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On Polynomial Modular Number Systems over Z/pZ

Some Background on Pseudo-Mersenne Numbers
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Some Background on Pseudo-Mersenne Numbers

» Classical Positional Number System 5 € N and 8 > 2,
a € N with a < 8™, there exists an unique sequence of

integers (a;)i=o...m—1, such that ,
m—1

a= Za,-ﬁ", with a3; € N, 0 < a; < 5.
i=0
» Specific Modular Reduction

Let peN, g1 < p< " B"=6 (mod p), with § < p,
do

1. a— ag + ["a; with ap,a; < "

2. a<ag+da;
until a < 3"
(ifo < B%" then two iterations give a < 23" — ﬂ%" — 1, if necessary, a
last subtraction of (8" — 0) gives a < 8")
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Some Background on Pseudo-Mersenne Numbers

Polynomial approach

Since, 8" — § =0 (mod p), then [ is a root of the polynomial
E(X) = X" — A(X) modulo p,
where A(B) =J (mod p), with deg A(X) = d < n and ||A(X)]|oo < B.
Reduction modulo p is computed in two steps:
1. polynomial reduction : C(X) = A(X) mod E(X)
2. coefficients reduction : C'(8) = C(8) (mod p) with C'(X)
of degree lower than n and coefficients smaller than £

The polynomial reduction looks like:
1 C(X) « AX)
m—1 n—1
2. do C(X) — A(X) X Z C,'Xiin + Z C,'Xi, degree decreases of (n — d)
i=n i=0
until deg C(X) < n-1

@g’hus |fdegC(X)<2nawA X)< 2 then degCM<n—1|ntw t;epﬁ‘(
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Some Background on Pseudo-Mersenne Numbers

Polynomial approach
Let t be the smallest integer such that ||C(X)||« < 8.

The coefficient reduction could look like:
Do

t—1
1. C(X) < Z C,'(X)ﬁi, with C;'s coefficients smaller than 8
i=0

t—1
2. C(X) + > G(X)X, with deg C(X) < t + n and [|C(X)[lee < 8
i=0
3. Polynomial reduction of C(X),
Until t=1

This can be seen as a carry propagation.
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Some Background on Pseudo-Mersenne Numbers

Lattices approach

The coefficient reduction can be seen as the subtraction of a close
vector in the lattice defined by:

p 0 0o o0 p 0 0 0

8 1 0 0 8 1 o0 0
A= 0 -8 1 o |~ —p 0 1

0 0 ... .. =8 1 -8l 0 ... ... 0

The first vector (p, 0,...,0,0) represents the modulo p reduction.
Vectors like (0, —B,1,...,0) represent the carry propagation.
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Some Background on Pseudo-Mersenne Numbers

Lattices approach

When we consider 5”7 — ¢ =0 (mod p), we can replace
(p,0,...,0,0) is replaced by (do,d1,...,0n—2,0n—1 — 3) thus we
obtain a sub-lattice with a reduced base.

S0 81 .o .. Bnin Su_1—B
8 1 ... ... 0 0
/
A = 0 -8 1 0
0 o0 -8 1
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On Polynomial Modular Number Systems over Z/pZ

Polynomial Modular Number System

L =TI W SCIENCES
. <> I!p iM. <

TINAY L SORBONNE

% leeia—~ = LV AFRa O RieashE

9/44



Polynomial Modular Number System

Definition
A Polynomial Modular Number System (PMNS) is defined by
» a quadruple (p, n,7, p) and

» a monic polynomial of degree n, E(X) € Z[X], such that
E(7) =0 (mod p)

» for each intelger xin {0,...p — 1}, there exists (xp, ..., Xn—1)
n
with x = mei (mod p), x; € N, —p < x; < p, and
0<y<p,
Proposition

If B = (p,n,v,p)e is a PMNS, then p < (2p — 1)".
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Polynomial Modular Number System

3 Z 5
0,0,0,0) (1,0,0,0) (L1110 (1,1, -1, 1) © 11,1 T 111
(-1,0,0,-1) (0,0,0,-1) (1,0,0,-1)
(-1,0,1,1) (0,0,1,1) (1,0,1,1)
0,1,-1,1) (1,1,-1,1)

6 7 B 9 10 11

(-1, 1,-1,0 (L, -1,-1,0) (0 -1,-1,0) @ 1,1, 0 (L.11,-1) (1,1, -1, -1)
(-1,0,1,0) (0,0,1,0) (1,0, 1,0) (-1, 1,0, 1) (-1,-1,0,1)
(0, 1,-1, 0 (1,1,-1,0) (-1,0,1,-1)
(0, 1,-1,-1)
0,1,0,1)

12 13 14 15 16 17
(0.1 1) T 11,1 (1.1,0,0) (1,1, 0,0 © -1,0,0) (T, -1,0,0)
0,-1,0,1) (1,-1,0,1) (0,1,0,0) (1,1,0,0)

(0,0, 1,-1) (1,0,1,-1)
(1, 1,-1,-1)
(1,1,0,1)

18 19 20 1 22 23
(1,0,-1 1) (1, -1,0 1) © 1,0, -1) T, -1,0, 1) (1,0,-1,0) (1,-1,1,0)
(-1,1,0,-1) (-1,-1,1, 1) (0,-1,1,1) (1,-1,1,1) (-1,1,1,0) (0,0,-1,0)
(-1,1,1,1) (0,0,-1,1) (1,0,-1,1) (0,1,1,0)

(0,1,0,-1) (1,1,0,-1)
0,1,1,1) (1,1,1,1)

24 25 26 27 28 29
(0 -1, 1,0 1,-1,1,0) (1,0, -1, 1) (1, -1, 1, 1) © 11,-1) (T -1 1-1)
(1, 0,-1,0) (-1,0,0,1) (0,0,-1,-1) (1,0,-1,-1)

(1,1,1,0) (-1, 1,1, -1) (0,0,0,1) (1,0,0,1)
0,1,1,-1) (1,1,1,-1)

30
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Polynomial Modular Number System

Remarks

1. PMNS looks like a positional system, but is not.
"'mod p) < (7! mod p) is not always true anymore.
Y Y

2. For every quadruple (p, n,~, p), there exists a polynomial
E(X) € Z[X] satisfying E(7) =0 mod p and deg E(X) = n:
for example E(X) = X" — (¥ mod p).

3. If p < (2p —1)", then the representation is redundant (i.e.,
some values can have more than one representation).

4. 1f B = (p,n,~, p)e is a PMNS, so is B’ = (p, n,v,p+ 1)E.

5. Given p, n,~, E, there exists a minimal p which defines a
PMNS B = (p,n,v,p)E.-
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Polynomial Modular Number System

Question

The question, for p and n given, Which polynomials E(X)

-i) offer an efficient modular reduction?
-ii) have a large number of roots v in Z/pZ?

-iii) allow to have p as small as possible?
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On Polynomial Modular Number Systems over Z/pZ

Existence and bounds of PMNS
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Existence and bounds of PMNS

PMNS and lattices

We consider the lattice £ over Z" of the polynomials of degree at
most n — 1, for which, v is a root modulo p.

p O 0 0 p 0 0 0 0
-~ 1 0 0 — 1 0 0 0
A= 0 —y 1 0 or i 0 1 0
0o 0 ... ... —y 1 -1 0 ... ... 0 1

The fundamental volume of £ is det A = p.
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Existence and bounds of PMNS

PMNS and lattices

Theorem

Let p > 2 and n > 2 two integers, E(X) a polynomial of degree n
in Z|X] and ~ be a root of E(X) in Z/pZ.

Let r be the covering radius of the lattice £, if p > r, then

B = (p,n,~,p)e is a Polynomial Modular Number System.

Proof.

The covering radius r of £ is the smallest number, such that the balls

By ={T € R",||T — V||2 < r} centered on any point V € £, cover the space R". In
other words, for any T € R" there exists V € £ such that

IT—V]|oo <||IT — V|2 < r. Thus for any T € R" there exists V € £, such that
T—VECy Co=AT eR",||T||oo < r}. O
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Existence and bounds of PMNS

Lattice's bases and PMNS

Theorem
Let B={By,...,B,_1} a base of £, and B the matrix associated
such that, B; represents the i*" row., with B = (bio, ..., bin 1), thus b;
represents the coefficient of the ith row, j™ column.

n—1
1’ (HBHI = mjaX Z |bl,_]| )' then B = (p7 n7’Y7p)E
is a Polynomial Modular NumbIerOSystem.

Ifp> 3B

Proof.

Let S € R", we search a close vector T € £ using a Babai round-off approach.We
have, T =BT.|(BT)"1.5].

S=BT.(BT)"1.5 =T +B7 frac((B")71.S) with |/frac (BT)L.5)||
Then

IS = Tl =[BT frac (BT)"1.5) ||, < 3[BT [|, = 3 IIBI; - O
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Existence and bounds of PMNS

Irreducible polynomials and PMNS

Let E(X) = X"+a, 1 X"t 4.+ a1 X + ap, and let C be the
companion matrix of E(X):

0 1 0 0 0
0 0 1 0 0
C= : : : : ; :
0 0 0 1 0
0 0 0 0 1
—aog —al —az e —anp—2 —anp—1
Let V = (vo,...,Vn_1) the vector representing the coefficient of

the polynomial V(X) =3""", 1 viX', then V.C is the vector whose
coordinates are the coefficients of the polynomial
X.V(X) mod E(X).
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Existence and bounds of PMNS

Irreducible polynomials and PMNS

Proposition
Let V' a non-null vector of £, the lattice of rank n defined by A.
Let B the n x n matrix whose it" row is the vector B; such that
Bi = V.C' (with polynomial B;(X) = X'.V(X) mod E(X)).
If V(X) is inversible modulo E(X) then:
» the matrix B defines a sublattice £ C £ of rank n (i.e.
B = (By,...,Bn-1) is a base of £'),

» and V € £,
Proof.
The B; are linearly independent. Indeed, let us suppose that there exists a non nul
vector (to, t1,...,ta—1) € Z" such that Z;’:_Ol t;B; = 0. It means that

27:_01 t,-XiV(X) = 0 mod E(X), or equivalently T(X)V(X) =0 mod E(X), with
T(X)=>", Lt;X7. Then T(X)V(X)V~L(X) mod E(X) = T(X) =0, since V(X)
is inversible modqu E(X) and degree of T(X) is at most n — 1. Hence the rows of B

Wre a %of a sublattlce@,‘l of ranlllﬁnd Ve L‘,f MJ e S Eé‘f*‘v‘ﬁ?’gg
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Existence and bounds of PMNS

Irreducible polynomials and PMNS

Corollary

Let V' a non-null vector of £, the lattice of rank n defined by A.
If E(X) is irreducible, then

» V can define a sublattice &' C £ of rank n,
» and V e &.

Proof.

If E(X) is irreducible, then V/(X) is inversible and Proposition 5 gives
B = (Bo,...,Bn_1) a base of £/, &' C £ of rank n, and V € £'. O
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Existence and bounds of PMNS

Irreducible polynomials and PMNS

Corollary

Let £, the lattice of rank n given by A,and let the lattice £p of
rank n in Z" defined by D = ( - |A. C"_l), then for any
V = (Vo, Vi, ..., Vu_1) € £p such that V £ (0)™:
If E(X) is irreducible then:

1. Vo € g,

2. (Vo,V1,..., V1) is a base of £ C £.

Proof.

Vo is a Iingar combination of rows of A, hence it belongs to £. Next, since
V; = V.C', for all i > 1, then, due to Corollary 6, the vector (Vp, V4, ..., Vph_1) is a
base of a sublattice £’ C £. O

Hence, a strategy is to choose a vector (o, V4, ..., Va—1) of £p and

o build the base B‘ng from Ve with ||BL] small as pgosibleic:s
@° LA iip INVE ™ PG o
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Existence and bounds of PMNS

Remarks

» For any p and n there exist E(X) monic of degree n, with ~
as root, and p such that B = (p, n,~, p)e is a PMNS.
( for example E(X) = X" — (7" mod p))

» Then, a £ the lattice of rank n can be defined by A depending
of p, nand 7.

» If E(X) is irreducible and V € £ then we can construct easily
a "reduced” base B of £.

» Thus, one goal is to find a base B of £ with ||B||; as small as
possible, to give interesting bounds of p.

. > KT i\ SCIENCES
7 — Lip \“'uM ’ g SORBONNE
% &Z’ZM/— ¥ B! S FRa : ) UNIVERSITE 5, 4,



Existence and bounds of PMNS

Example with p ~ 2%% and p < 2%

P —112848483075082590657416923680536930196574208889254960005437791530871071177777
n=8, E(X)=X8+ X2+ X +1,
7Y —14916364465236885841418726559687117741451144740538386254842986662265545588774
LLL: |BJ|; = 16940155314 BKZ: |BJ|; = 15289909984
Cor. 6: ||B|, = 13881325101 Cor. 7,: |B||; = 12883199915

P =96777329138546418411606037850670691916278980249035796845487391462163262877831
n=8, E(X)=X8+6,
7y =5538274654320514802181726618906590237936295237553666062542808070676484572674
LLL:  ||B||, = 12509178620 BKZ:  |BJ); = 12509178620
Cor. 6: ||B||, = 47611052126 Cor. 7: |B||, = 40733847267
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On Polynomial Modular Number Systems over Z/pZ

Suitable irreducible polynomials for PMNS
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Suitable irreducible polynomials for PMNS

Definition
A monic polynomial E(X) is a suitable PMNS reduction
polynomial, if:

1.
2.

E(X) is irreducible in Z[X],

E(X) = X"+ ag XK+ .- + a1 X + ag € Z[X], with n > 2 and
k S gr

most of coefficients a; are zero, and others are very small (if
possible equal to +1) compare to p/n.

-
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Suitable irreducible polynomials for PMNS

Classical criteria of irreducibility

Proposition (from Dumas' criterion 1906)

We assume that if there exists a prime p and an integer «, such
that, p® | ap, p®t't ag and, pl*("=0/"1| a;, and ged(a, n) =1,
then E(X) = X"+ ay XK +--- 4+ a1X + ag is irreducible over Z[X].

For example, E(X) = X" + uX* + u is irreducible with this
criterion. If k < n/2 and pu << p'/", then E(X) is a suitable
PMNS reduction polynomial.
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Suitable irreducible polynomials for PMNS

Classical criteria of irreducibility

Proposition (from N. C. Bonciocat 2015)

Let E(X) = X"+ a XK+ .-+ a1 X +ag, ag #0, let t > 2 and let
Ui, - .-, ut be pair-wise distinct prime numbers, and aq, . .., a;
positive integers. If, for j=1,...,t, and i =0,...,k, ,u?j | a; and
u?jﬂ tap, and gcd(av, ..., ¢, n) =1 then E(X) is irreducible
over Z[X].

For example, E(X) = X™ + pf*us2 X5 + pf* us? with

ged(aq, an, n) = 1, is irreducible with this criterion. If k < n/2 and
pitps? << p'/n, then E(X) is a suitable PMNS reduction
polynomial.
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Suitable irreducible polynomials for PMNS

Cyclotomic Polynomials

ClassCyclo(n) the class of suitable cyclotomic polynomials for
PMNS, whose degree is n.

Proposition
ClassCyclo(n) # () if and only if, n = 2'3/ with i >1,j > 0.

Hence, suitable cyclotomic polynomials are:
> &,(X)= X2 +1, thus n=2""1 with i > 2,
> dy(X) = X2 4 X¥7 41, thus n = 2.3 with j € N¥,
> Dyg(X) = X2¥ T - X2 L1 thus n= 2371 for
i,j € N*.
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Suitable irreducible polynomials for PMNS

{-1, 1}-quadrinomials

Proposition (Finch and Jones 2006)
The quadrinomial X + 8X® + vX¢ + & is irreducible over Z[X], (with

B,7v,8 € {—1,1} and a > b > ¢ > 0 with gcd(a, b, c) = 2'm, with m odd and they note a’ = a/2t,
b’ = b/2" and ¢’ = c/2". They definea = ged(a’, b’ — ¢’), b = ged(b’,a’ — ¢’) and € = ged(c’,a’ — b))
if and only if, its satisfies one of the following conditions:

1. (B,7,8) = (1,1,1) and abc = 1 (mod 2)
By7v,8) =(=1,1,1), b’ —c’ # 0 (mod 23), b’ # 0 (mod 2b) and a’ — b’ # 0 (mod 2¢)
B8,7,8) = (1,1, —1),a" Z0 (mod 23), b’ #Z 0 (mod 2b) and ¢’ Z 0 (mod 2¢)

( (
2. ( (
3. (B,7,0)=(1,-1,1), b’ — ¢’ Z0 (mod 23), a’ — ¢’ #Z 0 (mod 2b) and ¢’ # 0 (mod 2¢)
4. ( (
5. ( (

By7v,8) = (=1,—-1,—1),a’ Z0 (mod 23), a’ — ¢’ # 0 (mod 2b) and a’ — b’ Z 0 (mod 2¢)

For example, E(X) = X*7™ 4 X*'5™ 4 X23™ 1 1 is a suitable PMNS reduction
quadrinomial.

@ N/ QSCIENCES
i K SORBONNE
a2 Sk b UNIVERSITE 5,

o
™
§\

§



Suitable irreducible polynomials for PMNS

{=1, 1}-trinomials and binomials

Proposition (W. Ljunggren1960, W.H. Mills 1985)

We note ged(n,m) =d and n=d.ny;, m=d.my. If ny + my #0
mod 3 then the polynomial X" + X™ + 6 with 6,3 € {—1,1} and
n>2m >0, is irreducible over Z[X].

Proposition (N. C. Bonciocat 2015)

We note, ¢ = Hjl-;l pjfnj with p; pair-wise distinct prime numbers,
and mj positive integers.
If gcd(my, ..., mg,n) =1 then the polynomial X" + ¢ with ¢ € Z,

|c| > 2, is irreducible over Z[X].
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Suitable irreducible polynomials for PMNS

From Perron irreducibility (N. C. Bonciocat 2010)

Proposition
n/2
For a fixed n > 2, a prime p, and P(X) = X" + Ze;Xi + p with
i=1
g € {*1,07 l},
n/2
ifpp>1+ Z lei| then the polynomial P(X) is irreducible over Z[X].
i=1

Proposition
n/2
For a fixed n > 2, and P(X) = X" + Zs,-Xi + a1 X £ 1 with
i=2
g; € {-1,0,1} and a; € Z*.
n/2
Ifla1] > 2+ Z lei| then the polynomial P(X) is irreducible over Z[X].

i=2
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On Polynomial Modular Number Systems over Z/pZ

Number of PMNS for a given p
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Number of PMNS for a given p

General case

Proposition

Let p prime, n > 2, E(X) a polynomial of degree n and irreducible
in Z[X], and D(X) = ged(XP — X, E(X)) mod p, there exists
deg(D(X)) Polynomial Modular Number Systems (p, n,~i, p)g(x)-

Computation of ged(XP — X, E

(
1. evaluation of XP mod E(X) mod p (square/multiply
exponentiation), then of F(X) = X?P —1 mod E(X) mod p,

2. evaluation of gcd(F(X), E(X)) mod p with deg F(X) < n.

The roots are found by factorising the polynomial
ged(F(X), E(X)) mod p.

X)) mod p, in two steps :
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Number of PMNS for a given p

Example of a General case

We consider p = 7826474692469460039387400099999297 and E(X) = X + X2 + 1.
Then, XP mod E(X) = 7322126259420098177093985099094624 X*
+1727826215301243349042222461135262 X3
+3438841897608126971004523506864410 X
+7372958503626664659096728485020295 X
+4167285606168530025180293516680876
Thus, ged(XP mod E(X) — X, E(X)) mod p
= X? 4 1305849998419067291000337897705258 X
+1793073000954204546034194068098826
= (X + 6157699039557809270671068895070912)
(X 4+ 2974625651330718059716669102633643)
Hence, we obtain two roots of E(X) mod p:
v1 = 1668775652911650768716331204928385
v2 = 4851849041138741979670730997365654
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Number of PMNS for a given p

Cyclotomic case

Proposition

Let p > 2 a prime number, and an integer m > 3. If m| (p — 1),
then the cyclotomic polynomial ®,(X) has ¢(m) roots over Z/pZ.
(@m(X) | (XP~ = 1) =TT e(z/pmy (X — &) )

Corollary
Let p prime, n > 2 such that n=2'3, with i,j € N.

then,

Ifi>0,j=0, and (2n) divides (p — 1), and E(X) = ®2,(X) = X" + 1,
Ifi=1,j>0, and (3n/2) divides (p — 1), and

E(X) =®5(X) = X"+ X2 +1,

Ifi>1,j>0, and (3 n) divides (p — 1), and

E(X) = ®3,(X) = X" — X3 41,

there exist n PMNS (p, n,~i, p)e(x) , with ~; one of the n distinct roots

modulo p of E(X) .
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Number of PMNS for a given p

Example of Cyclotomic cases

Construction PMNS from a cyclotomic reduction polynomial for
p = 2256 3157 115 + 1 coded on 512 bits.

» E(X) = X8+1, from the 8 roots, the best p is obtained with
our approach (with Corollary-6 and Corollary-7) and is 66 bits
long.

> E(X) = X®+ X3+ 1, from the six roots, the best p is
obtained two times with LLL, else with Corollary-6 and
Corollary-7, and is 87 bits long.

» E(X) = X%— X3+ 1, from the six roots, the best p is
obtained with Corollary 6 and Corollary 7, and is 87 bits long.
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Number of PMNS for a given p

Example of a General case

p =57896044618658097711785492504343953926634992332820282019728792003956566811073
a 256-bits prime, and n = 9.
We consider PMNS B = (p, n,~, p)e such that:

> E(X)=X"+aX"+ -+ aX+a €Z[X], withn>2and k < 2,
> coefficients |a;j| <1 for 1 <j <k and |ap] <3
» p§231

The number of PMNS B = (p, n, v, p)e is equal to 354.

Most of the time, the best p is obtained first by LLL (266 times) or BKZ (46),
some are due to Corollary-6 (10) or with Corollary-7 (28), or Proposition-5 (4)
with a short vector.
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PMNS Coefficient Reduction

@ Lo < P M~ Sk

38/44



PMNS Coefficient Reduction

Montgomery approach

B = (p,n,7,p)e a PMNS, and ag such that, with deg(A(X)) < 2n,
[IA(X) mod E(X)]||oo < ag||A(X)|leo- Let V' a non-null vector of £.

If |Vllsc < 55670 @nd there exists V/(X) = (=V~'(X) mod E(X)) mod 2/,
then, for A(X) with coefficients smaller than 2/~1p:
1. Q(X) + ((A(X)V'(X)) mod E(X)) mod 2/

2. T(X) < Q(X)V(X) mod E(X) (thus T € £ and || T oo < 2/"1p)
3. R(X)=A(X)+ T(X) (thus R(X) multiple of 2')
4. S(X)=R(X)/2 (thus ||S||co < p)

with S(7) = A(7)2~" (mod p)

If np < 2' there exists G(X) such that G(7) = 2% (mod p) and ||G|le < p,
then G(7)S(7) = 2'A(y) (mod p) and F(X) = G(X)S(X) mod E(X) is such
that [|F[le < 2"7'p
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PMNS Coefficient Reduction

With 2% = F(y) mod p

Find a B = (p, n,v, p)e such that 2K = F(v) mod p with
[|Flloe < 2°F and #(non-null coeff of F) < 2°

We note ¢g, the integer such that ||C(X) mod E(x)||cc < 2| C(X)||oo
We consider A(X) with [|A(X)]|oo < 2K+t
do

1. We split A(X) = A1(X)25 4+ Ag(X)
with ||A1(X)]lee < 2F and [|Ao(X) o0 < 2%

2. A(X) + (A(X)F(X) mod E(X)) + Ao(X)
with [JA(X)||ee < 2tTBFertee
until [JA(X)]oo < 2¥
If (B+ eF + €g) < k then the algorithm converges.

h)
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PMNS Coefficient Reduction

Example of a pecific case approach (Plantard’s PhD)

Find a B = (p, n,v, p)e such that 2¥ = F(~) mod p with
[Flloc <€

» The construction of the system giving some features: n = 8,

and p = 232 with p < p” determine the size of the problem.
» The property 78 = 2 (mod p) for the polynomial reduction.

» The coefficient reduction is given by 23 = +° + 1 (mod p)

Thus V =2V, + Vo =2%1d. Vi + Vo = M.Vi + Vo (mod p) with

32
1 0 0 0 0 1 0 0 2 o o0 0 0 0 0
0 1.0 0 0 0 1 o 0o 2 0 0 0 0 0 0
00 1 0 0 0 0 1 0 o 22 o 0 0 0 0
M—| 2 0 0 1 0 0 0 0 [_ o o o 22 0o 0o 0 0 (mod p)
- 0 2 0 0 1 0 0 O = 0 0 0 0 232 0 0 0 mod p
6 6 2 0 0 1 0 0 0 0 0 0 o 22 o 0
SN A N
0 0 0 0 0 0 o 2%
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PMNS Coefficient Reduction

Specific case approach

Remarks and construction

> 232/d — M = 0 mod p defines a lattice.

» p divides det (2°?/d — M), a factorization gives:
p = 115792089021636622262124715160334756877804245386980633020041035952359812890593
which corresponds to the expected size.

» The value of v is deduced as a solution of
ged(X® — 2,232 — X5 — 1) modulo p:
~ = 14474011127704577782765589395224532314179217058921488395049827733759590399996

» Generally, M is found with coefficients lower than
2k/2(~ /p), which means that three rounds are sufficient.
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Conclusions and Perspectives
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Conclusions

» We observe that irreducible polynomials give better PMNS
than non-irreducible ones.

» Coefficient reduction is equivalent to the research of a close
vector.

P Is it possible to find an efficient algorithm for these specific
lattices??

» Is a round-off Babai sufficient 7?7 Could we adapt the nearest
plan approach?

» Find an ad hoc method like when a power of two has a
"good” PMNS representation??

» How construct easily reduced bases for the norm-1 without
the help of LLL family algorithms 77
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