
Lattice reduction and continued fractions

V. Berthé
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Continued fractions

We consider a positive real number α.

One looks for sequences of rational numbers (pn/qn)n
that satisfies

lim pn/qn = α

Continued fractions allow to do it with exponential speed

|α− pn/qn| ≤
1

q2
n



Continued fractions
We represent real numbers in (0, 1) as

α =
1

a1 +
1

a2 +
1

a3 +
1

a4 + · · ·

with the partial quotients (digits) ai being positive integers

Rational approximations are then given by

pn/qn =
1

a1 +
1

a2 +
1

· · ·+
1

an

|α− pn/qn| ≤
1

q2
n
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Dirichlet’s bound and exponential convergence

Dirichlet’s theorem
Given real numbers (αd , · · · , αd), for any positive integer N ,
there exist integers p1, . . . , pd , q with

1 ≤ q ≤ N

such that ∣∣∣∣piq − αi

∣∣∣∣ < 1

q N1/d
i = 1, 2, · · · , d



Dirichlet’s bound and exponential convergence

Dirichlet’s theorem
Given real numbers (αd , · · · , αd), for any positive integer N ,
there exist integers p1, . . . , pd , q with

1 ≤ q ≤ N

such that∣∣∣∣piq − αi

∣∣∣∣ < 1

q N1/d
≤ 1

q1+ 1
d

i = 1, 2, · · · , d

Dirichlet’s bound 1 + 1/d



Euclid algorithm

We start with two nonnegative integers u0 and u1

u0 = u1

[
u0
u1

]
+ u2

u1 = u2

[
u1
u2

]
+ u3

...

um−1 = um

[
um−1
um

]
+ um+1

um+1 = gcd(u0, u1)

um+2 = 0

One subtracts the smallest number to the largest as much as
we can



Euclid algorithm and continued fractions
We start with two coprime integers u0 and u1

u0 = u1a1 + u2
...

um−1 = umam + um+1

um = um+1am+1 + 0

um+1 = 1 = gcd(u0, u1)

u1
u0

=
1

a1 + u2
u1

u1/u0 =
1

a1 +
1

a2 +
1

. . . + 1
am+

1
am+1
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Matricial description
We start with two real numbers (x0, x1) in (0, 1)2 with x0 > x1
We divide the largest entry by the smallest and we continue

x0 = bx0/x1cx1 + x2 a1 := bx0/x1c

(
x0
x1

)
=

(
a1 1
1 0

)(
x1
x2

)
=

(
a1 1
1 0

)
· · ·
(

an 1
1 0

)(
xn
xn+1

)

We normalize α := x1/x0 and we set

Mn :=

(
an 1
1 0

)
;

(
1
α

)
∈
⋂
n

M1 · · ·MnR2
+

M1 · · ·Mn =

(
qn qn−1
pn pn−1

)
; a sequence of lattice basis for Z2
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Multidimensional continued fractions

If we start with two parameters (α, β), one looks for two
sequences of rational numbers (pn/qn) et (rn/qn) with the
same denominator that satisfy

lim pn/qn = α lim rn/qn = β

Expected speed 3/2

|α− pn/qn| ≤ 1/q3/2
n |β − rn/qn| ≤ 1/q3/2

n



Canonicity of continued fractions

Euclid’s algorithm Starting with two numbers, one
subtracts the smallest to the largest

Unimodularity

det

(
qn+1 qn
pn+1 pn

)
= ±1

Best approximation property

Theorem A rational number p/q is a best approximation
of the real number α if every p′/q′ with 1 ≤ q′ ≤ q,
p/q 6= p′/q′ satifies

|qα− p| < |q′α− p′|

Every best approximation of α is a convergent



From SL(2,N) to SL(3,N)

Rem SL(2,N) is a finitely generated free monoid. It is
generated by (

1 0
1 1

)
and

(
1 1
0 1

)
SL(2,N) is a free and finitely generated monoid

SL(3,N) is not free

SL(3,N) is not finitely generated. Consider the family of
matrices  1 0 n

1 n − 1 0
1 1 n − 1


These matrices are undecomposable for n ≥ 3 [Rivat]



Multidimensional continued fractions
There is no canonical generalization of continued fractions to
higher dimensions

Several approaches are possible

Best simultaneous approximations
Every q′ with 1 ≤ q′ < q satisfies |||q(α, β)||| < |||q′(α, β)|||
But we loose unimodularity, and the sequence of best
approximations depends on the chosen norm [Lagarias]

Klein polyhedra and sails [Arnold]

Unimodular multidimensional Euclid’s algorithms

sequences of nested cones approximating a direction
Jacobi-Perron algorithm, Brun algorithm [Brentjes,
Schweiger]

lattice reduction (LLL)
[Lagarias],[Ferguson-Forcade], [Just],
[Grabiner-Lagarias][Bosma-Smeets][Beukers]



What is expected?

We are given (α1, · · · , αd) which produces a sequence of basis
of Zd+1 and/or a sequence of approximations

Arithmetics A two-dimensional continued fraction algorithm is
expected to

detect integer relations for (1, α1, · · · , αd)

give algebraic characterizations of periodic expansions

converge sufficiently fast

provide good rational approximations

Good means “with respect to Dirichlet’s theorem”: there
exist infinitely many (pi/q)1≤i≤d such that

max
i
|αi − pi/q| ≤

1

q1+1/d



We also want...

to understand generic behaviour

to be able to control the number of executions if the
parameters are rational etc.



We also want...

to understand generic behaviour

Continued fractions

lim
log qn
n

=
π2

12 log 2
= 1.18... for a.e. α

lim
1

n
{k ≤ n; ak = a} =

1

log 2
log

(k + 1)2

k(k + 2)
for a.e. α

to be able to control the number of executions if the
parameters are rational etc.
Continued fractions
`(u, v): number of steps in Euclid algorithm 0 < v < u
For 0 < v < u ≤ N and gcd(u, v) = 1

EN(`) ∼ 12 log 2

π2
· logN average case



Multidimensional Euclid’s algorithms: a zoo of

algorithms
Jacobi-Perron [Jacobi’1868–Perron’1907]: we subtract the first one
to the two other ones with 0 ≤ x1, x2 ≤ x3

(x1, x2, x3) 7→ (x2 − [
x2
x1

]x1, x3 − [
x3
x1

]x1, x1)

Brun [Brun’1919]: we subtract the second largest and we reorder
with x1 ≤ x2 ≤ x3

(x1, x2, x3) 7→ (x1, x2, x3 − x2)

Poincaré: we subtract the previous one and we reorder with
x1 ≤ x2 ≤ x3

(x1, x2, x3) 7→ (x1, x2 − x1, x3 − x2)

Selmer: we subtract the smallest to the largest and we reorder with
x1 ≤ x2 ≤ x2

(x1, x2, x3) 7→ (x1, x2, x3 − x1)

Fully subtractive: we subtract the smallest one to all the largest
ones and we reorder with x1 ≤ x2 ≤ x3

(x1, x2, x3) 7→ (x1, x2 − x1, x3 − x1)



Poincaré algorithm [Nogueira’95]

(x1, x2, x3) 7→ (x1, x2 − x1, x3 − x2), x1 ≤ x2 ≤ x3

1/ϕ2 + 1/ϕ = 1

1/ϕ2 1/ϕ 100
1/ϕ3 1/ϕ2 100− 1/ϕ
1/ϕ4 1/ϕ3 100− 1/ϕ− 1/ϕ2

· · · · · · · · ·
1/ϕk+1 1/ϕk 100−

∑
i<k 1/ϕi



Jacobi-Perron algorithm

Continued fractions(
1
α

)
= λn

(
a1 1
1 0

)
· · ·
(

an 1
1 0

)(
1
αn

)
Jacobi–Perron algorithm 1

α
β

 =

 0 1 k
1 0 `
0 0 1

 =

 β − `α
1− kα
α

 with ` = bβ/αc, k = b1/αc

 1
α
β

 =

 0 1 k1
1 0 `1
0 0 1

 · · ·
 0 1 kn

1 0 `n
0 0 1

 1
αn

βn


 1

α
β

 = λn

 qn q′n q′′n
pn p′n p′′n
rn r ′n r ′′n

 1
αn

βn





Unimodular multidimensional continued fractions
A unimodular d-dimensional continued fraction map over
[0, 1]d is a map T : [0, 1]d → [0, 1]d such that for any
α ∈ [0, 1]d , there is a matrix M(α) in GL(d ,Z) satisfying

α = M(α)T (α)

The associated continued fraction algorithm consists in
iteratively applying the map T on a vector α ∈ [0, 1]d . This
yields the following sequence of matrices, called the continued
fraction expansion of α

(M(T n(α)))n∈N.

Set Mn := M(T n(α))

α = M1 · · ·MnT
n(α)

If the matrices have nonnegative entries, the algorithm is said
to be nonnegative (Perron–Frobenius theory)



About nonnegative matrices
Theorem of Perron–Frobenius type [Furstenberg]
One considers an infinite product of matrices

E1 · · ·Ek · · ·

with entries in N. One assumes that there exists a matrix B
with strictly positive entries s.t. there exist
i1 < j1 < · · · < ik < jk s.t.

B = Ei1 · · ·Ej1 , · · · ,B = Eik · · ·Ejk , · · · .

Then, the intersection of the cones

∩k E1 · · ·Ek(Rn
+)

is unidimensional.
Convergence speed? Type of convergence? Weak? strong?



Convergence

α = M1 · · ·MnT
n(α) with M1 · · ·Mn =


q
(n)
1 · · · q

(n)
d+1

p
(n)
1,1 · · · p

(n)
1,d+1

· · ·
p
(n)
d ,1 · · · p

(n)
d ,d+1


One considers simultaneous approximations

(
p
(n)
1,j

q
(n)
j

, · · · , p
(n)
d,j

q
(n)
j

)
Weak convergence Convergence in angle

lim
n→+∞

(
p
(n)
1,j

q
(n)
j

, · · · ,
p
(n)
d ,j

q
(n)
j

)
= (α1, · · · , αd)

Strong convergence Convergence in distance

lim
n→+∞

|q(n)
j αi − p

(n)
i ,j | = 0 for all i , j



Convergence of Jacobi-Perron algorithm

Theorem There exists δ > 0 s.t. for almost every (α, β)

|α− pn/qn| <
1

q1+δ
n

, |β − rn/qn| <
1

q1+δ
n

where pn, qn, rn are produced by either by Brun/Jacobi-Perron
algorithm

Brun [Ito-Fujita-Keane-Ohtsuki’96]
Jacobi-Perron[Broise-Guivarc’h’99]



Lyapunov exponents

An(x) =

(
qn qn−1
pn pn−1

)
Theorem For a.e. x ,

lim
1

n
log qn =

π2

12 log 2
= 1.18 · · · = λ1

λ1 is the first Lyapunov exponent

First Lyapunov exponent = “log largest eigenvalue” ; size of
the matrices/convergents An(x) ∼ qn(x) ∼ eλ1n

Number of steps in Euclid’s algorithm = size/ log eigenvalue

logN/λ1

Second Lyapunov exponent = ”log of the second eigenvalue”
; measures the distance between column vectors



Exponentiation based on Brun algorithm

An SPA resistant exponentiation based on Brun’s gcd
algorithm and addition chains [B.-Plantard]

One performs an exponentiation g e for a given e for a generic
group
Cut e into d blocks

e =
d−1∑
i=0

ei2
ik/d

For Brun algorithm, as the dimension d increases, the
probabilty that partial quotients equal to 1 tends to 1 (one
performs subtractions and not divisions) [B.-Lhote-Vallée]
; Apply Brun algorithm and addition chains



Higher-dimensional case
Numerical experiments indicate that classical multidimensional
continued fraction algorithms seem to cease to be strongly
convergent for high dimensions. The only exception seems to
be the Arnoux-Rauzy algorithm which, however, is defined only
on a set of measure zero [B.-Steiner-Thuswaldner]

d λ2(AB) 1− λ2(AB)
λ1(AB)

d λ2(AB) 1− λ2(AB)
λ1(AB)

2 −0.11216 1.3683 7 −0.01210 1.0493
3 −0.07189 1.2203 8 −0.00647 1.0283
4 −0.04651 1.1504 9 −0.00218 1.0102
5 −0.03051 1.1065 10 +0.00115 0.9943
6 −0.01974 1.0746 11 +0.00381 0.9799

Table: Heuristically estimated values for the second Lyapunov
exponent and the uniform approximation exponent of the Brun
Algorithm
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Multidimensional continued fraction algorithms

Allowed operations on numbers

+, −, /, ×, [ ], ≥

Allowed operations on matrices: elementary basis
transformations

interchanging two vectors ; permutation matrices
adding an integer multiple of one basis vector to
another basis vector ; transvection matrices

Ex. LLL algorithm Size reduction steps and exchange steps
Decisions are taken with respect to quadratic norms



LLL approach



Lattice reduction algorithms

Lattice reduction is based on the following elementary basis
transformations on the vectors of the basis (b1, ..., bd+1)

size reduction the vector bi is replaced by bi − λbj ,
1 ≤ j < i

swaps one exchanges bi and bi+1

These operations are decided with respect to the
Gram-Schmitdt orthogonalization of the basis b

b∗i = bi −
i−1∑
j=1

µi ,jb
∗
j µi ,j =

〈bi , b∗j 〉
〈b∗j , b∗j 〉

Size reduction |µi ,j | ≤ 1/2 for i > j

Lovász condition (δ − µ2
i+1,i)||b∗i ||2 ≤ ||b∗i+1||2



From lattice reduction to contined fractions
In a letter to Jacobi in 1850, Hermite explained the following
idea
Consider 

1 0 · · · 0 −α1

0 1 · · · 0 −α2

· · · · · · · · · · · · · · ·
0 0 · · · 1 −αd

0 · · · · · · 0 t


Let t > 0. We take the corresponding lattice of Rd+1

Ze1 + · · ·+ Zed + Z(ted+1 − (α1e1 + · · ·+ αded))

A vector of the lattice is of the form
d∑

i=1

(pi − qtαi)ei + qted+1

Take a short vector in Λt



How does LLL produce good approximations?

Let

Mt :=


1 0 · · · 0 −α1

0 1 · · · 0 −α2

· · · · · · · · · · · · · · ·
0 0 · · · 1 −αd

0 · · · · · · 0 t





How does LLL produce good approximations?

Let

Mt :=


1 0 · · · 0 −α1

0 1 · · · 0 −α2

· · · · · · · · · · · · · · ·
0 0 · · · 1 −αd

0 · · · · · · 0 t


We take t small

One has det(Mt) = t

Rem: One changes the lattice at each step instead of changing
the bases of a fixed lattice
The parameter t only occurs in the last line



How does LLL produce good approximations?
Let

Mt :=


1 0 · · · 0 −α1

0 1 · · · 0 −α2

· · · · · · · · · · · · · · ·
0 0 · · · 1 −αd

0 · · · · · · 0 t


LLL produces in polynomial time a vector b1 such that

||b1|| ≤ 2d/4det(Mt)
1/d+1 = 2d/4t1/d+1

One has

b1 = (p1 − qα1)e1 + · · ·+ (pd − qαded) + qted+1

∀i , |pi − αiq| ≤ 2d/4t1/d+1 and qt ≤ 2d/4t1/d+1

; ∀i , |pi − αiq| ≤ 2(d+1)/41/q1/d



Approximations and lattices

Let

Mt :=


1 0 · · · 0 −α1

0 1 · · · 0 −α2

· · · · · · · · · · · · · · ·
0 0 · · · 1 −αd

0 · · · · · · 0 t


[Lagarias’93]

∀α = (α1, · · · , αd), ∀Q, ∃q, 1 ≤ q ≤ Q, |||qα||| <
√
d + 1Q−1/d

[Lagarias’85,’94,Grabiner-Lagarias’2001]



[Lagarias’94] Let t tend to 0 and consider Minkowski
reduction. The conditions are linear in

√
t but when n = 7,

the number of inequalities is about 90, 000 for Minkowski
reduction.

[Bosma-Smeets’2013] Decrease the value of t by diving it by a
fixed constant.

[Beukers’2014]
Proves the linearity in

√
t of the conditions in LLL.

The values of t > 0 for which Mt is LLL-reduced form an
interval [t0, t1].
If α 6∈ Qd , the sequence of critical points is an infinite
sequence descending to 0.



Toward continued fractions

One has t ↓ 0

How to change t?

How much does one have to recompute when one
changes t?

How to choose stopping times for t?

Can we get nonnegative matrices?

What are the rules that provide exponential convergence?

Can we evaluate the growth of the size of the matrices
M1 · · ·Mn?


	MCF
	LLL

