# On Polynomial Modular Number Systems over $\mathbb{Z}/p\mathbb{Z}$

#### Jean Claude Bajard

joint work with Jérémy Marrez, Thomas Plantard and Pascal Véron

#### MACAO - Inria - University of Wollongong 2019 Mathematics and Algorithms for Cryptographic Advanced Objects





## Outline

Some Background on Pseudo-Mersenne Numbers

Polynomial Modular Number System

Existence and bounds of PMNS

Suitable irreducible polynomials for PMNS

Number of PMNS for a given p

**PMNS** Coefficient Reduction

Conclusions and Perspectives





On Polynomial Modular Number Systems over  $\mathbb{Z}/p\mathbb{Z}$ 

#### Some Background on Pseudo-Mersenne Numbers

Polynomial Modular Number System

Existence and bounds of PMNS

Suitable irreducible polynomials for PMNS

Number of PMNS for a given p

**PMNS** Coefficient Reduction

**Conclusions and Perspectives** 





## Some Background on Pseudo-Mersenne Numbers

Classical Positional Number System β ∈ N and β ≥ 2, a ∈ N with a < β<sup>m</sup>, there exists an unique sequence of integers (a<sub>i</sub>)<sub>i=0...m-1</sub>, such that , a = ∑<sub>i=0</sub><sup>m-1</sup> a<sub>i</sub>β<sup>i</sup>, with a<sub>i</sub> ∈ N, 0 ≤ a<sub>i</sub> < β.</li>
Specific Modular Reduction Let p ∈ N, β<sup>n-1</sup> ≤ p < β<sup>n</sup>, β<sup>n</sup> ≡ δ (mod p), with δ < p, do</li>

1. 
$$a \to a_0 + \beta^n a_1$$
 with  $a_0, a_1 < \beta^n$   
2.  $a \leftarrow a_0 + \delta a_1$   
until  $a < \beta^n$   
(if  $\delta \le \beta^{\frac{1}{2}n}$  then two iterations give  $a < 2\beta^n - \beta^{\frac{1}{2}n} - 1$ , if necessary, a  
last subtraction of  $(\beta^n - \delta)$  gives  $a < \beta^n$ )



## Some Background on Pseudo-Mersenne Numbers Polynomial approach

Since,  $\beta^n - \delta \equiv 0 \pmod{p}$ , then  $\beta$  is a root of the polynomial  $E(X) = X^n - \Delta(X) \mod{p}$ ,

where  $\Delta(\beta) \equiv \delta \pmod{p}$ , with deg  $\Delta(X) = d < n$  and  $\|\Delta(X)\|_{\infty} < \beta$ .

**Reduction modulo** *p* is computed in two steps:

- 1. polynomial reduction :  $C(X) = A(X) \mod E(X)$
- 2. coefficients reduction :  $C'(\beta) \equiv C(\beta) \pmod{p}$  with C'(X) of degree lower than *n* and coefficients smaller than  $\beta$

#### The polynomial reduction looks like:

1. 
$$C(X) \leftarrow A(X)$$
  
2. **do**  $C(X) \leftarrow \Delta(X) \times \sum_{i=n}^{m-1} c_i X^{i-n} + \sum_{i=0}^{n-1} c_i X^i$ , degree decreases of  $(n-d)$   
**until** deg  $C(X) \le n-1$   
Thus, if deg  $C(X) \le 2n$  and deg  $\Delta(X) \le n/2$ , then deg  $C(X) \le n-1$  in two steps notes

## Some Background on Pseudo-Mersenne Numbers Polynomial approach

Let t be the smallest integer such that  $||C(X)||_{\infty} < \beta^t$ .

The **coefficient reduction** could look like: **Do** 

1. 
$$C(X) \leftarrow \sum_{i=0}^{t-1} C_i(X)\beta^i$$
,  
2.  $C(X) \leftarrow \sum_{i=0}^{t-1} C_i(X)X^i$ ,

with  $C_i$ 's coefficients smaller than  $\beta$ 

with deg 
$$\mathcal{C}(X) < t+n$$
 and  $\|\mathcal{C}(X)\|_{\infty} < teta$ 

3. Polynomial reduction of C(X),

Until t = 1

This can be seen as a carry propagation.





## Some Background on Pseudo-Mersenne Numbers Lattices approach

The coefficient reduction can be seen as the subtraction of a close vector in the lattice defined by:

$$\mathbf{A} = \begin{pmatrix} p & 0 & \dots & \dots & 0 & 0 \\ -\beta & 1 & \dots & \dots & 0 & 0 \\ \vdots & \ddots & \ddots & & \vdots \\ 0 & \dots & -\beta & 1 & \dots & 0 \\ \vdots & & \ddots & \ddots & \vdots \\ 0 & 0 & \dots & \dots & -\beta & 1 \end{pmatrix} \text{ or } \begin{pmatrix} p & 0 & 0 & \dots & 0 & 0 \\ -\beta & 1 & 0 & \dots & 0 & 0 \\ \vdots & & \ddots & & \vdots \\ -\beta^{i} & \dots & 0 & 1 & \dots & 0 \\ \vdots & & & \ddots & \ddots & \vdots \\ -\beta^{n-1} & 0 & \dots & \dots & 0 & 1 \end{pmatrix}$$

The first vector (p, 0, ..., 0, 0) represents the modulo p reduction. Vectors like  $(0, ..., -\beta, 1, ..., 0)$  represent the carry propagation.



## Some Background on Pseudo-Mersenne Numbers Lattices approach

When we consider  $\beta^n - \delta \equiv 0 \pmod{p}$ , we can replace  $(p, 0, \ldots, 0, 0)$  is replaced by  $(\delta_0, \delta_1, \ldots, \delta_{n-2}, \delta_{n-1} - \beta)$  thus we obtain a sub-lattice with a reduced base.

$$\mathbf{A}' = \begin{pmatrix} \delta_0 & \delta_1 & \dots & \dots & \delta_{n-2} & \delta_{n-1} - \beta \\ -\beta & 1 & \dots & \dots & 0 & 0 \\ \vdots & \ddots & \ddots & & \vdots \\ 0 & \dots & -\beta & 1 & \dots & 0 \\ \vdots & & \ddots & \ddots & \vdots \\ 0 & 0 & \dots & \dots & -\beta & 1 \end{pmatrix}$$



On Polynomial Modular Number Systems over  $\mathbb{Z}/p\mathbb{Z}$ 

Some Background on Pseudo-Mersenne Numbers

Polynomial Modular Number System

Existence and bounds of PMNS

Suitable irreducible polynomials for PMNS

Number of PMNS for a given p

PMNS Coefficient Reduction

**Conclusions and Perspectives** 





# Polynomial Modular Number System

## Definition

## A Polynomial Modular Number System (PMNS) is defined by

- a quadruple  $(p, n, \gamma, \rho)$  and
- ▶ a monic polynomial of degree *n*,  $E(X) \in \mathbb{Z}[X]$ , such that  $E(\gamma) \equiv 0 \pmod{p}$
- ► for each integer x in  $\{0, ..., p-1\}$ , there exists  $(x_0, ..., x_{n-1})$ with  $x \equiv \sum_{i=0}^{n-1} x_i \gamma^i \pmod{p}$ ,  $x_i \in \mathbb{N}$ ,  $-\rho < x_i < \rho$ , and  $0 < \gamma < p$ ,

#### Proposition

Ínnía\_

If 
$$\mathfrak{B} = (p, n, \gamma, \rho)_{\mathsf{E}}$$
 is a PMNS, then  $p \leq (2\rho - 1)^n$ .



## Polynomial Modular Number System

Example: p = 31, n = 4,  $\gamma = 15$ ,  $\gamma^4 \equiv 2 \pmod{p}$ , and  $\rho = 2$ 

| $\frac{1}{1}$ $\frac{1}$ |                 |                 |                 |                 |                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------|-----------------|-----------------|------------------|
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1               | 2               | 3               | 4               | 5                |
| (0, 0, 0, 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (1, 0, 0, 0)    | (-1, 1, -1, 1)  | (-1, -1, -1, 1) | (0, -1, -1, 1)  | (1, -1, -1, 1)   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |                 | (-1, 0, 0, -1)  | (0, 0, 0, -1)   | (1, 0, 0, -1)    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |                 | (-1, 0, 1, 1)   | (0, 0, 1, 1)    | (1, 0, 1, 1)     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |                 | (0, 1, -1, 1)   | (1, 1, -1, 1)   |                  |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7               | 8               | 9               | 10              | 11               |
| (-1, 1, -1, 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (-1, -1, -1, 0) | (0, -1, -1, 0)  | (1, -1, -1, 0)  | (-1, 1, -1, -1) | (-1, -1, -1, -1) |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (-1, 0, 1, 0)   | (0, 0, 1, 0)    | (1, 0, 1, 0)    | (-1, 1, 0, 1)   | (-1, -1, 0, 1)   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (0, 1, -1, 0)   | (1, 1, -1, 0)   |                 |                 | (-1, 0, 1, -1)   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |                 |                 |                 | (0, 1, -1, -1)   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |                 |                 |                 | (0, 1, 0, 1)     |
| 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 13              | 14              | 15              | 16              | 17               |
| (0, -1, -1, -1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (1, -1, -1, -1) | (-1, 1, 0, 0)   | (-1, -1, 0, 0)  | (0, -1, 0, 0)   | (1, -1, 0, 0)    |
| (0, -1, 0, 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (1, -1, 0, 1)   |                 | (0, 1, 0, 0)    | (1, 1, 0, 0)    |                  |
| (0, 0, 1, -1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (1, 0, 1, -1)   |                 |                 |                 |                  |
| (1, 1, -1, -1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |                 |                 |                 |                  |
| (1, 1, 0, 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |                 |                 |                 |                  |
| 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 19              | 20              | 21              | 22              | 23               |
| (-1, 0, -1, 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (-1, -1, 0, -1) | (0, -1, 0, -1)  | (1, -1, 0, -1)  | (-1, 0, -1, 0)  | (-1, -1, 1, 0)   |
| (-1, 1, 0, -1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (-1, -1, 1, 1)  | (0, -1, 1, 1)   | (1, -1, 1, 1)   | (-1, 1, 1, 0)   | (0, 0, -1, 0)    |
| (-1, 1, 1, 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (0, 0, -1, 1)   | (1, 0, -1, 1)   |                 |                 | (0, 1, 1, 0)     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (0, 1, 0, -1)   | (1, 1, 0, -1)   |                 |                 |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (0, 1, 1, 1)    | (1, 1, 1, 1)    |                 |                 |                  |
| 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 25              | 26              | 27              | 28              | 29               |
| (0, -1, 1, 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (1, -1, 1, 0)   | (-1, 0, -1, -1) | (-1, -1, 1, -1) | (0, -1, 1, -1)  | (1, -1, 1, -1)   |
| (1, 0, -1, 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 | (-1, 0, 0, 1)   | (0, 0, -1, -1)  | (1, 0, -1, -1)  |                  |
| (1, 1, 1, 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 | (-1, 1, 1, -1)  | (0, 0, 0, 1)    | (1, 0, 0, 1)    |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |                 | (0, 1, 1, -1)   | (1, 1, 1, -1)   |                  |
| 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 |                 |                 |                 |                  |
| (-1, 0, 0, 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6               |                 |                 |                 | SCIENCES         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | in -            |                 | 6               | J-PRG           | SORBONNĘ         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | m               | ÷               |                 |                 |                  |

## Polynomial Modular Number System Remarks

- 1. PMNS looks like a positional system, but is not.  $(\gamma^i \mod p) < (\gamma^{i+1} \mod p)$  is not always true anymore.
- For every quadruple (p, n, γ, ρ), there exists a polynomial E(X) ∈ Z[X] satisfying E(γ) ≡ 0 mod p and deg E(X) = n: for example E(X) = X<sup>n</sup> (γ<sup>n</sup> mod p).
- 3. If  $p < (2\rho 1)^n$ , then the representation is redundant (i.e., some values can have more than one representation).
- 4. If  $\mathfrak{B} = (p, n, \gamma, \rho)_E$  is a PMNS, so is  $\mathfrak{B}' = (p, n, \gamma, \rho + 1)_E$ .
- 5. Given  $p, n, \gamma, E$ , there exists a minimal  $\rho$  which defines a PMNS  $\mathfrak{B} = (p, n, \gamma, \rho)_E$ .



## Polynomial Modular Number System Question

**The question, for** *p* **and** *n* **given**, Which polynomials E(X)

-i) offer an efficient modular reduction?

- -ii) have a large number of roots  $\gamma$  in  $\mathbb{Z}/p\mathbb{Z}$ ?
- -iii) allow to have  $\rho$  as small as possible?





On Polynomial Modular Number Systems over  $\mathbb{Z}/p\mathbb{Z}$ 

Some Background on Pseudo-Mersenne Numbers

Polynomial Modular Number System

Existence and bounds of PMNS

Suitable irreducible polynomials for PMNS

Number of PMNS for a given p

PMNS Coefficient Reduction

**Conclusions and Perspectives** 





## Existence and bounds of PMNS PMNS and lattices

We consider the lattice  $\mathfrak{L}$  over  $\mathbb{Z}^n$  of the polynomials of degree at most n-1, for which,  $\gamma$  is a root modulo p.

$$\mathbf{A} = \begin{pmatrix} p & 0 & \dots & \dots & 0 & 0 \\ -\gamma & 1 & \dots & \dots & 0 & 0 \\ \vdots & \ddots & \ddots & & \vdots \\ 0 & \dots & -\gamma & 1 & \dots & 0 \\ \vdots & & \ddots & \ddots & \vdots \\ 0 & 0 & \dots & \dots & -\gamma & 1 \end{pmatrix} \text{ or } \begin{pmatrix} p & 0 & 0 & \dots & 0 & 0 \\ -\gamma & 1 & 0 & \dots & 0 & 0 \\ \vdots & & \ddots & & \vdots \\ -\gamma^{i} & \dots & 0 & 1 & \dots & 0 \\ \vdots & & & \ddots & \ddots & \vdots \\ -\gamma^{n-1} & 0 & \dots & \dots & 0 & 1 \end{pmatrix}$$

The fundamental volume of  $\mathfrak{L}$  is det  $\mathbf{A} = p$ .

PMNS and lattices

#### Theorem

Let  $p \ge 2$  and  $n \ge 2$  two integers, E(X) a polynomial of degree nin  $\mathbb{Z}[X]$  and  $\gamma$  be a root of E(X) in  $\mathbb{Z}/p\mathbb{Z}$ . Let r be the covering radius of the lattice  $\mathfrak{L}$ , if  $\rho > r$ , then  $\mathfrak{B} = (p, n, \gamma, \rho)_E$  is a Polynomial Modular Number System.

#### Proof.

The covering radius r of  $\mathfrak{L}$  is the smallest number, such that the balls  $\mathcal{B}_V = \{T \in \mathbb{R}^n, \|T - V\|_2 \le r\}$  centered on any point  $V \in \mathfrak{L}$ , cover the space  $\mathbb{R}^n$ . In other words, for any  $T \in \mathbb{R}^n$  there exists  $V \in \mathfrak{L}$  such that  $\|T - V\|_{\infty} \le \|T - V\|_2 \le r$ . Thus for any  $T \in \mathbb{R}^n$  there exists  $V \in \mathfrak{L}$ , such that  $T - V \in \mathcal{C}_O, \ \mathcal{C}_O = \{T \in \mathbb{R}^n, \|T\|_{\infty} \le r\}.$ 



Lattice's bases and PMNS

#### Theorem

Let  $B = \{B_0, \ldots, B_{n-1}\}$  a base of  $\mathfrak{L}$ , and **B** the matrix associated such that,  $B_i$  represents the *i*<sup>th</sup> row., with  $B_i = (b_{i,0}, \ldots, b_{i,n-1})$ , thus  $b_{i,j}$  represents the coefficient of the *i*th row, *j*<sup>th</sup> column.

If 
$$\rho > \frac{1}{2} \|\mathbf{B}\|_{1}$$
,  $(\|\mathbf{B}\|_{1} = \max_{j} \left\{ \sum_{i=0}^{n-1} |b_{i,j}| \right\}$ ), then  $\mathfrak{B} = (p, n, \gamma, \rho)_{E}$ 

is a Polynomial Modular Number System.

#### Proof.

Innin

Let  $S \in \mathbb{R}^n$ , we search a close vector  $T \in \mathfrak{L}$  using a Babaï round-off approach.We have,  $T = \mathbf{B}^T . \lfloor (\mathbf{B}^T)^{-1} . S \rceil$ .  $S = \mathbf{B}^T . (\mathbf{B}^T)^{-1} . S = T + \mathbf{B}^T . \operatorname{frac} ((\mathbf{B}^T)^{-1} . S)$  with  $\left\| \operatorname{frac} ((\mathbf{B}^T)^{-1} . S) \right\|_{\infty} \le \frac{1}{2}$ Then  $\|S - T\|_{\infty} = \|\mathbf{B}^T . \operatorname{frac} ((\mathbf{B}^T)^{-1} . S)\|_{\infty} \le \frac{1}{2} \|\mathbf{B}^T\|_{\infty} = \frac{1}{2} \|\mathbf{B}\|_1$ .



J-PRG

Irreducible polynomials and PMNS

Let  $E(X) = X^n + a_{n-1}X^{n-1} + \cdots + a_1X + a_0$ , and let **C** be the companion matrix of E(X):

$$\mathbf{C} = egin{pmatrix} 0 & 1 & 0 & \dots & 0 & 0 \ 0 & 0 & 1 & \dots & 0 & 0 \ dots & dots$$

Let  $V = (v_0, ..., v_{n-1})$  the vector representing the coefficient of the polynomial  $V(X) = \sum_{i=0}^{n-1} v_i X^i$ , then  $V.\mathbf{C}$  is the vector whose coordinates are the coefficients of the polynomial  $X.V(X) \mod E(X)$ .



Irreducible polynomials and PMNS

#### Proposition

Let V a non-null vector of  $\mathfrak{L}$ , the lattice of rank n defined by **A**. Let **B** the  $n \times n$  matrix whose  $i^{th}$  row is the vector  $B_i$  such that  $B_i = V.\mathbf{C}^i$  (with polynomial  $B_i(X) = X^i.V(X) \mod E(X)$ ). If V(X) is inversible modulo E(X) then:

▶ the matrix **B** defines a sublattice  $\mathfrak{L}' \subseteq \mathfrak{L}$  of rank *n* (i.e.  $B = (B_0, \ldots, B_{n-1})$  is a base of  $\mathfrak{L}'$ ),

$$\blacktriangleright$$
 and  $V \in \mathfrak{L}'$ .

#### Proof.

The  $B_i$  are linearly independent. Indeed, let us suppose that there exists a non nul vector  $(t_0, t_1, \ldots, t_{n-1}) \in \mathbb{Z}^n$  such that  $\sum_{i=0}^{n-1} t_i B_i = 0$ . It means that  $\sum_{i=0}^{n-1} t_i X^i V(X) = 0 \mod E(X)$ , or equivalently  $T(X)V(X) = 0 \mod E(X)$ , with  $T(X) = \sum_{i=0}^{n-1} t_i X^i$ . Then  $T(X)V(X)V^{-1}(X) \mod E(X) = T(X) = 0$ , since V(X) is inversible modulo E(X) and degree of T(X) is at most n-1. Hence the rows of **B** are a base of a sublattice  $\mathcal{C}' \subseteq \mathcal{L}$  of rank and  $V \in \mathcal{C}$ . The sublattice  $\mathcal{C}' \subseteq \mathcal{L}$  of rank and  $V \in \mathcal{C}$ .

Irreducible polynomials and PMNS

### Corollary

Let V a non-null vector of  $\mathfrak{L}$ , the lattice of rank n defined by **A**. If E(X) is irreducible, then

- V can define a sublattice  $\mathfrak{L}' \subseteq \mathfrak{L}$  of rank n,
- and  $V \in \mathfrak{L}'$ .

#### **Proof.** If E(X) is irreducible, then V(X) is inversible and Proposition 5 gives $B = (B_0, ..., B_{n-1})$ a base of $\mathcal{L}', \mathcal{L}' \subseteq \mathcal{L}$ of rank *n*, and $V \in \mathcal{L}'$ .



Irreducible polynomials and PMNS

#### Corollary

Let  $\mathfrak{L}$ , the lattice of rank *n* given by  $\mathbf{A}$ , and let the lattice  $\mathfrak{L}_D$  of rank *n* in  $\mathbb{Z}^{n^2}$  defined by  $\mathbf{D} = (\mathbf{A}|\mathbf{A}.\mathbf{C}^1|\cdots|\mathbf{A}.\mathbf{C}^{n-1})$ , then for any  $\overline{V} = (V_0, V_1, ..., V_{n-1}) \in \mathfrak{L}_D$  such that  $\overline{V} \neq (0)^{n^2}$ : If E(X) is irreducible then:

- 1.  $V_0 \in \mathfrak{L}$ ,
- 2.  $(V_0, V_1, ..., V_{n-1})$  is a base of  $\mathfrak{L}' \subseteq \mathfrak{L}$ .

#### Proof.

 $V_0$  is a linear combination of rows of **A**, hence it belongs to  $\mathfrak{L}$ . Next, since  $V_i = V_0.\mathbf{C}^i$ , for all  $i \ge 1$ , then, due to Corollary 6, the vector  $(V_0, V_1, ..., V_{n-1})$  is a base of a sublattice  $\mathfrak{L}' \subseteq \mathfrak{L}$ .

Hence, a strategy is to choose a vector  $(V_0, V_1, ..., V_{n-1})$  of  $\mathcal{L}_D$  and to build the base B of  $\mathcal{L}$  from with  $\|\mathbf{B}\|_{\mathbf{H}^{-1}$  as small as possible cess invita

### Existence and bounds of PMNS Remarks

- For any p and n there exist E(X) monic of degree n, with γ as root, and ρ such that 𝔅 = (p, n, γ, ρ)<sub>E</sub> is a PMNS. (for example E(X) = X<sup>n</sup> − (γ<sup>n</sup> mod p))
- Then, a L the lattice of rank n can be defined by A depending of p, n and γ.
- If E(X) is irreducible and V ∈ L then we can construct easily a "reduced" base B of L.
- Thus, one goal is to find a base B of L with ||B||<sub>1</sub> as small as possible, to give interesting bounds of ρ.



Example with  $ho \sim 2^{256}$  and  $ho < 2^{33}$ 

p = 112848483075082590657416923680536930196574208889254960005437791530871071177777 $n = 8, E(X) = X^8 + X^2 + X + 1,$ 

$$\begin{split} \gamma =& 14916364465236885841418726559687117741451144740538386254842986662265545588774\\ \text{LLL:} \qquad \|\mathbf{B}\|_1 = 16940155314 \quad \text{BKZ:} \qquad \|\mathbf{B}\|_1 = 15289909984 \end{split}$$

Cor. 6 :  $\|\mathbf{B}\|_1 = 13881325101$  Cor. 7, :  $\|\mathbf{B}\|_1 = 12883199915$ 

p = 96777329138546418411606037850670691916278980249035796845487391462163262877831 $n = 8, E(X) = X^8 + 6,$ 

$$\begin{split} \gamma =& 5538274654329514802181726618906590237936295237553666062542808070676484572674\\ \text{LLL:} \quad \left\| \mathbf{B} \right\|_1 = \mathbf{12509178620} \quad \text{BKZ:} \quad \left\| \mathbf{B} \right\|_1 = \mathbf{12509178620}\\ \text{Cor. 6:} \quad \left\| \mathbf{B} \right\|_1 = 47611052126 \quad \text{Cor. 7:} \quad \left\| \mathbf{B} \right\|_1 = 40733847267 \end{split}$$









On Polynomial Modular Number Systems over  $\mathbb{Z}/p\mathbb{Z}$ 

Some Background on Pseudo-Mersenne Numbers

Polynomial Modular Number System

Existence and bounds of PMNS

Suitable irreducible polynomials for PMNS

Number of PMNS for a given p

PMNS Coefficient Reduction

**Conclusions and Perspectives** 





## Definition

A monic polynomial E(X) is a suitable PMNS reduction polynomial, if:

- 1. E(X) is irreducible in  $\mathbb{Z}[X]$ ,
- 2.  $E(X) = X^n + a_k X^k + \dots + a_1 X + a_0 \in \mathbb{Z}[X]$ , with  $n \ge 2$  and  $k \le \frac{n}{2}$ ,
- 3. most of coefficients  $a_i$  are zero, and others are very small (if possible equal to  $\pm 1$ ) compare to  $p^{1/n}$ .



Classical criteria of irreducibility

## Proposition (from Dumas' criterion 1906)

We assume that if there exists a prime  $\mu$  and an integer  $\alpha$ , such that,  $\mu^{\alpha} \mid a_0, \ \mu^{\alpha+1} \nmid a_0$  and,  $\mu^{\lceil \alpha(n-i)/n \rceil} \mid a_i$ , and  $gcd(\alpha, n) = 1$ , then  $E(X) = X^n + a_k X^k + \cdots + a_1 X + a_0$  is irreducible over  $\mathbb{Z}[X]$ .

For example,  $E(X) = X^n + \mu X^k + \mu$  is irreducible with this criterion. If k < n/2 and  $\mu << p^{1/n}$ , then E(X) is a suitable PMNS reduction polynomial.





Classical criteria of irreducibility

Proposition (from N. C. Bonciocat 2015)

Let  $E(X) = X^n + a_k X^k + \dots + a_1 X + a_0$ ,  $a_0 \neq 0$ , let  $t \geq 2$  and let  $\mu_1, \dots, \mu_t$  be pair-wise distinct prime numbers, and  $\alpha_1, \dots, \alpha_t$  positive integers. If, for  $j = 1, \dots, t$ , and  $i = 0, \dots, k$ ,  $\mu_j^{\alpha_j} \mid a_i$  and  $\mu_j^{\alpha_j+1} \nmid a_0$ , and  $gcd(\alpha_1, \dots, \alpha_t, n) = 1$  then E(X) is irreducible over  $\mathbb{Z}[X]$ .

For example,  $E(X) = X^n + \mu_1^{\alpha_1} \mu_2^{\alpha_2} X^k + \mu_1^{\alpha_1} \mu_2^{\alpha_2}$  with  $gcd(\alpha_1, \alpha_2, n) = 1$ , is irreducible with this criterion. If k < n/2 and  $\mu_1^{\alpha_1} \mu_2^{\alpha_2} << p^{1/n}$ , then E(X) is a suitable PMNS reduction polynomial.



# Suitable irreducible polynomials for PMNS Cyclotomic Polynomials

ClassCyclo(n) the class of suitable cyclotomic polynomials for PMNS, whose degree is n.

#### Proposition

 $ClassCyclo(n) \neq \emptyset$  if and only if,  $n = 2^i 3^j$  with  $i \ge 1, j \ge 0$ .

Hence, suitable cyclotomic polynomials are:

• 
$$\Phi_{2^{i}}(X) = X^{2^{i-1}} + 1$$
, thus  $n = 2^{i-1}$  with  $i \ge 2$ ,  
•  $\Phi_{3^{j}}(X) = X^{2\cdot3^{j-1}} + X^{3^{j-1}} + 1$ , thus  $n = 2\cdot3^{j-1}$  with  $j \in \mathbb{N}^{*}$ ,  
•  $\Phi_{2^{i}\cdot3^{j}}(X) = X^{2^{i}\cdot3^{j-1}} - X^{2^{i-1}\cdot3^{j-1}} + 1$ , thus  $n = 2^{i}\cdot3^{j-1}$  for  
 $i, j \in \mathbb{N}^{*}$ .



# Suitable irreducible polynomials for PMNS $\{-1,1\}$ -quadrinomials

#### Proposition (Finch and Jones 2006)

The quadrinomial  $X^a + \beta X^b + \gamma X^c + \delta$  is irreducible over  $\mathbb{Z}[X]$ , (with  $\beta, \gamma, \delta \in \{-1, 1\}$  and a > b > c > 0 with  $gcd(a, b, c) = 2^t m$ , with m odd and they note  $a' = a/2^t$ ,  $b' = b/2^t$  and  $c' = c/2^t$ . They define  $\overline{a} = gcd(a', b' - c')$ ,  $\overline{b} = gcd(b', a' - c')$  and  $\overline{c} = gcd(c', a' - b')$ ) if and only if, its satisfies one of the following conditions:

1. 
$$(\beta, \gamma, \delta) = (1, 1, 1) \text{ and } \overline{abc} \equiv 1 \pmod{2}$$
  
2.  $(\beta, \gamma, \delta) = (-1, 1, 1), b' - c' \neq 0 \pmod{2\overline{a}}, b' \neq 0 \pmod{2\overline{b}} \text{ and } a' - b' \neq 0 \pmod{2\overline{c}}$   
3.  $(\beta, \gamma, \delta) = (1, -1, 1), b' - c' \neq 0 \pmod{2\overline{a}}, a' - c' \neq 0 \pmod{2\overline{b}} \text{ and } c' \neq 0 \pmod{2\overline{c}}$   
4.  $(\beta, \gamma, \delta) = (1, 1, -1), a' \neq 0 \pmod{2\overline{a}}, b' \neq 0 \pmod{2\overline{b}} \text{ and } c' \neq 0 \pmod{2\overline{c}}$   
5.  $(\beta, \gamma, \delta) = (-1, -1, -1), a' \neq 0 \pmod{2\overline{a}}, a' - c' \neq 0 \pmod{2\overline{b}} \text{ and } a' - b' \neq 0 \pmod{2\overline{c}}$ 

For example,  $E(X) = X^{2^{t_{7m}}} + X^{2^{t_{5m}}} + X^{2^{t_{3m}}} + 1$  is a suitable PMNS reduction quadrinomial.



 $\{-1,1\}$ -trinomials and binomials

#### Proposition (W. Ljunggren1960, W.H. Mills 1985)

We note gcd(n, m) = d and  $n = d.n_1$ ,  $m = d.m_1$ . If  $n_1 + m_1 \not\equiv 0$ mod 3 then the polynomial  $X^n + \beta X^m + \delta$  with  $\delta, \beta \in \{-1, 1\}$  and n > 2m > 0, is irreducible over  $\mathbb{Z}[X]$ .

#### Proposition (N. C. Bonciocat 2015)

We note,  $c = \prod_{j=1}^{k} p_j^{m_j}$  with  $p_j$  pair-wise distinct prime numbers, and  $m_j$  positive integers. If  $gcd(m_1, \ldots, m_k, n) = 1$  then the polynomial  $X^n + c$  with  $c \in \mathbb{Z}$ ,  $|c| \ge 2$ , is irreducible over  $\mathbb{Z}[X]$ .



## Suitable irreducible polynomials for PMNS From Perron irreducibility (N. C. Bonciocat 2010)

#### Proposition

For a fixed  $n \ge 2$ , a prime  $\mu$ , and  $P(X) = X^n + \sum_{i=1}^{n/2} \varepsilon_i X^i \pm \mu$  with  $\varepsilon_i \in \{-1, 0, 1\}$ , if  $\mu > 1 + \sum_{i=1}^{n/2} |\varepsilon_i|$  then the polynomial P(X) is irreducible over  $\mathbb{Z}[X]$ .

Proposition

For a fixed  $n \ge 2$ , and  $P(X) = X^n + \sum_{i=2}^{n/2} \varepsilon_i X^i + a_1 X \pm 1$  with  $\varepsilon_i \in \{-1, 0, 1\}$  and  $a_1 \in \mathbb{Z}^*$ . If  $|a_1| > 2 + \sum_{i=2}^{n/2} |\varepsilon_i|$  then the polynomial P(X) is irreducible over  $\mathbb{Z}[X]$ . For a fixed  $n \ge 2$ , and  $P(X) = X^n + \sum_{i=2}^{n/2} \varepsilon_i X^i + a_1 X \pm 1$  with  $\varepsilon_i \in \{-1, 0, 1\}$  and  $a_1 \in \mathbb{Z}^*$ . If  $|a_1| > 2 + \sum_{i=2}^{n/2} |\varepsilon_i|$  then the polynomial P(X) is irreducible over  $\mathbb{Z}[X]$ . For a fixed  $n \ge 2$ , and  $P(X) = X^n + \sum_{i=2}^{n/2} \varepsilon_i X^i + a_1 X \pm 1$  with  $\varepsilon_i \in \{-1, 0, 1\}$  and  $a_1 \in \mathbb{Z}^*$ . If  $|a_1| > 2 + \sum_{i=2}^{n/2} |\varepsilon_i|$  then the polynomial P(X) is irreducible over  $\mathbb{Z}[X]$ . On Polynomial Modular Number Systems over  $\mathbb{Z}/p\mathbb{Z}$ 

Some Background on Pseudo-Mersenne Numbers

Polynomial Modular Number System

Existence and bounds of PMNS

Suitable irreducible polynomials for PMNS

Number of PMNS for a given p

**PMNS** Coefficient Reduction

**Conclusions and Perspectives** 





General case

## Proposition

Let p prime, n > 2, E(X) a polynomial of degree n and irreducible in  $\mathbb{Z}[X]$ , and  $D(X) = \text{gcd}(X^p - X, E(X)) \mod p$ , there exists deg(D(X)) Polynomial Modular Number Systems  $(p, n, \gamma_i, \rho)_{E(X)}$ .

Computation of  $gcd(X^p - X, E(X)) \mod p$ , in two steps :

- 1. evaluation of  $X^p \mod E(X) \mod p$  (square/multiply exponentiation), then of  $F(X) = X^p 1 \mod E(X) \mod p$ ,
- 2. evaluation of  $gcd(F(X), E(X)) \mod p$  with  $\deg F(X) < n$ .

The roots are found by factorising the polynomial  $gcd(F(X), E(X)) \mod p$ .





Example of a General case

We consider p = 7826474692469460039387400099999297 and  $E(X) = X^5 + X^2 + 1$ . Then,  $X^p \mod E(X) = 7322126259420098177093985099094624 X^4$   $+1727826215301243349042222461135262 X^3$   $+3438841897608126971004523506864410 X^2$  +7372958503626664659096728485020295 X +4167285606168530025180293516680876Thus,  $gcd(X^p \mod E(X) - X, E(X)) \mod p$   $= X^2 + 1305849998419067291000337897705258 X$  +1793073000954204546034194068098826 = (X + 6157699039557809270671068895070912) (X + 2974625651330718059716669102633643)Hence, we obtain two roots of  $E(X) \mod p$ :

 $\gamma_1 = 1668775652911650768716331204928385$ 

 $\gamma_2 = 4851849041138741979670730997365654$ 











Cyclotomic case

#### Proposition

Let p > 2 a prime number, and an integer  $m \ge 3$ . If  $m \mid (p-1)$ , then the cyclotomic polynomial  $\Phi_m(X)$  has  $\varphi(m)$  roots over  $\mathbb{Z}/p\mathbb{Z}$ .  $(\Phi_m(X) \mid (X^{p-1}-1) = \prod_{\xi_i \in (\mathbb{Z}/p\mathbb{Z})^*} (X - \xi_i))$ 

#### Corollary

Let p prime,  $n \ge 2$  such that  $n = 2^i 3^j$ , with  $i, j \in \mathbb{N}$ .

- If i > 0, j = 0, and (2n) divides (p 1), and  $E(X) = \Phi_{2n}(X) = X^n + 1$ ,
- If  $i = 1, j \ge 0$ , and (3 n / 2) divides (p 1), and  $E(X) = \Phi_{\frac{3n}{2}}(X) = X^n + X^{\frac{n}{2}} + 1$ ,
- If  $i \ge 1$ ,  $j \ge 0$ , and (3 n) divides (p 1), and  $E(X) = \Phi_{3n}(X) = X^n X^{\frac{n}{2}} + 1$ ,

then, there exist n PMNS  $(p, n, \gamma_i, \rho)_{E(X)}$ , with  $\gamma_i$  one of the n distinct roots modulo p of E(X).







Example of Cyclotomic cases

Construction PMNS from a cyclotomic reduction polynomial for  $p = 2^{256}.3^{157}.115 + 1$  coded on 512 bits.

- E(X) = X<sup>8</sup> + 1, from the 8 roots, the best ρ is obtained with our approach (with Corollary-6 and Corollary-7) and is 66 bits long.
- E(X) = X<sup>6</sup> + X<sup>3</sup> + 1, from the six roots, the best ρ is obtained two times with LLL, else with Corollary-6 and Corollary-7, and is 87 bits long.
- E(X) = X<sup>6</sup> − X<sup>3</sup> + 1, from the six roots, the best ρ is obtained with Corollary 6 and Corollary 7, and is 87 bits long.









Example of a General case

p = 57896044618658097711785492504343953926634992332820282019728792003956566811073a 256-bits prime, and n = 9.

We consider PMNS  $\mathfrak{B} = (p, n, \gamma, \rho)_E$  such that:

- $\blacktriangleright E(X) = X^n + a_k X^k + \dots + a_1 X + a_0 \in \mathbb{Z}[X], \text{ with } n \ge 2 \text{ and } k \le \frac{n}{2},$
- coefficients  $|a_i| \le 1$  for  $1 \le i \le k$  and  $|a_0| \le 3$

$$ho \le 2^{31}$$

The number of PMNS  $\mathfrak{B} = (p, n, \gamma, \rho)_E$  is equal to 354.

Most of the time, the best  $\rho$  is obtained first by LLL (266 times) or BKZ (46), some are due to Corollary-6 (10) or with Corollary-7 (28), or Proposition-5 (4) with a short vector.



On Polynomial Modular Number Systems over  $\mathbb{Z}/p\mathbb{Z}$ 

Some Background on Pseudo-Mersenne Numbers

Polynomial Modular Number System

Existence and bounds of PMNS

Suitable irreducible polynomials for PMNS

Number of PMNS for a given p

PMNS Coefficient Reduction

**Conclusions and Perspectives** 





## **PMNS** Coefficient Reduction

Montgomery approach

 $\mathfrak{B} = (p, n, \gamma, \rho)_E \text{ a PMNS, and } \alpha_E \text{ such that, with } \deg(A(X)) < 2n, \\ \|A(X) \mod E(X)\|_{\infty} < \alpha_E \|A(X)\|_{\infty}. \text{ Let } V \text{ a non-null vector of } \mathfrak{L}.$ 

If  $||V||_{\infty} < \frac{1}{2n\alpha_{E}}\rho$  and there exists  $V'(X) = (-V^{-1}(X) \mod E(X)) \mod 2'$ , then, for A(X) with coefficients smaller than  $2^{l-1}\rho$ :

1. 
$$Q(X) \leftarrow ((A(X)V'(X)) \mod E(X)) \mod 2^l$$
  
2.  $T(X) \leftarrow Q(X)V(X) \mod E(X)$  (thus  $T \in \mathfrak{L}$  and  $||T||_{\infty} < 2^{l-1}\rho$ )  
3.  $R(X) = A(X) + T(X)$  (thus  $R(X)$  multiple of  $2^l$ )  
4.  $S(X) = R(X)/2^l$  (thus  $||S||_{\infty} < \rho$ )  
with  $S(\gamma) \equiv A(\gamma)2^{-l} \pmod{p}$ 

If  $n\rho < 2^{l}$  there exists G(X) such that  $G(\gamma) \equiv 2^{2l} \pmod{p}$  and  $||G||_{\infty} < \rho$ , then  $G(\gamma)S(\gamma) \equiv 2^{l}A(\gamma) \pmod{p}$  and  $F(X) = G(X)S(X) \mod E(X)$  is such that  $||F||_{\infty} < 2^{l-1}\rho$ .

## PMNS Coefficient Reduction With $2^k = F(\gamma) \mod p$

Ínnía\_

Find a  $\mathfrak{B} = (p, n, \gamma, \rho)_E$  such that  $2^k = F(\gamma) \mod p$  with  $\|F\|_{\infty} < 2^{\epsilon_F}$  and #(non-null coeff of F)  $< 2^{\beta}$ 

We note  $\epsilon_E$ , the integer such that  $\|C(X) \mod E(x)\|_{\infty} < 2^{\epsilon_E} \|C(X)\|_{\infty}$ We consider A(X) with  $\|A(X)\|_{\infty} < 2^{k+t}$ do

1. We split 
$$A(X) \to A_1(X)2^k + A_0(X)$$
  
with  $||A_1(X)||_{\infty} < 2^t$  and  $||A_0(X)||_{\infty} < 2^k$   
2.  $A(X) \leftarrow (A_1(X)F(X) \mod E(X)) + A_0(X)$   
with  $||A(X)||_{\infty} < 2^{t+\beta+\epsilon_F+\epsilon_E}$ 

until  $||A(X)||_{\infty} < 2^{k}$ If  $(\beta + \epsilon_{F} + \epsilon_{E}) < k$  then the algorithm converges.



## **PMNS** Coefficient Reduction

Example of a pecific case approach (Plantard's PhD)

Find a  $\mathfrak{B} = (p, n, \gamma, \rho)_E$  such that  $2^k = F(\gamma) \mod p$  with  $\|F\|_{\infty} < \epsilon$ 

The construction of the system giving some features: n = 8, and ρ = 2<sup>32</sup> with p < ρ<sup>n</sup> determine the size of the problem.

• The property  $\gamma^8 \equiv 2 \pmod{p}$  for the polynomial reduction.

• The coefficient reduction is given by  $2^{32} \equiv \gamma^5 + 1 \pmod{p}$ 

Thus  $V = 2^{32}V_1 + V_0 = 2^{32}Id.V_1 + V_0 \equiv M.V_1 + V_0 \pmod{p}$  with

# PMNS Coefficient Reduction

Specific case approach

### Remarks and construction

- ▶  $2^{32}Id M = 0 \mod p$  defines a lattice.
- *p* divides det  $(2^{32}Id M)$ , a factorization gives:

p = 115792089021636622262124715160334756877804245386980633020041035952359812890593 which corresponds to the expected size.

The value of γ is deduced as a solution of gcd(X<sup>8</sup> - 2, 2<sup>32</sup> - X<sup>5</sup> - 1) modulo p:

 $\gamma = \texttt{14474011127704577782765589395224532314179217058921488395049827733759590399996}$ 

• Generally, *M* is found with coefficients lower than  $2^{k/2}(\sim \sqrt{\rho})$ , which means that three rounds are sufficient.













On Polynomial Modular Number Systems over  $\mathbb{Z}/p\mathbb{Z}$ 

Some Background on Pseudo-Mersenne Numbers

Polynomial Modular Number System

Existence and bounds of PMNS

Suitable irreducible polynomials for PMNS

Number of PMNS for a given p

**PMNS** Coefficient Reduction

Conclusions and Perspectives





# Conclusions

- We observe that irreducible polynomials give better PMNS than non-irreducible ones.
- Coefficient reduction is equivalent to the research of a close vector.
- Is it possible to find an efficient algorithm for these specific lattices??
- Is a round-off Babai sufficient ?? Could we adapt the nearest plan approach?
- Find an ad hoc method like when a power of two has a "good" PMNS representation??
- How construct easily reduced bases for the norm-1 without the help of LLL family algorithms ??





