On Polynomial Modular Number Systems over

$$
\mathbb{Z} / p \mathbb{Z}
$$

Jean Claude Bajard
joint work with Jérémy Marrez, Thomas Plantard and Pascal Véron
MACAO - Inria - University of Wollongong 2019
Mathematics and Algorithms for Cryptographic Advanced Objects

Ḿáa

Outline

Some Background on Pseudo-Mersenne Numbers

Polynomial Modular Number System

Existence and bounds of PMNS

Suitable irreducible polynomials for PMNS

Number of PMNS for a given p

PMNS Coefficient Reduction

Conclusions and Perspectives
"́2́a

48
(iin SCIENCES

On Polynomial Modular Number Systems over $\mathbb{Z} / p \mathbb{Z}$

Some Background on Pseudo-Mersenne Numbers

Polynomial Modular Number System
Existence and bounds of PMNS

Suitable irreducible polynomials for PMNS

Number of PMNS for a given p

PMNS Coefficient Reduction

Conclusions and Perspectives

そ́áa

48
(ii. SCIENCES SORBONNE
UNIVERSITÉ

Some Background on Pseudo-Mersenne Numbers

- Classical Positional Number System $\beta \in \mathbb{N}$ and $\beta \geq 2$, $a \in \mathbb{N}$ with $a<\beta^{m}$, there exists an unique sequence of integers $\left(a_{i}\right)_{i=0 \ldots m-1}$, such that ,
$a=\sum_{i=0}^{m-1} a_{i} \beta^{i}$, with $a_{i} \in \mathbb{N}, 0 \leq a_{i}<\beta$.
- Specific Modular Reduction

Let $p \in \mathbb{N}, \beta^{n-1} \leq p<\beta^{n}, \beta^{n} \equiv \delta(\bmod p)$, with $\delta<p$, do

1. $a \rightarrow a_{0}+\beta^{n} a_{1}$ with $a_{0}, a_{1}<\beta^{n}$
2. $a \leftarrow a_{0}+\delta a_{1}$
until $a<\beta^{n}$
(if $\delta \leq \beta^{\frac{1}{2} n}$ then two iterations give $a<2 \beta^{n}-\beta^{\frac{1}{2} n}-1$, if necessary, a last subtraction of $\left(\beta^{n}-\delta\right)$ gives $\left.a<\beta^{n}\right)$

Some Background on Pseudo-Mersenne Numbers

Polynomial approach

Since, $\beta^{n}-\delta \equiv 0(\bmod p)$, then β is a root of the polynomial $E(X)=X^{n}-\Delta(X)$ modulo p, where $\Delta(\beta) \equiv \delta(\bmod p)$, with $\operatorname{deg} \Delta(X)=d<n$ and $\|\Delta(X)\|_{\infty}<\beta$.

Reduction modulo p is computed in two steps:

1. polynomial reduction : $C(X)=A(X) \bmod E(X)$
2. coefficients reduction : $C^{\prime}(\beta) \equiv C(\beta)(\bmod p)$ with $C^{\prime}(X)$ of degree lower than n and coefficients smaller than β

The polynomial reduction looks like:

1. $C(X) \leftarrow A(X)$
2. do $C(X) \leftarrow \Delta(X) \times \sum_{i=n}^{m-1} c_{i} X^{i-n}+\sum_{i=0}^{n-1} c_{i} X^{i}$,
until $\operatorname{deg} C(X) \leq n-1$
Thus, if $\operatorname{deg} C(X) \leq 2 n$ and $\operatorname{deg} \Delta(X) \leq 8 / 2$, then $\operatorname{deg} C(X) \leq n-1$ in twasteps

Some Background on Pseudo-Mersenne Numbers

Polynomial approach

Let t be the smallest integer such that $\|C(X)\|_{\infty}<\beta^{t}$.
The coefficient reduction could look like:
Do

1. $C(X) \leftarrow \sum_{i=0}^{t-1} C_{i}(X) \beta^{i}, \quad$ with C_{i} 's coefficients smaller than β
2. $C(X) \leftarrow \sum_{i=0}^{t-1} C_{i}(X) X^{i}, \quad$ with $\operatorname{deg} C(X)<t+n$ and $\|C(X)\|_{\infty}<t \beta$
3. Polynomial reduction of $C(X)$,

Until $t=1$

This can be seen as a carry propagation.

48

Some Background on Pseudo-Mersenne Numbers

Lattices approach

The coefficient reduction can be seen as the subtraction of a close vector in the lattice defined by:
$\mathbf{A}=\left(\begin{array}{cccccc}p & 0 & \ldots & \ldots & 0 & 0 \\ -\beta & 1 & \ldots & \ldots & 0 & 0 \\ \vdots & \ddots & \ddots & & & \vdots \\ 0 & \ldots & -\beta & 1 & \ldots & 0 \\ \vdots & & & \ddots & \ddots & \vdots \\ 0 & 0 & \ldots & \ldots & -\beta & 1\end{array}\right)$ or $\left(\begin{array}{cccccc}p & 0 & 0 & \ldots & 0 & 0 \\ -\beta & 1 & 0 & \ldots & 0 & 0 \\ \vdots & & \ddots & & & \vdots \\ -\beta^{i} & \ldots & 0 & 1 & \ldots & 0 \\ \vdots & & & \ddots & \ddots & \vdots \\ -\beta^{n-1} & 0 & \ldots & \ldots & 0 & 1\end{array}\right)$
The first vector $(p, 0, \ldots, 0,0)$ represents the modulo p reduction.
Vectors like $(0, \ldots,-\beta, 1, \ldots, 0)$ represent the carry propagation.

I N-PRG

Some Background on Pseudo-Mersenne Numbers

Lattices approach

When we consider $\beta^{n}-\delta \equiv 0(\bmod p)$, we can replace $(p, 0, \ldots, 0,0)$ is replaced by $\left(\delta_{0}, \delta_{1}, \ldots, \delta_{n-2}, \delta_{n-1}-\beta\right)$ thus we obtain a sub-lattice with a reduced base.

$$
\mathbf{A}^{\prime}=\left(\begin{array}{cccccc}
\delta_{0} & \delta_{1} & \ldots & \ldots & \delta_{n-2} & \delta_{n-1}-\beta \\
-\beta & 1 & \ldots & \ldots & 0 & 0 \\
\vdots & \ddots & \ddots & & & \vdots \\
0 & \ldots & -\beta & 1 & \ldots & 0 \\
\vdots & & & \ddots & \ddots & \vdots \\
0 & 0 & \ldots & \ldots & -\beta & 1
\end{array}\right)
$$

On Polynomial Modular Number Systems over $\mathbb{Z} / p \mathbb{Z}$

Some Background on Pseudo-Mersenne Numbers

Polynomial Modular Number System

Existence and bounds of PMNS

Suitable irreducible polynomials for PMNS

Number of PMNS for a given p

PMNS Coefficient Reduction

Conclusions and Perspectives

Ḿáa

48
(in) SCIENCES SORBONNE
UNIVERSITÉ

Polynomial Modular Number System

Definition

A Polynomial Modular Number System (PMNS) is defined by

- a quadruple (p, n, γ, ρ) and
- a monic polynomial of degree $n, E(X) \in \mathbb{Z}[X]$, such that $E(\gamma) \equiv 0(\bmod p)$
- for each integer x in $\{0, \ldots p-1\}$, there exists $\left(x_{0}, \ldots, x_{n-1}\right)$

$$
\begin{aligned}
& \text { with } x \equiv \sum_{i=0}^{n-1} x_{i} \gamma^{i}(\bmod p), x_{i} \in \mathbb{N},-\rho<x_{i}<\rho \text {, and } \\
& 0<\gamma<p \text {, }
\end{aligned}
$$

Proposition
If $\mathfrak{B}=(p, n, \gamma, \rho)_{E}$ is a PMNS, then $p \leq(2 \rho-1)^{n}$.

Polynomial Modular Number System

Example: $p=31, n=4, \gamma=15, \gamma^{4} \equiv 2(\bmod p)$, and $\rho=2$

0	1	2	3	4	5
(0, 0, 0, 0)	(1, 0, 0, 0)	$(-1,1,-1,1)$	$\begin{gathered} (-1,-1,-1,1) \\ (-1,0,0,-1) \\ (-1,0,1,1) \\ (0,1,-1,1) \\ \hline \end{gathered}$	$\begin{gathered} (0,-1,-1,1) \\ (0,0,0,-1) \\ (0,0,1,1) \\ (1,1,-1,1) \\ \hline \end{gathered}$	$\begin{gathered} (1,-1,-1,1) \\ (1,0,0,-1) \\ (1,0,1,1) \end{gathered}$
6	7	8	9	10	11
$(-1,1,-1,0)$	$\begin{gathered} (-1,-1,-1,0) \\ (-1,0,1,0) \\ (0,1,-1,0) \end{gathered}$	$\begin{gathered} (0,-1,-1,0) \\ (0,0,1,0) \\ (1,1,-1,0) \end{gathered}$	$\begin{gathered} (1,-1,-1,0) \\ (1,0,1,0) \end{gathered}$	$\begin{gathered} (-1,1,-1,-1) \\ (-1,1,0,1) \end{gathered}$	$\begin{gathered} (-1,-1,-1,-1) \\ (-1,-1,0,1) \\ (-1,0,1,-1) \\ (0,1,-1,-1) \\ (0,1,0,1) \end{gathered}$
12	13	14	15	16	17
$\begin{gathered} (0,-1,-1,-1) \\ (0,-1,0,1) \\ (0,0,1,-1) \\ (1,1,-1,-1) \\ (1,1,0,1) \end{gathered}$	$\begin{gathered} (1,-1,-1,-1) \\ (1,-1,0,1) \\ (1,0,1,-1) \end{gathered}$	$(-1,1,0,0)$	$\begin{gathered} (-1,-1,0,0) \\ (0,1,0,0) \end{gathered}$	$\begin{gathered} (0,-1,0,0) \\ (1,1,0,0) \end{gathered}$	(1, -1, 0, 0)
18	19	20	21	22	23
$\begin{gathered} (-1,0,-1,1) \\ (-1,1,0,-1) \\ (-1,1,1,1) \end{gathered}$	$\begin{gathered} (-1,-1,0,-1) \\ (-1,-1,1,1) \\ (0,0,-1,1) \\ (0,1,0,-1) \\ (0,1,1,1) \\ \hline \end{gathered}$	$\begin{gathered} (0,-1,0,-1) \\ (0,-1,1,1) \\ (1,0,-1,1) \\ (1,1,0,-1) \\ (1,1,1,1) \\ \hline \end{gathered}$	$\begin{gathered} (1,-1,0,-1) \\ (1,-1,1,1) \end{gathered}$	$\begin{gathered} (-1,0,-1,0) \\ (-1,1,1,0) \end{gathered}$	$\begin{gathered} (-1,-1,1,0) \\ (0,0,-1,0) \\ (0,1,1,0) \end{gathered}$
24	25	26	27	28	29
$\begin{gathered} (0,-1,1,0) \\ (1,0,-1,0) \\ (1,1,1,0) \end{gathered}$	(1, -1, 1, 0)	$\begin{gathered} (-1,0,-1,-1) \\ (-1,0,0,1) \\ (-1,1,1,-1) \end{gathered}$	$\begin{gathered} (-1,-1,1,-1) \\ (0,0,-1,-1) \\ (0,0,0,1) \\ (0,1,1,-1) \\ \hline \end{gathered}$	$\begin{gathered} (0,-1,1,-1) \\ (1,0,-1,-1) \\ (1,0,0,1) \\ (1,1,1,-1) \\ \hline \end{gathered}$	(1, -1, 1, -1)
30					
$(-1,0,0,0)$				-PRG	SCIFNCES SORBONNE UNIVERSITÉ

Polynomial Modular Number System

Remarks

1. PMNS looks like a positional system, but is not.
$\left(\gamma^{i} \bmod p\right)<\left(\gamma^{i+1} \bmod p\right)$ is not always true anymore.
2. For every quadruple (p, n, γ, ρ), there exists a polynomial $E(X) \in \mathbb{Z}[X]$ satisfying $E(\gamma) \equiv 0 \bmod p$ and $\operatorname{deg} E(X)=n$: for example $E(X)=X^{n}-\left(\gamma^{n} \bmod p\right)$.
3. If $p<(2 \rho-1)^{n}$, then the representation is redundant (i.e., some values can have more than one representation).
4. If $\mathfrak{B}=(p, n, \gamma, \rho)_{E}$ is a PMNS, so is $\mathfrak{B}^{\prime}=(p, n, \gamma, \rho+1)_{E}$.
5. Given p, n, γ, E, there exists a minimal ρ which defines a PMNS $\mathfrak{B}=(p, n, \gamma, \rho)_{E}$.

$1 \mathrm{M}^{2}$

Polynomial Modular Number System

Question

The question, for p and n given, Which polynomials $E(X)$
-i) offer an efficient modular reduction?
-ii) have a large number of roots γ in $\mathbb{Z} / p \mathbb{Z}$?
-iii) allow to have ρ as small as possible?

18
(ii. SCIENCES

On Polynomial Modular Number Systems over $\mathbb{Z} / p \mathbb{Z}$

Some Background on Pseudo-Mersenne Numbers

Polynomial Modular Number System

Existence and bounds of PMNS

Suitable irreducible polynomials for PMNS

Number of PMNS for a given p

PMNS Coefficient Reduction

Conclusions and Perspectives

(iin SCIENCES SORBONNE
UNIVERSITÉ

Existence and bounds of PMNS

PMNS and lattices

We consider the lattice \mathfrak{L} over \mathbb{Z}^{n} of the polynomials of degree at most $n-1$, for which, γ is a root modulo p.
$\mathbf{A}=\left(\begin{array}{cccccc}p & 0 & \ldots & \ldots & 0 & 0 \\ -\gamma & 1 & \ldots & \ldots & 0 & 0 \\ \vdots & \ddots & \ddots & & & \vdots \\ 0 & \ldots & -\gamma & 1 & \ldots & 0 \\ \vdots & & & \ddots & \ddots & \vdots \\ 0 & 0 & \ldots & \ldots & -\gamma & 1\end{array}\right) \quad$ or $\left(\begin{array}{cccccc}p & 0 & 0 & \ldots & 0 & 0 \\ -\gamma & 1 & 0 & \ldots & 0 & 0 \\ \vdots & & \ddots & & & \vdots \\ -\gamma^{i} & \ldots & 0 & 1 & \ldots & 0 \\ \vdots & & & \ddots & \ddots & \vdots \\ -\gamma^{n-1} & 0 & \ldots & \ldots & 0 & 1\end{array}\right)$
The fundamental volume of \mathfrak{L} is $\operatorname{det} \mathbf{A}=p$.

(iin) SCIENCES SORBONNE
UNIVERSITÉ

Existence and bounds of PMNS

PMNS and lattices

Theorem

Let $p \geq 2$ and $n \geq 2$ two integers, $E(X)$ a polynomial of degree n in $\mathbb{Z}[X]$ and γ be a root of $E(X)$ in $\mathbb{Z} / p \mathbb{Z}$.
Let r be the covering radius of the lattice \mathfrak{L}, if $\rho>r$, then $\mathfrak{B}=(p, n, \gamma, \rho)_{E}$ is a Polynomial Modular Number System.

Proof.

The covering radius r of \mathfrak{L} is the smallest number, such that the balls $\mathcal{B}_{V}=\left\{T \in \mathbb{R}^{n},\|T-V\|_{2} \leq r\right\}$ centered on any point $V \in \mathfrak{L}$, cover the space \mathbb{R}^{n}. In other words, for any $T \in \mathbb{R}^{n}$ there exists $V \in \mathfrak{L}$ such that
$\|T-V\|_{\infty} \leq\|T-V\|_{2} \leq r$. Thus for any $T \in \mathbb{R}^{n}$ there exists $V \in \mathfrak{L}$, such that $T-V \in \mathcal{C}_{O}, \mathcal{C}_{O}=\left\{T \in \mathbb{R}^{n},\|T\|_{\infty} \leq r\right\}$.

Existence and bounds of PMNS

Lattice's bases and PMNS

Theorem

Let $\mathrm{B}=\left\{B_{0}, \ldots, B_{n-1}\right\}$ a base of \mathfrak{L}, and \mathbf{B} the matrix associated such that, B_{i} represents the $i^{\text {th }}$ row., with $B_{i}=\left(b_{i, 0}, \ldots, b_{i, n-1}\right)$, thus $b_{i, j}$ represents the coefficient of the i th row, $j^{t h}$ column.
If $\rho>\frac{1}{2}\|\mathbf{B}\|_{1},\left(\|\mathbf{B}\|_{1}=\max _{j}\left\{\sum_{i=0}^{n-1}\left|b_{i, j}\right|\right\}\right)$, then $\mathfrak{B}=(p, n, \gamma, \rho)_{E}$
is a Polynomial Modular Number System.

Proof.

Let $S \in \mathbb{R}^{n}$, we search a close vector $T \in \mathfrak{L}$ using a Babaï round-off approach. We have, $T=\mathbf{B}^{\top} .\left\lfloor\left(\mathbf{B}^{T}\right)^{-1} . S\right\rceil$.
$S=\mathbf{B}^{T} .\left(\mathbf{B}^{T}\right)^{-1} . S=T+\mathbf{B}^{T}$. frac $\left(\left(\mathbf{B}^{T}\right)^{-1} . S\right)$ with $\|$ frac $\left(\left(\mathbf{B}^{T}\right)^{-1} . S\right) \|_{\infty} \leq \frac{1}{2}$
Then
$\|S-T\|_{\infty}=\| \mathbf{B}^{T}$. frac $\left(\left(\mathbf{B}^{T}\right)^{-1} . S\right)\left\|_{\infty} \leq \frac{1}{2}\right\| \mathbf{B}^{T}\left\|_{\infty}=\frac{1}{2}\right\| \mathbf{B} \|_{1}$.

Existence and bounds of PMNS

Irreducible polynomials and PMNS

Let $E(X)=X^{n}+a_{n-1} X^{n-1}+\cdots+a_{1} X+a_{0}$, and let \mathbf{C} be the companion matrix of $E(X)$:

$$
\mathbf{C}=\left(\begin{array}{cccccc}
0 & 1 & 0 & \ldots & 0 & 0 \\
0 & 0 & 1 & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 1 & 0 \\
0 & 0 & 0 & \cdots & 0 & 1 \\
-a_{0} & -a_{1} & -a_{2} & \cdots & -a_{n-2} & -a_{n-1}
\end{array}\right)
$$

Let $V=\left(v_{0}, \ldots, v_{n-1}\right)$ the vector representing the coefficient of the polynomial $V(X)=\sum_{i=0}^{n-1} v_{i} X^{i}$, then $V . C$ is the vector whose coordinates are the coefficients of the polynomial $X . V(X) \bmod E(X)$.

Existence and bounds of PMNS

Irreducible polynomials and PMNS

Proposition

Let V a non-null vector of \mathfrak{L}, the lattice of rank n defined by \mathbf{A}. Let \mathbf{B} the $n \times n$ matrix whose $i^{t h}$ row is the vector B_{i} such that $B_{i}=V . \mathbf{C}^{i}$ (with polynomial $B_{i}(X)=X^{i} . V(X) \bmod E(X)$). If $V(X)$ is inversible modulo $E(X)$ then:

- the matrix \mathbf{B} defines a sublattice $\mathfrak{L}^{\prime} \subseteq \mathfrak{L}$ of rank n (i.e.

$$
\left.\mathrm{B}=\left(B_{0}, \ldots, B_{n-1}\right) \text { is a base of } \mathfrak{L}^{\prime}\right)
$$

- and $V \in \mathfrak{L}^{\prime}$.

Proof.

The B_{i} are linearly independent. Indeed, let us suppose that there exists a non nul vector $\left(t_{0}, t_{1}, \ldots, t_{n-1}\right) \in \mathbb{Z}^{n}$ such that $\sum_{i=0}^{n-1} t_{i} B_{i}=0$. It means that $\sum_{i=0}^{n-1} t_{i} X^{i} V(X)=0 \bmod E(X)$, or equivalently $T(X) V(X)=0 \bmod E(X)$, with $T(X)=\sum_{i=0}^{n-1} t_{i} X^{i}$. Then $T(X) V(X) V^{-1}(X) \bmod E(X)=T(X)=0$, since $V(X)$ is inversible modulo $E(X)$ and degree of $T(X)$ is at most $n-1$. Hence the rows of \mathbf{B}

Existence and bounds of PMNS

Irreducible polynomials and PMNS

Corollary

Let V a non-null vector of \mathfrak{L}, the lattice of rank n defined by \mathbf{A}.
If $E(X)$ is irreducible, then

- V can define a sublattice $\mathfrak{L}^{\prime} \subseteq \mathfrak{L}$ of rank n,
- and $V \in \mathfrak{L}^{\prime}$.

Proof.

If $E(X)$ is irreducible, then $V(X)$ is inversible and Proposition 5 gives $\mathrm{B}=\left(B_{0}, \ldots, B_{n-1}\right)$ a base of $\mathfrak{L}^{\prime}, \mathfrak{L}^{\prime} \subseteq \mathfrak{L}$ of rank n, and $V \in \mathfrak{L}^{\prime}$.

Existence and bounds of PMNS

Irreducible polynomials and PMNS

Corollary

Let \mathfrak{L}, the lattice of rank n given by \mathbf{A}, and let the lattice \mathfrak{L}_{D} of rank n in $\mathbb{Z}^{n^{2}}$ defined by $\mathbf{D}=\left(\mathbf{A}\left|\mathbf{A} \cdot \mathbf{C}^{1}\right| \cdots \mid \mathbf{A} . \mathbf{C}^{n-1}\right)$, then for any $\bar{V}=\left(V_{0}, V_{1}, \ldots, V_{n-1}\right) \in \mathfrak{L}_{D}$ such that $\bar{V} \neq(0)^{n^{2}}$:
If $E(X)$ is irreducible then:

1. $V_{0} \in \mathfrak{L}$,
2. $\left(V_{0}, V_{1}, \ldots, V_{n-1}\right)$ is a base of $\mathfrak{L}^{\prime} \subseteq \mathfrak{L}$.

Proof.
V_{0} is a linear combination of rows of \mathbf{A}, hence it belongs to \mathfrak{L}. Next, since
$V_{i}=V_{0} . \mathbf{C}^{i}$, for all $i \geq 1$, then, due to Corollary 6 , the vector ($V_{0}, V_{1}, \ldots, V_{n-1}$) is a base of a sublattice $\mathfrak{L}^{\prime} \subseteq \mathfrak{L}$.

Hence, a strategy is to choose a vector $\left(V_{0}, V_{1}, \ldots, V_{n-1}\right)$ of \mathfrak{L}_{D} and

Existence and bounds of PMNS

Remarks

- For any p and n there exist $E(X)$ monic of degree n, with γ as root, and ρ such that $\mathfrak{B}=(p, n, \gamma, \rho)_{E}$ is a PMNS.
$\left(\right.$ for example $E(X)=X^{n}-\left(\gamma^{n} \bmod p\right)$)
- Then, a \mathfrak{L} the lattice of rank n can be defined by \mathbf{A} depending of p, n and γ.
- If $E(X)$ is irreducible and $V \in \mathfrak{L}$ then we can construct easily a "reduced" base B of \mathfrak{L}.
- Thus, one goal is to find a base B of \mathfrak{L} with $\|\mathbf{B}\|_{1}$ as small as possible, to give interesting bounds of ρ.

Existence and bounds of PMNS

Example with $p \sim 2^{256}$ and $\rho<2^{33}$

$p=112848483075082590657416923680536930196574208889254960005437791530871071177777$

$$
n=8, E(X)=X^{8}+X^{2}+X+1,
$$

$\gamma=14916364465236885841418726559687117741451144740538386254842986662265545588774$
LLL: $\quad\|\mathbf{B}\|_{1}=16940155314 \quad B K Z: \quad\|\mathbf{B}\|_{1}=15289909984$
Cor. $6:\|\mathbf{B}\|_{1}=13881325101$ Cor. 7, : $\|\mathbf{B}\|_{1}=12883199915$
$p=96777329138546418411606037850670691916278980249035796845487391462163262877831$

$$
n=8, E(X)=X^{8}+6
$$

$\gamma=5538274654329514802181726618906590237936295237553666062542808070676484572674$
LLL: $\quad\|\mathbf{B}\|_{1}=12509178620$ BKZ: $\|\mathbf{B}\|_{1}=12509178620$
Cor. 6: $\|\mathbf{B}\|_{1}=47611052126$ Cor. 7: $\|\mathbf{B}\|_{1}=40733847267$

On Polynomial Modular Number Systems over $\mathbb{Z} / p \mathbb{Z}$

Some Background on Pseudo-Mersenne Numbers

Polynomial Modular Number System

Existence and bounds of PMNS

Suitable irreducible polynomials for PMNS

Number of PMNS for a given p

PMNS Coefficient Reduction

Conclusions and Perspectives

(iin SCIENCES
SORBONNE
UNIVERSITÉ

Suitable irreducible polynomials for PMNS

Definition

A monic polynomial $E(X)$ is a suitable PMNS reduction polynomial, if:

1. $E(X)$ is irreducible in $\mathbb{Z}[X]$,
2. $E(X)=X^{n}+a_{k} X^{k}+\cdots+a_{1} X+a_{0} \in \mathbb{Z}[X]$, with $n \geq 2$ and $k \leq \frac{n}{2}$,
3. most of coefficients a_{i} are zero, and others are very small (if possible equal to ± 1) compare to $p^{1 / n}$.

Suitable irreducible polynomials for PMNS

Classical criteria of irreducibility

Proposition (from Dumas' criterion 1906)
We assume that if there exists a prime μ and an integer α, such that, $\mu^{\alpha} \mid a_{0}, \mu^{\alpha+1} \nmid a_{0}$ and, $\mu^{\lceil\alpha(n-i) / n\rceil} \mid a_{i}$, and $\operatorname{gcd}(\alpha, n)=1$, then $E(X)=X^{n}+a_{k} X^{k}+\cdots+a_{1} X+a_{0}$ is irreducible over $\mathbb{Z}[X]$.

For example, $E(X)=X^{n}+\mu X^{k}+\mu$ is irreducible with this criterion. If $k<n / 2$ and $\mu \ll p^{1 / n}$, then $E(X)$ is a suitable PMNS reduction polynomial.
cóáa

Suitable irreducible polynomials for PMNS

Classical criteria of irreducibility

```
Proposition (from N. C. Bonciocat 2015)
Let }E(X)=\mp@subsup{X}{}{n}+\mp@subsup{a}{k}{}\mp@subsup{X}{}{k}+\cdots+\mp@subsup{a}{1}{}X+\mp@subsup{a}{0}{},\mp@subsup{a}{0}{}\not=0, let t\geq2 and le
\mu},\ldots,\mp@subsup{\mu}{t}{}\mathrm{ be pair-wise distinct prime numbers, and }\mp@subsup{\alpha}{1}{},\ldots,\mp@subsup{\alpha}{t}{
positive integers. If, for j=1,\ldots,t, and i=0,\ldots,k, 㿟}|\mp@subsup{a}{i}{}\mathrm{ and
\mu}\mp@subsup{\mp@code{j}}{\mp@subsup{\alpha}{j}{\prime+1}}{\}\mp@subsup{a}{0}{}\mathrm{ , and gcd}(\mp@subsup{\alpha}{1}{},\ldots,\mp@subsup{\alpha}{t}{},n)=1\mathrm{ then }E(X)\mathrm{ is irreducible
over \mathbb{Z}[X].
```

For example, $E(X)=X^{n}+\mu_{1}^{\alpha_{1}} \mu_{2}^{\alpha_{2}} X^{k}+\mu_{1}^{\alpha_{1}} \mu_{2}^{\alpha_{2}}$ with $\operatorname{gcd}\left(\alpha_{1}, \alpha_{2}, n\right)=1$, is irreducible with this criterion. If $k<n / 2$ and $\mu_{1}^{\alpha_{1}} \mu_{2}^{\alpha_{2}} \ll p^{1 / n}$, then $E(X)$ is a suitable PMNS reduction polynomial.

Ínría

Suitable irreducible polynomials for PMNS

Cyclotomic Polynomials

ClassCyclo(n) the class of suitable cyclotomic polynomials for PMNS, whose degree is n.

Proposition
ClassCyclo(n) $\neq \emptyset$ if and only if, $n=2^{i} 3^{j}$ with $i \geq 1, j \geq 0$.

Hence, suitable cyclotomic polynomials are:

- $\Phi_{2^{i}}(X)=X^{2^{i-1}}+1$, thus $n=2^{i-1}$ with $i \geq 2$,
- $\Phi_{3 j}(X)=X^{2.3^{j-1}}+X^{3^{j-1}}+1$, thus $n=2.3^{j-1}$ with $j \in \mathbb{N}^{*}$,
- $\Phi_{2^{i} .3^{j}}(X)=X^{2^{i} .3^{j-1}}-X^{2^{i-1} .3^{j-1}}+1$, thus $n=2^{i} .3^{j-1}$ for $i, j \in \mathbb{N}^{*}$.

Suitable irreducible polynomials for PMNS

\{-1,1\}-quadrinomials

Proposition (Finch and Jones 2006)

The quadrinomial $X^{a}+\beta X^{b}+\gamma X^{c}+\delta$ is irreducible over $\mathbb{Z}[X]$, (with $\beta, \gamma, \delta \in\{-1,1\}$ and $a>b>c>0$ with $\operatorname{gcd}(a, b, c)=2^{t} m$, with m odd and they note $a^{\prime}=a / 2^{t}$, $b^{\prime}=b / 2^{t}$ and $c^{\prime}=c / 2^{t}$. They define $\bar{a}=\operatorname{gcd}\left(a^{\prime}, b^{\prime}-c^{\prime}\right), \bar{b}=\operatorname{gcd}\left(b^{\prime}, a^{\prime}-c^{\prime}\right)$ and $\left.\bar{c}=\operatorname{gcd}\left(c^{\prime}, a^{\prime}-b^{\prime}\right)\right)$
if and only if, its satisfies one of the following conditions:

1. $(\beta, \gamma, \delta)=(1,1,1)$ and $\bar{a} \bar{b} \bar{c} \equiv 1(\bmod 2)$
2. $(\beta, \gamma, \delta)=(-1,1,1), b^{\prime}-c^{\prime} \not \equiv 0(\bmod 2 \bar{a}), b^{\prime} \not \equiv 0(\bmod 2 \bar{b})$ and $a^{\prime}-b^{\prime} \not \equiv 0(\bmod 2 \bar{c})$
3. $(\beta, \gamma, \delta)=(1,-1,1), b^{\prime}-c^{\prime} \not \equiv 0(\bmod 2 \bar{a}), a^{\prime}-c^{\prime} \not \equiv 0(\bmod 2 \bar{b})$ and $c^{\prime} \not \equiv 0(\bmod 2 \bar{c})$
4. $(\beta, \gamma, \delta)=(1,1,-1), a^{\prime} \not \equiv 0(\bmod 2 \bar{a}), b^{\prime} \not \equiv 0(\bmod 2 \bar{b})$ and $c^{\prime} \not \equiv 0(\bmod 2 \bar{c})$
5. $(\beta, \gamma, \delta)=(-1,-1,-1), a^{\prime} \not \equiv 0(\bmod 2 \bar{a}), a^{\prime}-c^{\prime} \not \equiv 0(\bmod 2 \bar{b})$ and $a^{\prime}-b^{\prime} \not \equiv 0(\bmod 2 \bar{c})$

For example, $E(X)=X^{2^{t} 7 m}+X^{2^{t} 5 m}+X^{2^{t} 3 m}+1$ is a suitable PMNS reduction quadrinomial.

Suitable irreducible polynomials for PMNS

$\{-1,1\}$-trinomials and binomials

Proposition (W. Ljunggren1960, W.H. Mills 1985)
We note $\operatorname{gcd}(n, m)=d$ and $n=d . n_{1}, m=d . m_{1}$. If $n_{1}+m_{1} \not \equiv 0$ $\bmod 3$ then the polynomial $X^{n}+\beta X^{m}+\delta$ with $\delta, \beta \in\{-1,1\}$ and $n>2 m>0$, is irreducible over $\mathbb{Z}[X]$.

Proposition (N. C. Bonciocat 2015)
We note, $c=\prod_{j=1}^{k} p_{j}^{m_{j}}$ with p_{j} pair-wise distinct prime numbers, and m_{j} positive integers.
If $\operatorname{gcd}\left(m_{1}, \ldots, m_{k}, n\right)=1$ then the polynomial $X^{n}+c$ with $c \in \mathbb{Z}$, $|c| \geq 2$, is irreducible over $\mathbb{Z}[X]$.
inría

Suitable irreducible polynomials for PMNS

From Perron irreducibility (N. C. Bonciocat 2010)

Proposition

For a fixed $n \geq 2$, a prime μ, and $P(X)=X^{n}+\sum_{i=1}^{n / 2} \varepsilon_{i} X^{i} \pm \mu$ with $\varepsilon_{i} \in\{-1,0,1\}$,
if $\mu>1+\sum_{i=1}^{n / 2}\left|\varepsilon_{i}\right|$ then the polynomial $P(X)$ is irreducible over $\mathbb{Z}[X]$.

Proposition

For a fixed $n \geq 2$, and $P(X)=X^{n}+\sum_{i=2}^{n / 2} \varepsilon_{i} X^{i}+a_{1} X \pm 1$ with
$\varepsilon_{i} \in\{-1,0,1\}$ and $a_{1} \in \mathbb{Z}^{*}$.
If $\left|a_{1}\right|>2+\sum_{i=2}^{n / 2}\left|\varepsilon_{i}\right|$ then the polynomial $P(X)$ is irreducible over $\mathbb{Z}[X]$.

$1 \mathrm{M}_{\text {mea }}$

On Polynomial Modular Number Systems over $\mathbb{Z} / p \mathbb{Z}$

Some Background on Pseudo-Mersenne Numbers

Polynomial Modular Number System

Existence and bounds of PMNS

Suitable irreducible polynomials for PMNS

Number of PMNS for a given p

PMNS Coefficient Reduction

Conclusions and Perspectives

(iin SCIENCES SORBONNE
UNIVERSITÉ

Number of PMNS for a given p

General case

Proposition

Let p prime, $n>2, E(X)$ a polynomial of degree n and irreducible in $\mathbb{Z}[X]$, and $D(X)=\operatorname{gcd}\left(X^{p}-X, E(X)\right) \bmod p$, there exists $\operatorname{deg}(D(X))$ Polynomial Modular Number Systems $\left(p, n, \gamma_{i}, \rho\right)_{E(X)}$.

Computation of $\operatorname{gcd}\left(X^{p}-X, E(X)\right) \bmod p$, in two steps:

1. evaluation of $X^{p} \bmod E(X) \bmod p$ (square/multiply exponentiation), then of $F(X)=X^{p}-1 \bmod E(X) \bmod p$,
2. evaluation of $\operatorname{gcd}(F(X), E(X)) \bmod p$ with $\operatorname{deg} F(X)<n$.

The roots are found by factorising the polynomial $\operatorname{gcd}(F(X), E(X)) \bmod p$.

Invía

Number of PMNS for a given p

Example of a General case

We consider $p=7826474692469460039387400099999297$ and $E(X)=X^{5}+X^{2}+1$.
Then, $X^{p} \bmod E(X)=7322126259420098177093985099094624 X^{4}$
$+1727826215301243349042222461135262 X^{3}$
$+3438841897608126971004523506864410 X^{2}$
$+7372958503626664659096728485020295 X$
$+4167285606168530025180293516680876$
Thus, $\operatorname{gcd}\left(X^{p} \bmod E(X)-X, E(X)\right) \bmod p$
$=X^{2}+1305849998419067291000337897705258 X$
$+1793073000954204546034194068098826$
$=(X+6157699039557809270671068895070912)$
$(X+2974625651330718059716669102633643)$
Hence, we obtain two roots of $E(X) \bmod p$:
$\gamma_{1}=1668775652911650768716331204928385$
$\gamma_{2}=4851849041138741979670730997365654$

Number of PMNS for a given p

Cyclotomic case

Proposition

Let $p>2$ a prime number, and an integer $m \geq 3$. If $m \mid(p-1)$, then the cyclotomic polynomial $\Phi_{m}(X)$ has $\varphi(m)$ roots over $\mathbb{Z} / p \mathbb{Z}$. $\left(\Phi_{m}(X) \mid\left(X^{p-1}-1\right)=\prod_{\xi_{i} \in(\mathbb{Z} / p \mathbb{Z})^{*}}\left(X-\xi_{i}\right)\right)$

Corollary
Let p prime, $n \geq 2$ such that $n=2^{i} 3^{j}$, with $i, j \in \mathbb{N}$.

- If $i>0, j=0$, and ($2 n$) divides $(p-1)$, and $E(X)=\Phi_{2 n}(X)=X^{n}+1$,
- If $i=1, j \geq 0$, and $(3 n / 2)$ divides $(p-1)$, and

$$
E(X)=\Phi_{\frac{3 n}{2}}(X)=X^{n}+X^{\frac{n}{2}}+1
$$

- If $i \geq 1, j \geq 0$, and ($3 n$) divides $(p-1)$, and $E(X)=\Phi_{3 n}(X)=X^{n}-X^{\frac{n}{2}}+1$,
then, there exist n PMNS $\left(p, n, \gamma_{i}, \rho\right)_{E(X)}$, with γ_{i} one of the n distinct roots modulo p of $E(X)$.

Number of PMNS for a given p

Example of Cyclotomic cases

Construction PMNS from a cyclotomic reduction polynomial for $p=2^{256} .3^{157} .115+1$ coded on 512 bits.

- $E(X)=X^{8}+1$, from the 8 roots, the best ρ is obtained with our approach (with Corollary- 6 and Corollary-7) and is 66 bits long.
- $E(X)=X^{6}+X^{3}+1$, from the six roots, the best ρ is obtained two times with LLL, else with Corollary- 6 and Corollary-7, and is 87 bits long.
- $E(X)=X^{6}-X^{3}+1$, from the six roots, the best ρ is obtained with Corollary 6 and Corollary 7, and is 87 bits long.

Number of PMNS for a given p

Example of a General case

$p=57896044618658097711785492504343953926634992332820282019728792003956566811073$
a 256 -bits prime, and $n=9$.
We consider PMNS $\mathfrak{B}=(p, n, \gamma, \rho)_{E}$ such that:

- $E(X)=X^{n}+a_{k} X^{k}+\cdots+a_{1} X+a_{0} \in \mathbb{Z}[X]$, with $n \geq 2$ and $k \leq \frac{n}{2}$,
- coefficients $\left|a_{i}\right| \leq 1$ for $1 \leq i \leq k$ and $\left|a_{0}\right| \leq 3$
- $\rho \leq 2^{31}$

The number of PMNS $\mathfrak{B}=(p, n, \gamma, \rho)_{E}$ is equal to 354 .
Most of the time, the best ρ is obtained first by LLL (266 times) or BKZ (46), some are due to Corollary-6 (10) or with Corollary-7 (28), or Proposition-5 (4) with a short vector.

48

On Polynomial Modular Number Systems over $\mathbb{Z} / p \mathbb{Z}$

Some Background on Pseudo-Mersenne Numbers

Polynomial Modular Number System

Existence and bounds of PMNS

Suitable irreducible polynomials for PMNS

Number of PMNS for a given p

PMNS Coefficient Reduction

Conclusions and Perspectives

(iin) SCIENCES SORBONNE
UNIVERSITÉ

PMNS Coefficient Reduction

Montgomery approach
$\mathfrak{B}=(p, n, \gamma, \rho)_{E}$ a PMNS, and α_{E} such that, with $\operatorname{deg}(A(X))<2 n$, $\|A(X) \bmod E(X)\|_{\infty}<\alpha_{E}\|A(X)\|_{\infty}$. Let V a non-null vector of \mathfrak{L}.

If $\|V\|_{\infty}<\frac{1}{2 n \alpha_{E}} \rho$ and there exists $V^{\prime}(X)=\left(-V^{-1}(X) \bmod E(X)\right) \bmod 2^{\prime}$, then, for $A(X)$ with coefficients smaller than $2^{I-1} \rho$:

1. $Q(X) \leftarrow\left(\left(A(X) V^{\prime}(X)\right) \bmod E(X)\right) \bmod 2^{\prime}$
2. $T(X) \leftarrow Q(X) V(X) \bmod E(X)$
(thus $T \in \mathfrak{L}$ and $\|T\|_{\infty}<2^{l-1} \rho$)
3. $R(X)=A(X)+T(X)$
4. $S(X)=R(X) / 2^{\prime}$
(thus $R(X)$ multiple of 2^{\prime})
with $S(\gamma) \equiv A(\gamma) 2^{-1}(\bmod p)$
If $n \rho<2^{\prime}$ there exists $G(X)$ such that $G(\gamma) \equiv 2^{2 \prime}(\bmod p)$ and $\|G\|_{\infty}<\rho$, then $G(\gamma) S(\gamma) \equiv 2^{\prime} A(\gamma)(\bmod p)$ and $F(X)=G(X) S(X) \bmod E(X)$ is such that $\|F\|_{\infty}<2^{I-1} \rho$.

PMNS Coefficient Reduction

With $2^{k}=F(\gamma) \bmod p$

Find a $\mathfrak{B}=(p, n, \gamma, \rho)_{E}$ such that $2^{k}=F(\gamma) \bmod p$ with $\|F\|_{\infty}<2^{\epsilon F}$ and $\#$ (non-null coeff of F) $<2^{\beta}$
We note ϵ_{E}, the integer such that $\|C(X) \bmod E(x)\|_{\infty}<2^{\epsilon_{E}}\|C(X)\|_{\infty}$ We consider $A(X)$ with $\|A(X)\|_{\infty}<2^{k+t}$
do

1. We split $A(X) \rightarrow A_{1}(X) 2^{k}+A_{0}(X)$

$$
\text { with }\left\|A_{1}(X)\right\|_{\infty}<2^{t} \text { and }\left\|A_{0}(X)\right\|_{\infty}<2^{k}
$$

2. $A(X) \leftarrow\left(A_{1}(X) F(X) \bmod E(X)\right)+A_{0}(X)$

$$
\text { with }\|A(X)\|_{\infty}<2^{t+\beta+\epsilon_{F}+\epsilon_{E}}
$$

until $\|A(X)\|_{\infty}<2^{k}$
If $\left(\beta+\epsilon_{F}+\epsilon_{E}\right)<k$ then the algorithm converges.

PMNS Coefficient Reduction

Example of a pecific case approach (Plantard's PhD)
Find a $\mathfrak{B}=(p, n, \gamma, \rho)_{E}$ such that $2^{k}=F(\gamma) \bmod p$ with $\|F\|_{\infty}<\epsilon$

- The construction of the system giving some features: $n=8$, and $\rho=2^{32}$ with $p<\rho^{n}$ determine the size of the problem.
- The property $\gamma^{8} \equiv 2(\bmod p)$ for the polynomial reduction.
- The coefficient reduction is given by $2^{32} \equiv \gamma^{5}+1(\bmod p)$

Thus $V=2^{32} V_{1}+V_{0}=2^{32} I d \cdot V_{1}+V_{0} \equiv M \cdot V_{1}+V_{0}(\bmod p)$ with
$M=\left(\begin{array}{cccccccc}1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\ 2 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 & 0 & 1\end{array}\right) \equiv\left(\begin{array}{cccccccc}2^{32} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 2^{32} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 2^{32} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2^{32} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 2^{32} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 2^{32} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 2^{32} & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2^{32}\end{array}\right)(\bmod p)$

PMNS Coefficient Reduction

Specific case approach

Remarks and construction

- $2^{32} / d-M=0 \bmod p$ defines a lattice.
- p divides $\operatorname{det}\left(2^{32} / d-M\right)$, a factorization gives:
$p=1157920890216366226212471516033475687780424586980633020041035952359812890593$ which corresponds to the expected size.
- The value of γ is deduced as a solution of $\operatorname{gcd}\left(X^{8}-2,2^{32}-X^{5}-1\right)$ modulo p :
$\gamma=14474011127704577782765589395224532314179217058921488395049827733759590399996$
- Generally, M is found with coefficients lower than $2^{k / 2}(\sim \sqrt{\rho})$, which means that three rounds are sufficient.

On Polynomial Modular Number Systems over $\mathbb{Z} / p \mathbb{Z}$

Some Background on Pseudo-Mersenne Numbers

Polynomial Modular Number System

Existence and bounds of PMNS

Suitable irreducible polynomials for PMNS

Number of PMNS for a given p

PMNS Coefficient Reduction

Conclusions and Perspectives

(in) SCIENCES SORBONNE
UNIVERSITÉ

Conclusions

- We observe that irreducible polynomials give better PMNS than non-irreducible ones.
- Coefficient reduction is equivalent to the research of a close vector.
- Is it possible to find an efficient algorithm for these specific lattices??
- Is a round-off Babai sufficient ?? Could we adapt the nearest plan approach?
- Find an ad hoc method like when a power of two has a "good" PMNS representation??
- How construct easily reduced bases for the norm-1 without the help of LLL family algorithms ??

