
DRS: Diagonal dominant Reduction for lattice-based Signature

Version 2

Thomas PLANTARD,

Arnaud SIPASSEUTH, Cédric DUMONDELLE, Willy SUSILO

Institute of Cybersecurity and Cryptology

School of Computing and Information Technology

University of Wollongong
Australia

1 Background

De�nition 1. We call lattice a discrete subgroup of Rn. We say a lattice is an integer lattice when it is a
subgroup of Zn. A basis of the lattice is a basis as a Z−module.

In our work we only consider full-rank integer lattices (unless speci�ed otherwise), i.e such that their
basis can be represented by a n × n non-singular integer matrix. It is important to note that just like in
classical linear algebra, a lattice has an in�nity of basis. In fact, if B is a basis of L, then so is UB for any
unimodular matrix U (U can be seen as the set of linear operations over Zn on the rows of B that do not
a�ect the determinant).

De�nition 2 (Minima). We note λi(L) the i−th minimum of a lattice L. It is the radius of the smallest
zero-centered ball containing at least i linearly independant elements of L.

De�nition 3 (Lattice gap). We note δi(L) the ratio λi+1(L)
λi(L) and call that a lattice gap. When mentioned

without index and called "the" gap, the index is implied to be i = 1.

De�nition 4. We say a lattice is a diagonally dominant type lattice (of dimension n) if it admits a basis B
of the form a diagonal dominant matrix as in [1], i.e

∀i ∈ [1, n], Bi,i ≥
∑n
j=1,i6=j |Bi,j |

We can also see a diagonally dominant matrix B as a sum B = D + R where D is diagonal and
Di,i > ‖Ri‖1. In our scheme, we use a diagonal dominant lattice as our secret key, and will refer to it as our
"reduction matrix" (as we use this basis to "reduce" our vectors).

De�nition 5. Let F be a sub�eld of C, V a vector space over F k, and p a positive integer or ∞. We call
lp norm over V the norm:

• ∀x ∈ V, ‖x‖p = p

√∑k
i=1 |xi|p

• ∀x ∈ V, ‖x‖∞ = maxi∈[1,k] |xi|

l1 and l2 are commonly used and are often called taxicab norm and euclidean norm respectively. The
norm we use in our scheme is the maximum norm. We note that we also de�ne the maximum matrix norm
as the biggest value among the sums of the absolute values in a single column.

De�nition 6 (uSVPδ: δ-unique Shortest Vector Problem). Given a basis of a lattice L with its lattice gap
δ > 1, solve SVP.

1

De�nition 7 (BDDγ : γ-Bounded Distance Decoding). Given a basis B of a lattice L, a point x and a
approximation factor γ ensuring d(x,L) < γλ1(B) �nd the lattice vector v ∈ L closest to x.

It has been proved that BDD1/(2γ) reduces itself to uSVPγ in polynomial time and the same goes from
uSVPγ to BDD1/γ when γ is polynomially bounded by n [8], in cryptography the gap is polynomial the
target point x must be polynomially bounded therefore solving one or the other is relatively the same in our
case. To solve those problems, we usually use an embedding technique that extends a basis matrix by one
column and one row vector that are full of zeroes except for one position where the value is set to 1 at the
intersection of those newly added spaces, and then apply lattice reduction techniques on these. As far as our
signature security is concerned, the GDDγ is more relevant:

De�nition 8 (GDDγ : γ-Guaranteed Distance Decoding). Given a basis B of a lattice L, any point x and
a approximation factor γ, �nd v ∈ L such that ‖x− v‖ ≤ γ.

2 Our scheme

The raw step-by-step idea for Alice to sign a �le from Bob is the following:

• Alice sends a basis P (the public key) of a diagonal dominant lattice L(P) to Bob.
This basis should have big coe�cients and obfuscate the diagonal dominant structure.

• Bob sends a vector message m (that has big coe�cients) to Alice.
He challenges Alice to �nd ‖s‖ < γ such that m− s ∈ L(P).

• Alice uses a diagonal dominant basis D +M of L(P) to solve the GDDγ on L(P) and m.
She obtains a vector signature s (that has small coe�cients) and give it to Bob.

• Bob checks if (m− s) ∈ L(P) and ‖s‖ < γ for our GDDγ problem.
The signature is correct if and only if this is veri�ed.

Our scheme is inspired by the scheme proposed by Plantard et al. [10], which was originally inspired by
GGH [4].

In this section, we just give a quick overview of our algorithms and explain the ideas behind them. How
we choose to implement it in practice will be more detailed in the implementation section.

2.1 Setup: lattice, reduction matrix generation, and random seed

Note that this new setup for the secret key have been strongly changed following the attack from [14].

The new algorithm here is less straightforward but still the same as its core, we just have to generate a
diagonal dominant matrix S of size n∗n with a low and bounded noise, given a chosen bound D and a value
δ < D. This is done by computing S = D +M where M is chosen uniform among all possibilities verifying

∀i ∈ [1, n], ‖Mi‖1 < D

To achieve this, we will just generate each vector Si = Mi + Di with i ∈ [1, n] in simple steps, but using a
precomputation �rst:

1. We generate a table of numbers T such that T [i] is the number of vectors of Zn with i zeroes.

2. We then generate a table of numbers TS such that TS [i] is the number of vectors of Zn with i zeroes
or less.

And now, from TS we generate each vector Si in simple steps:

1. We pick a random value x ∈ [TS [1] : TS [n][, and select k TS [k − 1] < x ≤ TS [k].

2. We pick n− k values x1, ..., xn−k such that 0 < x0 < ... < xn−k ≤ D.

2

3. We �ll Si = [x1, x2 − x1, x3 − x2, ..., xn−k − xn−k−1, 0, ..., 0].

4. We then multiply every element Si,1, ..., Si, n− k by 1 or −1 (just changing the sign randomly).

5. The last step consists in permuting randomly coe�cients of Si, and assigning Si,i ← Si,i +D.

As part of the secret key, we also keep the seed value s used as a seed for random generators, as we will
explain in the next sections.

2.2 Setup: public key generation

Like most public-key lattice based cryptosystems, we construct our public key P such that a matrix U such
that P = US where U is unimodular and S is our secret matrix.

We want the coe�cients of P to be bigger but relatively balanced, while having a fast method to generate
it. Let us describe the following matrices:

A+ =

[
1 1
1 2

]
and A− =

[
1 −1
−1 2

]
and

T
n/2
{+,−} =

i ∈ [1, n/2], xi ∈ {+,−} :

Ax1
0 . . . 0

0 Ax2

. . .
... 0

. . .
. . .

...
. . . Ax(n/2)−1

0
0 . . . 0 Axn/2

where every T ∈ Tn/2{+,−} is an unimodular matrix composed of A+ and A− in its diagonal and 0 elsewhere. If

Mmax is the maximum size of the coe�cients in a matrixM , then after being multiplied by a transformation

matrix T ∈ Tn/2{+,−}, the maximum size of the coe�cients in TM is at most 3‖M‖∞, and we will use a matrix

in T
n/2
{+,−} everytime we wish to grow our coe�cients. Using T

n/2
{+,−}, we de�ne

Ui = TiPi where Pi ∈ Sn is a permutation matrix and Ti ∈ Tn/2{+,−} randomly chosen.

The point of using permutation matrices Pi is to ensure we use a di�erent combination of rows at every
growing step. Finally, we will use it to create

U = PR+1

∏R
i=1 Ui

such that R ≥ 1 is a security parameter and P = U(D −M).

Note that, for every value of R, we obtain di�erent U , and furthermore, since we are taking both Ti and Pi
randomly, we note that every choice is dependent of the seed we put for our random generators (assuming
they are deterministic like the ones provided by the NIST). Therefore we generate P in the following way:

1. Use our random secret seed s to set our random generators, and P ← S where S is our secret matrix

2. Choose "randomly" Ts,1, a transformation matrix and Ps,1 a permutation matrix

3. Set P ← Ts,1Ps,1P

4. Repeat the last two steps that R− 1 more times and reapply one �nal permutation P ← Ps,R+1P

Finally, we obtain our �nal public-key matrix P .

3

2.3 Veri�cation

To verify our signature, we need some additional information to decide whether s is a valid signature or not
((m− s) ∈ L(P)). We know that (m− s) ∈ L(P) if and only if there exists k ∈ Zn such that (m− s) = kP .

Therefore, given k,m, s, P , just check whether or not we have (m− s) = kP . If the veri�cation holds the
signature is valid. Otherwise, it is invalid.

2.4 Signature

To generate the signature, we use exactly the same algorithm as the one used by Plantard et al. which in
our case is basically reducing every big coe�cient |mi| > d of a vector message m by a value of q ∗ d such
that |mi− q ∗ d| < d, but re-adding some smaller noise |qb| and |q| in some other coe�cients m[j] with j 6= i,
i.e

applying m← m− qSi where |mi − q ∗ d| < d for every |mi| > d until ‖m‖∞ < d.

All proofwork can be found in the paper of the original reduction idea [10], however we propose here an
alternative proved bound for the reduction to work, which is much easier to understand and to practically
use: using the norm l1, and supposing that our reduction matrix d ∗ Id−M is diagonal dominant where M
has a zero diagonal.

Suppose we reduce a vectorm by a q times a vector of our diagonal dominant basis S, which only happens
when

∃i ∈ [1, n], |mi| > d

Which means that we dropped ‖m‖1 by exactly |qd| on one coe�cient, but added |q|
∑n
j=1 |Mi,j | at most on

‖m‖1. Since the diagonal dominance gives d >
∑n
j=1,j 6=i |Mi,j |

q has the same sign as mi and d > 0 so |mi − qd| = |mi| − |qd| < d < |mi|

and d < |mi|, thus |mi| − |qd| < |mi|

‖m‖1 − |qd|+ |q|
∑n
j=1,j 6=i |Mi,j |) < ‖m‖1

thus ‖m‖1 is lower than before : thus, we e�ectively reduce ‖m‖1 until ‖m‖∞ < d.

However, since our diagonal coe�cient is not always equal to d since we did not enforce M 's diagonal to
be zero in our case, we need to complete the proof. Obviously, the matrix will still be diagonal dominant in
any case. Let us denote di the diagonal coe�cient Si,i of S = D −M .

If d > di we can use the previous reasoning and reduce |mi| to |mi| < di < d, but keep in mind we stop
the reduction at |mi| < d to ensure we do not leak information about the noise distribution.

Now di > d for some i: reducing to |mi| < di is guaranteed but not su�cient anymore as we can reach
d < |mi| < di. Let us denote ∆ = d−

∑n
j=1 |Mi,j |, where ∆ is strictly positive as an initial condition of the

DRS signature scheme (both on the original submission and this paper).

We have di −
∑n
j=1,j 6=i |Mi,j | = 2c+ ∆ > 0 where c = |Mi,i| and 2d > di = d+ c.

In the case where 2d > di > |mi| ≥ d, we can substract or add Si to m to ensure

| |mi| − Si,i | = | |mi| − di | < d

and doing so we still respect the following inequality

| ‖m‖1 − |di|+
∑n
j=1,j 6=i |Mi,j | | < ‖m‖1

i.e 0 < | ‖m‖1 − (2c+ ∆) | < ‖m‖1

4

ensuring that the quantity ‖m‖1 still decreases and the reduction algorithm still terminates.

Once we have s the reduced form of m, we still need the �nal k such that kP = (m− s). To generate the
�nal membership vector k, we basically �rst construct its values such that k′(D−M) = k′S = m− s, as we
reduce m. At the �rst step, s = m and k = [0, ..., 0]. However, everytime we use the vector s = m− q ∗ Si,
then k[i]← k[i] + q to keep the equality k′S = m− s true.
Once the �nal s is constructed, we know P = U(D −M) and k ← k′U−1 and thus verify

kP = k′U−1U(D −M) = k′(D −M) = (m− s)

As far as the computation of U−1, it is fairly simple. Since

U = PR+1

∏R
i=1 TiPi = PR+1TRPR...T1P1

we have

U−1 = (
∏R
i=1 P

−1
i T−1

i)P−1
R+1 = PT1 T

−1
1 ...PTRT

−1
R PTR+1

(note that order matters), and knowing

A−1
+ =

[
2 −1
−1 1

]
and A−1

− =

[
2 1
1 1

]
and

T
−(n/2)
{+,−} =

i ∈ [1, n/2], xi ∈ {+,−} :

A−1
x1

0 . . . 0

0 A−1
x2

. . .
... 0

. . .
. . .

...
. . . A−1

x(n/2)−1
0

0 . . . 0 A−1
xn/2

U−1 is thus as easy to compute as U , and also give the exact same bound of 3R for the growth of the
maximum matrix norm after R rounds, and we proceed very similarly to the generation of the public key,
as follows:

1. Use our random secret seed s to set our random generators, and k ← k′ where k′(D −M) = m− s.

2. Choose "randomly" T−1
s,1 , the inverse of a transformation matrix and P−1

s,1 the inverse of a permutation
matrix

3. Set k ← kP−1
s,1 T

−1
s,1

4. Repeat the last two steps R− 1 more times and reapply one �nal inverse permutation k ← kP−1
s,R+1

Finally, we can give Bob the �nal couple (k, s) as the signature.

3 Security

The initial idea of reducing vectors using diagonal dominant lattices and the maximum norm was done as a
countermeasure against the parallelepiped attack from [9] in Plantard et al's suggestion at PKC2008 [10] to
�x GGHSign [4]. Their original theoretical framework is still unchallenged however its instantiation in the
form of the original DRS submission was severely weakened by Ducas' attack [14]. In the following subsection
we will describe the state of the art method, in the best of our knowledge to attack this new version of DRS.

5

3.1 BDD-based attack

The security is based on what is known as the currently most e�cient way to attack the scheme, a BDD-
based attack as described below.

Input: Pk the public key of full rank n, d the diagonal coe�cient, φ a BDDγ solver
Output: Sk = (D −M) the secret key
Sk ← d ∗ Idn;
// Loop on every position of the diagonal

foreach {i ∈ [1..n]} do
// Find r the difference between (0, ...0, d, 0, ..., 0) and L(Pk)
r ← φ(L(Pk), Sk[i]);
Sk[i]← Sk[i] + r;

end
return Sk ;

Algorithm 1: Diagonal Dominant Key recovery attack

Currently, the most e�cient way to perform this attack will be:

i) to transform a BDD problem into a Unique Shortest Vector Problem (uSVP) (Kannan's Embedding
Technique [6]), assuming v = (0, ...0, d, 0, ..., 0)(

v 1
B 0

)
,

ii) to solve this new uSVP using lattice reduction algorithm.

Using this method, we obtain a uSVP with a gap

γ ≈
Γ
(
n+3

2

) 1
n+1 Det(L)

1
n+1

√
π‖M1‖2

≈
Γ
(
n+3

2

) 1
n+1 dn

1
n+1

√
π‖M1‖2

. (1)

Lattice reduction methods are well studied and their strength are evaluated using the Hermite factor.
Let L a d−dimensional lattice, the Hermite factor of a basis B of L is given by

‖B[1]‖2
det(L)

1
n

.

Consequently, lattice reduction algorithms strengths are given by the Hermite factor of their expected output
basis.

In [3], it was estimated that lattice reduction methods solve USVPγ with γ a fraction of the Hermite
factor. We will use a conservative bound of 1

4 for the ratio of the USVP gap to the Hermite factor.

As we do not have a �xed euclidean norm for our secret vectors we have to rely on the approximates
given to us by our new random method in sampling noise vectors Mi.

In our case, we know that for any vector v ∈ Zn we have ‖v‖2 ≥ ‖v‖1√
n
, and our experiments (as seen

below) allow us to use a higher bound

‖v‖2 '
√

2‖v‖1√
n

6

Dimension ∆ R δ γ 2λ

1108 1 24 28 < 1
4 (1.006)d+1 2128

1372 1 24 28 < 1
4 (1.005)d+1 2192

1779 1 24 28 < 1
4 (1.004)d+1 2256

Table 1: Parameter Sets.

3.2 Expected Security Strength

Di�erent papers are giving some relations between the Hermite factor and the security parameter λ [5, 13]
often using BKZ simulation [2]. Aiming to be conservative, we are to assume a security of 2128, 2192, 2256 for
a Hermite factor of 1.006d, 1.005d, 1.004d respectively. we set D = n, pick hashed messages h(m) such that
log2(‖h(m)‖∞) = 28, R = 24 and ∆ = 1.

Table 1 parameters have been choosen to obtain a USVP gap (Equation 1) with γ < δd+1

4 for δ =
1.006, 1.005, 1.004.
Our experiments shows us that the distribution of zeroes among sampled noise vectors form a Gaussian and
so does the euclidean norm of noise vectors when picking our random elements x, xi uniformly.
Here we include below the distribution of 106 randomly generated noise vectors v with the x-axis representing

f(v) = b100

√
‖v‖22
D c where D is the signature bound.

Figure 1: Distribution of f(v) for dimension n = 1108 and bound D = n− 1 over 106 samples

7

Figure 2: Distribution of f(v) for dimension n = 1372 and bound D = n− 1 over 106 samples

Figure 3: Distribution of f(v) for dimension n = 1779 and bound D = n− 1 over 106 samples

8

4 Our implementation

While we gave the overall idea in the previous sections, in this section we specify some implementation
choices. Nevertheless those choices are not intrinsic to the scheme and can be changed.
Below is an overview of the main point of our implementation:

4.1 Program parameters, and algorithm changes

The whole scheme is set by 6 parameters:

• n: the dimension

• s: a seed for random generators

• D: the diagonal coe�cient, also the bound for the max norm of our reduced vectors

• δ: the bound for the max norm of our hashed messages vectors

• ∆: a parameter that de�nes an extra sparsity in our reduction matrix, which limits the taxicab norm
of the noise vectors by D −∆. We usually set ∆ = 1 as it is the most secure choice.

• R: a "round" number, indicating the number of loop iterations used to generate the public key.

All those parameters can be found in the various api.h �les available. Those include the precomputed
tables TS used for the generation of the secret key.

Note the introduction of a seed parameter s, that serves in both the public key generation and signature
algorithm, and which interacts (directly or indirectly) with the following functions:

• RdmSeed : s→ () determines the output of the two next functions

• RdmPmtn : M → σ(M) randomly permutes the rows of the input matrix, or the values of an input
vector

• RdmSgn : ()→ {−1, 1} output a random value, −1 or 1

Another important point is that rather than signing a vector message that is given to us, we sign a vector
produced by the hashing of the received message. For now, we will refer to the hashed message vector as
the message.

To maximize e�ciency, we choose those last parameters such that all intermediate computations �t
in 64-bits integers. One intermediate computation that might over�ow is while checking the validity of
messages-signatures couples. This is determined by the four parameters δ,∆, D,R. Here, we choose to �x
D = n, δ = 28,∆ = 1 and R = 24.

We will give all input sizes in the rest of the report in bits.

4.2 Algorithms

4.2.1 Secret Key Setup

As previous readers of the original DRS report have noticed, the secret key setup was changed completely
due to Ducas' attack [14]. Ducas' attack was exploiting the speci�c structure of the noise vector, which was
composed of only two unique values (modulo signs). We are now using noise vectors taken randomly in the
set of v ∈ Zn such that ‖v‖1 < D.

The set of noise vectors we need to keep are all the vectors v that have a taxicab norm of 0 ≤ ‖v‖1 ≤ D−1
and dimension n. Let us call that set Vn. The new noise matrix M we are aiming to build is a n× n matrix
such that M ∈ V nn .

In that regard, we construct a table we will call T with D entries such that

9

T [i] = #vectors v ∈ Vn with i zeroes .

This table is relatively easy to build and do not take much time, one can for example use the formulas
derivated from [11] and [7]. From this table, we construct another table TS such that TS [k] =

∑k
i=0 T [i].

Below is the generation algorithm of the table TS , which we will use as a precomputation for our new setup
algorithm:

Input: - all initial parameters;
Output: - TS the table sum;
// Initialization

m←min(dimension, diagonal coef D);
T ← {1}m+1;
TS ← {1}m+1;
// Construct array T
// Construct array T : loop over the norm

for j = 2 ; j ≤ D ; j = j + 1 do
// Construct array T : loop over the number of non-zeroes elements in each

possibility

for i = 2 ; i ≤ m+ 1 ; i = i+ 1 do

x← 2i−1
(
n
i−1

)(
j−1
i−2

)
;

T [m+ 1− i]← T [m+ 1− i] + x;

end

end
// Construct array TS from T
for i = 1 ; i ≤ m ; i = i+ 1 do

T [i+ 1]← T [i+ 1] + T [i];
end
TS ← T ;
// Algorithm ends

return TS ;

Algorithm 2: Secret key table precomputation

Let us denote the function Z(x)→ y such that TS [y − 1] < x ≤ TS [y].
Since TS is trivially sorted in increasing order Z(x) is nothing more than a dichotomy search inside an
ordered table.
If we pick randomly x from [0;TS [D − 1]] from a generator with uniform distribution g() → x then we got
Zero()→ Z(g(x)) a function that selects uniformly an amount of zeroes amount all vectors of the set Vn, i.e

Zero()→ #zeroes in a random v ∈ Vn.

Now that we can generate uniformly the number of zeroes we have to determine the coe�cients of the
non-zero values randomly, while making sure the �nal noise vector is still part of Vn. A method to give such
a vector with chosen taxicab norm is given in [12] as a correction of the Kraemer algorithm. As we do not
want to choose the taxicab norm M directly but rather wants to have any random norm available, we add
a slight modi�cation: the method in [12] takes k non-zero elements x1, ..., xk such that xi ≤ xi+1 and forces
the last coe�cient to be equal to the taxicab norm chosen, i.e xk = M . By removing the restriction and
using xk ≤ D, giving the amount of non-zero values, we modify the method to be able to take over any
vector values in Vn with the help of a function we will call

KraemerBis(z)→ random v ∈ Vn such that v has z zeroes

which is described below in the following algorithm

10

Input: - all initial parameters;
- a number of zeroes z;
Output: - a vector v with z zeroes and a random norm inferior or equal to D;
// Algorithm start

v ∈ Nn;
Pick randomly n− z + 1 elements such that 0 ≤ x0 < x1 < ... < xn−z ≤ D;
for i = 1 ; i ≤ n− z ; i = i+ 1 do

v[i]← xi − xi−1;
end
for i = n− z + 1 ; i ≤ n ; i = i+ 1 do

v[i]← 0;
end
// Algorithm ends

return v;

Algorithm 3: KraemerBis

With both those new parts, the new setup algorithm we construct is the following:

Input: - all initial parameters;
- another extra random seed x2;
Output: - x, S the secret key;
// Initialization

S ← D × Idn;
t ∈ Zn;
// Algorithm start

InitiateRdmSeed(x2);
for i = 1 ; i ≤ n ; i = i+ 1 do

// Get the number of zeroes and create a new vector

Z ← Zero();
t← KraemerBis(Z);
// Randomly switch coefficient signs

for j = 1 ; j ≤ n− Z ; j = j + 1 do
t[j]← t[j]×RdmSgn()

end
// RdmPmtn permutes everything

t← RdmPmtn(t);
Si ← Si + t;

end
// Algorithm ends

return x, S;

Algorithm 4: New secret key generation (square matrix of dimension n)

We note that in our new secret key, the structure is less present and we cannot compress the way we did
in the initial iteration of DRS.

The secret key is a square matrix where every element is within [−2D, 2D], however as we only store the
noise, we consider elements in [−D + 1, D − 1], and Nx bits the number of bits for the seed s used when
generating P . Therefore the size of the secret key in bits is n2dlog2(2D) + 1e+Nx.

4.2.2 Public Key Setup

The public key setup is as described initially. We add an extra value corresponding 263−dlog2(‖P‖∞)e this will
help us to ensure that there will be no over�ow during the veri�cation process.

11

Input: - S the reduction matrix of dimension n, obtained previously;
- a random seed x;
Output: - P the public key, and p2 a power of two;
// Initialization

P ← S;
// Algorithm start

InitiateRdmSeed(x);
// Apply R rounds

for i = 1 ; i < R ; i = i+ 1 do
P ← RdmPmtn(P);
for j = 1 ; j ≤ n− 1 ; j = j + 2 do

t← RdmSgn();
P [j] = P [j] + t ∗ P [j + 1];
P [j + 1] = P [j + 1] + t ∗ P [j];

end

end
P ← RdmPmtn(P);
// Computes p2

p2 ← dlog2 ‖P‖∞e;
p2 ← 263−p2 ;
// Algorithm ends

return P, p2;

Algorithm 5: Public key generation

The initial size of the coe�cients of P (which is initially S) are inferior or equal to D. After R rounds, it
is inferior to 3RD. Therefore to encode it, we will need n2dlog2(3R ∗D) + 1e bits (1 extra bit per coe�cient
due to the sign). Unlike the previous DRS iteration, we do not need to add 7 more bits to represent p2 (by
its power value) as we can compute it when reading the key's data, for a total of n2dlog2(3RD) + 1e.

4.2.3 Signature

The signature algorithm is previously described and we will include the details here for completeness.

12

Input: - A vector v ∈ Zn;
- S the secret key matrix, with diagonal coe�cient d;
- s a seed value;
Output: - w with v ≡ w [L(S)], ‖w‖∞ < d and k with kP = v − w;
// Initialization

w ← v;
i← 0;
k ← [0, ..., 0];
// Algorithm start

// Reduce until all coefficients are low enough

while ‖w‖∞ < d do
q ← wi

d ;
ki ← ki + q;
w ← w − qSi;
i← i+ 1 mod n;

end
// Use the seed to modify k such that kP = v − w
// The seed defines the output of RdmPmtn and RdmSgn

InitiateRdmSeed(x);
for i = 1 ; i ≤ R ; i = i+ 1 do

k ← RdmPmtn(k);
for j = 1 ; j ≤ n− 1 ; j = j + 2 do

t← RdmSgn();
k[j + 1] = k[j + 1]− t ∗ k[j];
k[j] = k[j]− t ∗ k[j + 1];

end

end
k ← RdmPmtn(k);
// Algorithm ends

return k, v, w;

Algorithm 6: Sign : coe�cient reduction �rst, validity vector then

The size of the message is ndδ + 1e, and the size of the signature is the sum of the size of the reduced
message vector ndlog2(D) + 1e and the extra information vector k, which is n ∗ 64 as explained below
(log2 ‖k‖ < 63) which leads to ndlog2(D) + 65e in signature size.

13

k′(D −M) = v − w
‖k′‖ ≤ ‖v − w‖‖(D −M)−1‖

≤ ‖v − w‖‖D−1 1

1− M
D

‖

≤ ‖v − w‖‖D−1‖‖ 1

1− M
D

‖

≤ ‖v − w‖‖D−1‖‖‖1 +
M

D
+ (

M

D
)2 + ...‖

≤ ‖v − w‖‖D−1‖(‖1‖+ ‖M
D
‖+ ‖M

D
‖2 + ...)

≤ ‖v − w‖‖D−1‖‖ 1

1− ‖MD ‖
‖

≤ ‖v − w‖‖ 1

D − ‖M‖
‖

≤ ‖v − w‖ 1

∆

≤ (δ + 1)
1

∆
=
δ + 1

∆

therefore :

k = k′U−1

‖k‖ ≤ ‖k′‖‖U−1‖

‖k‖ ≤ ‖δ + 1

∆
‖‖U−1‖

‖k‖ ≤ (δ + 1)3R

∆

and one can note that log2((δ+1)3R

∆) < 68 with ∆ = 1, from the parameters for δ,∆, R we proposed
earlier, which e�ectively gives us a 68-bits bound for k. However in practice, 3R is a heavy overestimation
and can be easily replaced in average by 2.5R and thus give us in practice 60 bits, which is below 64.

4.2.4 Veri�cation

Given a hashed message vector v, the signature (k,w), the veri�cation is reduced to the equality test
kP = (v − w). However, as the computation kP might over�ow (the maximum size of k depends of
δ,∆, R, and P 's ones from D,R). In the following veri�cation algorithm we recursively cut k into two parts
k = r + p2q where p2 is a power of 2 that is lower than 263/‖P‖, which ensures rP is not over�owing.

Given P, 2k t = v − w and k = r + p2q with ‖r‖ < p2, we have kP − t = c with c = 0 if and only if
kP = v − w. Therefore

qp2P + rP − t = c → qP = c+t−rP
p2

and thus p2 should divide t − rP if c = 0: if not, that means c 6= 0 and the veri�cation returns FALSE.
Otherwise, we set k′ ← q and t′ ← t− rP and repeat

(qP − t−rP
p2

= c
p2

) → (k′P − t′ = c′)

where c′ becomes exactly the integer c/p2 regardless of its value (if it didn't fail before). The veri�cation
stops when both t′ = 0 and k′ = 0. Note that both need to be 0 at the same time, if only one of them is 0
then the veri�cation fails.

The veri�cation, given k, v, w, P is then as follow:

14

Input: - A vector v ∈ Zn;
- P, p2 the public key matrix and its associated power of 2;
- w the reduced form of v;
- k the extra information vector;
Output: - w a reduced vector, with v ≡ w [L(D +M)];
// Algorithm start

// Test for max norm first

if ‖w‖∞ > D then return FALSE ;
// Loop Initialization

q ← k;
t← v − w;
while q 6= 0 ∧ t 6= 0 do

r ← q mod p2;
t← rP − t;
// Check correctness

if t 6= 0 mod y then return FALSE ;
t← t/p2;
q ← (q − r)/p2;
if (t = 0) Y (q = 0) then return FALSE ;

end
// Algorithm ends

return TRUE ;

Algorithm 7: Verify

4.2.5 Potential speedups and modi�cations

The �rst one, would be to use the seed for the generation of the secret key that we reuse for the signature
scheme. That way, we would have no need to store the sign data and recover it on the �y. This would trans-
form a quadratic size memory part of the secret key to a constant size part. In experimentations however,
this has increased the signing time signi�cantly and therefore we have decided to not apply it.

The second one is to change the reduction order to a random one each time (i.e from m[1],m[2]...,m[n]
successively to m[ρ(1)],m[ρ(2)]...,m[ρ(n)] where rho is a random permutation) : this would barely slow
down the algorithm reduction but provide an extra layer of security against side-channel attacks. On top of
that, experimentations showed that given a vector v, a valid answer w is not unique: therefore we can also
choose to compute some extra steps at certain randomly chosen positions to blur the amount of computations
actually done to solve GDDγ . However, one need to ensure that the process is deterministic assuming �xed
parameters.

A third one would be to change the unimodular matrices we use for both the veri�cation and the public
key generation: we could use bigger blocks (i.e not 2 ∗ 2) that could be better balanced.

4.2.6 KAT �les, speed tests and architecture

To build the KAT �les, we use the Make�le provided by the NIST (as described in the example) along with
the �les rng.c, rng.h and PQCgenKAT_sign.c provided by the NIST, and combine them with our own
written �les (all .c and .h) in the same folder.

As far as the speed tests are concerned, we used the following options:

15

WARN_OPTS = -Wall -Wextra -Wno-format-over�ow -Wno-sign-compare -Wno-unused-but-set-variable

-Wno-unused-but-set-variable -Wno-unused-parameter -pedantic -Wno-parentheses

CFLAGS = -std=c11 $(WARN_OPTS) -fno-verbose-asm -Ofast

-funroll-loops

LDFLAGS = -lssl -lcrypto

We do not only use the option −march = native, as we want to distinguish the time with AVX512 and
without it. It does seem that the compiler do use the AVX512 instructions for us when we add the following
options: AVX512FLAGS = −mavx512f −mavx512dq −mavx512cd−mavx512bw −mavx512vl.

For the following speed tests, we only use the functions crypto_sign_keypair, crypto_sign_open,
crypto_sign as de�ned by the NIST. Setup are done with 104 keys per dimension and security parameter,
and for each of those keys 1 signature and veri�cation is done for a total of 104 signatures and 104. Times are
displayed in seconds. We set in black tesults without −march = native and AVX512FLAGS, and in red
results with AVX512FLAGS but without −march = native, and blue for results with −march = native.

We also colored in light blue the columns relevant to the algorithms we described. There are other
algorithms which take a signi�cant amount of time out of the total:

• Init initialize the memory before all operations can be applied. Using Intel intrinsics for memory
allocation (i.e mmmalloc and the like) will greatly improve performance but as we let gcc apply the
AVX instructions for us we did not bother.

• Write functions writes our data structures into a portable character array. Those were a time killer in
the �rst iteration of DRS, and still are even though they have been improved for the most part.

• Read functions read characters arrays to port them into our data structures. Like Write, those were
also time killers.

• hash is basically the non-optimised compact version of SHAKE512 available on the KECCAK website,
although we did modify the parameters to reach a 256-bit security (the original code had SHAKE256).

It is worth mentioning that if those were ever dropped algorithms would seem more e�cient than the table
total results show. For example, one can easily imagine a case where one key pair would be read only once,
and used to sign and verify thousands of messages and signatures: in that case, Write and Read algorithms
for keys could be used only once per 104 messages/signatures and not 104 times as presented here.

Dimension TOTAL Init SecretKey PublicKey WriteSecretKey WritePublicKey

1108 787.80 29.42 599.57 110.02 15.84 20.24
1108 794.97 30.00 614.61 100.76 16.37 20.53
1108 784.41 31.47 606.96 100.31 16.28 16.34
1372 1215.23 56.51 890.24 184.73 25.10 31.60
1372 1222.69 57.10 911.21 169.49 25.95 31.72
1372 1198.09 57.54 889.05 169.80 28.77 25.58
1779 1979.86 104.91 1344.84 386.56 42.02 54.10
1779 1984.83 107.06 1377.22 355.31 43.79 54.14
1779 1970.66 106.75 1374.24 355.12 45.17 44.08

Figure 4: Time for setup, 104 keys

We note that the setup of the secret key is not gaining at all from vectorization, which is not surprising
as it has no purely linear operations in a loop. Mostly permutations.

16

Dimension TOTAL Init Hash Sign WriteSignature ReadSecretKey

1108 42.09 2.59 5.64 21.80 0.045 11.97
1108 36.08 2.50 5.88 15.80 0.043 11.81
1108 35.18 2.57 5.90 15.73 0.040 10.90
1372 63.79 7.86 6.91 31.49 0.05 17.44
1372 55.43 7.95 7.20 21.98 0.05 18.21
1372 55.93 7.97 7.20 21.70 0.05 18.97
1779 104.96 18.95 8.70 48.45 0.067 28.74
1779 92.12 18.97 9.03 32.57 0.07 31.39
1779 89.31 18.93 9.04 32.39 0.07 28.80

Figure 5: Time for signature, 104 signatures (1 per key)

Dimension TOTAL Init Hash V erification ReadSignature ReadPublicKey

1108 62.44 16.45 5.62 12.90 0.03 23.63
1108 58.54 16.83 5.76 8.09 0.03 24.22
1108 55.51 16.78 5.78 8.15 0.03 21.08
1372 101.55 29.58 6.89 22.37 0.05 37.14
1372 95.45 30.31 7.08 13.67 0.04 38.60
1372 89.73 30.29 7.07 13.67 0.04 32.81
1779 181.86 58.31 8.66 42.74 0.06 63.29
1779 172.48 59.37 8.90 26.88 0.065 68.37
1779 157.27 58.79 8.91 26.23 0.06 55.58

Figure 6: Time for veri�cation, 104 veri�cation (1 per key)

The command "lscpu" gave us the following information about the processor we used to make those tests:

• Architecture: x86_64

• CPU op-mode(s): 32-bit, 64-bit

• Byte Order: Little Endian

• CPU(s): 48

• On-line CPU(s) list: 0-47

• Thread(s) per core: 2

• Core(s) per socket: 6

• Socket(s): 4

• NUMA node(s): 4

• Vendor ID: GenuineIntel

• CPU family: 6

• Model: 85

• Model name: Intel(R) Xeon(R) Gold 6128 CPU @ 3.40GHz

• Stepping: 4

17

• CPU MHz: 1201.687

• BogoMIPS: 6800.00

• Virtualisation: VT-x

• L1d cache: 32K

• L1i cache: 32K

• L2 cache: 1024K

• L3 cache: 19712K

• NUMA node0 CPU(s): 0,4,8,12,16,20,24,28,32,36,40,44

• NUMA node1 CPU(s): 1,5,9,13,17,21,25,29,33,37,41,45

• NUMA node2 CPU(s): 2,6,10,14,18,22,26,30,34,38,42,46

• NUMA node3 CPU(s): 3,7,11,15,19,23,27,31,35,39,43,47

• Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 cl�ush dts acpi
mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs
bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl
vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt
tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3
cdp_l3 invpcid_single pti intel_ppin ssbd mba ibrs ibpb stibp tpr_shadow vnmi �expriority ept vpid
fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm cqm mpx rdt_a avx512f avx512dq
rdseed adx smap cl�ushopt clwb intel_pt avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1
xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local dtherm ida arat pln pts pku ospke
�ush_l1d

The command "cat /proc/meminfo" gave us this information about the memory capacity we used to make
those tests:

• MemTotal: 65644480 kB

• MemFree: 64727784 kB

• MemAvailable: 64594512 kB

• Bu�ers: 41804 kB

• Cached: 285372 kB

• SwapCached: 0 kB

• Active: 212228 kB

• Inactive: 184900 kB

• Active(anon): 70388 kB

• Inactive(anon): 2828 kB

• Active(�le): 141840 kB

• Inactive(�le): 182072 kB

• Unevictable: 0 kB

18

• Mlocked: 0 kB

• SwapTotal: 8388604 kB

• SwapFree: 8388604 kB

• Dirty: 28 kB

• Writeback: 0 kB

• AnonPages: 70192 kB

• Mapped: 67208 kB

• Shmem: 3236 kB

• Slab: 253820 kB

• SReclaimable: 86456 kB

• SUnreclaim: 167364 kB

• KernelStack: 9776 kB

• PageTables: 4084 kB

• NFS_Unstable: 0 kB

• Bounce: 0 kB

• WritebackTmp: 0 kB

• CommitLimit: 41210844 kB

• Committed_AS: 659616 kB

• VmallocTotal: 34359738367 kB

• VmallocUsed: 0 kB

• VmallocChunk: 0 kB

• HardwareCorrupted: 0 kB

• AnonHugePages: 0 kB

• ShmemHugePages: 0 kB

• ShmemPmdMapped: 0 kB

• CmaTotal: 0 kB

• CmaFree: 0 kB

• HugePages_Total: 0

• HugePages_Free: 0

• HugePages_Rsvd: 0

• HugePages_Surp: 0

• Hugepagesize: 2048 kB

• DirectMap4k: 200512 kB

19

• DirectMap2M: 6817792 kB

• DirectMap1G: 61865984 kB

The command "cat /etc/os-release" gave us this information about the operating system we used to make
those tests:

• NAME="Ubuntu"

• VERSION="18.04.1 LTS (Bionic Beaver)"

• ID=ubuntu

• ID_LIKE=debian

• PRETTY_NAME="Ubuntu 17.10"

• VERSION_ID="18.04"

• HOME_URL="https://www.ubuntu.com/"

• SUPPORT_URL="https://help.ubuntu.com/"

• BUG_REPORT_URL="https://bugs.launchpad.net/ubuntu/"

• PRIVACY_POLICY_URL="https://www.ubuntu.com/legal/terms-and-policies/privacy-policy"

• VERSION_CODENAME=bionic

• UBUNTU_CODENAME=bionic

4.2.7 NIST-approved primitives (random and hashes)

We used the random chars generators from rng.c and rng.h that were provided to us, along with the KAT
�les. Everytime we initialize our random functions, we use the NIST-provided generators to obtain a pool
of random bits where we can extract as many bits as we want. Once we detect that the pool is depleted, we
generate a fresh pool without changing the seed. Here's how we implemented our random generators:

• RdmSgn reads one bit b with a shift and/or a mask from the pool to transform it into either 1 or −1.

• RdmPmtn apply ρ = (1 an−1)(2 an−2)...(n a0) ∈ Sn where ai is a random value in [n− i, n].

When hashing a random message to the message space, we used SHAKE512 to guarantee 256-bits col-
lision resistance. The code is taken from the git directory from the creators of KECCAK.

References

[1] Richard A Brualdi and Herbert J Ryser. Combinatorial matrix theory, volume 39. Cambridge University
Press, 1991.

[2] Yuanmi Chen and Phong Q Nguyen. Bkz 2.0: Better lattice security estimates. In International
Conference on the Theory and Application of Cryptology and Information Security, pages 1�20. Springer,
2011.

[3] Nicolas Gama and Phong Q Nguyen. Predicting lattice reduction. In Advances in Cryptology�
EUROCRYPT 2008, pages 31�51. Springer, 2008.

20

[4] Oded Goldreich, Sha� Goldwasser, and Shai Halevi. Public-key cryptosystems from lattice reduction
problems. In Advances in Cryptology - CRYPTO'97, pages 112�131. Springer, 1997.

[5] Je� Ho�stein, Jill Pipher, John M Schanck, Joseph H Silverman, William Whyte, and Zhenfei Zhang.
Choosing parameters for ntruencrypt. In Cryptographers' Track at the RSA Conference, pages 3�18.
Springer, 2017.

[6] Ravi Kannan. Minkowski's convex body theorem and integer programming. Mathematics of operations
research, 12(3):415�440, 1987.

[7] Donald Erwin Knuth, Ronald L Graham, Oren Patashnik, et al. Concrete mathematics. Adison Wesley,
1989.

[8] Vadim Lyubashevsky and Daniele Micciancio. On bounded distance decoding, unique shortest vectors,
and the minimum distance problem. In Advances in Cryptology-CRYPTO 2009, pages 577�594. Springer,
2009.

[9] Phong Q Nguyen and Oded Regev. Learning a parallelepiped: Cryptanalysis of ggh and ntru signatures.
Journal of Cryptology, 22(2):139�160, 2009.

[10] Thomas Plantard, Willy Susilo, and Khin Than Win. A digital signature scheme based on cvp max).
In International Workshop on Public Key Cryptography, pages 288�307. Springer, 2008.

[11] Joan Serra-Sagristà. Enumeration of lattice points in l1 norm. Information processing letters, 76(1-
2):39�44, 2000.

[12] Noah A Smith and Roy W Tromble. Sampling uniformly from the unit simplex. 2004.

[13] Joop van de Pol and Nigel P Smart. Estimating key sizes for high dimensional lattice-based systems.
In IMA International Conference on Cryptography and Coding, pages 290�303. Springer, 2013.

[14] Yang Yu and Léo Ducas. Learning strikes again: the case of the drs signature scheme. Cryptology
ePrint Archive, Report 2018/294, 2018.

21

