DRS: Diagonal dominant Reduction for lattice-based Signature
Version 2

Thomas PLANTARD,
Arnaud SIPASSEUTH, Cédric DUMONDELLE, Willy SUSILO

Institute of Cybersecurity and Cryptology
School of Computing and Information Technology

University of Wollongong
Australia

1 Background

Definition 1. We call lattice a discrete subgroup of R™. We say a lattice is an integer lattice when it is a
subgroup of Z™. A basis of the lattice is a basis as a Z — module.

In our work we only consider full-rank integer lattices (unless specified otherwise), i.e such that their
basis can be represented by a n x n non-singular integer matrix. It is important to note that just like in
classical linear algebra, a lattice has an infinity of basis. In fact, if B is a basis of £, then so is UB for any
unimodular matrix U (U can be seen as the set of linear operations over Z™ on the rows of B that do not
affect the determinant).

Definition 2 (Minima). We note A\;(L) the i—th minimum of a lattice L. It is the radius of the smallest
zero-centered ball containing at least i linearly independant elements of L.

Definition 3 (Lattice gap). We note 6;(L) the ratio)‘;(lg) and call that a lattice gap. When mentioned

without index and called "the" gap, the index is implied to be i = 1.

Definition 4. We say a lattice is a diagonally dominant type lattice (of dimension n) if it admits a basis B
of the form a diagonal dominant matriz as in [1], i.e

Vi€ [1,n], Bi; > Z?:l,i;ﬁj |Bi ;i
We can also see a diagonally dominant matrix B as a sum B = D 4+ R where D is diagonal and
D;; > ||R;||1- In our scheme, we use a diagonal dominant lattice as our secret key, and will refer to it as our

"reduction matrix" (as we use this basis to "reduce" our vectors).

Definition 5. Let F' be a subfield of C, V a vector space over F¥, and p a positive integer or co. We call
l, norm over V the norm:

k
e va e Vall, = /X5, laule

o Vz eV, ||z]oo = max;ep 4 i

l1 and [> are commonly used and are often called taxicab norm and euclidean norm respectively. The
norm we use in our scheme is the maximum norm. We note that we also define the maximum matrix norm
as the biggest value among the sums of the absolute values in a single column.

Definition 6 (uSVP;: J-unique Shortest Vector Problem). Given a basis of a lattice £ with its lattice gap
0 > 1, solve SVP.

Definition 7 (BDD.,: v-Bounded Distance Decoding). Given a basis B of a lattice L, a point x and a
approzimation factor v ensuring d(xz, L) < yA1(B) find the lattice vector v € L closest to x.

It has been proved that BDD /(2,) reduces itself to uSVP, in polynomial time and the same goes from
uSVP, to BDD,/, when 7 is polynomially bounded by n [8], in cryptography the gap is polynomial the
target point x must be polynomially bounded therefore solving one or the other is relatively the same in our
case. To solve those problems, we usually use an embedding technique that extends a basis matrix by one
column and one row vector that are full of zeroes except for one position where the value is set to 1 at the
intersection of those newly added spaces, and then apply lattice reduction techniques on these. As far as our
signature security is concerned, the GDD, is more relevant:

Definition 8 (GDD.,: y-Guaranteed Distance Decoding). Given a basis B of a lattice L, any point x and
a approzimation factor v, find v € L such that ||z — v|| < 7.

2 Our scheme

The raw step-by-step idea for Alice to sign a file from Bob is the following:

o Alice sends a basis P (the public key) of a diagonal dominant lattice £L(P) to Bob.
This basis should have big coefficients and obfuscate the diagonal dominant structure.

e Bob sends a vector message m (that has big coeflicients) to Alice.
He challenges Alice to find ||s|| < v such that m — s € L(P).

e Alice uses a diagonal dominant basis D + M of L(P) to solve the GDD, on £(P) and m.
She obtains a vector signature s (that has small coefficients) and give it to Bob.

e Bob checks if (m — s) € L(P) and ||s|| < v for our GDD,, problem.
The signature is correct if and only if this is verified.

Our scheme is inspired by the scheme proposed by Plantard et al. [10], which was originally inspired by
GGH [4].

In this section, we just give a quick overview of our algorithms and explain the ideas behind them. How
we choose to implement it in practice will be more detailed in the implementation section.

2.1 Setup: lattice, reduction matrix generation, and random seed

Note that this new setup for the secret key have been strongly changed following the attack from [14].

The new algorithm here is less straightforward but still the same as its core, we just have to generate a
diagonal dominant matrix S of size n*n with a low and bounded noise, given a chosen bound D and a value
0 < D. This is done by computing S = D + M where M is chosen uniform among all possibilities verifying

Vi e [lﬂn]? ”MZHl <D

To achieve this, we will just generate each vector S; = M; + D; with ¢ € [1,n] in simple steps, but using a
precomputation first:

1. We generate a table of numbers 7" such that T[] is the number of vectors of Z"™ with ¢ zeroes.

2. We then generate a table of numbers T such that Ts[é] is the number of vectors of Z™ with ¢ zeroes
or less.

And now, from Ts we generate each vector S; in simple steps:
1. We pick a random value x € [Ts[1] : Ts[n][, and select k Ts[k — 1] < z < Ts[k].

2. We pick n — k values 1, ...,x,_ such that 0 < xg < ... < xp_p < D.

3. Wefill S; = [z1,20 —®1,23 — T2, .., T — Tn—k—1, 0, ..., 0].

4. We then multiply every element S; 1, ...,S7,n — k by 1 or —1 (just changing the sign randomly).

5. The last step consists in permuting randomly coefficients of S;, and assigning S; ; < S;; + D.

As part of the secret key, we also keep the seed value s used as a seed for random generators, as we will

explain in the next sections.

2.2 Setup: public key generation
Like most public-key lattice based cryptosystems, we construct our public key P such that a matrix U such

that P = US where U is unimodular and S is our secret matrix.

We want the coefficients of P to be bigger but relatively balanced, while having a fast method to generate
it. Let us describe the following matrices:

1 1 1 -1
Ay = [1 2] and A_ = [_1 2} and
"A,, 0
0 A,
T{n+/’27} =4qtE€ [1771/2]3551 € {+a 7} : 0
Am(n/Z)—l 0
| 0 0 Azn/z_

where every T € T{"f_} is an unimodular matrix composed of A, and A_ in its diagonal and 0 elsewhere. If
M ae is the maximum size of the coefficients in a matrix M, then after being multiplied by a transformation

matrix T € T{"Ji{}, the maximum size of the coefficients in T'M is at most 3||M ||, and we will use a matrix

in T{Z/{} everytime we wish to grow our coefficients. Using T{"Ji{}, we define
U; = T; P; where P; € S, is a permutation matrix and T; € T{"JZ{} randomly chosen.

The point of using permutation matrices P; is to ensure we use a different combination of rows at every
growing step. Finally, we will use it to create

U= Pry1 [1i2, Ui

such that R > 1 is a security parameter and P = U(D — M).

Note that, for every value of R, we obtain different U, and furthermore, since we are taking both T; and P;
randomly, we note that every choice is dependent of the seed we put for our random generators (assuming
they are deterministic like the ones provided by the NIST). Therefore we generate P in the following way:

1. Use our random secret seed s to set our random generators, and P < S where S is our secret matrix
2. Choose "randomly" Ty ;, a transformation matrix and P;; a permutation matrix

3. Set P <« TSJPSJP

>~

. Repeat the last two steps that R — 1 more times and reapply one final permutation P < P, 41 P

Finally, we obtain our final public-key matrix P.

2.3 Vertfication

To verify our signature, we need some additional information to decide whether s is a valid signature or not
((m —s) € L(P)). We know that (m — s) € L(P) if and only if there exists k € Z" such that (m —s) = kP.

Therefore, given k,m, s, P, just check whether or not we have (m — s) = kP. If the verification holds the
signature is valid. Otherwise, it is invalid.

2.4 Signature

To generate the signature, we use exactly the same algorithm as the one used by Plantard et al. which in
our case is basically reducing every big coefficient |m;| > d of a vector message m by a value of ¢ * d such
that |m; — ¢+ d| < d, but re-adding some smaller noise |gb| and |g| in some other coefficients m[j] with j # i,
i.e

applying m < m — ¢S; where |m; — ¢ x d| < d for every |m;| > d until ||m| < d.

All proofwork can be found in the paper of the original reduction idea [10], however we propose here an
alternative proved bound for the reduction to work, which is much easier to understand and to practically
use: using the norm [y, and supposing that our reduction matrix d * I'd — M is diagonal dominant where M
has a zero diagonal.

Suppose we reduce a vector m by a ¢ times a vector of our diagonal dominant basis S, which only happens
when

Ji e [1,n], |my| >d

Which means that we dropped ||m||; by exactly |gd| on one coefficient, but added |q| >-7_, |M; ;| at most on
[mll1. Since the diagonal dominance gives d > 377, ., |M; 4

g has the same sign as m; and d > 0 so |m; — ¢d| = |m;| — |gd| < d < |m;|
and d < |m;|, thus |m;| — |qd| < |m;]
Imlly — lad] + lg| 325, 2 1Mig1) < llmllx
thus ||m]|; is lower than before : thus, we effectively reduce ||m/|; until ||m|. < d.

This new secret key, however, do not have a constant element in its diagonal. Obviously, the matrix will
still be diagonal dominant in any case. Let us denote d; the diagonal coefficient S;; of S =D — M.

If d > d; we can use the previous reasoning and reduce |m;| to |m;| < d; < d, but keep in mind we stop
the reduction at |m;| < d to ensure we do not leak information about the noise distribution.

Now d; > d for some i: reducing to |m;| < d; is guaranteed but not sufficient anymore as we can reach
d < |m;| <di <d+ A < 2d. Let us remind that A = d — 37", |[M; |, where A is strictly positive as an
initial condition of the DRS signature scheme (both on the original submission and this paper), d; = d + ¢
where ¢ = |Mz,z|

Without loss of generality as we can flip signs, let us set m; = d+k < d; = d+c¢ with & > 0 the coefficient
to reduce. Substracting by S; transforms

with d > ¢ > k > 0. Therefore the reduction of ||m||; without the noise is

[mlly = lImlly = (d+ k) + (¢ = k) = [[m[ls = (d = ¢) — 2k.

but the noise contribution on other coefficients, at worst, is (d — A) — ¢ which added does
Imllx < [lm[ly = (d —¢) = 2k + (d — c — A).
[mlly < lIm[ly — 2k — A = |lm[ly — (2k + A).
where 2k + A > 0. Therefore the reduction is also ensured in the case d; > d.
Once we have s the reduced form of m, we still need the final &k such that kP = (m —s). To generate the
final membership vector k, we basically first construct its values such that &'(D — M) = k'S = m — s, as we
reduce m. At the first step, s = m and k = [0, ...,0]. However, everytime we use the vector s = m — ¢ % S,

then k[i] < k[i] + ¢ to keep the equality ¥'S = m — s true.
Once the final s is constructed, we know P = U(D — M) and k + k'U~! and thus verify

kP=KUUD - M)=kK(D—-M)=(m-s)
As far as the computation of U1, it is fairly simple. Since
U= Pr[IL TP, = PraTrPr.. T1 Py
we have
Ut = (IT BT Py = PUT PR Pl

(note that order matters), and knowing

A7l = [2 _1} and A~1 = {2 1] and

-1 1 1 1
rAZL 0 0 7
0 A}
T_(”/2) — - 1 2 . _ 1. .
(42} iel,n/2,z;e{+,—}: | : 0
-1
Am(n/Z)fl 0
0o ... 0 A7t
o n/2-

U~! is thus as easy to compute as U, and also give the exact same bound of 3% for the growth of the
maximum matrix norm after R rounds, and we proceed very similarly to the generation of the public key,
as follows:

1. Use our random secret seed s to set our random generators, and k < k' where k'(D — M) = m — s.

2. Choose "randomly" T, }', the inverse of a transformation matrix and P the inverse of a permutation
matrix

3. Set k « kP, T,

4. Repeat the last two steps R — 1 more times and reapply one final inverse permutation k kPS_é 41

Finally, we can give Bob the final couple (k, s) as the signature.

3 Security

The initial idea of reducing vectors using diagonal dominant lattices and the maximum norm was done as a
countermeasure against the parallelepiped attack from [9] in Plantard et al’s suggestion at PKC2008 [10] to
fix GGHSign [4]. Their original theoretical framework is still unchallenged however its instantiation in the
form of the original DRS submission was severely weakened by Yu and Ducas’ attack [14]. In the following
subsection we will describe the state of the art method, in the best of our knowledge to attack this new
version of DRS.

3.1 BDD-based attack

The security is based on what is known as the currently most efficient way to attack the scheme, a BDD-
based attack as described below.

Input: Pk the public key of full rank n, d the diagonal coefficient, ¢ a BDD,, solver
Output: Sk = (D — M) the secret key
Sk <+ dxIdy;
// Loop on every position of the diagonal
foreach {i € [1..n]} do
// Find r the difference between (0,...0,d,0,...,0) and L(Pk)
r— 6(L(PE), SKJi):
Skli] + Sk[i] + r;
end
return Sk;

Algorithm 1: Diagonal Dominant Key recovery attack

Currently, the most efficient way to perform this attack will be:

i) to transform a BDD problem into a Unique Shortest Vector Problem (uSVP) (Kannan’s Embedding
Technique [6]), assuming v = (0,...0,4d, 0, ..., 0)
v 1
B 0)’

ii) to solve this new uSVP using lattice reduction algorithm.

Using this method, we obtain a uSVP with a gap

()™ De(0) T () 7

v~ ~ (1)
V([Myl V[M2
Lattice reduction methods are well studied and their strength are evaluated using the Hermite factor.
Let £ a d—dimensional lattice, the Hermite factor of a basis B of L is given by

B[]l

det(L)w

Consequently, lattice reduction algorithms strengths are given by the Hermite factor of their expected output
basis.

In [3], it was estimated that lattice reduction methods solve USVP,, with ~ a fraction of the Hermite
factor. We will use a conservative bound of i for the ratio of the USVP gap to the Hermite factor.

As we do not have a fixed euclidean norm for our secret vectors we have to rely on the approximates
given to us by our new random method in sampling noise vectors M;.
In our case, we know that for any vector v € Z™ we have ||v|jz >

Wb and our experiments (as seen
Jn p

below) allow us to use a higher bound

loll2 2 V2l

H Dimension H A \ R \ 1) H 5y \ 22 H
1108 12428 < %(1.006)“”1 2128
1372 1|24 |28 || <£(1.005)%+t | 2192
1779 124281 < %(1.004)(“1 9256

Table 1: Parameter Sets.

3.2 Expected Security Strength

Different papers are giving some relations between the Hermite factor and the security parameter A [5, 13]
often using BKZ simulation [2]. Aiming to be conservative, we are to assume a security of 2128 2192 2256 for
a Hermite factor of 1.006%,1.005%, 1.004¢ respectively. we set D = n, pick hashed messages h(m) such that
log, (J|h(m)]|eo) =28, R=24 and A = 1.

Table 1 parameters have been choosen to obtain a USVP gap (Equation 1) with v < % for 6 =
1.006, 1.005, 1.004.
Our experiments shows us that the distribution of zeroes among sampled noise vectors form a Gaussian and
so does the euclidean norm of noise vectors when picking our random elements z, x; uniformly.
Here we include below the distribution of 10° randomly generated noise vectors v with the x-axis representing

f(v) =100 %J where D is the signature bound.

160000 T T T | |

140000 |

120000 -

100000

80000

60000

40000

20000

0 |
140 145 150 155 160 165 170

Figure 1: Distribution of f(v) for dimension n = 1108 and bound D = n — 1 over 10° samples

180000 I | | |

160000

140000

120000

100000

80000

60000

40000

20000

145 150 155 160 165 170

Figure 2: Distribution of f(v) for dimension n = 1372 and bound D = n — 1 over 10° samples

200000 T T | |

150000

100000

50000

145 150 155 160 165 170

Figure 3: Distribution of f(v) for dimension n = 1779 and bound D = n — 1 over 10° samples

4 Our implementation

While we gave the overall idea in the previous sections, in this section we specify some implementation
choices. Nevertheless those choices are not intrinsic to the scheme and can be changed.
Below is an overview of the main point of our implementation:

4.1 Program parameters, and algorithm changes
The whole scheme is set by 6 parameters:
e n: the dimension
e s: aseed for random generators
e D: the diagonal coeflicient, also the bound for the max norm of our reduced vectors
e §: the bound for the max norm of our hashed messages vectors

e A: a parameter that defines an extra sparsity in our reduction matrix, which limits the taxicab norm
of the noise vectors by D — A. We usually set A =1 as it is the most secure choice.

e R: a "round" number, indicating the number of loop iterations used to generate the public key.

All those parameters can be found in the various api.h files available. Those include the precomputed
tables T used for the generation of the secret key.

Note the introduction of a seed parameter s, that serves in both the public key generation and signature
algorithm, and which interacts (directly or indirectly) with the following functions:

e RdmSeed : s — () determines the output of the two next functions

¢ RdmPmtn : M — o(M) randomly permutes the rows of the input matrix, or the values of an input
vector

¢ RdmSgn: () —» {—1,1} output a random value, —1 or 1

Another important point is that rather than signing a vector message that is given to us, we sign a vector
produced by the hashing of the received message. For now, we will refer to the hashed message vector as
the message.

To maximize efficiency, we choose those last parameters such that all intermediate computations fit
in 64-bits integers. One intermediate computation that might overflow is while checking the validity of
messages-signatures couples. This is determined by the four parameters 6, A, D, R. Here, we choose to fix
D=n,0=28,A=1and R=24.

We will give all input sizes in the rest of the report in bits.

4.2 Algorithms
4.2.1 Secret Key Setup

As previous readers of the original DRS report have noticed, the secret key setup was changed completely
due to Yu and Ducas’ attack [14]. Yu and Ducas’ attack was exploiting the specific structure of the noise
vector, which was composed of only two unique values (modulo signs). We are now using noise vectors taken
randomly in the set of v € Z™ such that ||v||; < D.

The set of noise vectors we need to keep are all the vectors v that have a taxicab norm of 0 < ||v|; < D—1
and dimension n. Let us call that set V;,. The new noise matrix M we are aiming to build is a n x n matrix

such that M € V.

In that regard, we construct a table we will call T" with D entries such that

T[i] = #vectors v € V,, with i zeroes .

This table is relatively easy to build and do not take much time, one can for example use the formulas
derivated from [11] and [7]. From this table, we construct another table Ts such that Ts[k] = EfZOT[i].
Below is the generation algorithm of the table Tis, which we will use as a precomputation for our new setup
algorithm:

Input: - all initial parameters;
Output: - Ts the table sum;

// Initialization

m < min(dimension, diagonal coef D);

T {1}m+1;
Ts « {1}
// Comnstruct array T
// Construct array 7 : loop over the norm
for j=2;j<D;j=j+1do
// Construct array 7T : 1loop over the number of non-zeroes elements in each
possibility

fori=2;i<m+1;i=i+1do
270 (1) (1)
Tim+1—i <« Tm+1—1i+x;

end

end
// Construct array Tg from T
fori=1;:<m;i=1i+1do
| T[i+ 1] < T[i + 1] + Ti;
end
Ts <+ T,
// Algorithm ends
return Tg;

Algorithm 2: Secret key table precomputation

Let us denote the function Z(x) — y such that Ts[y — 1] < x < Ts[y].
Since Tg is trivially sorted in increasing order Z(z) is nothing more than a dichotomy search inside an
ordered table.
If we pick randomly z from [0; Ts[D — 1]] from a generator with uniform distribution g() — x then we got
Zero() — Z(g(x)) a function that selects uniformly an amount of zeroes amount all vectors of the set V,, i.e

Zero() — #fzeroes in a random v € V,,.

Now that we can generate uniformly the number of zeroes we have to determine the coefficients of the
non-zero values randomly, while making sure the final noise vector is still part of V,,. A method to give such
a vector with chosen taxicab norm is given in [12] as a correction of the Kraemer algorithm. As we do not
want to choose the taxicab norm M directly but rather wants to have any random norm available, we add
a slight modification: the method in [12] takes k non-zero elements 1, ..., x; such that z; < x;4; and forces
the last coefficient to be equal to the taxicab norm chosen, i.e zy = M. By removing the restriction and
using xp, < D, giving the amount of non-zero values, we modify the method to be able to take over any
vector values in V,, with the help of a function we will call

KraemerBis(z) — random v € V,, such that v has z zeroes

which is described below in the following algorithm

10

Input: - all initial parameters;
- a number of zeroes z;
Output: - a vector v with z zeroes and a random norm inferior or equal to D;
// Algorithm start
v € N,
Pick randomly n — z 4+ 1 elements such that 0 <zg <21 < ... < 2Zp_, < D;
fori=1;i<n—-—z;i=i+1do
| oli] @ — @i
end
fori=n—z+1;i<n;i=1+1do
| vli] + 0;
end
// Algorithm ends
return v;

Algorithm 3: KraemerBis

With both those new parts, the new setup algorithm we construct is the following:

Input: - all initial parameters;

- another extra random seed xs;

Output: - z, S the secret key;

// Initialization

S < D x Idy;

tez™

// Algorithm start

Initiate RdmSeed(z2);

fori=1;i1<n;i=1+1do

// Get the number of zeroes and create a new vector

Z «+ Zero();

t + KraemerBis(Z);

// Randomly switch coefficient signs

for j=1;7<n—-Z2;j=j5+1do
| t[j] < t[j] x RdmSgn()

end

// RdmPmtn permutes everything

t + RdmPmtn(t);

S; «+ S; +t;

end

// Algorithm ends

return z,S;

Algorithm 4: New secret key generation (square matrix of dimension n)

We note that in our new secret key, the structure is less present and we cannot compress the way we did
in the initial iteration of DRS.

The secret key is a square matrix where every element is within [—2D, 2D}, however as we ouly store the
noise, we consider elements in [—D + 1, D — 1], and N, bits the number of bits for the seed s used when
generating P. Therefore the size of the secret key in bits is n?[log,(2D) + 1] + N,.

4.2,2 Public Key Setup

The public key setup is as described initially. We add an extra value corresponding 263~ og2(1Pll=)T this will
help us to ensure that there will be no overflow during the verification process.

11

Input: - S the reduction matrix of dimension n, obtained previously;
- a random seed ;
Output: - P the public key, and p> a power of two;
// Initialization
P+ S,
// Algorithm start
Initiate RdmSeed(z);
// Apply R rounds
fori=1;i<R;i=1i+1do
P + RdmPmtn(P);
for j=1;5<n—-1;j5=j5+2do
t + RdmSgn();
Plj| = Plj] + £ Plj + 1]
P[j +1] = Plj + 1]+t P[j]
end
end
P + RdmPmtn(P);
// Computes ps
p2 — Nlog, 1Pl ;
pa 203772
// Algorithm ends
return P, po;

Algorithm 5: Public key generation

The initial size of the coefficients of P (which is initially S) are inferior or equal to D. After R rounds, it
is inferior to 3% D. Therefore to encode it, we will need n?[log,(3% * D) + 17 bits (1 extra bit per coefficient
due to the sign). Unlike the previous DRS iteration, we do not need to add 7 more bits to represent py (by
its power value) as we can compute it when reading the key’s data, for a total of n?[log, (3% D) + 1].

4.2.3 Signature

The signature algorithm is previously described and we will include the details here for completeness.

12

Input: - A vector v € Z";
- S the secret key matrix, with diagonal coefficient d;
- s a seed value;
Output: - w with v = w [L£(5)], ||w]le < d and k with kP = v — w;
// Initialization
w — v;
1+ 0
k«+ [0,...,0];
// Algorithm start
// Reduce until all coefficients are low enough
while ||w||c < d do
g 3
ki < ki +q;
w — w — qS;;
i <1+ 1 mod n;
end
// Use the seed to modify k such that kP=v—w
// The seed defines the output of RdmPmtn and RdmSgn
Initiate RdmSeed(x);
fori=1;i<R;i=i+1do
k < RdmPmtn(k);
for j=1;5<n—-1;j5=j5+2do
t + RdmSgn();
k[j + 1] = klj + 1] — t* k[j];
k] = k] — ¢+ k[j +1];

end

end

k < RdmPmtn(k);
// Algorithm ends
return k, v, w;

Algorithm 6: Sign : coefficient reduction first, validity vector then
The size of the message is n[d 4+ 1], and the size of the signature is the sum of the size of the reduced

message vector nflogy(D) + 1] and the extra information vector k, which is n * 64 as explained below
(log, ||k|| < 63) which leads to n[log,(D) + 65] in signature size.

13

E(D—-M)=v—w
1% < [lv = wl[|(D = M)~ |
1
|

<l —w]|D7

M
1=7
1

< Jlv = wllID7H] I

M
)
M M
< lo —w[[|ID7HIIT + ot (5)2 + |l
M M
<o —w||| DY (||1 — —I%+..
< lv—w|[ID~|(]] H+||DH+||DH +..)

< [lv —w[[|D7H]

—r |
1— 1%
< o — wll| = |
<llv—-w
D — || M|
< o - w|~
< v —wll5
1 0+1
<(04+1)— = ——
SO+D)3="3
therefore :
k=kKU"?
K[| < 1K [T
5"_1 -1
kIl < || ——=
&[] <] X T~
(6 +1)3%
kll < —2—
iy < O

and one can note that logz(W) < 68 with A = 1, from the parameters for §, A, R we proposed

earlier, which effectively gives us a 68-bits bound for k. However in practice, 3 is a heavy overestimation
and can be easily replaced in average by 2.5% and thus give us in practice 60 bits, which is below 64.

4.2.4 Verification

Given a hashed message vector v, the signature (k,w), the verification is reduced to the equality test
kP = (v — w). However, as the computation kP might overflow (the maximum size of k depends of
0,A, R, and P’s ones from D, R). In the following verification algorithm we recursively cut k into two parts
k = r + paq where py is a power of 2 that is lower than 2%3 /|| P||, which ensures 7P is not overflowing.

Given P,2F t = v —w and k = r + paq with ||r|| < p2, we have kP —t = ¢ with ¢ = 0 if and only if
kP = v — w. Therefore
gpeP+rP—t=c — ¢qP= CHP%P
and thus ps should divide ¢ — rP if ¢ = 0: if not, that means ¢ # 0 and the verification returns FALSE.
Otherwise, we set k¥’ <+ g and t' < t — rP and repeat
(qP - = 2y 5 (K'P -t =)

D2 P2

where ¢’ becomes exactly the integer ¢/ps regardless of its value (if it didn’t fail before). The verification
stops when both ¢/ = 0 and &’ = 0. Note that both need to be 0 at the same time, if only one of them is 0
then the verification fails.

The verification, given k, v, w, P is then as follow:

14

Input: - A vector v € Z";

- P, py the public key matrix and its associated power of 2;
- w the reduced form of v;

- k the extra information vector;

Output: - w a reduced vector, with v = w [L£(D + M)];
// Algorithm start

// Test for max norm first

if ||w]|e > D then return FALSE;

// Loop Initialization

g+ k;

t 4 v—w;

while ¢ #0 At # 0 do

r < ¢ mod po;

t+rP —t;

// Check correctness

if t #0 mod y then return FALSE;

t t/pg,

(q - T)/p27
(t =0)Y (¢ =0) then return FALSE,

end
// Algorithm ends
return TRUE;

Algorithm 7: Verify

4.2.5 Potential speedups and modifications

The first one, would be to use the seed for the generation of the secret key that we reuse for the signature
scheme. That way, we would have no need to store the sign data and recover it on the fly. This would trans-
form a quadratic size memory part of the secret key to a constant size part. In experimentations however,
this has increased the signing time significantly and therefore we have decided to not apply it.

The second one is to change the reduction order to a random one each time (i.e from mq, ms...,m,
successively to my,(1y, Mp(2), .., Mp(n) Where p is a random permutation) : this would barely slow down the
algorithm reduction but provide an extra layer of security against side-channel attacks. On top of that,
experimentations showed that given a vector v, a valid answer w is not unique: therefore we can also choose
to compute some extra steps at certain randomly chosen positions to blur the amount of computations ac-
tually done to solve GDD,. However, one need to ensure that the process is deterministic assuming fixed
parameters.

A third one would be to change the unimodular matrices we use for both the verification and the public
key generation: we could use bigger blocks (i.e not 2 % 2) that could be better balanced.

4.2.6 KAT files, speed tests and architecture

To build the KAT files, we use the Makefile provided by the NIST (as described in the example) along with
the files rng.c, rng.h and PQCgenK AT _sign.c provided by the NIST, and combine them with our own
written files (all .c and .h) in the same folder.

As far as the speed tests are concerned, we used the following options:

15

WARN OPTS = -Wall -Wextra -Wno-format-overflow -Wno-sign-compare -Wno-unused-but-set-variable
-Wno-unused-but-set-variable -Wno-unused-parameter -pedantic -Wno-parentheses
CFLAGS = -std=cll $(WARN _ OPTS) -fno-verbose-asm -Ofast
-funroll-loops
LDFLAGS = -lssl -lerypto

We do not only use the option —march = native, as we want to distinguish the time with AV X512 and
without it. It does seem that the compiler do use the AV X512 instructions for us when we add the following
options: AVX512FLAGS = —mavx512f — mavab12dq — mavx512¢d — mavx512bw — mava512vl.

For the following speed tests, we only use the functions crypto sign_keypair, crypto_sign_open,
crypto_sign as defined by the NIST. Setup are done with 10* keys per dimension and security parameter,
and for each of those keys 1 signature and verification is done for a total of 10* signatures and 10*. Times are
displayed in seconds. We set in black tesults without —march = native and AV X512FLAGS, and in red
results with AV X512F LAGS but without —march = native, and blue for results with —march = native.

We also colored in light blue the columns relevant to the algorithms we described. There are other
algorithms which take a significant amount of time out of the total:

e [nit initialize the memory before all operations can be applied. Using Intel intrinsics for memory
allocation (i.e _mm_malloc) will greatly improve performance but as we let gcc apply the AVX
instructions for us we did not bother.

e Write functions writes our data structures into a portable character array. Those were a time sink in
the first iteration of DRS, and still are even though they have been improved for the most part.

e Read functions read characters arrays to port them into our data structures. Like Write, those were
also time Kkillers.

e hash is basically the non-optimised compact version of SH AK E512 available on the KECCAK website,
although we did modify the parameters to reach a 256-bit security (the original code had SH AK E256).

It is worth mentioning that if those were ever dropped algorithms would seem more efficient than the table
total results show. For example, one can easily imagine a case where one key pair would be read only once,
and used to sign and verify thousands of messages and signatures: in that case, Init, Write and Read
algorithms for keys could be used only once per 10* messages/signatures and not 10* times as presented
here.

‘ Dimension H TOTAL H Init ‘ SecretKey ‘ PublicKey ’ WriteSecretKey ‘ Write PublicK ey ‘

1108 787.80 29.42 599.57 110.02 15.84 20.24
1108 794.97 30.00 614.61 100.76 16.37 20.53
1108 784.41 31.47 606.96 100.31 16.28 16.34
1372 1215.23 || 56.51 890.24 184.73 25.10 31.60
1372 1222.69 || 57.10 911.21 169.49 25.95 31.72
1372 1198.09 || 57.54 889.05 169.80 28.77 25.58
1779 1979.86 || 104.91 1344.84 386.56 42.02 54.10
1779 1984.83 || 107.06 1377.22 355.31 43.79 04.14
1779 1970.66 || 106.75 1374.24 355.12 45.17 44.08

Figure 4: Time for setup, 10* keys

We note that the setup of the secret key is not gaining at all from vectorization, which is not surprising
as it has no purely linear operations in a loop. Mostly permutations.

16

Dimension H TOTAL H Init \ Hash ‘ Sign \ WriteSignature \ ReadSecretKey

1108 42.09 2.59 | 5.64 | 21.80 0.045 11.97
1108 36.08 2.50 | 5.88 | 15.80 0.043 11.81
1108 35.18 2.57 | 590 | 15.73 0.040 10.90
1372 63.79 7.86 | 6.91 | 31.49 0.05 17.44
1372 55.43 7.95 | 7.20 | 21.98 0.05 18.21
1372 55.93 7.97 | 7.20 | 21.70 0.05 18.97
1779 104.96 18.95 | 8.70 | 48.45 0.067 28.74
1779 92.12 18.97 | 9.03 | 32.57 0.07 31.39
1779 89.31 18.93 | 9.04 | 32.39 0.07 28.80

Figure 5: Time for signature, 10* signatures (1 per key)

Dimension H TOTAL H Init \ Hash ‘ Verification \ ReadSignature \ ReadPublicK ey

1108 62.44 16.45 | 5.62 12.90 0.03 23.63
1108 58.54 16.83 | 5.76 8.09 0.03 24.22
1108 55.51 16.78 | 5.78 8.15 0.03 21.08
1372 101.55 || 29.58 | 6.89 22.37 0.05 37.14
1372 95.45 30.31 | 7.08 13.67 0.04 38.60
1372 89.73 30.29 | 7.07 13.67 0.04 32.81
1779 181.86 || 58.31 | 8.66 42.74 0.06 63.29
1779 172.48 || 59.37 | 8.90 26.88 0.065 68.37
1779 157.27 || 58.79 | 8.91 26.23 0.06 95.58

Figure 6: Time for verification, 10* verification (1 per key)

The command "lscpu" gave us the following information about the processor we used to make those tests:

e Architecture: x86 64

e CPU op-mode(s): 32-bit, 64-bit
e Byte Order: Little Endian

e CPU(s): 48

e On-line CPU(s) list: 0-47

e Thread(s) per core: 2

e Core(s) per socket: 6

e Socket(s): 4

e NUMA node(s): 4

e Vendor ID: Genuinelntel

e CPU family: 6

e Model: 85

e Model name: Intel(R) Xeon(R) Gold 6128 CPU @ 3.40GHz

e Stepping: 4

17

e CPU MHz: 1201.687
e BogoMIPS: 6800.00
e Virtualisation: VT-x
e L1d cache: 32K

e L1i cache: 32K

e L2 cache: 1024K

o L3 cache: 19712K

e NUMA node0 CPU(s): 0,4,8,12,16,20,24,28,32,36,40,44
e NUMA nodel CPU(s): 1,5,9,13,17,21,25,29,33,37,41,45
e NUMA node2 CPU(s): 2,6,10,14,18,22,26,30,34,38,42,46
e NUMA node3 CPU(s): 3,7,11,15,19,23,27,31,35,39,43,47

e Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi
mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpelgb rdtscp lm constant _tsc art arch _perfmon pebs
bts rep good nopl xtopology nonstop tsc cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl
vinx smx est tm2 ssse3 sdbg fma cx16 xtpr pdecm pcid dca sse4 1 sse4d 2 x2apic movbe popcnt
tsc_deadline timer aes xsave avx fl6c rdrand lahf lm abm 3dnowprefetch cpuid fault epb cat 13
cdp 13 invpcid _single pti intel _ppin ssbd mba ibrs ibpb stibp tpr_shadow vnmi flexpriority ept vpid
fsgsbase tsc__adjust bmil hle avx2 smep bmi2 erms invpcid rtm cqm mpx rdt_a avx512f avx512dq
rdseed adx smap clflushopt clwb intel pt avx512cd avx512bw avx512vl xsaveopt xsavec xgetbvl
xsaves cqm_llc cqm _occup_llc cqm mbm_total cqmu _mbm _local dtherm ida arat pln pts pku ospke
flush _11d

The command "cat /proc/meminfo" gave us this information about the memory capacity we used to make
those tests:

e MemTotal: 65644480 kB
o MemFree: 64727784 kB
e MemAvailable: 64594512 kB
e Buffers: 41804 kB

e Cached: 285372 kB

e SwapCached: 0 kB

e Active: 212228 kB

e Inactive: 184900 kB

e Active(anon): 70388 kB
e Inactive(anon): 2828 kB
o Active(file): 141840 kB
o Inactive(file): 182072 kB
e Unevictable: 0 kB

18

Mlocked: 0 kB

SwapTotal: 8388604 kB
SwapFree: 8388604 kB
Dirty: 28 kB

Writeback: 0 kB
AnonPages: 70192 kB
Mapped: 67208 kB

Shmem: 3236 kB

Slab: 253820 kB
SReclaimable: 86456 kB
SUnreclaim: 167364 kB
KernelStack: 9776 kB
PageTables: 4084 kB

NFS_ Unstable: 0 kB
Bounce: 0 kB
WritebackTmp: 0 kB
CommitLimit: 41210844 kB
Committed AS: 659616 kB

VmallocTotal: 34359738367 kB

VmallocUsed: 0 kB
VmallocChunk: 0 kB
HardwareCorrupted: 0 kB
AnonHugePages: 0 kB
ShmemHugePages: 0 kB
ShmemPmdMapped: 0 kB
CmaTotal: 0 kB
CmakFree: 0 kB
HugePages Total: 0
HugePages Free: 0
HugePages Rsvd: 0
HugePages Surp: 0
Hugepagesize: 2048 kB
DirectMap4k: 200512 kB

19

e DirectMap2M: 6817792 kB
e DirectMaplG: 61865984 kB

The command "cat /etc/os-release" gave us this information about the operating system we used to make
those tests:

e NAME="Ubuntu"

e VERSION="18.04.1 LTS (Bionic Beaver)"

e ID—ubuntu

o ID LIKE—debian

e PRETTY NAME="Ubuntu 17.10"

e VERSION ID="18.04"

e HOME URL="https://www.ubuntu.com/"

e SUPPORT _URL="https://help.ubuntu.com/"

e BUG_REPORT_ URL="https://bugs.launchpad.net/ubuntu/"
e PRIVACY POLICY_ URL="https://www.ubuntu.com/legal/terms-and-policies/privacy-policy"
e VERSION CODENAME=Dbionic

e UBUNTU CODENAME=Dbionic

4.2.7 NIST-approved primitives (random and hashes)

We used the random chars generators from rng.c and rng.h that were provided to us, along with the KAT
files. Everytime we initialize our random functions, we use the NIST-provided generators to obtain a pool
of random bits where we can extract as many bits as we want. Once we detect that the pool is depleted, we
generate a fresh pool without changing the seed. Here’s how we implemented our random generators:

e RdmSgn reads one bit b with a shift and/or a mask from the pool to transform it into either 1 or —1.
e RdmPmtn apply p = (1 ap—1)(2 an—2)...(n ag) € S, where a; is a random value in [n — i, n].

When hashing a random message to the message space, we used SHAK FE512 to guarantee 256-bits col-
lision resistance. The code is taken from the git directory from the creators of KECCAK.

References

[1] Richard A Brualdi and Herbert J Ryser. Combinatorial matriz theory, volume 39. Cambridge University
Press, 1991.

[2] Yuanmi Chen and Phong Q Nguyen. Bkz 2.0: Better lattice security estimates. In International
Conference on the Theory and Application of Cryptology and Information Security, pages 1-20. Springer,
2011.

[3] Nicolas Gama and Phong Q Nguyen. Predicting lattice reduction. In Advances in Cryptology—
EUROCRYPT 2008, pages 31-51. Springer, 2008.

20

4]

[5]

[6]

[7]

18]

[9]

[10]

[11]

[12]
[13]

[14]

Oded Goldreich, Shafi Goldwasser, and Shai Halevi. Public-key cryptosystems from lattice reduction
problems. In Advances in Cryptology - CRYPTO’97, pages 112-131. Springer, 1997.

Jeff Hoffstein, Jill Pipher, John M Schanck, Joseph H Silverman, William Whyte, and Zhenfei Zhang.
Choosing parameters for ntruencrypt. In Cryptographers’ Track at the RSA Conference, pages 3—18.
Springer, 2017.

Ravi Kannan. Minkowski’s convex body theorem and integer programming. Mathematics of operations
research, 12(3):415-440, 1987.

Donald Erwin Knuth, Ronald L Graham, Oren Patashnik, et al. Concrete mathematics. Adison Wesley,
1989.

Vadim Lyubashevsky and Daniele Micciancio. On bounded distance decoding, unique shortest vectors,
and the minimum distance problem. In Advances in Cryptology-CRYPTO 2009, pages 577-594. Springer,
20009.

Phong Q Nguyen and Oded Regev. Learning a parallelepiped: Cryptanalysis of ggh and ntru signatures.
Journal of Cryptology, 22(2):139-160, 20009.

Thomas Plantard, Willy Susilo, and Khin Than Win. A digital signature scheme based on cvp max).
In International Workshop on Public Key Cryptography, pages 288-307. Springer, 2008.

Joan Serra-Sagristd. Enumeration of lattice points in 11 norm. Information processing letters, 76(1-
2):39-44, 2000.

Noah A Smith and Roy W Tromble. Sampling uniformly from the unit simplex. 2004.

Joop van de Pol and Nigel P Smart. Estimating key sizes for high dimensional lattice-based systems.
In IMA International Conference on Cryptography and Coding, pages 290-303. Springer, 2013.

Yang Yu and Léo Ducas. Learning strikes again: the case of the drs signature scheme. Cryptology
ePrint Archive, Report 2018/294, 2018.

21

