DRS

Diagonal dominant Reduction for lattice-based Signature

Thomas PLANTARD, Arnaud SIPASSEUTH, Cedric DUMONDELLE, Willy SUSILO

Institute of Cybersecurity and Cryptology University of Wollongong

http://www.uow.edu.au/~thomaspl thomaspl@uow.edu.au

13 April 2018

• • • • • • • • • •

General Description

Lattice based Digital Signature

- Work proposed in PKC 2008 without existing attack.
- Initially proposed to make GGHSign resistant to **parallelepiped** attacks.
- Modified to gain efficiency: avoid costly Hermite Normal Form.

General Description

Lattice based Digital Signature

- Work proposed in PKC 2008 without existing attack.
- Initially proposed to make GGHSign resistant to **parallelepiped** attacks.
- Modified to gain efficiency: avoid costly Hermite Normal Form.

Lattice based Digital Signature

- Secret key: **Diagonal Dominant** Basis B = D M of a lattice \mathcal{L}
- Public key: A basis P of the same lattice P = UB
- Signature of a message m: a vector s such that $(m-s) \in \mathcal{L}$ and $\|s\|_{\infty} < D$
- Signature security related to GDD_{∞} .

Secret Key

- A diagonal Dominant Basis with $N_b \pm b$ and $N_1 \pm 1$.
- With a cyclic structure but for the signs.

Secret Key

- A diagonal Dominant Basis with $N_b \pm b$ and $N_1 \pm 1$.
- With a cyclic structure but for the signs.

$$B = \begin{pmatrix} D & \pm 1 & \pm 1 & \pm b & 0 & \pm b & \pm 1 & 0 & \pm 1 & 0 \\ 0 & D & \pm 1 & \pm 1 & \pm b & 0 & \pm b & \pm 1 & 0 & \pm 1 \\ \pm 1 & 0 & D & 1 & 1 & \pm b & 0 & \pm b & \pm 1 & 0 \\ 0 & \pm 1 & 0 & D & \pm 1 & \pm 1 & \pm b & 0 & \pm b & \pm 1 \\ \pm 1 & 0 & \pm 1 & 0 & D & \pm 1 & \pm 1 & \pm b & 0 & \pm b \\ \pm b & \pm 1 & 0 & \pm 1 & 0 & D & \pm 1 & \pm 1 & \pm b & 0 \\ 0 & \pm b & \pm 1 & 0 & \pm 1 & 0 & D & \pm 1 & \pm 1 & \pm b \\ \pm b & 0 & \pm b & \pm 1 & 0 & \pm 1 & 0 & D & \pm 1 \\ \pm 1 & \pm b & 0 & \pm b & \pm 1 & 0 & \pm 1 & 0 & D & \pm 1 \\ \pm 1 & \pm 1 & \pm b & 0 & \pm b & \pm 1 & 0 & \pm 1 & 0 & D \end{pmatrix}$$

Secret Key

- A diagonal Dominant Basis with $N_b \pm b$ and $N_1 \pm 1$.
- With a cyclic structure but for the signs.

- Growing b creates a gap between Euclidean Norm and Manhattan Norm
- Cyclic structure to guarantee $\|M\|_{\infty} = \|M\|_{1}$

₹ *•*0 < @

Public Key

- P = UB with $U = P_{R+1}T_RP_R...T_1P_1$
- With P_i a random permutation matrix and

Image: Image:

Public Key

- P = UB with $U = P_{R+1}T_RP_R...T_1P_1$
- With P_i a random permutation matrix and

$$T_i = egin{pmatrix} A^{\pm 1} & 0 & 0 & 0 \ 0 & A^{\pm 1} & 0 & 0 \ 0 & 0 & A^{\pm 1} & 0 \ 0 & 0 & 0 & A^{\pm 1} \end{pmatrix}$$

with

$$A^{+1} = \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix}, A^{-1} = \begin{pmatrix} -1 & 2 \\ 1 & -1 \end{pmatrix}$$

Public Key

•
$$P = UB$$
 with $U = P_{R+1}T_RP_R...T_1P_1$

• With P_i a random permutation matrix and

$$\mathcal{T}_i = egin{pmatrix} A^{\pm 1} & 0 & 0 & 0 \ 0 & A^{\pm 1} & 0 & 0 \ 0 & 0 & A^{\pm 1} & 0 \ 0 & 0 & 0 & A^{\pm 1} \end{pmatrix}$$

with

$$A^{+1} = \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix}, A^{-1} = \begin{pmatrix} -1 & 2 \\ 1 & -1 \end{pmatrix}$$

• U and U^- can been computed efficiently.

• U, U^{-1}, P coefficients are growing regularly during the R step.

A ∰ ▶ A ∃ ▶ A

- As B = D M, we have $D \equiv M \pmod{\mathcal{L}}$
- $||M||_1 < D$ to guarantee **short number** of steps.

Image: A matrix and a matrix

- As B = D M, we have $D \equiv M \pmod{\mathcal{L}}$
- $||M||_1 < D$ to guarantee **short number** of steps.

Vector Reduction

- $w \leftarrow Hash(m)$
- 2 until $\|w\|_{\infty} < D$
 - Find q, r such w = r + qD
 - **2** Compute $w \leftarrow r + qM$

- As B = D M, we have $D \equiv M \pmod{\mathcal{L}}$
- $||M||_1 < D$ to guarantee **short number** of steps.

Vector Reduction

- $w \leftarrow Hash(m)$
- $\textbf{2} \quad \text{until } \|w\|_{\infty} < D$
 - Find q, r such w = r + qD
 - 2 Compute $w \leftarrow r + qM$
 - Efficiency: No needs for large arithmetic.
 - Security: Algorithm termination related to a public parameter D.

Alice Helps Bob

- Alice sends s such that $Hash(m) s \in \mathcal{LP}$.
- Alice sends k such that kP = Hash(m) s
- During signing, Alice extracts q such that q(D M) = Hash(m) s
- Alice compute $k = qU^{-1}$.

Alice Helps Bob

- Alice sends s such that $Hash(m) s \in \mathcal{LP}$.
- Alice sends k such that kP = Hash(m) s
- During signing, Alice extracts q such that q(D M) = Hash(m) s
- Alice compute $k = qU^{-1}$.

Bob checks that

•
$$\|s\|_{\infty} < D$$
,

• and qP = Hash(m) - s.

Best Known Attack

Find the Unique Shortest Vector of the lattice

 $\begin{pmatrix} v & 1 \\ P & 0 \end{pmatrix}$

with $v = (D, 0, \dots, 0)$ and a lattice gap

$$\gamma = \frac{\lambda_2}{\lambda_1} \lesssim \frac{\Gamma(\frac{n+3}{2})^{\frac{1}{n+1}} \|D - M\|_2^{\frac{n}{n+1}}}{\|M\|_2} = \frac{\Gamma(\frac{n+3}{2})^{\frac{1}{n+1}} (D^2 + N_b b^2 + N_1)^{\frac{n}{2(n+1)}}}{\sqrt{N_b b^2 + N_1}}$$

Best Known Attack

Find the Unique Shortest Vector of the lattice

 $\begin{pmatrix} v & 1 \\ P & 0 \end{pmatrix}$

with $v = (D, 0, \dots, 0)$ and a lattice gap

$$\gamma = \frac{\lambda_2}{\lambda_1} \lesssim \frac{\Gamma(\frac{n+3}{2})^{\frac{1}{n+1}} \|D - M\|_2^{\frac{n}{n+1}}}{\|M\|_2} = \frac{\Gamma(\frac{n+3}{2})^{\frac{1}{n+1}} (D^2 + N_b b^2 + N_1)^{\frac{n}{2(n+1)}}}{\sqrt{N_b b^2 + N_1}}$$

Conservator Choices

Dimension	N _b	b	N ₁	Δ	R	γ	2^{λ}	
912	16	28	432	32	24	$ <rac{1}{4}(1.006)^{d+1}$	2 ¹²⁸	
1160	23	25	553	32	24	$<rac{1}{4}(1.005)^{d+1}$	2 ¹⁹²	
1518	33	23	727	32	24	$ < rac{1}{4} (1.006)^{d+1} \ < rac{1}{4} (1.005)^{d+1} \ < rac{1}{4} (1.004)^{d+1}$	2 ²⁵⁶	

Yang Yu and Leo Ducas Attack

- When b is too big compare to other value of M,
- Machine learning can extract position of b related to D.
- Sign of *b* could also sometime be extracted.

Consequence

BDD attack is simpler as the gap of new problem bigger.

Yang Yu and Leo Ducas Attack

- When b is too big compare to other value of M,
- Machine learning can extract position of b related to D.
- Sign of *b* could also sometime be extracted.

Consequence

BDD attack is simpler as the gap of new problem bigger.

Solutions

- Find which sizes of *b* requires 2^{64} signatures: current attack 2^{17} for b = 28.
- 2 Uses b smaller: if b small, dimension increases by 20% to 30%.

Specificity

- Digital Signature using Hidden Structured Lattice.
- Diagonal Dominant Basis.

A D > A A > A > A

Specificity

- Digital Signature using Hidden Structured Lattice.
- Diagonal Dominant Basis.

Advantage

- Generic Lattice without large integer arithmethic.
- Use Max Norm to minimise leaking.

Specificity

- Digital Signature using Hidden Structured Lattice.
- Diagonal Dominant Basis.

Advantage

- Generic Lattice without large integer arithmethic.
- Use Max Norm to minimise leaking.

Disadvantage

- Quadratic structure is memory costly.
- Verfication still slower than signing.