Lattice reduction and continued fractions

V. Berthé

IRIF-CNRS-Paris-France

MACAO Workshop

Continued fractions

We consider a positive real number α.
One looks for sequences of rational numbers $\left(p_{n} / q_{n}\right)_{n}$ that satisfies

$$
\lim p_{n} / q_{n}=\alpha
$$

Continued fractions allow to do it with exponential speed

$$
\left|\alpha-p_{n} / q_{n}\right| \leq \frac{1}{q_{n}^{2}}
$$

Continued fractions

We represent real numbers in $(0,1)$ as

$$
\alpha=\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3}+\frac{1}{a_{4}+\cdots}}}}
$$

with the partial quotients (digits) a_{i} being positive integers

Continued fractions

We represent real numbers in $(0,1)$ as

$$
\alpha=\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3}+\frac{1}{a_{4}+\cdots}}}}
$$

with the partial quotients (digits) a_{i} being positive integers
Rational approximations are then given by

$$
p_{n} / q_{n}=\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{\cdots+\frac{1}{a_{n}}}}} \quad\left|\alpha-p_{n} / q_{n}\right| \leq \frac{1}{q_{n}^{2}}
$$

Dirichlet's bound and exponential convergence

Dirichlet's theorem
Given real numbers $\left(\alpha_{d}, \cdots, \alpha_{d}\right)$, for any positive integer N, there exist integers p_{1}, \ldots, p_{d}, q with

$$
1 \leq q \leq N
$$

such that

$$
\left|\frac{p_{i}}{q}-\alpha_{i}\right|<\frac{1}{q N^{1 / d}} \quad i=1,2, \cdots, d
$$

Dirichlet's bound and exponential convergence

Dirichlet's theorem
Given real numbers $\left(\alpha_{d}, \cdots, \alpha_{d}\right)$, for any positive integer N, there exist integers p_{1}, \ldots, p_{d}, q with

$$
1 \leq q \leq N
$$

such that

$$
\left|\frac{p_{i}}{q}-\alpha_{i}\right|<\frac{1}{q N^{1 / d}} \leq \frac{1}{q^{1+\frac{1}{d}}} \quad i=1,2, \cdots, d
$$

Dirichlet's bound $1+1 / d$

Euclid algorithm

We start with two nonnegative integers u_{0} and u_{1}

$$
\begin{gathered}
u_{0}=u_{1}\left[\frac{u_{0}}{u_{1}}\right]+u_{2} \\
u_{1}=u_{2}\left[\frac{u_{1}}{u_{2}}\right]+u_{3} \\
\vdots \\
u_{m-1}=u_{m}\left[\frac{u_{m-1}}{u_{m}}\right]+u_{m+1} \\
u_{m+1}=\operatorname{gcd}\left(u_{0}, u_{1}\right) \\
u_{m+2}=0
\end{gathered}
$$

One subtracts the smallest number to the largest as much as we can

Euclid algorithm and continued fractions

We start with two coprime integers u_{0} and u_{1}

$$
\begin{gathered}
u_{0}=u_{1} a_{1}+u_{2} \\
\vdots \\
u_{m-1}=u_{m} a_{m}+u_{m+1} \\
u_{m}=u_{m+1} a_{m+1}+0 \\
u_{m+1}=1=\operatorname{gcd}\left(u_{0}, u_{1}\right)
\end{gathered}
$$

Euclid algorithm and continued fractions

We start with two coprime integers u_{0} and u_{1}

$$
\begin{gathered}
u_{0}=u_{1} a_{1}+u_{2} \\
\vdots \\
u_{m-1}=u_{m} a_{m}+u_{m+1} \\
u_{m}=u_{m+1} a_{m+1}+0 \\
u_{m+1}=1=\operatorname{gcd}\left(u_{0}, u_{1}\right) \\
\frac{u_{1}}{u_{0}}=\frac{1}{a_{1}+\frac{u_{2}}{u_{1}}}
\end{gathered} u_{1} / u_{0}=\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{\ddots \cdot+\frac{1}{a_{m}+\frac{1}{a_{m+1}}}}}}
$$

Matricial description

We start with two real numbers $\left(x_{0}, x_{1}\right)$ in $(0,1)^{2}$ with $x_{0}>x_{1}$ We divide the largest entry by the smallest and we continue

$$
\begin{gathered}
x_{0}=\left\lfloor x_{0} / x_{1}\right\rfloor x_{1}+x_{2} \\
\binom{x_{0}}{x_{1}}=\left(\begin{array}{ll}
a_{1} & 1 \\
1 & 0
\end{array}\right)\binom{x_{1}}{x_{2}}=\left(\begin{array}{ll}
a_{1} & 1 \\
1 & 0
\end{array}\right) \cdots\left(\begin{array}{cc}
\left.a_{1}\right\rfloor \\
1 & 0
\end{array}\right)\binom{x_{n}}{x_{n+1}}
\end{gathered}
$$

Matricial description

We start with two real numbers $\left(x_{0}, x_{1}\right)$ in $(0,1)^{2}$ with $x_{0}>x_{1}$ We divide the largest entry by the smallest and we continue

$$
x_{0}=\left\lfloor x_{0} / x_{1}\right\rfloor x_{1}+x_{2} \quad a_{1}:=\left\lfloor x_{0} / x_{1}\right\rfloor
$$

$$
\binom{x_{0}}{x_{1}}=\left(\begin{array}{cc}
a_{1} & 1 \\
1 & 0
\end{array}\right)\binom{x_{1}}{x_{2}}=\left(\begin{array}{cc}
a_{1} & 1 \\
1 & 0
\end{array}\right) \cdots\left(\begin{array}{cc}
a_{n} & 1 \\
1 & 0
\end{array}\right)\binom{x_{n}}{x_{n+1}}
$$

We normalize $\alpha:=x_{1} / x_{0}$ and we set

$$
M_{n}:=\left(\begin{array}{cc}
a_{n} & 1 \\
1 & 0
\end{array}\right) \leadsto\binom{1}{\alpha} \in \bigcap_{n} M_{1} \cdots M_{n} \mathbb{R}_{+}^{2}
$$

$M_{1} \cdots M_{n}=\left(\begin{array}{ll}q_{n} & q_{n-1} \\ p_{n} & p_{n-1}\end{array}\right) \sim$ a sequence of lattice basis for \mathbb{Z}^{2}

Multidimensional continued fractions

If we start with two parameters (α, β), one looks for two sequences of rational numbers $\left(p_{n} / q_{n}\right)$ et $\left(r_{n} / q_{n}\right)$ with the same denominator that satisfy

$$
\lim p_{n} / q_{n}=\alpha \quad \lim r_{n} / q_{n}=\beta
$$

Expected speed 3/2

$$
\left|\alpha-p_{n} / q_{n}\right| \leq 1 / q_{n}^{3 / 2} \quad\left|\beta-r_{n} / q_{n}\right| \leq 1 / q_{n}^{3 / 2}
$$

Canonicity of continued fractions

- Euclid's algorithm Starting with two numbers, one subtracts the smallest to the largest
- Unimodularity

$$
\operatorname{det}\left(\begin{array}{ll}
q_{n+1} & q_{n} \\
p_{n+1} & p_{n}
\end{array}\right)= \pm 1
$$

- Best approximation property

Theorem A rational number p / q is a best approximation of the real number α if every p^{\prime} / q^{\prime} with $1 \leq q^{\prime} \leq q$, $p / q \neq p^{\prime} / q^{\prime}$ satifies

$$
|q \alpha-p|<\left|q^{\prime} \alpha-p^{\prime}\right|
$$

Every best approximation of α is a convergent

From $S L(2, \mathbb{N})$ to $S L(3, \mathbb{N})$

Rem $S L(2, \mathbb{N})$ is a finitely generated free monoid. It is generated by

$$
\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right) \text { and }\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
$$

- $S L(2, \mathbb{N})$ is a free and finitely generated monoid
- $S L(3, \mathbb{N})$ is not free
- $S L(3, \mathbb{N})$ is not finitely generated. Consider the family of matrices

$$
\left(\begin{array}{lll}
1 & 0 & n \\
1 & n-1 & 0 \\
1 & 1 & n-1
\end{array}\right)
$$

These matrices are undecomposable for $n \geq 3$ [Rivat]

Multidimensional continued fractions

There is no canonical generalization of continued fractions to higher dimensions

Several approaches are possible

- Best simultaneous approximations

Every q^{\prime} with $1 \leq q^{\prime}<q$ satisfies $\left\|\left\|q(\alpha, \beta)|\|<\|| q^{\prime}(\alpha, \beta)\right\|\right\|$
But we loose unimodularity, and the sequence of best approximations depends on the chosen norm [Lagarias]

- Klein polyhedra and sails [Arnold]
- Unimodular multidimensional Euclid's algorithms
- sequences of nested cones approximating a direction Jacobi-Perron algorithm, Brun algorithm [Brentjes, Schweiger]
- lattice reduction (LLL)
[Lagarias],[Ferguson-Forcade], [Just], [Grabiner-Lagarias][Bosma-Smeets][Beukers]

What is expected?

We are given $\left(\alpha_{1}, \cdots, \alpha_{d}\right)$ which produces a sequence of basis of \mathbb{Z}^{d+1} and/or a sequence of approximations
Arithmetics A two-dimensional continued fraction algorithm is expected to

- detect integer relations for $\left(1, \alpha_{1}, \cdots, \alpha_{d}\right)$
- give algebraic characterizations of periodic expansions
- converge sufficiently fast
- provide good rational approximations

Good means "with respect to Dirichlet's theorem": there exist infinitely many $\left(p_{i} / q\right)_{1 \leq i \leq d}$ such that

$$
\max _{i}\left|\alpha_{i}-p_{i} / q\right| \leq \frac{1}{q^{1+1 / d}}
$$

We also want...

- to understand generic behaviour
- to be able to control the number of executions if the parameters are rational etc.

We also want...

- to understand generic behaviour

Continued fractions

$$
\lim \frac{\log q_{n}}{n}=\frac{\pi^{2}}{12 \log 2}=1.18 \ldots \quad \text { for a.e. } \alpha
$$

$\lim \frac{1}{n}\left\{k \leq n ; a_{k}=a\right\}=\frac{1}{\log 2} \log \frac{(k+1)^{2}}{k(k+2)} \quad$ for a.e. α

- to be able to control the number of executions if the parameters are rational etc.
Continued fractions
$\ell(u, v)$: number of steps in Euclid algorithm $0<v<u$
For $0<v<u \leq N$ and $\operatorname{gcd}(u, v)=1$

$$
\mathbb{E}_{N}(\ell) \sim \frac{12 \log 2}{\pi^{2}} \cdot \log N \quad \text { average case }
$$

Multidimensional Euclid's algorithms: a zoo of algorithms

- Jacobi-Perron [Jacobi'1868-Perron'1907]: we subtract the first one to the two other ones with $0 \leq x_{1}, x_{2} \leq x_{3}$

$$
\left(x_{1}, x_{2}, x_{3}\right) \mapsto\left(x_{2}-\left[\frac{x_{2}}{x_{1}}\right] x_{1}, x_{3}-\left[\frac{x_{3}}{x_{1}}\right] x_{1}, x_{1}\right)
$$

- Brun [Brun'1919]: we subtract the second largest and we reorder with $x_{1} \leq x_{2} \leq x_{3}$

$$
\left(x_{1}, x_{2}, x_{3}\right) \mapsto\left(x_{1}, x_{2}, x_{3}-x_{2}\right)
$$

- Poincaré: we subtract the previous one and we reorder with $x_{1} \leq x_{2} \leq x_{3}$

$$
\left(x_{1}, x_{2}, x_{3}\right) \mapsto\left(x_{1}, x_{2}-x_{1}, x_{3}-x_{2}\right)
$$

- Selmer: we subtract the smallest to the largest and we reorder with $x_{1} \leq x_{2} \leq x_{2}$

$$
\left(x_{1}, x_{2}, x_{3}\right) \mapsto\left(x_{1}, x_{2}, x_{3}-x_{1}\right)
$$

- Fully subtractive: we subtract the smallest one to all the largest ones and we reorder with $x_{1} \leq x_{2} \leq x_{3}$

Poincaré algorithm [Nogueira'95]

$$
\begin{gathered}
\left(x_{1}, x_{2}, x_{3}\right) \mapsto\left(x_{1}, x_{2}-x_{1}, x_{3}-x_{2}\right), x_{1} \leq x_{2} \leq x_{3} \\
1 / \varphi^{2}+1 / \varphi=1 \\
1 / \varphi^{2} \\
1 / \varphi \\
1 / \varphi^{3} \\
1 / \varphi^{4} \\
\cdots
\end{gathered} 1 / \varphi^{2} \quad 100-1 / \varphi \begin{aligned}
& 100-1 / \varphi-1 / \varphi^{2} \\
& 1 / \varphi^{k+1} \\
& \cdots
\end{aligned} 1 / \varphi^{k} \quad 100-\sum_{i<k} 1 / \varphi^{i} .
$$

Jacobi-Perron algorithm

Continued fractions

$$
\binom{1}{\alpha}=\lambda_{n}\left(\begin{array}{ll}
a_{1} & 1 \\
1 & 0
\end{array}\right) \cdots\left(\begin{array}{ll}
a_{n} & 1 \\
1 & 0
\end{array}\right)\binom{1}{\alpha_{n}}
$$

Jacobi-Perron algorithm

$$
\left(\begin{array}{l}
1 \\
\alpha \\
\beta
\end{array}\right)=\left(\begin{array}{lll}
0 & 1 & k \\
1 & 0 & \ell \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{l}
\beta-\ell \alpha \\
1-k \alpha \\
\alpha
\end{array}\right) \text { with } \ell=\lfloor\beta / \alpha\rfloor, k=\lfloor 1 / \alpha\rfloor
$$

$$
\left(\begin{array}{l}
1 \\
\alpha \\
\beta
\end{array}\right)=\left(\begin{array}{ccc}
0 & 1 & k_{1} \\
1 & 0 & \ell_{1} \\
0 & 0 & 1
\end{array}\right) \cdots\left(\begin{array}{ccc}
0 & 1 & k_{n} \\
1 & 0 & \ell_{n} \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
1 \\
\alpha_{n} \\
\beta_{n}
\end{array}\right)
$$

$$
\left(\begin{array}{l}
1 \\
\alpha \\
\beta
\end{array}\right)=\lambda_{n}\left(\begin{array}{lll}
q_{n} & q_{n}^{\prime} & q_{n}^{\prime \prime} \\
p_{n} & p_{n}^{\prime} & p_{n}^{\prime \prime} \\
r_{n} & r_{n}^{\prime} & r_{n}^{\prime \prime}
\end{array}\right)\left(\begin{array}{c}
1 \\
\alpha_{n} \\
\beta_{n}
\end{array}\right)
$$

Unimodular multidimensional continued fractions

A unimodular d-dimensional continued fraction map over $[0,1]^{d}$ is a map $T:[0,1]^{d} \rightarrow[0,1]^{d}$ such that for any $\boldsymbol{\alpha} \in[0,1]^{d}$, there is a matrix $M(\boldsymbol{\alpha})$ in $G L(d, \mathbb{Z})$ satisfying

$$
\boldsymbol{\alpha}=M(\boldsymbol{\alpha}) T(\boldsymbol{\alpha})
$$

The associated continued fraction algorithm consists in iteratively applying the map T on a vector $\boldsymbol{\alpha} \in[0,1]^{d}$. This yields the following sequence of matrices, called the continued fraction expansion of $\boldsymbol{\alpha}$

$$
\left(M\left(T^{n}(\boldsymbol{\alpha})\right)\right)_{n \in \mathbb{N}}
$$

Set $M_{n}:=M\left(T^{n}(\boldsymbol{\alpha})\right)$

$$
\boldsymbol{\alpha}=M_{1} \cdots M_{n} T^{n}(\boldsymbol{\alpha})
$$

If the matrices have nonnegative entries, the algorithm is said to be nonnegative (Perron-Frobenius theory)

About nonnegative matrices

Theorem of Perron-Frobenius type [Furstenberg]
One considers an infinite product of matrices

$$
E_{1} \cdots E_{k} \cdots
$$

with entries in \mathbb{N}. One assumes that there exists a matrix B with strictly positive entries s.t. there exist $i_{1}<j_{1}<\cdots<i_{k}<j_{k}$ s.t.

$$
B=E_{i_{1}} \cdots E_{j_{1}}, \cdots, B=E_{i_{k}} \cdots E_{j_{k}}, \cdots
$$

Then, the intersection of the cones

$$
\cap_{k} E_{1} \cdots E_{k}\left(\mathbb{R}_{+}^{n}\right)
$$

is unidimensional.
Convergence speed? Type of convergence? Weak? strong?

Convergence

$\boldsymbol{\alpha}=M_{1} \cdots M_{n} T^{n}(\boldsymbol{\alpha})$ with $M_{1} \cdots M_{n}=\left(\begin{array}{ccc}q_{1}^{(n)} & \cdots & q_{d+1}^{(n)} \\ p_{1,1}^{(n)} & \cdots & p_{1, d+1}^{(n)} \\ & \cdots & \\ p_{d, 1}^{(n)} & \cdots & p_{d, d+1}^{(n)}\end{array}\right)$
One considers simultaneous approximations $\left(\frac{p_{1, j}^{(n)}}{q_{j}^{(n)}}, \cdots, \frac{p_{d, j}^{(n)}}{q_{j}^{(n)}}\right)$
Weak convergence Convergence in angle

$$
\lim _{n \rightarrow+\infty}\left(\frac{p_{1, j}^{(n)}}{q_{j}^{(n)}}, \cdots, \frac{p_{d, j}^{(n)}}{q_{j}^{(n)}}\right)=\left(\alpha_{1}, \cdots, \alpha_{d}\right)
$$

Strong convergence Convergence in distance

$$
\lim _{n \rightarrow+\infty}\left|q_{j}^{(n)} \alpha_{i}-p_{i, j}^{(n)}\right|=0 \text { for all } i, j
$$

Convergence of Jacobi-Perron algorithm

Theorem There exists $\delta>0$ s.t. for almost every (α, β)

$$
\left|\alpha-p_{n} / q_{n}\right|<\frac{1}{q_{n}^{1+\delta}}, \quad\left|\beta-r_{n} / q_{n}\right|<\frac{1}{q_{n}^{1+\delta}}
$$

where p_{n}, q_{n}, r_{n} are produced by either by Brun/Jacobi-Perron algorithm

Brun [Ito-Fujita-Keane-Ohtsuki'96] Jacobi-Perron[Broise-Guivarc'h'99]

Lyapunov exponents

$$
A_{n}(x)=\left(\begin{array}{ll}
q_{n} & q_{n-1} \\
p_{n} & p_{n-1}
\end{array}\right)
$$

Theorem For a.e. x,

$$
\lim \frac{1}{n} \log q_{n}=\frac{\pi^{2}}{12 \log 2}=1.18 \cdots=\lambda_{1}
$$

λ_{1} is the first Lyapunov exponent
First Lyapunov exponent $=$ "log largest eigenvalue" \leadsto size of the matrices/convergents $A_{n}(x) \sim q_{n}(x) \sim e^{\lambda_{1} n}$

Number of steps in Euclid's algorithm = size/ log eigenvalue

$$
\log N / \lambda_{1}
$$

Second Lyapunov exponent $=$ "log of the second eigenvalue" \sim measures the distance between column vectors

Exponentiation based on Brun algorithm

An SPA resistant exponentiation based on Brun's gcd algorithm and addition chains [B.-Plantard]

One performs an exponentiation g^{e} for a given e for a generic group
Cut e into d blocks

$$
e=\sum_{i=0}^{d-1} e_{i} 2^{i k / d}
$$

For Brun algorithm, as the dimension d increases, the probabilty that partial quotients equal to 1 tends to 1 (one performs subtractions and not divisions) [B.-Lhote-Vallée] \sim Apply Brun algorithm and addition chains

Higher-dimensional case

Numerical experiments indicate that classical multidimensional continued fraction algorithms seem to cease to be strongly convergent for high dimensions. The only exception seems to be the Arnoux-Rauzy algorithm which, however, is defined only on a set of measure zero [B.-Steiner-Thuswaldner]

Higher-dimensional case

Numerical experiments indicate that classical multidimensional continued fraction algorithms seem to cease to be strongly convergent for high dimensions. The only exception seems to be the Arnoux-Rauzy algorithm which, however, is defined only on a set of measure zero [B.-Steiner-Thuswaldner]

d	$\lambda_{2}\left(A_{B}\right)$	$1-\frac{\lambda_{2}\left(A_{B}\right)}{\lambda_{1}\left(A_{B}\right)}$	d	$\lambda_{2}\left(A_{B}\right)$	$1-\frac{\lambda_{2}\left(A_{B}\right)}{\lambda_{1}\left(A_{B}\right)}$
2	-0.11216	1.3683	7	-0.01210	1.0493
3	-0.07189	1.2203	8	-0.00647	1.0283
4	-0.04651	1.1504	9	-0.00218	1.0102
5	-0.03051	1.1065	10	+0.00115	0.9943
6	-0.01974	1.0746	11	+0.00381	0.9799

Table: Heuristically estimated values for the second Lyapunov exponent and the uniform approximation exponent of the Brun Algorithm

Multidimensional continued fraction algorithms

- Allowed operations on numbers

$$
+,-, /, \times,[], \geq
$$

- Allowed operations on matrices: elementary basis transformations
- interchanging two vectors \leadsto permutation matrices
- adding an integer multiple of one basis vector to another basis vector \sim transvection matrices

Ex. LLL algorithm Size reduction steps and exchange steps
Decisions are taken with respect to quadratic norms

LLL approach

Lattice reduction algorithms

Lattice reduction is based on the following elementary basis transformations on the vectors of the basis $\left(b_{1}, \ldots, b_{d+1}\right)$

- size reduction the vector b_{i} is replaced by $b_{i}-\lambda b_{j}$,

$$
1 \leq j<i
$$

- swaps one exchanges b_{i} and b_{i+1}

These operations are decided with respect to the Gram-Schmitdt orthogonalization of the basis b

$$
b_{i}^{*}=b_{i}-\sum_{j=1}^{i-1} \mu_{i, j} b_{j}^{*} \quad \mu_{i, j}=\frac{\left\langle b_{i}, b_{j}^{*}\right\rangle}{\left\langle b_{j}^{*}, b_{j}^{*}\right\rangle}
$$

- Size reduction $\left|\mu_{i, j}\right| \leq 1 / 2$ for $i>j$
- Lovász condition $\left(\delta-\mu_{i+1, i}^{2}\right)\left\|b_{i}^{*}\right\|^{2} \leq\left\|b_{i+1}^{*}\right\|^{2}$

From lattice reduction to contined fractions

In a letter to Jacobi in 1850, Hermite explained the following idea
Consider

$$
\left(\begin{array}{lllll}
1 & 0 & \cdots & 0 & -\alpha_{1} \\
0 & 1 & \cdots & 0 & -\alpha_{2} \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
0 & 0 & \cdots & 1 & -\alpha_{d} \\
0 & \cdots & \cdots & 0 & t
\end{array}\right)
$$

Let $t>0$. We take the corresponding lattice of \mathbb{R}^{d+1}

$$
\mathbb{Z} e_{1}+\cdots+\mathbb{Z} e_{d}+\mathbb{Z}\left(t e_{d+1}-\left(\alpha_{1} e_{1}+\cdots+\alpha_{d} e_{d}\right)\right)
$$

A vector of the lattice is of the form

$$
\sum_{i=1}^{d}\left(p_{i}-q_{t} \alpha_{i}\right) e_{i}+q t e_{d+1}
$$

Take a short vector in Λ_{t}

How does LLL produce good approximations?

Let

$$
M_{t}:=\left(\begin{array}{lllll}
1 & 0 & \cdots & 0 & -\alpha_{1} \\
0 & 1 & \cdots & 0 & -\alpha_{2} \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
0 & 0 & \cdots & 1 & -\alpha_{d} \\
0 & \cdots & \cdots & 0 & t
\end{array}\right)
$$

How does LLL produce good approximations?

Let

$$
M_{t}:=\left(\begin{array}{lllll}
1 & 0 & \cdots & 0 & -\alpha_{1} \\
0 & 1 & \cdots & 0 & -\alpha_{2} \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
0 & 0 & \cdots & 1 & -\alpha_{d} \\
0 & \cdots & \cdots & 0 & t
\end{array}\right)
$$

- We take t small
- One has $\operatorname{det}\left(M_{t}\right)=t$

Rem: One changes the lattice at each step instead of changing the bases of a fixed lattice
The parameter t only occurs in the last line

How does LLL produce good approximations?
Let

$$
M_{t}:=\left(\begin{array}{lllll}
1 & 0 & \cdots & 0 & -\alpha_{1} \\
0 & 1 & \cdots & 0 & -\alpha_{2} \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
0 & 0 & \cdots & 1 & -\alpha_{d} \\
0 & \cdots & \cdots & 0 & t
\end{array}\right)
$$

LLL produces in polynomial time a vector b_{1} such that

$$
\left\|b_{1}\right\| \leq 2^{d / 4} \operatorname{det}\left(M_{t}\right)^{1 / d+1}=2^{d / 4} t^{1 / d+1}
$$

One has

$$
\begin{gathered}
b_{1}=\left(p_{1}-q \alpha_{1}\right) e_{1}+\cdots+\left(p_{d}-q \alpha_{d} e_{d}\right)+q t e_{d+1} \\
\forall i, \quad\left|p_{i}-\alpha_{i} q\right| \leq 2^{d / 4} t^{1 / d+1} \quad \text { and } \quad q t \leq 2^{d / 4} t^{1 / d+1} \\
\sim \forall i, \quad\left|p_{i}-\alpha_{i} q\right| \leq 2^{(d+1) / 4} 1 / \boldsymbol{q}^{1 / d}
\end{gathered}
$$

Approximations and lattices

Let

$$
M_{t}:=\left(\begin{array}{lllll}
1 & 0 & \cdots & 0 & -\alpha_{1} \\
0 & 1 & \cdots & 0 & -\alpha_{2} \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
0 & 0 & \cdots & 1 & -\alpha_{d} \\
0 & \cdots & \cdots & 0 & t
\end{array}\right)
$$

[Lagarias'93]
$\forall \boldsymbol{\alpha}=\left(\alpha_{1}, \cdots, \alpha_{d}\right), \forall Q, \exists \boldsymbol{q}, 1 \leq q \leq Q,\|\mid \boldsymbol{\alpha}\| \|<\sqrt{d+1} Q^{-1 / d}$
[Lagarias'85,'94,Grabiner-Lagarias'2001]
[Lagarias'94] Let t tend to 0 and consider Minkowski reduction. The conditions are linear in \sqrt{t} but when $n=7$, the number of inequalities is about 90,000 for Minkowski reduction.
[Bosma-Smeets'2013] Decrease the value of t by diving it by a fixed constant.
[Beukers'2014]
Proves the linearity in \sqrt{t} of the conditions in LLL.
The values of $t>0$ for which M_{t} is LLL-reduced form an interval $\left[t_{0}, t_{1}\right]$.
If $\alpha \notin \mathbb{Q}^{d}$, the sequence of critical points is an infinite sequence descending to 0 .

Toward continued fractions

One has $t \downarrow 0$

- How to change t ?
- How much does one have to recompute when one changes t ?
- How to choose stopping times for t ?
- Can we get nonnegative matrices?
- What are the rules that provide exponential convergence?
- Can we evaluate the growth of the size of the matrices $M_{1} \cdots M_{n}$?

