾ 1 and ζ := e2πi/n ∈ C. The roots of xn − 1 are 1, ζ, . . . , ζn−1.

The DFT of length n over C is the linear map (in fact ring isomorphism)

C[x]/(xn − 1) −→ Cn, F 7−→ (F(1), F(ζ), . . . , F(ζn−1)).

Example for n = 4

The DFT of F0 + F1x+ F2x2 + F3x3 is


F0 + F1 + F2 + F3
F0 + iF1 − F2 − iF3
F0 − F1 + F2 − F3
F0 − iF1 − F2 + iF3

 ∈ C4.

The naive algorithm to evaluate the DFT requires O(n2) operations in C.
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The discrete Fourier transform (DFT) 9/46

DFTs can be used to compute cyclic convolutions, i.e. multiply in C[x]/(xn − 1).

Given as input F,G ∈ C[x]/(xn − 1):

1. use DFT to compute aj := F(ζ j) and bj := G(ζ j) for j = 0, . . . ,n− 1
2. compute pointwise products cj := aj · bj
3. use inverse DFT to find H ∈ C[x]/(xn − 1) such that H(ζ j) = cj for all j

Output is H = FG (mod xn − 1).



The fast Fourier transform (FFT) 10/46

The simplest case of the Cooley–Tukey FFT (1965) reduces the complexity of the
DFT from O(n2) to O(n logn) operations in the case n = 2k.

Example for n = 8

F mod x8 − 1

F mod x4 − 1

F mod x4 + 1

F mod x2 − 1

F mod x2 + 1

F mod x2 − ζ2

F mod x2 + ζ2

F mod x− 1
F mod x+ 1
F mod x− ζ2

F mod x+ ζ2

F mod x− ζ

F mod x+ ζ

F mod x− ζ3

F mod x+ ζ3

= F(ζ0)
= F(ζ4)
= F(ζ2)
= F(ζ6)
= F(ζ1)
= F(ζ5)
= F(ζ3)
= F(ζ7)



The fast Fourier transform (FFT) 11/46

More generally, the Cooley–Tukey algorithm reduces a transform of any length n
to DFTs whose lengths are the prime factors of n.

How do we handle a DFT whose length is a large prime?

Rader’s algorithm (1968)
A DFT of prime length n may be reduced to a cyclic convolution of length n− 1,
together with O(n) additions in C.

The convolution of length n− 1 may be evaluated by various methods (e.g. FFTs).
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The fast Fourier transform (FFT) 12/46

Example: DFT of length 5.

Given a0, . . . ,a4 ∈ C, want to compute

a0 + a1 + a2 + a3 + a4
a0 + a1ζ1 + a2ζ2 + a3ζ3 + a4ζ4

a0 + a1ζ2 + a2ζ4 + a3ζ1 + a4ζ3

a0 + a1ζ3 + a2ζ1 + a3ζ4 + a4ζ2

a0 + a1ζ4 + a2ζ3 + a3ζ2 + a4ζ1,

where ζ = e2πi/5.

Apart from a few additions, this is
equivalent to computing

a1ζ1 + a2ζ2 + a4ζ4 + a3ζ3

a1ζ2 + a2ζ4 + a4ζ3 + a3ζ1

a1ζ4 + a2ζ3 + a4ζ1 + a3ζ2

a1ζ3 + a2ζ1 + a4ζ2 + a3ζ4.

This in turn is equivalent to computing
the length-4 cyclic convolution of

(a1,a2,a4,a3) and (ζ3, ζ4, ζ2, ζ1).
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Reductions between integer and
polynomial multiplication



Reducing integer multiplication to polynomial multiplication 13/46

Can reduce integer to polynomial multiplication using Kronecker segmentation.

Example: suppose we want the product of u = 314159265 and v = 271828182.

Step 1. Rewrite u and v in base 103, encode them as polynomials

F(x) = 314x2 + 159x+ 265, G(x) = 271x2 + 828x+ 182,

i.e., so that F(103) = u and G(103) = v.

Step 2. Compute the polynomial product

H(x) = F(x)G(x) = 85094x4 + 303081x3 + 260615x2 + 248358x+ 48230.

Step 3. Substitute x = 103 to get uv = H(103) = 85397341863406230.
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Reducing integer multiplication to polynomial multiplication 14/46

Application: the first Schönhage–Strassen algorithm (1971).

To multiply n-bit integers:

1. Rewrite integers in base 2b where b ≈ logn. Encode as polynomials
F,G ∈ Z[x], coefficient size b bits, degree around n/ logn.

2. Multiply polynomials in C[x] using complex FFTs, with working precision
O(logn) bits. Round result to get correct product in Z[x].

3. Substitute x = 2b to get product in Z.

Complexity analysis:

M(n) = O
( n
log n log

( n
log n

)
M(logn)

)
= O(nM(logn))

= O(n lognM(log logn)) = O(n logn log lognM(log log logn)) = · · ·
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Reducing polynomial multiplication to integer multiplication 15/46

Can reduce polynomial to integer multiplication using Kronecker substitution.

Example: suppose we want to multiply

F(x) = 314x2 + 159x+ 265, G(x) = 271x2 + 828x+ 182.

Step 1. Encode them as integers:

u = F(107) = 31400001590000265, v = G(107) = 27100008280000182.

Step 2. Compute the integer product

Step 3. Read off the desired polynomial product

F(x)G(x) = 85094x4 + 303081x3 + 260615x2 + 248358x+ 48230.



Reducing polynomial multiplication to integer multiplication 15/46

Can reduce polynomial to integer multiplication using Kronecker substitution.

Example: suppose we want to multiply

F(x) = 314x2 + 159x+ 265, G(x) = 271x2 + 828x+ 182.

Step 1. Encode them as integers:

u = F(107) = 31400001590000265, v = G(107) = 27100008280000182.

Step 2. Compute the integer product

Step 3. Read off the desired polynomial product

F(x)G(x) = 85094x4 + 303081x3 + 260615x2 + 248358x+ 48230.



Reducing polynomial multiplication to integer multiplication 15/46

Can reduce polynomial to integer multiplication using Kronecker substitution.

Example: suppose we want to multiply

F(x) = 314x2 + 159x+ 265, G(x) = 271x2 + 828x+ 182.

Step 1. Encode them as integers:

u = F(107) = 31400001590000265, v = G(107) = 27100008280000182.

Step 2. Compute the integer product

uv = 850940303081026061502483580048230.

Step 3. Read off the desired polynomial product

F(x)G(x) = 85094x4 + 303081x3 + 260615x2 + 248358x+ 48230.



Reducing polynomial multiplication to integer multiplication 15/46

Can reduce polynomial to integer multiplication using Kronecker substitution.

Example: suppose we want to multiply

F(x) = 314x2 + 159x+ 265, G(x) = 271x2 + 828x+ 182.

Step 1. Encode them as integers:

u = F(107) = 31400001590000265, v = G(107) = 27100008280000182.

Step 2. Compute the integer product

uv = 850940303081026061502483580048230.

Step 3. Read off the desired polynomial product

F(x)G(x) = 85094x4 + 303081x3 + 260615x2 + 248358x+ 48230.



Reducing polynomial multiplication to integer multiplication 16/46

Application: multiplication in Fp[x].

1. Lift polynomials to Z[x].
2. Multiply in Z[x] using Kronecker substitution (i.e. via integer multiplication).
3. Reduce result modulo p to obtain product in Fp[x].

This method is efficient provided p is not too small compared to n.

Unfortunately for fixed p this method is inefficient due to “zero-padding”:

Mp(n) = M(O(n logn)) = O(n log2 n).



Reducing polynomial multiplication to integer multiplication 16/46

Application: multiplication in Fp[x].

1. Lift polynomials to Z[x].
2. Multiply in Z[x] using Kronecker substitution (i.e. via integer multiplication).
3. Reduce result modulo p to obtain product in Fp[x].

This method is efficient provided p is not too small compared to n.

Unfortunately for fixed p this method is inefficient due to “zero-padding”:

Mp(n) = M(O(n logn)) = O(n log2 n).



Multidimensional DFTs



Multidimensional DFTs 17/46

Example: let F ∈ C[x, y, z]/(x8 − 1, y8 − 1, z8 − 1).

We may represent F with 83 = 512 coefficients:

F =
7∑
j=0

7∑
k=0

7∑
l=0

Fj,k,lxjykzl.

Suppose we want to evaluate

F(ζ j, ζk, ζ l) for j, k, l = 0, . . . , 7

where ζ = e2πi/8.

This is a 3-dimensional DFT of size 8× 8× 8.



Multidimensional DFTs 18/46

Standard method for d-dimensional DFT: evaluate in each variable separately.

For a transform of size n1 × · · · × nd, total cost (operations in C) is
n
n1
O(n1 logn1) + · · ·+ n

nd
O(nd lognd) = O(n logn), n := n1 · · ·nd.



Nussbaumer’s method for multidimensional DFTs 19/46

Nussbaumer’s algorithm (late 1970s) instead does the following.

Suppose the input is a polynomial

F ∈ C[x, y, z]/(x8 − 1, y8 − 1, z8 − 1).

First reduce modulo z4 − 1 and z4 + 1 just like the first step of the usual FFT:

F mod z4 − 1 ∈ C[x, y, z]/(x8 − 1, y8 − 1, z4 − 1),
F mod z4 + 1 ∈ C[x, y, z]/(x8 − 1, y8 − 1, z4 + 1).

We may handle the first problem recursively (in general: split in half along the
“longest” dimension).

Let’s concentrate on the second problem.



Nussbaumer’s method for multidimensional DFTs 19/46

Nussbaumer’s algorithm (late 1970s) instead does the following.

Suppose the input is a polynomial

F ∈ C[x, y, z]/(x8 − 1, y8 − 1, z8 − 1).

First reduce modulo z4 − 1 and z4 + 1 just like the first step of the usual FFT:

F mod z4 − 1 ∈ C[x, y, z]/(x8 − 1, y8 − 1, z4 − 1),
F mod z4 + 1 ∈ C[x, y, z]/(x8 − 1, y8 − 1, z4 + 1).

We may handle the first problem recursively (in general: split in half along the
“longest” dimension).

Let’s concentrate on the second problem.



Nussbaumer’s method for multidimensional DFTs 20/46

So now our problem is to evaluate a polynomial

G ∈ C[x, y, z]/(x8 − 1, y8 − 1, z4 + 1)

at the roots of x8 − 1, y8 − 1, z4 + 1.

Key observation
The roots of z4 + 1 are exactly the primitive 8-th roots of unity,
so z itself behaves like a primitive 8-th root of unity in C[z]/(z4 + 1).
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Nussbaumer’s method for multidimensional DFTs 21/46

We may evaluate x and y at the powers of z (instead of at the powers of ζ).

In other words, we evaluate

G(zj, zk, z) ∈ C[z]/(z4 + 1), j, k = 0, . . . , 7.

We do this with the usual Cooley–Tukey FFT algorithm, but whenever we would
usually multiply by some ζs, we multiply by zs instead!

Multiplying by zs is easy: just involves moving coefficients around.

Finally, for each j and k, use the usual complex FFT to evaluate G(zj, zk, z) at the
genuine complex roots of z4 + 1 (powers of ζ).
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Nussbaumer’s method for multidimensional DFTs 22/46

evaluate x at zj: easy
(no multiplications)

evaluate y at zk: easy
(no multiplications)

evaluate z at ζ l: harder
(some multiplications)

Analysis for d-dimensional DFT (assuming all ni powers of two):

• O(n logn) additions in C (just like standard algorithm), but

• only O
(
n logn
d

)
multiplications in C (save a factor of d).
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Conditional O(n logn) multiplication
for integers and polynomials



Conditional O(n logn) integer multiplication 23/46

I will illustrate for integers with n = 1014 bits (around 11 TB).

Step 1. Cut integers into chunks of 46 (≈ log2 1014) bits.

Encode into polynomials in Z[t], with 46-bit coefficients, and degree less than

⌈n/46⌉ = 2 173 913 043 479.

It suffices to multiply the polynomials in the ring Z[t]/(tN − 1) where

N = 5 509 236 183 041 = p1p2p3, p1 = 15361, p2 = 18433, p3 = 19457.

This suffices to recover the product in Z[t] because N > 2× 2 173 913 043 479.
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This suffices to recover the product in Z[t] because N > 2× 2 173 913 043 479.
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Step 2. Using CRT, there is an isomorphism (Agarwal–Cooley 1977):

Z[t]/(t5 509 236 183 041 − 1) ∼= Z[x, y, z]/(x15361 − 1, y18433 − 1, z19457 − 1),
t 7−→ xyz.

Can be computed efficiently in either direction (just rearrange coefficients).

So we have reduced to a 3-dimensional cyclic convolution of size p1 × p2 × p3.
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Step 3. To multiply in

Z[x, y, z]/(x15361 − 1, y18433 − 1, z19457 − 1),

we use the same strategy as the Schönhage–Strassen algorithm:

1. Compute (multidimensional) DFTs of both polynomials over C.
2. Multiply pointwise in C.
3. Perform inverse DFT to get approximate product in

C[x, y, z]/(x15361 − 1, y18433 − 1, z19457 − 1).

4. Round resulting coefficients to nearest integer.
(Working precision throughout is a small multiple of 46 bits.)
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How do we efficiently perform a DFT of size 15361× 18433× 19457?

Nussbaumer’s trick doesn’t work directly, because the pi are not powers of two.

Step 4. Using multidimensional variant of Rader’s
trick, reduce to multiplication in

C[x, y, z]/(x15360 − 1, y18432 − 1, z19456 − 1).

Key observation
Convolution lengths are reduced from pi to pi − 1.
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I picked the primes very carefully: notice that

p1 − 1 = 15360 = 15× 210,
p2 − 1 = 18432 = 18× 210,
p3 − 1 = 19456 = 19× 210.

Step 5. Reduce to:

• “nice” DFTs of size 210 × 210 × 210 (use Nussbaumer), and
• “annoying” DFTs of size 15× 18× 19.
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What happens for general n? We get

• “nice” DFTs of size
2k × · · · × 2k.

Using Nussbaumer, the first d− 1 of the dimensions cost O(n logn).
May take d ≈ 106 (independently of n) to control the cost of the last
dimension.

• “annoying” DFTs of size
p1 − 1
2k

× · · · × pd − 1
2k

.

This is where the complexity analysis becomes conditional.
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Primes in arithmetic progressions 29/46

To make the “annoying” DFTs cheap enough, we need to prove existence of small
primes in the arithmetic progression p = 1 (mod 2k).

Linnik’s theorem (1944)
There exists a constant L > 1 such that for any relatively prime integers a and
m≫ 0, there exists a prime p = a (mod m) with p < mL.

A Linnik constant is a value of L for which the above statement holds.

Best published Linnik constant is currently L = 5.18 (Xylouris, 2011).
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Linnik’s theorem is embarrassingly weak!

Example: consider p = 1 (mod 210). The first few primes are

p = 12289, 13313, 15361, 18433, 19457, 25601, 37889, 39937, . . . .

But Linnik’s theorem (with the best known L) only guarantees that

p < (210)5.18 ≈ 4× 1015.

Under GRH, can prove that any L > 2 is a Linnik constant (Heath-Brown 1992).

This is still hopeless: we get
p < (210)2 ≈ 106.
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Widely-believed conjecture
Any L > 1 is a Linnik constant.

Theorem (H.–van der Hoeven 2019)
If there exists a Linnik constant L < 1+ 1

303 , then the cost of the “annoying” DFTs
can be controlled, and the algorithm sketched in this talk achieves

M(n) = O(n logn).

We can probably weaken the bound for L a bit, but we have no idea how to get
anywhere near L = 2.
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Conditional O(n logn) multiplication in Fq[x] 32/46

A similar idea works for multiplying in Fq[x], with various additional technicalities
(especially in characteristic 2):

1. Choose small primes p1, . . . ,pd = 1 (mod 2k) for suitable k
2. Construct extension Fqs/Fq containing pi-th and (pi − 1)-th roots of 1
3. Reduce to multiplication in Fqs [x] (i.e. cut into chunks of size s)
4. Reduce to multiplication in Fqs [x1, . . . , xd]/(xp11 − 1, . . . , xpdd − 1)
5. Reduce to DFTs of size p1 × · · · × pd over Fqs
6. Reduce to multiplication in Fqs [x1, . . . , xd]/(xp1−11 − 1, . . . , xpd−1d − 1) (Rader)
7. Use Nussbaumer to do synthetic FFTs in d− 1 dimensions, etc etc.
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Theorem (H.–van der Hoeven 2019)
If there exists a Linnik constant L < 1+ 2−1162, then

Mq(n) = O(n logn).

Can probably improve 2−1162, but we don’t know by how much.



Unconditional O(n logn) integer
multiplication
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Again take n = 1014 bits.

As before, reduce to multiplying polynomials of degree 2 173 913 043 479 with
46-bit coefficients.

This time we choose primes

p1 = 16381, p2 = 16369, p3 = 16363.

Notice they are all just below 214 = 16384.

(Easy to find such primes. No arithmetic progressions involved.)
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It suffices to multiply in Z[t]/(tN − 1) where

N = p1p2p3 = 4 387 584 457 807 > 2× 2 173 913 043 479.

As before, reduce to complex DFTs of size 16381× 16369× 16363.

But instead of using Rader’s
algorithm, we use a new technique
called Gaussian resampling to
directly reduce to a DFT of size
214 × 214 × 214.

Then we win by using Nussbaumer’s
method to evaluate this last DFT.

DFT of size
p1 × p2 × p3

=⇒

DFT of size
214 × 214 × 214
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Gaussian resampling in one dimension 36/46

Example: given input u ∈ C13, suppose we want to compute DFT û ∈ C13.

Suppose however that we only know how to compute DFTs of length 16.

We will convert length 13 to length 16 via a certain resampling map

S : C13 → C16.

I will show how to construct S over the next few slides.
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The diagram shows a typical
input vector u ∈ C13.

For simplicity we assume ui ∈ R.

The blue points are ( i13 ,ui) for
i = 0, . . . , 12.

Notice the x-axis wraps around
from left to right (i.e., the
x-values live in R/Z).

1
13

2
13

3
13

4
13

5
13

6
13

7
13

8
13

9
13

10
13

11
13

12
13
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Draw a Gaussian curve centred
around each data point.

The equation for the i-th point is

y = uie−13
2(x− i

13 )
2
.

The “height” of the curve is ui
and the “width” is 1

13 .
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Add up all the Gaussians to get
a nice smooth 1-periodic curve:

f(x) =
12∑
i=0

uie−13
2(x− i

13 )
2
.
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Add up all the Gaussians to get
a nice smooth 1-periodic curve:

f(x) =
12∑
i=0

uie−13
2(x− i

13 )
2
.

The resampled vector v = S(u) is
defined by evaluating f(x) at 16
equally-spaced points:

vj = f( j
16), j = 0, . . . , 15.

1
16

2
16

3
16

4
16

5
16

6
16

7
16

8
16

9
16

10
16

11
16

12
16

13
16

14
16

15
16
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

1.000 0.368 0.018 0.018 0.368
0.517 0.965 0.244 0.008 0.037
0.071 0.677 0.869 0.151 0.004 0.001
0.003 0.127 0.826 0.729 0.087 0.001

0.006 0.210 0.939 0.570 0.047 0.001
0.014 0.323 0.996 0.415 0.023

0.030 0.465 0.984 0.282 0.011
0.001 0.058 0.623 0.907 0.179 0.005

0.002 0.105 0.779 0.779 0.105 0.002
0.005 0.179 0.907 0.623 0.058 0.001

0.011 0.282 0.984 0.465 0.030
0.023 0.415 0.996 0.323 0.014
0.001 0.047 0.570 0.939 0.210 0.006

0.003 0.001 0.087 0.729 0.826 0.127
0.071 0.001 0.004 0.151 0.869 0.677
0.517 0.037 0.008 0.244 0.965



Matrix of resampling map S : C13 → C16.
Each “output” coordinate depends mainly on the nearby “input” coordinates.
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Fun fact #1. The Fourier transform of a Gaussian is again a Gaussian. This leads to
a commutative diagram

u û

v v̂

Resample
S : Cs → Ct

Resample
Ŝ : Cs → Ct

DFT of length s

DFT of length t

In our example, s = 13 and t = 16.

The map Ŝ is defined almost exactly the same way as S; it differs by some
straightforward scaling factors and data reindexing.
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Fun fact #2. Due to the rapid decay of the Gaussians, the resampling map can be
evaluated efficiently.

If the target transform length is t, the cost is

O(t
√
log t)

operations in C (assuming working precision O(log t) bits).

This is asymptotically negligble compared to O(t log t) cost of the FFT.
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Fun fact #3. The resampling map is injective.

This follows more or less from the “diagonal” structure of the matrix of S.

Moreover, there is a deconvolution algorithm that recovers u from v = S(u) using

O(t
√
log t)

operations in C.

(Note: we do not actually prove this in the paper. For technical reasons we do
something a bit different.)
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Conclusion: we can compute the map u 7→ û (a DFT of length 13) by traversing the
diagram as follows:

u û

v v̂

Resample
C13 → C16

Deconvolve
C16 → C13

DFT of length 13

DFT of length 16

The cost of the vertical arrows is asymptotically negligible.



Final words 46/46

Combining a multidimensional version of Gaussian resampling with everything
else from before, we get:

Theorem (H.–van der Hoeven 2019)

M(n) = O(n logn).

Unsolved problem
Can we get Mq(n) = O(n logn) unconditionally?

Unfortunately, Gaussian resampling does not seem to work over Fq.

Is there some other way of “changing the transform length” over Fq???
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Thank you!
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