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Some Background on Pseudo-Mersenne Numbers

I Classical Positional Number System β ∈ N and β ≥ 2,
a ∈ N with a < βm, there exists an unique sequence of
integers (ai )i=0...m−1, such that ,

a =
m−1∑
i=0

aiβ
i , with ai ∈ N, 0 ≤ ai < β.

I Specific Modular Reduction
Let p ∈ N, βn−1 ≤ p < βn, βn ≡ δ (mod p), with δ < p,

do
1. a→ a0 + βna1 with a0, a1 < βn

2. a← a0 + δa1

until a < βn

(if δ ≤ β
1
2

n then two iterations give a < 2βn − β
1
2
n − 1, if necessary, a

last subtraction of (βn − δ) gives a < βn)
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Some Background on Pseudo-Mersenne Numbers
Polynomial approach

Since, βn − δ ≡ 0 (mod p), then β is a root of the polynomial
E (X ) = X n −∆(X ) modulo p,
where ∆(β) ≡ δ (mod p), with deg ∆(X ) = d < n and ‖∆(X )‖∞ < β.

Reduction modulo p is computed in two steps:

1. polynomial reduction : C (X ) = A(X ) mod E (X )

2. coefficients reduction : C ′(β) ≡ C (β) (mod p) with C ′(X )
of degree lower than n and coefficients smaller than β

The polynomial reduction looks like:

1. C (X )← A(X )

2. do C(X )← ∆(X )×
m−1∑
i=n

ciX
i−n +

n−1∑
i=0

ciX
i , degree decreases of (n − d)

until degC (X ) ≤ n − 1

Thus, if deg C(X ) ≤ 2n and deg ∆(X ) ≤ n/2, then deg C(X ) ≤ n − 1 in two steps.
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Some Background on Pseudo-Mersenne Numbers
Polynomial approach

Let t be the smallest integer such that ‖C (X )‖∞ < βt .

The coefficient reduction could look like:

Do

1. C (X )←
t−1∑
i=0

Ci (X )βi , with Ci ’s coefficients smaller than β

2. C (X )←
t−1∑
i=0

Ci (X )X i , with deg C(X ) < t + n and ‖C(X )‖∞ < tβ

3. Polynomial reduction of C (X ),

Until t = 1

This can be seen as a carry propagation.
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Some Background on Pseudo-Mersenne Numbers
Lattices approach

The coefficient reduction can be seen as the subtraction of a close
vector in the lattice defined by:

A =


p 0 . . . . . . 0 0
−β 1 . . . . . . 0 0

...
. . .

. . .
...

0 . . . −β 1 . . . 0
...

. . .
. . .

...
0 0 . . . . . . −β 1

 or


p 0 0 . . . 0 0
−β 1 0 . . . 0 0

...
. . .

...
−βi . . . 0 1 . . . 0

...
. . .

. . .
...

−βn−1 0 . . . . . . 0 1


The first vector (p, 0, . . . , 0, 0) represents the modulo p reduction.
Vectors like (0, . . . ,−β, 1, . . . , 0) represent the carry propagation.
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Some Background on Pseudo-Mersenne Numbers
Lattices approach

When we consider βn − δ ≡ 0 (mod p), we can replace
(p, 0, . . . , 0, 0) is replaced by (δ0, δ1, . . . , δn−2, δn−1 − β) thus we
obtain a sub-lattice with a reduced base.

A′ =


δ0 δ1 . . . . . . δn−2 δn−1 − β
−β 1 . . . . . . 0 0

...
. . .

. . .
...

0 . . . −β 1 . . . 0
...

. . .
. . .

...
0 0 . . . . . . −β 1


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Polynomial Modular Number System

Definition
A Polynomial Modular Number System (PMNS) is defined by

I a quadruple (p, n, γ, ρ) and

I a monic polynomial of degree n, E (X ) ∈ Z[X ], such that
E (γ) ≡ 0 (mod p)

I for each integer x in {0, . . . p − 1}, there exists (x0, . . . , xn−1)

with x ≡
n−1∑
i=0

xiγ
i (mod p), xi ∈ N, −ρ < xi < ρ, and

0 < γ < p,

Proposition

If B = (p, n, γ, ρ)E is a PMNS, then p ≤ (2ρ− 1)n.
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Polynomial Modular Number System
Example: p = 31, n = 4, γ = 15, γ4 ≡ 2 (mod p), and ρ = 2

0 1 2 3 4 5
(0, 0, 0, 0) (1, 0, 0, 0) (-1, 1, -1, 1) (-1, -1, -1, 1)

(-1, 0, 0, -1)
(-1, 0, 1, 1)
(0, 1, -1, 1)

(0, -1, -1, 1)
(0, 0, 0, -1)
(0, 0, 1, 1)
(1, 1, -1, 1)

(1, -1, -1, 1)
(1, 0, 0, -1)
(1, 0, 1, 1)

6 7 8 9 10 11
(-1, 1, -1, 0) (-1, -1, -1, 0)

(-1, 0, 1, 0)
(0, 1, -1, 0)

(0, -1, -1, 0)
(0, 0, 1, 0)
(1, 1, -1, 0)

(1, -1, -1, 0)
(1, 0, 1, 0)

(-1, 1, -1, -1)
(-1, 1, 0, 1)

(-1, -1, -1, -1)
(-1, -1, 0, 1)
(-1, 0, 1, -1)
(0, 1, -1, -1)
(0, 1, 0, 1)

12 13 14 15 16 17
(0, -1, -1, -1)
(0, -1, 0, 1)
(0, 0, 1, -1)
(1, 1, -1, -1)
(1, 1, 0, 1)

(1, -1, -1, -1)
(1, -1, 0, 1)
(1, 0, 1, -1)

(-1, 1, 0, 0) (-1, -1, 0, 0)
(0, 1, 0, 0)

(0, -1, 0, 0)
(1, 1, 0, 0)

(1, -1, 0, 0)

18 19 20 21 22 23
(-1, 0, -1, 1)
(-1, 1, 0, -1)
(-1, 1, 1, 1)

(-1, -1, 0, -1)
(-1, -1, 1, 1)
(0, 0, -1, 1)
(0, 1, 0, -1)
(0, 1, 1, 1)

(0, -1, 0, -1)
(0, -1, 1, 1)
(1, 0, -1, 1)
(1, 1, 0, -1)
(1, 1, 1, 1)

(1, -1, 0, -1)
(1, -1, 1, 1)

(-1, 0, -1, 0)
(-1, 1, 1, 0)

(-1, -1, 1, 0)
(0, 0, -1, 0)
(0, 1, 1, 0)

24 25 26 27 28 29
(0, -1, 1, 0)
(1, 0, -1, 0)
(1, 1, 1, 0)

(1, -1, 1, 0) (-1, 0, -1, -1)
(-1, 0, 0, 1)
(-1, 1, 1, -1)

(-1, -1, 1, -1)
(0, 0, -1, -1)
(0, 0, 0, 1)
(0, 1, 1, -1)

(0, -1, 1, -1)
(1, 0, -1, -1)
(1, 0, 0, 1)
(1, 1, 1, -1)

(1, -1, 1, -1)

30
(-1, 0, 0, 0)
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Polynomial Modular Number System
Remarks

1. PMNS looks like a positional system, but is not.
(γ i mod p) < (γ i+1 mod p) is not always true anymore.

2. For every quadruple (p, n, γ, ρ), there exists a polynomial
E (X ) ∈ Z[X ] satisfying E (γ) ≡ 0 mod p and deg E (X ) = n:
for example E (X ) = X n − (γn mod p).

3. If p < (2ρ− 1)n, then the representation is redundant (i.e.,
some values can have more than one representation).

4. If B = (p, n, γ, ρ)E is a PMNS, so is B′ = (p, n, γ, ρ+ 1)E .

5. Given p, n, γ,E , there exists a minimal ρ which defines a
PMNS B = (p, n, γ, ρ)E .
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Polynomial Modular Number System
Question

The question, for p and n given, Which polynomials E (X )

-i) offer an efficient modular reduction?

-ii) have a large number of roots γ in Z/pZ?

-iii) allow to have ρ as small as possible?
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Existence and bounds of PMNS
PMNS and lattices

We consider the lattice L over Zn of the polynomials of degree at
most n − 1, for which, γ is a root modulo p.

A =


p 0 . . . . . . 0 0
−γ 1 . . . . . . 0 0

...
. . .

. . .
...

0 . . . −γ 1 . . . 0
...

. . .
. . .

...
0 0 . . . . . . −γ 1

 or


p 0 0 . . . 0 0
−γ 1 0 . . . 0 0

...
. . .

...
−γ i . . . 0 1 . . . 0

...
. . .

. . .
...

−γn−1 0 . . . . . . 0 1


The fundamental volume of L is det A = p.
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Existence and bounds of PMNS
PMNS and lattices

Theorem
Let p ≥ 2 and n ≥ 2 two integers, E (X ) a polynomial of degree n
in Z[X ] and γ be a root of E (X ) in Z/pZ.
Let r be the covering radius of the lattice L, if ρ > r , then
B = (p, n, γ, ρ)E is a Polynomial Modular Number System.

Proof.
The covering radius r of L is the smallest number, such that the balls
BV = {T ∈ Rn, ‖T − V ‖2 ≤ r} centered on any point V ∈ L, cover the space Rn. In
other words, for any T ∈ Rn there exists V ∈ L such that
‖T − V ‖∞ ≤ ‖T − V ‖2 ≤ r . Thus for any T ∈ Rn there exists V ∈ L, such that
T − V ∈ CO , CO = {T ∈ Rn, ‖T‖∞ ≤ r}.
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Existence and bounds of PMNS
Lattice’s bases and PMNS

Theorem
Let B = {B0, . . . ,Bn−1} a base of L, and B the matrix associated
such that, Bi represents the i th row., with Bi = (bi,0, . . . , bi,n−1), thus bi,j

represents the coefficient of the i th row, j th column.

If ρ > 1
2 ‖B‖1, (‖B‖1 = max

j

{
n−1∑
i=0

|bi ,j |

}
), then B = (p, n, γ, ρ)E

is a Polynomial Modular Number System.

Proof.
Let S ∈ Rn, we search a close vector T ∈ L using a Babäı round-off approach.We
have, T = BT .b(BT )−1.Se.
S = BT .(BT )−1.S = T + BT .frac

(
(BT )−1.S

)
with

∥∥frac
(
(BT )−1.S

)∥∥
∞ ≤

1
2

Then
‖S − T‖∞ =

∥∥BT .frac
(
(BT )−1.S

)∥∥
∞ ≤

1
2

∥∥BT
∥∥
∞ = 1

2
‖B‖1 .
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Existence and bounds of PMNS
Irreducible polynomials and PMNS

Let E (X ) = X n + an−1X
n−1 + · · ·+ a1X + a0, and let C be the

companion matrix of E (X ):

C =


0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 1 0
0 0 0 . . . 0 1
−a0 −a1 −a2 . . . −an−2 −an−1

 .

Let V = (v0, . . . , vn−1) the vector representing the coefficient of
the polynomial V (X ) =

∑n−1
i=0 viX

i , then V .C is the vector whose
coordinates are the coefficients of the polynomial
X .V (X ) mod E (X ).
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Existence and bounds of PMNS
Irreducible polynomials and PMNS

Proposition

Let V a non-null vector of L, the lattice of rank n defined by A.
Let B the n × n matrix whose i th row is the vector Bi such that
Bi = V .Ci (with polynomial Bi (X ) = X i .V (X ) mod E(X )).
If V (X ) is inversible modulo E (X ) then:

I the matrix B defines a sublattice L′ ⊆ L of rank n (i.e.
B = (B0, . . . ,Bn−1) is a base of L′),

I and V ∈ L′.

Proof.
The Bi are linearly independent. Indeed, let us suppose that there exists a non nul
vector (t0, t1, . . . , tn−1) ∈ Zn such that

∑n−1
i=0 tiBi = 0. It means that∑n−1

i=0 tiX
iV (X ) = 0 mod E(X ), or equivalently T (X )V (X ) = 0 mod E(X ), with

T (X ) =
∑n−1

i=0 tiX
i . Then T (X )V (X )V−1(X ) mod E(X ) = T (X ) = 0, since V (X )

is inversible modulo E(X ) and degree of T (X ) is at most n − 1. Hence the rows of B
are a base of a sublattice L′ ⊆ L of rank n, and V ∈ L′.
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Existence and bounds of PMNS
Irreducible polynomials and PMNS

Corollary

Let V a non-null vector of L, the lattice of rank n defined by A.
If E (X ) is irreducible, then

I V can define a sublattice L′ ⊆ L of rank n,

I and V ∈ L′.

Proof.
If E(X ) is irreducible, then V (X ) is inversible and Proposition 5 gives
B = (B0, . . . ,Bn−1) a base of L′, L′ ⊆ L of rank n, and V ∈ L′.



21/44

Existence and bounds of PMNS
Irreducible polynomials and PMNS

Corollary

Let L, the lattice of rank n given by A,and let the lattice LD of
rank n in Zn2

defined by D = (A|A.C1| · · · |A.Cn−1), then for any
V = (V0,V1, ...,Vn−1) ∈ LD such that V 6= (0)n

2
:

If E (X ) is irreducible then:

1. V0 ∈ L,

2. (V0,V1, ...,Vn−1) is a base of L′ ⊆ L.

Proof.
V0 is a linear combination of rows of A, hence it belongs to L. Next, since
Vi = V0.Ci , for all i ≥ 1, then, due to Corollary 6, the vector (V0,V1, ...,Vn−1) is a
base of a sublattice L′ ⊆ L.

Hence, a strategy is to choose a vector (V0,V1, ...,Vn−1) of LD and
to build the base B of L from V , with ‖B‖1 as small as possible.
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Existence and bounds of PMNS
Remarks

I For any p and n there exist E (X ) monic of degree n, with γ
as root, and ρ such that B = (p, n, γ, ρ)E is a PMNS.
( for example E(X ) = X n − (γn mod p))

I Then, a L the lattice of rank n can be defined by A depending
of p, n and γ.

I If E (X ) is irreducible and V ∈ L then we can construct easily
a ”reduced” base B of L.

I Thus, one goal is to find a base B of L with ‖B‖1 as small as
possible, to give interesting bounds of ρ.
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Existence and bounds of PMNS
Example with p ∼ 2256 and ρ < 233

p =112848483075082590657416923680536930196574208889254960005437791530871071177777

n = 8, E (X ) = X 8 + X 2 + X + 1,
γ =14916364465236885841418726559687117741451144740538386254842986662265545588774

LLL: ‖B‖1 = 16940155314 BKZ: ‖B‖1 = 15289909984
Cor. 6 : ‖B‖1 = 13881325101 Cor. 7, : ‖B‖1 = 12883199915

p =96777329138546418411606037850670691916278980249035796845487391462163262877831

n = 8, E (X ) = X 8 + 6,
γ =5538274654329514802181726618906590237936295237553666062542808070676484572674

LLL: ‖B‖1 = 12509178620 BKZ: ‖B‖1 = 12509178620
Cor. 6: ‖B‖1 = 47611052126 Cor. 7: ‖B‖1 = 40733847267
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Suitable irreducible polynomials for PMNS

Definition
A monic polynomial E (X ) is a suitable PMNS reduction
polynomial, if:

1. E (X ) is irreducible in Z[X ],

2. E (X ) = X n + akX
k + · · ·+ a1X + a0 ∈ Z[X ], with n ≥ 2 and

k ≤ n
2 ,

3. most of coefficients ai are zero, and others are very small (if
possible equal to ±1) compare to p1/n.
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Suitable irreducible polynomials for PMNS
Classical criteria of irreducibility

Proposition (from Dumas’ criterion 1906)

We assume that if there exists a prime µ and an integer α, such
that, µα | a0, µα+1 - a0 and, µdα(n−i)/ne | ai , and gcd(α, n) = 1,
then E (X ) = X n + akX

k + · · ·+ a1X + a0 is irreducible over Z[X ].

For example, E (X ) = X n + µX k + µ is irreducible with this
criterion. If k < n/2 and µ << p1/n, then E (X ) is a suitable
PMNS reduction polynomial.
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Suitable irreducible polynomials for PMNS
Classical criteria of irreducibility

Proposition (from N. C. Bonciocat 2015)

Let E (X ) = X n + akX
k + · · ·+ a1X + a0, a0 6= 0, let t ≥ 2 and let

µ1, . . . , µt be pair-wise distinct prime numbers, and α1, . . . , αt

positive integers. If, for j = 1, . . . , t, and i = 0, . . . , k, µ
αj

j | ai and

µ
αj+1
j - a0, and gcd(α1, . . . , αt , n) = 1 then E (X ) is irreducible

over Z[X ].

For example, E (X ) = X n + µα1
1 µα2

2 X k + µα1
1 µα2

2 with
gcd(α1, α2, n) = 1, is irreducible with this criterion. If k < n/2 and
µα1

1 µα2
2 << p1/n, then E (X ) is a suitable PMNS reduction

polynomial.
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Suitable irreducible polynomials for PMNS
Cyclotomic Polynomials

ClassCyclo(n) the class of suitable cyclotomic polynomials for
PMNS, whose degree is n.

Proposition

ClassCyclo(n) 6= ∅ if and only if, n = 2i3j with i ≥ 1, j ≥ 0.

Hence, suitable cyclotomic polynomials are:

I Φ2i (X ) = X 2i−1
+ 1, thus n = 2i−1 with i ≥ 2,

I Φ3j (X ) = X 2.3j−1
+ X 3j−1

+ 1, thus n = 2.3j−1 with j ∈ N∗,
I Φ2i .3j (X ) = X 2i .3j−1 − X 2i−1.3j−1

+ 1, thus n = 2i .3j−1 for
i , j ∈ N∗.
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Suitable irreducible polynomials for PMNS
{−1, 1}-quadrinomials

Proposition (Finch and Jones 2006)
The quadrinomial X a + βX b + γX c + δ is irreducible over Z[X ], (with

β, γ, δ ∈ {−1, 1} and a > b > c > 0 with gcd(a, b, c) = 2tm, with m odd and they note a′ = a/2t ,

b′ = b/2t and c′ = c/2t . They define a = gcd(a′, b′ − c′), b = gcd(b′, a′ − c′) and c = gcd(c′, a′ − b′))

if and only if, its satisfies one of the following conditions:

1. (β, γ, δ) = (1, 1, 1) and abc ≡ 1 (mod 2)

2. (β, γ, δ) = (−1, 1, 1), b′ − c′ 6≡ 0 (mod 2a), b′ 6≡ 0 (mod 2b) and a′ − b′ 6≡ 0 (mod 2c)

3. (β, γ, δ) = (1,−1, 1), b′ − c′ 6≡ 0 (mod 2a), a′ − c′ 6≡ 0 (mod 2b) and c′ 6≡ 0 (mod 2c)

4. (β, γ, δ) = (1, 1,−1), a′ 6≡ 0 (mod 2a), b′ 6≡ 0 (mod 2b) and c′ 6≡ 0 (mod 2c)

5. (β, γ, δ) = (−1,−1,−1), a′ 6≡ 0 (mod 2a), a′ − c′ 6≡ 0 (mod 2b) and a′ − b′ 6≡ 0 (mod 2c)

For example, E(X ) = X 2t7m + X 2t5m + X 2t3m + 1 is a suitable PMNS reduction
quadrinomial.
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Suitable irreducible polynomials for PMNS
{−1, 1}-trinomials and binomials

Proposition (W. Ljunggren1960, W.H. Mills 1985)

We note gcd(n,m) = d and n = d .n1, m = d .m1. If n1 + m1 6≡ 0
mod 3 then the polynomial X n + βXm + δ with δ, β ∈ {−1, 1} and
n > 2m > 0, is irreducible over Z[X ].

Proposition (N. C. Bonciocat 2015)

We note, c =
∏k

j=1 p
mj

j with pj pair-wise distinct prime numbers,
and mj positive integers.
If gcd(m1, . . . ,mk , n) = 1 then the polynomial X n + c with c ∈ Z,
|c | ≥ 2, is irreducible over Z[X ].
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Suitable irreducible polynomials for PMNS
From Perron irreducibility (N. C. Bonciocat 2010)

Proposition

For a fixed n ≥ 2, a prime µ, and P(X ) = X n +

n/2∑
i=1

εiX
i ± µ with

εi ∈ {−1, 0, 1},

if µ > 1 +

n/2∑
i=1

|εi | then the polynomial P(X ) is irreducible over Z[X ].

Proposition

For a fixed n ≥ 2, and P(X ) = X n +

n/2∑
i=2

εiX
i + a1X ± 1 with

εi ∈ {−1, 0, 1} and a1 ∈ Z∗.

If |a1| > 2 +

n/2∑
i=2

|εi | then the polynomial P(X ) is irreducible over Z[X ].
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Number of PMNS for a given p
General case

Proposition

Let p prime, n > 2, E (X ) a polynomial of degree n and irreducible
in Z[X ], and D(X ) = gcd(X p − X ,E (X )) mod p, there exists
deg(D(X )) Polynomial Modular Number Systems (p, n, γi , ρ)E(X ).

Computation of gcd(X p − X ,E (X )) mod p, in two steps :

1. evaluation of X p mod E (X ) mod p (square/multiply
exponentiation), then of F (X ) = X p − 1 mod E (X ) mod p,

2. evaluation of gcd(F (X ),E (X )) mod p with deg F (X ) < n.

The roots are found by factorising the polynomial
gcd(F (X ),E (X )) mod p.
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Number of PMNS for a given p
Example of a General case

We consider p = 7826474692469460039387400099999297 and E(X ) = X 5 + X 2 + 1.
Then, X p mod E(X ) = 7322126259420098177093985099094624 X 4

+1727826215301243349042222461135262 X 3

+3438841897608126971004523506864410 X 2

+7372958503626664659096728485020295 X
+4167285606168530025180293516680876

Thus, gcd(X p mod E(X )− X ,E(X )) mod p
= X 2 + 1305849998419067291000337897705258 X
+1793073000954204546034194068098826
= (X + 6157699039557809270671068895070912)
(X + 2974625651330718059716669102633643)

Hence, we obtain two roots of E(X ) mod p :
γ1 = 1668775652911650768716331204928385
γ2 = 4851849041138741979670730997365654
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Number of PMNS for a given p
Cyclotomic case

Proposition

Let p > 2 a prime number, and an integer m ≥ 3. If m | (p − 1),
then the cyclotomic polynomial Φm(X ) has ϕ(m) roots over Z/pZ.
(Φm(X ) | (X p−1 − 1) =

∏
ξi∈(Z/pZ)∗ (X − ξi ) )

Corollary
Let p prime, n ≥ 2 such that n = 2i3j , with i , j ∈ N.

• If i > 0, j = 0, and (2 n) divides (p − 1), and E(X ) = Φ2n(X ) = X n + 1,

• If i = 1, j ≥ 0, and (3 n / 2) divides (p − 1), and
E(X ) = Φ 3n

2
(X ) = X n + X

n
2 + 1 ,

• If i ≥ 1, j ≥ 0, and (3 n) divides (p − 1), and
E(X ) = Φ3n(X ) = X n − X

n
2 + 1,

then, there exist n PMNS (p, n, γi , ρ)E(X ) , with γi one of the n distinct roots
modulo p of E(X ) .
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Number of PMNS for a given p
Example of Cyclotomic cases

Construction PMNS from a cyclotomic reduction polynomial for
p = 2256.3157.115 + 1 coded on 512 bits.

I E (X ) = X 8 + 1, from the 8 roots, the best ρ is obtained with
our approach (with Corollary-6 and Corollary-7) and is 66 bits
long.

I E (X ) = X 6 + X 3 + 1, from the six roots, the best ρ is
obtained two times with LLL, else with Corollary-6 and
Corollary-7, and is 87 bits long.

I E (X ) = X 6 − X 3 + 1, from the six roots, the best ρ is
obtained with Corollary 6 and Corollary 7, and is 87 bits long.
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Number of PMNS for a given p
Example of a General case

p =57896044618658097711785492504343953926634992332820282019728792003956566811073

a 256-bits prime, and n = 9.
We consider PMNS B = (p, n, γ, ρ)E such that:

I E(X ) = X n + akX
k + · · ·+ a1X + a0 ∈ Z[X ], with n ≥ 2 and k ≤ n

2
,

I coefficients |ai | ≤ 1 for 1 ≤ i ≤ k and |a0| ≤ 3

I ρ ≤ 231

The number of PMNS B = (p, n, γ, ρ)E is equal to 354.
Most of the time, the best ρ is obtained first by LLL (266 times) or BKZ (46),
some are due to Corollary-6 (10) or with Corollary-7 (28), or Proposition-5 (4)
with a short vector.
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PMNS Coefficient Reduction
Montgomery approach

B = (p, n, γ, ρ)E a PMNS, and αE such that, with deg(A(X )) < 2n,

‖A(X ) mod E(X )‖∞ < αE‖A(X )‖∞. Let V a non-null vector of L.

If ‖V ‖∞ < 1
2nαE

ρ and there exists V ′(X ) =
(
−V−1(X ) mod E(X )

)
mod 2l ,

then, for A(X ) with coefficients smaller than 2l−1ρ:

1. Q(X )← ((A(X )V ′(X )) mod E(X )) mod 2l

2. T (X )← Q(X )V (X ) mod E(X ) (thus T ∈ L and ‖T‖∞ < 2l−1ρ)

3. R(X ) = A(X ) + T (X ) (thus R(X ) multiple of 2l )

4. S(X ) = R(X )/2l (thus ‖S‖∞ < ρ)

with S(γ) ≡ A(γ)2−l (mod p)

If nρ < 2l there exists G(X ) such that G(γ) ≡ 22l (mod p) and ‖G‖∞ < ρ,

then G(γ)S(γ) ≡ 2lA(γ) (mod p) and F (X ) = G(X )S(X ) mod E(X ) is such

that ‖F‖∞ < 2l−1ρ.
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PMNS Coefficient Reduction
With 2k = F (γ) mod p

Find a B = (p, n, γ, ρ)E such that 2k = F (γ) mod p with
‖F‖∞ < 2εF and #(non-null coeff of F) < 2β

We note εE , the integer such that ‖C(X ) mod E(x)‖∞ < 2εE ‖C(X )‖∞
We consider A(X ) with ‖A(X )‖∞ < 2k+t

do
1. We split A(X )→ A1(X )2k + A0(X )

with ‖A1(X )‖∞ < 2t and ‖A0(X )‖∞ < 2k

2. A(X )← (A1(X )F (X ) mod E(X )) + A0(X )

with ‖A(X )‖∞ < 2t+β+εF +εE

until ‖A(X )‖∞ < 2k

If (β + εF + εE ) < k then the algorithm converges.



41/44

PMNS Coefficient Reduction
Example of a pecific case approach (Plantard’s PhD)

Find a B = (p, n, γ, ρ)E such that 2k = F (γ) mod p with
‖F‖∞ < ε

I The construction of the system giving some features: n = 8,
and ρ = 232 with p < ρn determine the size of the problem.

I The property γ8 ≡ 2 (mod p) for the polynomial reduction.

I The coefficient reduction is given by 232 ≡ γ5 + 1 (mod p)

Thus V = 232V1 + V0 = 232Id .V1 + V0 ≡ M.V1 + V0 (mod p) with

M =



1 0 0 0 0 1 0 0
0 1 0 0 0 0 1 0
0 0 1 0 0 0 0 1
2 0 0 1 0 0 0 0
0 2 0 0 1 0 0 0
0 0 2 0 0 1 0 0
0 0 0 2 0 0 1 0
0 0 0 0 2 0 0 1


≡



232 0 0 0 0 0 0 0

0 232 0 0 0 0 0 0

0 0 232 0 0 0 0 0

0 0 0 232 0 0 0 0

0 0 0 0 232 0 0 0

0 0 0 0 0 232 0 0

0 0 0 0 0 0 232 0

0 0 0 0 0 0 0 232


(mod p)
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PMNS Coefficient Reduction
Specific case approach

Remarks and construction

I 232Id −M = 0 mod p defines a lattice.

I p divides det (232Id −M), a factorization gives:
p = 115792089021636622262124715160334756877804245386980633020041035952359812890593

which corresponds to the expected size.

I The value of γ is deduced as a solution of
gcd(X 8 − 2, 232 − X 5 − 1) modulo p:
γ = 14474011127704577782765589395224532314179217058921488395049827733759590399996

I Generally, M is found with coefficients lower than
2k/2(∼ √ρ), which means that three rounds are sufficient.
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Conclusions

I We observe that irreducible polynomials give better PMNS
than non-irreducible ones.

I Coefficient reduction is equivalent to the research of a close
vector.

I Is it possible to find an efficient algorithm for these specific
lattices??

I Is a round-off Babai sufficient ?? Could we adapt the nearest
plan approach?

I Find an ad hoc method like when a power of two has a
”good” PMNS representation??

I How construct easily reduced bases for the norm-1 without
the help of LLL family algorithms ??
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